
1

5/21/2008 1

Advanced Debug Capabilities of CCE
Darian Sale

2

Software Development Organization

Objectives

• Introduction to advanced features of CCE
– Debug Server Scripting (DSS)
– 3rd party Eclipse plug-ins
– Other advanced Eclipse features

• Perspectives and workspaces
• Local history
• Refactoring
• Advanced breakpoint features

2

3

Software Development Organization

DSS: What is it?

• Java API’s to CCE debugger
• Lightweight package with no GUI

– Faster, as there is no GUI to refresh/repaint/update
– Errors handled via exceptions, not dialogs
– However, specific GUI actions cannot be automated

• Scriptable through available 3P tools such as:
• Javascript (via Rhino)
• Perl (via “inline::java” module)
• Python (via Jython)
• TCL (via Jacl/Tclblend)

4

Software Development Organization

DSS: What is it?

MSP430 TargetMSP430 Target

DebuggerDebugger

Scripting (Java)Scripting (Java)

CCE:

Development
environment
based on Eclipse

DSS:

Batch scripting
environment,
with no GUI

dependencies

3

5

Software Development Organization

DSS: What can you use it for?

• Automate testing
– Use JUnit, tcltest etc

• Automate profile runs overnight
• Type commands instead of clicking a mouse
• Automate a sequence of complex steps

– Quickly place the target application into a “broken” state
for debugging

6

Software Development Organization

DSS: API’s

ScriptingEnvironment

Breakpoint

Expression

Memory

Symbol

Target
AsmStep

SrcStep

DebugServer

getServer

ProfileServer ProfileSession

Logging

ErrorHandling

DebugSession

openSession

FutureServer FutureSession

Plug-in Script Servers
Detailed API documentation is
included:
<install>\DebugServer\scripting\docs

4

7

Software Development Organization

DSS: How to use it

• Used from command line or Scripting Console
– The Scripting Console can be opened from the Window->Show View

menu and executes javascript

8

Software Development Organization

DSS: Scripting Console

• Scripting Console creates a session variable dss
– session opened from dss

links with active debug
session

Run Issued

Target starts to run

5

9

Software Development Organization

DSS: Scripting Console

• Terminating the
session will terminate
the CCE debug
session

Terminate
called

Session
terminates

10

Software Development Organization

DSS: Scripting Console

• Use loadCommandFile to run
a more complex script
– Script will be run at every

startup

6

11

Software Development Organization

DSS: Scripting Console

• Place commonly used
functions in a script
– Allows easy keyboard

control of the debugger

12

Software Development Organization

DSS: Command line

• DSS can also be used from the command line
• In the CCE install folder, go to

\DebugServer\scripting\examples
– This folder contains rhino.bat, which will run any DSS

javascript-based file
– The folder also contains some example DSS scripts

7

13

Software Development Organization

DSS: Sample script
// Import the DSS packages into our namespace to save on typing
importPackage(Packages.com.ti.debug.engine.scripting)
importPackage(Packages.com.ti.ccstudio.scripting.environment)
importPackage(Packages.java.lang)

// Create Scripting Environment
var env = new ScriptingEnvironment();

// Begin logging - log *everything* to a
// file and INFO messages to the console
env.traceBegin("dsslog.xml");
env.traceSetFileLevel(TraceLevel.ALL);
env.traceSetConsoleLevel(TraceLevel.INFO);

// Open a debug session
var server = env.getServer("DebugServer.1");
var session = server.openSession();

// Connect and load the .out file
try {

session.target.connect();
session.memory.loadProgram("simple.out");

} catch (ex){
// Do Failure Routine

}

Try…Catch blocks
are supported for
robust error
handling

Logging to console, file or
combination of both

Scripting Environment
encapsulates logging,

error handling, etc.

14

Software Development Organization

DSS: Sample script
// Set start & stop profiling BPs
session.breakpoint.add("simple.c", 5);
session.breakpoint.add("simple.c", 20);

// Run to first (start) breakpoint
session.target.run();

// Run to second breakpoint and count cycles
var profileServer = env.getServer("ProfileServer.1");
Var profileSession = profileServer.openSession(session);
var cycleCount = profileSession.runBenchmark();

// Report how long the run took
env.traceWrite("cycle.CPU (Incl. Total): " + cycleCount + "

cycles“);

// Close our Session and Server
sesson.terminate();
server.stop();

Could perform
multiple runs and
compute Std. Dev.
from acceptable
norm value.

Terminate our
debug session

Synchronous run

Simple to perform common
debug operations

8

15

Software Development Organization

DSS: Logging

• XML format (easy to parse)
– Can specify XSTL file to be referenced in XML log file

• Configure how log information is displayed when opened in a web
browser

• XSTL Tutorial: http://www.w3schools.com/xsl/xsl_intro.asp

• More information
– Sequence Numbers
– Timing information (total, deltas, etc)
– Status messages

• Log printf output

16

Software Development Organization

DSS: Log file in web browser

9

17

Software Development Organization

DSS: Exception Handling

try {
debugSession.memory.loadProgram(testProgFile);

} catch (ex){
errCode = dssErrorHdl.getLastErrorID();
dssScriptEnv.traceWrite("errCode: " + errCode + " - " +

testProgFile + " does not exist!");
quit();

}

• DSS APIs throw Java exceptions

• Can handle exception in the script to fail
gracefully or continue on

18

Software Development Organization

DSS: Example

• Demo
– Use DSS to automate testing of an MSP430 application

10

19

Software Development Organization

Eclipse background
• Eclipse

– Originally IBM’s Java Development Environment
– Open platform for tool integration built by an open community of tool providers
– Operates under a open source paradigm
– Universal platform for tools integration
– Multi-language, multi-platform and multi-vendor environment
– Excellent plug-in framework

• Governed by Eclipse Public License (EPL)
– Royalty free world-wide redistribution rights
– Enables you to sell components & products
– Source changes to EPL governed code need to be made available

• Eclipse Foundation
– The Eclipse Foundation is a non-profit corporation formed to advance the

creation, evolution, promotion, and support of the Eclipse Platform and to cultivate
both an open source community and an ecosystem of complementary products,
capabilities, and services.

• Other Eclipse members
– IBM/Rational, QNX, WindRiver, Borland, RedHat, MontaVista, Texas Instruments

20

Software Development Organization

Benefits of Eclipse
• Excellent Application Framework

– Modular and extensible
• Rapid Rate of Improvement

– Many companies are contributing
• Development tool integration

– Users need more than TI tools to do their development
• Design tools, Code development, OS awareness
• www.eclipseplugincentral.com
• www.eclipse.org/community/plugins.php

– Eclipse is a standard platform to integrate with
• Outstanding SDK and plug-in framework

• Host platform independence
– Windows, Linux…

• TI can focus on unique value-added capabilities

11

21

Software Development Organization

CCE architecture

DebuggerDebugger

CDI AdapterCDI Adapter DSS ScriptingDSS Scripting

EclipseEclipse

C/C++
Development

Toolkit

C/C++
Development

Toolkit TI Plug-insTI Plug-ins

3rd Party Plug-ins3rd Party Plug-ins

User Plug-insUser Plug-ins

22

Software Development Organization

Eclipse Plug-ins

• Well documented API enables 3rd parties
– Many Eclipse add-ons available

• Editors
• Source control
• Testing
• Documentation
• UML

• Caveat
– Not all plugins will work in CCE, or work together

12

23

Software Development Organization

Example - Terminal plug-in

• CCE ships with the Terminal View plug-in
– Available from the Other… menu in Show View

24

Software Development Organization

Terminal plug-in

• Supports COM port connection to your board

13

25

Software Development Organization

Where to get additional plug-ins
• Eclipse.org community

– Eclipse Plug-in Central
• Browse through plug-ins
• www.eclipseplugincentral.com

– Older Eclipse Plug-in Site
• www.eclipse.org/community/plugins.php

• If you still can’t find what you want Google
usually can

26

Software Development Organization

Installing plug-ins

• As simple as copying files into your eclipse\plugins and
eclipse\features folders
– Typically distributed as a zip file
– Shutdown Eclipse, unzip, start Eclipse

• CCE 3.0 uses Eclipse v3.2.0 and CDT v3.1
– Plug-ins not designed for this version may not operate correctly
– CDT plug-ins are unlikely to work at all due to modifications to it

in CCE

• Do not update any core plug-ins
– Overwriting these plug-ins will remove MSP430 modifications

14

27

Software Development Organization

Plug-in example

• Demo
– Installing Java support to CCE
– Running DSS automated tests from within CCE

28

Software Development Organization

Plug-in Development Environment

• Eclipse “Plug-in Development Environment”
(PDE)
– Used to create, test, debug, and deploy plug-ins

• Plug-ins are written in Java
– “Java Development Toolkit” or JDT must be installed
– available from http://www.eclipse.org

15

29

Software Development Organization

PDE perspective
• Window->Open Perspective->Other

– Select Plug-in Development

30

Software Development Organization

Plug-in development references
• Several different templates provided
• Tutorials available in the help and on the web
• A number of books available

16

31

Software Development Organization

Workspaces
• What are they?

– A workspace is a folder that contains information relevant to
what you are working on

• A workspace contains
– Projects

• Either physically in the workspace or referenced by the workspace
– Window and toolbar arrangements
– Preference settings

• You can switch between multiple workspaces
• Automatically saved on exit
• Can be automatically loaded at startup

32

Software Development Organization

Perspectives

Open new perspective Switch to the debug perspective

Current perspective

• Background:
– Each Workbench window contains one or more perspectives
– A perspective defines the initial set and layout of views
– Each perspective is aimed at accomplishing a specific type of task

• As you work in the Workbench, you will probably switch perspectives
frequently

• Customization
– Perspectives control what appears in certain menus and toolbars
– They define visible action sets, which you can change to customize a perspective
– You can save a custom perspective that you build

• Default perspectives in CCE
– C/C++: Editing and building
– Debug: Debugging your programs

• Perspectives can be opened in the same window, or a new one

17

33

Software Development Organization

Window Types

Detached:
Can float outside of the main window

Fast view: Hidden until you click on the button to
restore them. Click on another window to hide

Tab Group:
Several windows
grouped together

Editor:
Only editor

windows are
part of this

group

34

Software Development Organization

Windowing Tips

• Double-clicking a window’s title bar will maximize it
– Double-clicking again will restore it to its previous size

• Fast-view windows are great for windows used
infrequently which require a lot of space

• The window that has focus is indicated by a blue border
and heading

Current window

18

35

Software Development Organization

Customizing perspectives

• You can customize the menu items and toolbars in your perspective
• Commands

– Controls menus & toolbars
• Shortcuts

– Controls special sub-menus
(new, show view…)

36

Software Development Organization

Accessing views

• To open a new view go to the Windows -> Show
View Menu
– Common views for the

current perspective
– Recently opened views

• To access views that are
not listed select Other…

19

37

Software Development Organization

Editor features
• Code Completion (ctrl + space)

– Complete word
– Auto-member information
– Auto-parameter information
– …

• Navigation
– Back/Forward buttons
– Back to last edit button
– Go to definition
– Go to declaration

• Show line numbers
• Code Folding

– Collapse functions

38

Software Development Organization

Local history
• Eclipse keeps a local history of source changes
• You can compare or replace your current source file with

any previous saved version

20

39

Software Development Organization

Breakpoint tips

• Breakpoints are more than just the pre-made
selections in the drop down
– Right clicking on one can bring up a properties display

And additional triggers
together

Define a condition on
which to halt

Perform actions when it’s
hit such as saving
memory to a file, or
writing memory from a file

40

Software Development Organization

Breakpoint tips

• Have a set of breakpoints for a specific purpose?
– You can save one or more breakpoints to a file to use

later in another workspace, or even share with other
users

21

41

Software Development Organization

Detect invalid branch

• Fill memory with 0x4343
• Load code with the option Retain Unchanged Memory

– 0x4343 is the opcode used for software breakpoints
– If the program branches to invalid memory, it will halt

• Trace, if available, can detect where the faulty branch
occurred

5/21/2008 42

Additional References

22

43

Software Development Organization

DSS: Target setup

• DSS used from the Scripting Console uses the active debug session
automatically

• DSS used from the command line requires you to indicate what the target is
setup

Select TI Debug
Settings

Choose the
Setup tab Click Export

Save to
<install>\DebugServer\bin
\win32\SystemSetup.xml

44

Software Development Organization

DSS: Generated xml-based log

<?xml version="1.0" encoding="windows-1252" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="SimpleTransform.xsl"?>
<log>
<record>

<date>2007-05-02T15:30:15</date>
<millis>1178134215917</millis>
<sequence>0</sequence>
<logger>com.ti</logger>
<level>FINER</level>
<class>com.ti.ccstudio.scripting.environment.ScriptingEnvironment</class>
<method>traceSetConsoleLevel</method>
<thread>10</thread>
<message>RETURN</message>

</record>
<record>

<date>2007-05-02T15:30:15</date>
<millis>1178134215917</millis>
<sequence>1</sequence>
<logger>com.ti</logger>
<level>FINER</level>
<class>com.ti.ccstudio.scripting.environment.ScriptingEnvironment</class>
<method>getServer</method>
<thread>10</thread>
<message>ENTRY sServerName: LegacySetupServer.1</message>

</record>

23

45

Software Development Organization

DSS: What about Perl?

• Is it possible?
– YES

• Is it complicated?
– NO

• Required Components:
– Perl 5.8.3 or higher

• http://www.activestate.com/Products/ActivePerl/?tn=1
– Java 2 SDK (for javac)

• https://java.sun.com/javase/downloads/index.jsp
– Inline::Java

• http://theoryx5.uwinnipeg.ca/ppms/Inline-Java.ppd

46

Software Development Organization

DSS: Inline::Java for Perl
• What?

– DSS APIs are in Java. Inline::Java perl module lets us access Java classes from
perl

• Perl Inline::Java method interfaces directly to the supported DSS Java APIs
• A Java compiler is launched and the Java code is compiled.
• The Java classes and methods are available to the Perl program as if they had been

written in Perl.
• The process of interrogating the Java classes for public methods occurs the first time you

run your Java code. The namespace is cached, and subsequent calls use the cached
version

• Why?
– Perl is one of the most popular scripting languages. Huge availability of modules

on CPAN is big strength.

• When?
– Perl Inline module has been around for 7+ years, initially developed to leverage C

code from within a perl environment. In the last ~5 years more language support
has been added. Inline::Java was initially developed in 2001

24

47

Software Development Organization

DSS: DSS_SCRIPTING.pm
• Perl module that hides a bunch of generic stuff that every .pl script would

otherwise have to know/learn
– To use: -

• # import module abstracting the DSS class details
• use DSS_SCRIPTING;

• # call the DSS class constructor(s) we need
• my $dss = new DSS_SCRIPTING();

• Details (purpose of module is to hide these from user)
– We tell Inline::Java to explicitly ‘STUDY’ main DSS class

(ScriptingEnvironment) so we can use it from perl
– We turn on AUTOSTUDY which makes Inline::Java automatically study

unknown classes as it encounters them
– We proxy Java's importPackage() by assigning a new namespace TraceLevel

to the fully scoped package name so we can then use the shorter namespace
$TraceLevel::ALL instead of
$DSS_SCRIPTING::com::ti::ccstudio::scripting::environment::TraceLevel::ALL

– Finally, we enable access to the ScriptingEnvironment Java class constructor

48

Software Development Organization

DSS: Perl – Simple Example
• Example

– Simplistic example to show that Perl works with DSS
• What does the Script do?

– Starts the debug server
– Connects to the first target
– Loads the program passed as a parameter
– Enables analysis events
– Sets a breakpoint at main
– Runs the target
– Checks where it is halted
– Runs the target
– Disables the events
– Exits

• Executing the script
– perl dss_simple.pl [outfile] [setup config file]

25

49

Software Development Organization

DSS: Example: automated testing
• A common use for DSS is to automate testing
• If you don’t want to write your own framework, use

something freely available such as junit
– JUnit requires raw java code, not javascript
– You’ll need a .bat file to setup the path and classpath correctly

first
• Simply modify rhino.bat to call your java object

50

Software Development Organization

DSS: Example: automated testing
• Create a junit testing object and compile it

– Create a function with @BeforeClass to initialize a DSS session
– Create a function with @AfterClass to terminate the session
– Create functions with @Before and @After to setup the target and

clean up after any test function
– Then finally use @Test to write a bunch of testing functions

• Validate algorithms are correct with different data sets
• Validate application performance with the profile functions

• Demo

26

51

Software Development Organization

DSS: References
• Javascript References

– Rhino – Javascript for Java: http://www.mozilla.org/rhino/
– W3Schools – Javascript Tutorial:

http://www.w3schools.com/js/default.asp

• XSLT (XML Stylesheet Transforms) References.
– If the format of the log file isn't exactly what you need.
– XSLT Tutorial: http://www.w3schools.com/xsl/xsl_intro.asp
– Xalan – XSLT Processor: http://xml.apache.org/xalan-j/

• JUnit References
– JUnit home page: http://www.junit.org/
– JUnit FAQ: http://junit.sourceforge.net/doc/faq/faq.htm

52

Software Development Organization

Installing java support

• CCE does not ship with java support, but it can be easily added
– Go to http://www.eclipse.org and click on PROJECTS near the top
– Click on Show me all the projects
– Click on Eclipse Project
– Click Download in the corner
– From here, there should be a link to archived builds of earlier versions
– Click on the link for version 3.2
– Download eclipse-SDK-3.2-win32.zip from this page
– Extract all files on top of the CCE 3.2 install, but do not overwrite

existing files
• Existing files contain TI specific changes necessary to debug TI devices

• Now that CCE supports java, you can use it to develop and run DSS
based JUnit tests

27

53

Software Development Organization

Creating a DSS JUnit project

• Switch to the Java perspective
• Right click on the project view and select project

and give it a name
• Right click on the new project and add a new

class
• Right click on the new project and select Build

Path->Add External Libraries…
– Select the DSS jars (all the jars in

DebugServer\scripting\lib)
– Download JUnit from the web (http://www.junit.org/)

and add it’s jar

54

Software Development Organization

Creating a DSS JUnit test

• You’ll need to include the necessary imports, and then just define startup,
shutdown routines

28

55

Software Development Organization

Creating a DSS JUnit test

• Then just define test routines

56

Software Development Organization

Running a DSS JUnit test
• Right click on the test class and choose Debug

As->JUnit Test or Run As->JUnit Test
• If you get an error about XPCOM.RUNTIME not

being defined
– Right click, and select Debug As->Debug…
– Select Arguments and under VM Arguments enter

XPCOM.RUNTIME=<install>\DebugServer\win32
• Spaces in the path won’t work, so use the ~ filenames: for

instance
DXPCOM.RUNTIME=C:\PROGRA~1\TEXASI~1\CCESSE~1\D
ebugServer\win32\

– Apply and then you can debug this normally

29

57

Software Development Organization

Running a DSS JUnit test

• Results will appear in the JUnit tab

58

Software Development Organization

Creating a plugin
• Objectives

– Create a plug-in that adds a menu item and toolbar
button to CCS-Eclipse

• Clicking the button will execute a GEL expression

– Show that there are good tools for creating plug-ins

30

59

Software Development Organization

Step 1: Open the PDE perspective
• Window->Open Perspective->Other

– Select Plug-in Development

• Window arrangement will change and you
should see “Plug-in Development” in the
perspective indicator

60

Software Development Organization

Step 2: Start a new project
• From the File menu

select New->Project
• Select Plug-in Project

31

61

Software Development Organization

Step 3: Name the project
• Name your project

“Toolbar”
• Will automatically

create folders for
source and binaries

• Select 3.2 in the
Eclipse version

• Click “Next”

62

Software Development Organization

Step 4: Plug-in properties
• Fill in the Plug-in

provider name
– i.e. “Texas

Instruments”
• Click “Next”

32

63

Software Development Organization

Step 5: Templates selection
• Select the “Hello

World” template as it
adds the menu and
button we want

• Click “Next”

64

Software Development Organization

Step 6: Message box text
• Change the message

to whatever you want
• Click “Finish”

33

65

Software Development Organization

Step 7: Create a run configuration
• Click the Run button
• Double-click on Eclipse Application to create a

new configuration
• Click “Run”

66

Software Development Organization

Step 8: Test the plug-in

• When CCS-Eclipse starts click the yellow arrow
to go to the workbench

• Click on the purple Eclipse button on the toolbar
to test your plug-in

• Click “Ok”
• Exit this instance of CCS-Eclipse

34

67

Software Development Organization

Step 9: Dependent plug-ins
• We are going to be using APIs from other

components so we have to specify them
• Click on the “Toolbar” source file
• Click on the “Dependencies” tab at the bottom of

the window
• Add

– org.eclipse.cdt.debug.ui
– org.eclipse.cdt.core
– org.eclipse.cdt.debug.core
– org.eclipse.debug.ui

• Save the file

68

Software Development Organization

Step 10: Add required imports
• In the import statement area at the top of

SampleAction.java add these import statements
as we will be using these classes

import org.eclipse.cdt.debug.core.cdi.CDIException;
import org.eclipse.cdt.debug.core.cdi.model.ICDIStackFrame;
import org.eclipse.debug.ui.DebugUITools;

35

69

Software Development Organization

Step 11: Change to evaluate expression
• Double click on SampleAction.java in the

Package Explorer to open the file
• In the “run” function replace:

• So that it looks like this:

• Save

MessageDialog.openInformation(window.getShell(),
"Toolbar Plug-in",
"Hello, Eclipse world");

70

Software Development Organization

Step 12: Export
• You want to be able to

give your plug-in to
other people

• File->Export
• Select “Deployable

plug-ins and
fragments”

36

71

Software Development Organization

Step 13: Export location
• Specify the location to

export the plug-in to
– Specify the \eclipse

folder of your CCS-
Eclipse installation

• Click “Finish”

72

Software Development Organization

Step 14: Test in CCE
• Close CCE
• Start CCE
• Start the debugger
• Load a program
• Click on your button

