TLV2442-Q1

ACTIVE

Automotive, advanced LinCMOS™ rail-to-rail output wide-input-voltage dual op amp

A newer version of this product is available

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
TLV9152-Q1 ACTIVE Automotive, dual, 16-V 4.5-MHz low-power operational amplifier Rail-to-rail I/O, wider supply range (2.7 V to 16 V), higher GBW (4.5 MHz), faster slew rate (21 V/us), lower offset voltage (0.895 mV), lower power (0.56 mA), lower noise (10.8 nV/√Hz), higher output current (75 mA),

Product details

Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 10 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Rail-to-rail In to V-, Out GBW (typ) (MHz) 1.81 Slew rate (typ) (V/µs) 1.4 Vos (offset voltage at 25°C) (max) (mV) 2 Iq per channel (typ) (mA) 0.725 Vn at 1 kHz (typ) (nV√Hz) 16 Rating Automotive Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 2 Input bias current (max) (pA) 60 CMRR (typ) (dB) 75 Iout (typ) (A) 0.015 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.25 Input common mode headroom (to positive supply) (typ) (V) -0.5 Output swing headroom (to negative supply) (typ) (V) 0.01 Output swing headroom (to positive supply) (typ) (V) -0.03
Number of channels 2 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 10 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Rail-to-rail In to V-, Out GBW (typ) (MHz) 1.81 Slew rate (typ) (V/µs) 1.4 Vos (offset voltage at 25°C) (max) (mV) 2 Iq per channel (typ) (mA) 0.725 Vn at 1 kHz (typ) (nV√Hz) 16 Rating Automotive Operating temperature range (°C) -40 to 125 Offset drift (typ) (µV/°C) 2 Input bias current (max) (pA) 60 CMRR (typ) (dB) 75 Iout (typ) (A) 0.015 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.25 Input common mode headroom (to positive supply) (typ) (V) -0.5 Output swing headroom (to negative supply) (typ) (V) 0.01 Output swing headroom (to positive supply) (typ) (V) -0.03
TSSOP (PW) 8 19.2 mm² 3 x 6.4 VSSOP (DGK) 8 14.7 mm² 3 x 4.9
  • Qualified for Automotive Applications
  • ESD Protection Exceeds 2000 V Per
    MIL-STD-883, Method 3015; Exceeds 200 V
    Using Machine Model (C = 200 pF, R = 0)
  • Output Swing Includes Both Supply Rails
  • Extended Common-Mode Input Voltage Range:
    0 V to 4.25 V (Min) at 5-V Single Supply
  • No Phase Inversion
  • Low Noise: 16 nV/Hz Typ at f = 1 kHz
  • Low Input Offset Voltage:
    950 µV Max at TA = 25°C (TLV244xA)
  • Low Input Bias Current: 1 pA (Typ)
  • 600- Output Drive
  • High-Gain Bandwidth: 1.8 MHz (Typ)
  • Low Supply Current: 750 µA Per Channel (Typ)
  • Macromodel Included

Advanced LinCMOS is a trademark of Texas Instruments.
PSpice, Parts are trademarks of MicroSim.

  • Qualified for Automotive Applications
  • ESD Protection Exceeds 2000 V Per
    MIL-STD-883, Method 3015; Exceeds 200 V
    Using Machine Model (C = 200 pF, R = 0)
  • Output Swing Includes Both Supply Rails
  • Extended Common-Mode Input Voltage Range:
    0 V to 4.25 V (Min) at 5-V Single Supply
  • No Phase Inversion
  • Low Noise: 16 nV/Hz Typ at f = 1 kHz
  • Low Input Offset Voltage:
    950 µV Max at TA = 25°C (TLV244xA)
  • Low Input Bias Current: 1 pA (Typ)
  • 600- Output Drive
  • High-Gain Bandwidth: 1.8 MHz (Typ)
  • Low Supply Current: 750 µA Per Channel (Typ)
  • Macromodel Included

Advanced LinCMOS is a trademark of Texas Instruments.
PSpice, Parts are trademarks of MicroSim.

The TLV244x and TLV244xA are low-voltage operational amplifiers from Texas Instruments. The common-mode input voltage range of these devices has been extended over typical standard CMOS amplifiers, making them suitable for a wide range of applications. In addition, these devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. Both devices offer comparable ac performance while having lower noise, input offset voltage, and power dissipation than existing CMOS operational amplifiers. The TLV244x has increased output drive over previous rail-to-rail operational amplifiers and can drive 600- loads for telecommunications applications.

The other members in the TLV244x family are the low-power, TLV243x, and micro-power, TLV2422, versions.

The TLV244x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV244xA is available with a maximum input offset voltage of 950 µV.

If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption make them ideal for high-density battery-powered equipment.

The TLV244x and TLV244xA are low-voltage operational amplifiers from Texas Instruments. The common-mode input voltage range of these devices has been extended over typical standard CMOS amplifiers, making them suitable for a wide range of applications. In addition, these devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. Both devices offer comparable ac performance while having lower noise, input offset voltage, and power dissipation than existing CMOS operational amplifiers. The TLV244x has increased output drive over previous rail-to-rail operational amplifiers and can drive 600- loads for telecommunications applications.

The other members in the TLV244x family are the low-power, TLV243x, and micro-power, TLV2422, versions.

The TLV244x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV244xA is available with a maximum input offset voltage of 950 µV.

If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption make them ideal for high-density battery-powered equipment.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 2
Type Title Date
* Data sheet Advanced LinCMOS (TM) Rail-to-Rail Output Wide-Input-Voltage Op Amp datasheet (Rev. C) 03 Aug 2009
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation model

TLV244x PSpice Model (Rev. B)

SLOJ016B.ZIP (19 KB) - PSpice Model
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
TSSOP (PW) 8 View options
VSSOP (DGK) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos