Home Power management Gate drivers Half-bridge drivers

UCC27222

ACTIVE

High-Efficiency Predictive synchronous buck driver

Product details

Bootstrap supply voltage (max) (V) 30 Power switch MOSFET Input supply voltage (min) (V) 5 Input supply voltage (max) (V) 20 Peak output current (A) 3 Operating temperature range (°C) -40 to 105 Undervoltage lockout (typ) (V) 4 Rating Catalog Propagation delay time (µs) 0.06 Rise time (ns) 17 Fall time (ns) 17 Iq (mA) 4.7 Input threshold TTL Channel input logic TTL Switch node voltage (V) -0.3 Features Dead time control, Soft switching, Synchronous Rectification Driver configuration Inverting, Noninverting
Bootstrap supply voltage (max) (V) 30 Power switch MOSFET Input supply voltage (min) (V) 5 Input supply voltage (max) (V) 20 Peak output current (A) 3 Operating temperature range (°C) -40 to 105 Undervoltage lockout (typ) (V) 4 Rating Catalog Propagation delay time (µs) 0.06 Rise time (ns) 17 Fall time (ns) 17 Iq (mA) 4.7 Input threshold TTL Channel input logic TTL Switch node voltage (V) -0.3 Features Dead time control, Soft switching, Synchronous Rectification Driver configuration Inverting, Noninverting
HTSSOP (PWP) 14 32 mm² 5 x 6.4
  • Maximizes Efficiency by Minimizing Body-Diode Conduction and Reverse Recovery Losses
  • Transparent Synchronous Buck Gate Drive Operation From the Single Ended PWM Input Signal
  • 12-V or 5-V Input Operation
  • 3.3-V Input Operation With Availability of 12-V Bus Bias
  • High-Side and Low-Side ±3-A Dual Drivers
  • On-Board 6.5-V Gate Drive Regulator
  • ±3.3-A TrueDrive™ Gate Drives for High Current Delivery at MOSFET Miller Thresholds
  • Automatically Adjusts for Changing Operating Conditions
  • Thermally Enhanced 14-Pins PowerPAD™ HTSSOP Package Minimizes Board Area and Junction Temperature Rise
  • APPLICATIONS
    • Non-Isolated Single or Multi-phased DC-to-DC Converters for Processor Power, General Computer, Telecom and Datacom Applications

Predictive Gate Drive™ and PowerPAD™ are trademarks of Texas Instruments Incorporated.

  • Maximizes Efficiency by Minimizing Body-Diode Conduction and Reverse Recovery Losses
  • Transparent Synchronous Buck Gate Drive Operation From the Single Ended PWM Input Signal
  • 12-V or 5-V Input Operation
  • 3.3-V Input Operation With Availability of 12-V Bus Bias
  • High-Side and Low-Side ±3-A Dual Drivers
  • On-Board 6.5-V Gate Drive Regulator
  • ±3.3-A TrueDrive™ Gate Drives for High Current Delivery at MOSFET Miller Thresholds
  • Automatically Adjusts for Changing Operating Conditions
  • Thermally Enhanced 14-Pins PowerPAD™ HTSSOP Package Minimizes Board Area and Junction Temperature Rise
  • APPLICATIONS
    • Non-Isolated Single or Multi-phased DC-to-DC Converters for Processor Power, General Computer, Telecom and Datacom Applications

Predictive Gate Drive™ and PowerPAD™ are trademarks of Texas Instruments Incorporated.

The UCC27221 and UCC27222 are high-speed synchronous buck drivers for today’s high-efficiency, lower-output voltage designs. Using Predictive Gate Drive™ (PGD) control technology, these drivers reduce diode conduction and reverse recovery losses in the synchronous rectifier MOSFET(s). The UCC27221 has an inverted PWM input while the UCC27222 has a non-inverting PWM input.

Predictive Gate Drive™ technology uses control loops which are stabilized internally and are therefore transparent to the user. These loops use no external components, so no additional design is needed to take advantage of the higher efficiency of these drivers.

This closed loop feedback system detects body-diode conduction, and adjusts deadtime delays to minimize the conduction time interval. This virtually eliminates body-diode conduction while adjusting for temperature, load- dependent delays, and for different MOSFETs. Precise gate timing at the nanosecond level reduces the reverse recovery time of the synchronous rectifier MOSFET body-diode, reducing reverse recovery losses seen in the main (high-side) MOSFET. The lower junction temperature in the low-side MOSFET increases product reliability. Since the power dissipation is minimized, a higher switching frequency can also be used, allowing for smaller component sizes.

The UCC27221 and UCC27222 are offered in the thermally enhanced 14-pin PowerPAD package with 2°C/W jc.

The UCC27221 and UCC27222 are high-speed synchronous buck drivers for today’s high-efficiency, lower-output voltage designs. Using Predictive Gate Drive™ (PGD) control technology, these drivers reduce diode conduction and reverse recovery losses in the synchronous rectifier MOSFET(s). The UCC27221 has an inverted PWM input while the UCC27222 has a non-inverting PWM input.

Predictive Gate Drive™ technology uses control loops which are stabilized internally and are therefore transparent to the user. These loops use no external components, so no additional design is needed to take advantage of the higher efficiency of these drivers.

This closed loop feedback system detects body-diode conduction, and adjusts deadtime delays to minimize the conduction time interval. This virtually eliminates body-diode conduction while adjusting for temperature, load- dependent delays, and for different MOSFETs. Precise gate timing at the nanosecond level reduces the reverse recovery time of the synchronous rectifier MOSFET body-diode, reducing reverse recovery losses seen in the main (high-side) MOSFET. The lower junction temperature in the low-side MOSFET increases product reliability. Since the power dissipation is minimized, a higher switching frequency can also be used, allowing for smaller component sizes.

The UCC27221 and UCC27222 are offered in the thermally enhanced 14-pin PowerPAD package with 2°C/W jc.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 10
Type Title Date
* Data sheet High-Efficiency Predictive Synchronous Buck Driver datasheet (Rev. B) 16 Jul 2003
Application brief External Gate Resistor Selection Guide (Rev. A) 28 Feb 2020
Application brief Understanding Peak IOH and IOL Currents (Rev. A) 28 Feb 2020
More literature Fundamentals of MOSFET and IGBT Gate Driver Circuits (Replaces SLUP169) (Rev. A) 29 Oct 2018
Selection guide Power Management Guide 2018 (Rev. R) 25 Jun 2018
Application note Increasing UCC27221/2 Gate Drive Voltage 20 Jun 2003
Application note Low Voltage Feedback in PWM Applications 27 Feb 2003
Application note Predictive Gate Drive Boosts Converter Efficiency 18 Dec 2002
Application note UCC27221/2 Predictive Gate Drive FAQ 18 Dec 2002
More literature Seminar 1400 Topic 7 The Implication of Synchronous Rectifiers to the Design of 22 Apr 2002

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Package Pins Download
HTSSOP (PWP) 14 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos