
1

5/21/2008 1

Digital Filtering Methodologies for MSP430 Systems
Kripasagar Venkat, MSP430 Applications

2

Agenda

• Representation of signals in time and frequency
• Classification of Filters
• Fast and efficient algorithms
• Validation of filter performance
• Hands-on filter labs using the MSP430

2

3

Signal Representation

• Analog systems
– Everything in continuous domain
– Analog in, Analog out
– Post processing difficult
– Frequency domain analysis difficult

• Digital systems
– Sampling done to analog signals to convert them to digital using an Analog to

Digital Converter (ADC)
– Conversion back to analog done after processing using a Digital to Analog

converter (DAC)
– Number representations and resolution a key to performance

– Input/Output easily captured and stored on digital media for post-processing

4

Frequency Domain Versus Time Domain

• Time domain representation
– Easy and simple to relate to real-world signals
– Processing is relatively simpler
– Easy algorithms that require low CPU overhead
– Limited capabilities in complex speech or audio applications

• Frequency domain representation
– Used only for sake of convenience and is truly a Pseudo-domain
– Conversion from time frequency must be followed by frequency

time, after processing.
– Process is expensive and avoided due to CPU overheads
– Best perspective of signal content leading to efficient systemdesign
– Absolute necessity for all speech and audio applications
– Processing frequency domain although expensive, yields the best

results

3

5

Agenda

• Representation of signals in time and frequency
• Classification of Filters
• Fast and efficient algorithms
• Validation of filter performance
• Hands-on filter labs using the MSP430

6

Broad Classification of Filters

• Analog filters
– Mature and well developed design

methodologies available
– Accuracy limited, use components that are

subjected to changes over temperature
– Small change in filter specifications leads to

complete change in hardware
– Testing and verifications are time consuming
– Storage and portability a cause for concern
– Inherently expensive to improve accuracy

• Digital filters
– Design is simple, borrows all concepts from its

analog counterpart
– Modifying characteristics requires small change

in software with no hardware changes
necessary

– Interface to digital microcomputers is extremely
simple

– Extremely accurate At least a 1,000 times
better accuracy than its analog counterpart

– 6dB increase in gain with every bit of increase
in resolution on fixed point machines

– Effects of round-off, finite-word lengths and limit
cycles a hindrance in fixed point machines

4

7

Characteristics of a Filter
• Low-pass

– Removes HF noise, required for most
applications

• High-pass
– Seen in few speech and audio

applications
• Band-pass

– Medical and communication systems
• Band-reject

– Communication systems
• Notch

– Removal of the 50/60 Hz hum in
applications

LOW-PASS

BAND-PASS

HIGH-PASS

BAND-REJECT

NOTCH

FREQUENCY

PASS
BAND

PASS
BAND

PASS
BAND

PASS
BAND

PASS
BAND

PASS
BAND

STOP
BAND

STOP
BAND

STOP
BAND

STOP
BAND

ST
BD

PS
BD

8

Digital Filter Basics

• Input sample x(n) operated by filter h=[h(0), h(1)….h(M)] to give
output sample y(n), every sampling instant, defined by sampling
frequency

• Implementation is simple
– Mathematically a convolution of input vector x and filter vector h of order

M

• Current output sample depends on present and previous samples of
input and/or output samples

• Filter h is almost always a real number, and is usually converted into
the nearest integer on fixed-point numbers such as microcontrollers

)y(n)x(n

∑
=

⋅=⊗=
1 - M

0i
)x()h(hxy i-ni

5

9

FIR Filter

• Impulse Response is finite
– Time domain representation of the filter b has finite length and equal to the length

of vector h
• Inherently stable

– Output depends only on the present and previous samples of the input
– Output always bounded by input, if input stops, output immediately follows

• Can exhibit linear phase across all frequencies
– Linear phase property induces symmetry for coefficients b, thus reducing CPU

overhead
– Does not introduce phase distortion

0b 1b 2b 3b 1 - Mb

-1z-1z -1z -1z

)y(n

)x(n

∑
=

⋅=
1 - M

0i
)x()b()y(i-nin

10

IIR Filter

+
+

+
+

0b

1b

2b

3b

-1Mb

-1z

-1z

-1z

-1z

)y(n)x(n

+
+

+
+

1a-

2a-

3a-

1 - Na-

-1z

-1z

-1z

-1z

∑∑
==

⋅−⋅=
1 - N

k

1 - M

0i
)()a()x()b()y(

1
k-nki-nin y

• Recursive in both input and output
samples

• Designed by a simple transformation
from it Analog filter counterparts

• Better performance than an FIR
– For same performance the order of

an IIR is way smaller than an FIR
• Stability a concern

– Extremely sensitive to filter
coefficients

– Register-width limitations in fixed
point machines can render a stable
filter, unstable

6

11

Agenda

• Representation of signals in time and frequency
• Classification of Filters
• Fast and efficient algorithms
• Validation of filter performance
• Hands-on filter labs using the MSP430

12

Need for Fast and Efficient Algorithms

• Multiplication is the core operation for filtering
• Microcontrollers are fixed-point devices, simple in architecture and

have limited CPU cycles
• Real-time signal processing broadens the application space
• Reduced CPU utilization increases usability and accommodates

better and advanced features
• Less CPU cycles implies lower current consumption with increased

battery life, especially for hand-held devices

7

13

Fast Multiplication

• Hardware multiplier
– Simple to use
– HW multiplier includes a multiply and accumulate (MAC) function for

filtering
– ADC samples are integers, coefficients need to be converted from real

numbers to integers, via scaling
– Not available on all devices

• Absence of a hardware multiplier
– Booth’s algorithm

• Based on shift and add operations
• Fast and efficient
• Limited to integer-integer multiply

– Horner’s scheme
• Also based on shift and add arithmetic
• Tailor-made for microcontrollers
• Faster than booth algorithm when used with CSD format

14

Filtering on the MSP430, the Efficient Way!
• Horner’s algorithm

– Based on the difference in the
bit positions of binary 1s in the
multiplier

– Finite word-length effects does
not affect the multiplier

– Better accuracy compared to
the existing methods

– Scaling of multipliers not
needed and easily
accommodates real-integer
multiplies

– Multipliers have to be known in
advance for it to work

– Dedicated software routine for
each multipliers with increase in
code size

b010001111110.012345.0 =
Fraction

4
6

1
56

1
45

1
34

1
23

1
12

3
1

2

2

2

2

2

2

2

−

−

−

−

−

−

−

⋅=

+⋅=

+⋅=

+⋅=

+⋅=

+⋅=

+⋅=

XresultFinal

XXX

XXX

XXX

XXX

XXX

XXX

EquationsDesign

0
5

3
45

1
34

1
23

2
12

1
1

2
2

2
2
2

2

⋅=

+⋅=

+⋅=

+⋅=

+⋅=

+⋅=

XresultFinal

XXX

XXX

XXX
XXX

XXX
EquationsDesign

b0110111001441=
Integer

8

15

Canonical Signed Digit (CSD)

• Maximize efficiency of Horner’s method, elimination of every extra cycle
counts!!

• Similar to Booth’s encoding: It increases the speed of execution
• “-1” added to the existing binary set thereby converting it to a ternary set
• Algorithm: Reducing groups of adjacent 1s and representing them using a

ternary set
• Leaves the 0s unchanged
• Example

{

1231-4-128123
-11~ format,Ternary 1~01~10000 123

1~01~100001~0111110 11011110123

formatBinary 01111011123

t

t t
groupedgrouped

b

==

⇒⇒=

===

⇒=

321

16

Horner’s Method + CSD
• Advantages

– Further reduction in CPU cycle count
– No compromise the accuracy of multiplication result
– Smaller code size for each multiplier

0
3

3
23

3
12

3
1

2XresultFinal

X2XX

X2XX

X2XX

⋅=

+⋅=

−⋅=

−⋅=

EquationsDesign

0
5

3
45

1
34

1
23

2
12

1
1

2XresultFinal

X2XX

X2XX

X2XX

X2XX

X2XX

⋅=

+⋅=

+⋅=

+⋅=

+⋅=

+⋅=

EquationsDesign

Saves two
additions

CSDb 00110.0010000010010.000111110.12345
~

==

Fraction

4
6

1
56

1
45

1
34

1
23

1
12

3
1

2

2

2

2

2

2

2

−

−

−

−

−

−

−

⋅=

+⋅=

+⋅=

+⋅=

+⋅=

+⋅=

+⋅=

XresultFinal

XXX

XXX

XXX

XXX

XXX

XXX

EquationsDesign
CSDb 00110011000110111001441

~~
==

Integer

3-
2

6-
12

3-
1

2XresultFinal

X2XX

X2XX

⋅=

+⋅=

−⋅=

EquationsDesign

Saves four
additions

9

17

Performance Comparison

• Detailed information on web
– Efficient Multiplication and Division Using MSP430 (slaa329)

18

Agenda

• Representation of signals in time and frequency
• Classification of Filters
• Fast and efficient algorithms
• Validation of filter performance
• Hands-on filter labs using the MSP430

10

19

Fourier Analysis
• Quick way to convert time domain representation to frequency
• Frequency domain truly reflects signal content
• Only method to validate filter performance
• Complex number representation

– Magnitude is the energy composition at each frequency
– Phase is the shift of the time domain signal at each frequency

• Comparison of filter input and filter output Fourier representations
validates filter performance

• Not required once filter performance is validated

20

Discrete Fourier Transform (DFT)

• Fourier representation of time
signal after sampling

• Discrete in time and frequency
• Block processing of data, where N

represents block size
• Frequency resolution depends on

sampling frequency and N
• Not an efficient way of Fourier

representation
• Utilization of CPU is very high due

to the complexity of math involved

Discrete Fourier
Transform

1,.....1,0,)()(
2

0
−==

−

=
∑ NkenxkX N

knjN

n

π

)(kX

)(nx

11

21

Fast Fourier Transform (FFT)
• Efficient form of the DFT

– Conventional DFT requires O(N2) complex MAC
– FFT requires only O(N/2 x log2N) complex MAC

• Most commonly used in DSPs and microcontrollers
• Bit reversal required

– Decimation in time reverses time samples
– Decimation in frequency reverses frequency samples

• Several variants available
– Radix 2: Simple to use, most widely used, N is a power of 2
– Radix 4: More efficient, MACs reduced by 25%, N is a power of 4 and

hence less number of stages
• Block processing of data unlike filtering

– Choice of N must be realistic
– Higher N larger computation, higher memory requirements, larger delay

in processing
– Choose N wisely to not-jeopardize real-time operation

22

Agenda

• Representation of signals in time and frequency
• Classification of Filters
• Fast and efficient algorithms
• Validation of filter performance
• Hands-on filter labs using the MSP430

12

23

Lab 1: Low-pass Filter
• Specifications

– Design a low-pass filter that has a 3-dB cut-off frequency at 700 Hz.
• Input signal characteristics

– Signal is a multi-tone signal with the following frequencies:
• f1=100Hz, f2=500Hz, f3=800Hz
• Stop-band attenuation should be ~ 50dB, pass-band ripple ~ 0.1dB

• Things to ponder
– Choice of sampling frequency? ________
– Choice of pass-band and stop-band edge frequencies?

• Remove the high frequency signal 800Hz
– Choice of order, do you have filter length restrictions?

• What order does the tool give you?
• Does the free version give errors? If so, WHY?
• What stop band attenuation and pass-band ripple does the tool report? DOES

IT MEET YOUR REQUIRMENTS?

24

Lab 1: Low-pass Filter- Coefficient Generation
• Step 1: Find lab folder (LAB-3) from the

ATC2008 CD.
• Step 2: Copy entire lab contents to desktop.
• Step 3: Open lab folder and on the root select

\FIR_filter\ScopeFIR401\ScopeFIR.exe
• Step 4: Double click on executable to see

windows similar to this and click Run and
then Start ScopeFIR

• Step 5: Select the default filter design
algorithm as shown and click OK

13

25

Lab 1: Coefficient Generation (Contd.)

• Fill all parameters
as shown

• Click on Estimate
first, how many
taps do you get?

• It is < 32, click
Design

SAMPLING
FREQUENCY

Realistic selection

TYPE OF FILTER

LENGTH OF THE FILTER
Can be selected or design
parameters can be used Design specifications. Either

fix them or fix Length of the
filter

26

Lab 1: Filter performance in Theory

• What order does the tool give you?
• What stop band attenuation and pass-band ripple does the tool report?
• DOES IT MEET YOUR REQUIRMENTS?

14

27

Lab 1: Exporting Coefficients

• From the file menu, select Export Coefficients
• Choose Text Decimal and use Browse button to save as a LPF.txt

(text file) in a known location in local hard drive

28

Lab 1: Generation of MSP430 FIR filter code
• Once coefficients are ready, it is time to generate the MSP430 code

– Open xx\FIR_filter\Utility\FIR_filter_coeff.dat, paste the coefficients you just created
and saved in file LPF.txt. Save FIR_filter_coeff.dat

– Double-click on the MSP430 code generation tool
xx\FIR_filter\Utility\FIR_filter_codegen.exe

– Enter all the information as shown in this snap shot

• Choose a multi-tone signal frequencies to generate simulated data
– Open xx\FIR_filter\Utility\Sine_data_gen.exe
– Select up to 3 frequencies that are realistic This generates the multi-tone signal

data

15

29

Lab 1: Summary of files

• FIR_filter_wrapper.c
– Wrapper file that performs function calls for filtering, FFT and LCD display

• FIR_filter.asm
– MSP430 assembly code generated by the tool FIR_filter_codegen.exe
– Responsible for efficient digital filtering
– Copy this file to the lab directory \FIR_filter\FIR_for_MSP430

• FFT_430.asm
– MSP430 assembly code that performs an FFT in time
– Responsible for generation of data for LCD

• sine_data.dat
– Simulated multi-tone sine wave data file
– Generated by the tool Sine_data_gen.exe
– Copy this file to the lab directory \FIR_filter\FIR_for_MSP430

Detailed information on web
Efficient MSP430 Code Synthesis for an FIR Filter (slaa357)

30

Lab 1: MSP430 Code Execution
• Connect the ATC2008 target board to the MSP430 USB FET via the

USB cable and connect 14-pin JTAG cable to JTAG header on board
• Open CCE

– Start menu Programs Texas Instruments Inc. Code Composer
Essentials V3 Code Composer Essentials V3

• In window Workspace Launcher click OK to have the default location
for Workspace or choose /Lab-3/FIR_filter

• Open Project
– From Project menu select Open Existing Project
– Select Root Directory using Browse button to Desktop. Choose lab folder

/Lab-3/FIR_filter
– Check box for FIR_for_MSP430 (if not already checked) directory and

click Finish

16

31

Lab 1: MSP430 Code Execution (Contd.)

• Ensure power selection switch is JTAG
• Ensure jumper is present on JP2
• Select from the menu Run Debug Active Project
• Advanced RUN would start execution on the target

32

Lab 1: Software Flow

• FFT of input data evaluated
• Input data is filtered
• FFT of filtered data evaluated
• LCD configuration complete
• FFT of input data displayed
• Switches control the LCD

contents

FFT of INPUT DATA

FILTER INPUT DATA

FFT of FILTERED
DATA

DISPLAY FFT OF
INPUT ON LCD

ENTER LPM3

IS S2
PRESSED?

DISPLAY FFT OF
FILTERED DATA

ON LCD

DISPLAY FFT OF
INPUT DATA ON

LCD

YES NO

START

17

33

Lab 1: Viewing the output
• Viewed on the LCD screen
• Output is the FFT of the signal
• By default the spectrum of the

simulated input signal is shown
• Press S2 to see filtered

spectrum
• Press S1 to change view and

back to unfiltered input
spectrum

LCD CONTRAST
CONTROL

UNFILTERED
SPECTRUM

FILTERED
SPECTRUM

34

Lab 1: Results Summary

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Frequency

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Frequency

UNFILTERED
SPECTRUM

FILTERED
SPECTRUM

Sampling frequency = 2000Hz
Filter length = 27
Example CPU frequency = 8 MHz
Cycles available between samples = 4000
Filter execution cycles = 831
% CPU Utilization = 21 %
Code size in bytes = 1404

Real-time MSP430 Performance

18

35

• Specifications
– Signal is a multi-tone signal with the following frequencies:

• f1=200Hz, f2=1200Hz, f3=1800Hz
• Remove the low frequency signal 200Hz
• Stop-band attenuation should be > 50dB, pass band ripple < 0.01dB

• Things to ponder
– Choice of sampling frequency? ________
– Choice of pass-band and stop-band edge frequencies?
– Choice of order, do you have filter length restrictions?

• What order does the tool give you?
• Does the free version give errors? If so, WHY?
• What stop band attenuation and pass-band ripple does the tool

report? DOES IT MEET YOUR REQUIRMENTS?

Lab 2: Design a High-pass Filter

36

Lab 2: Project File Updates

• Follow similar steps from Lab 1
– Generate coefficients

• Save the generated coefficients as HPF.txt
– Use tool FIR_filter_codegen.exe

• Paste HPF.txt contents to FIR_filter_coeff.dat and use tool
• FIR_filter.asm is generated for HPF

– Generate simulated multi-tone using Sine_data_gen.exe
• sine_data.dat generated

– Copy and paste into the directory FIR_for_MSP430 overwriting all files
• The files FIR_filter.asm and sine_data.dat are automatically overwritten for the

new filter
• CCE environment

– From Run menu click Debug Active Project and hit Advanced Run
– See results on LCD screen

19

37

Lab 2: Results Summary

• Once the filter coefficients are generated follow all the
necessary steps to execute your code and see results

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

Frequency in Hz

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

Frequnecy in Hz

UNFILTERED
SPECTRUM

FILTERED
SPECTRUM

Sampling frequency = 4000Hz
Filter length = 21
Example CPU frequency = 4 MHz
Cycles available between samples = 1000
Filter execution cycles = 693
% CPU Utilization = 69 %
Code size in bytes = 1208

Real-time MSP430 Performance

38

Lab 3: Band-pass Filter

• Specifications
– Signal is a multi-tone signal with the following frequencies:

• f1=200Hz, f2=1200Hz, f3=1800Hz
• Remove the frequency signals 200Hz and 1800Hz
• Stop-band attenuation should be > 50dB, pass band ripple < 0.01dB

– Choice of sampling frequency? ________
– Choice of lower band-pass and upper band-pass edge

frequencies?
• What order does the tool give you?
• What stop band attenuation and pass-band ripple does the tool

report? DOES IT MEET YOUR REQUIRMENTS?

20

39

Lab 3: Project File Updates

• Follow similar steps from Lab 1 and 2
– Generate coefficients

• Save the generated coefficients as BPF.txt
– Use tool FIR_filter_codegen.exe

• Paste BPF.txt contents to FIR_filter_coeff.dat and use tool
• FIR_filter.asm is generated for HPF

– Generate simulated multi-tone using Sine_data_gen.exe
• sine_data.dat generated

– Copy and paste into the directory FIR_for_MSP430 overwriting all files
• The files FIR_filter.asm and sine_data.dat are automatically overwritten for the

new filter
• CCE environment

– From Run menu click Debug Active Project and hit Advanced Run
– See results on LCD screen

40

Lab 3: Results Summary

Sampling frequency = 4000Hz
Filter length = 32
Example CPU frequency = 20 MHz
Cycles available between samples = 5000
Filter execution cycles = 1016
% CPU Utilization = 20.4 %
Code size in bytes = 1768

Real-time MSP430 Performance

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

Frequency in Hz

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

Frequnecy in Hz

UNFILTERED
SPECTRUM

FILTERED
SPECTRUM

21

41

Lab 4: Design Your Own Digital Filter

• It takes less than 5 minutes, but you have 10 minutes to
design your own filter.

START!!

• Did it work?!

42

Lab 5: Digital IIR Filters, Time Permitting!

• Wave Digital Filters are alternative to conventional IIR filters
• Lattice-type structure
• Tailor-made for fixed-point low-end micro-controllers
• Extremely stable over non-linear operating conditions
• The coefficients have excellent dynamic range
• Little effect from register-width limitations
• Perform as well as the conventional IIR filters
• Lattice structure most widely used
• Tough to design, but works great!

Detailed information on web
Wave Digital Filtering Using the MSP430 (slaa331)

22

43

Lab 5A: IIR Low-pass Filter

• Filter specifications
– Sampling frequency = 16000 Hz
– Pass-band edge frequency = 3400 Hz
– Stop-band edge frequency = 4500 Hz
– Pass-band ripple = 0.5 dB
– Stop-band attenuation = 50 dB
– Filter type = LWDF Chebyshev
– Order = 9

• Demo
– Close all projects in CCE

• Right click on the active project and select Delete
• In the next window select DO NOT DELETE CONTENTS

– From Project menu select Open Existing Project
– Select Root Directory using Browse button to Desktop. Choose lab folder

IIR_filter
– Check box only for IIR_for_LPF directory and click Finish
– Debug Active Project and hit Advanced Run

44

Lab 5A: Results Summary
• Signal is a multi-tone signal with the following frequencies:

– f1=5000Hz, f2=1600Hz, f3=6500Hz

• In file IIR_LPF.asm, change the last add instruction add.w R13,
&output, to sub.w R13, &output. WHAT HAPPENS TO OUTPUT?!

Sampling frequency = 16000Hz
Filter length = 9
Example CPU frequency = 8 MHz
Cycles available between samples = 500
Filter execution cycles = 320
% CPU Utilization = 64 %
Code size in bytes = 546

Real-time MSP430 Performance

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

Frequency

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

Frequency

UNFILTERED
SPECTRUM

FILTERED
SPECTRUM

23

45

Lab 5B: IIR Band-pass Filter
• Filter specifications

– Sampling frequency = 8000 Hz
– Lower stop-band edge frequency = 700 Hz
– Lower pass-band edge frequency = 950 Hz
– Lower pass-band ripple = 0.5 dB
– Lower stop-band attenuation = 50 dB
– Higher pass-band edge frequency = 1500 Hz
– Higher stop-band edge frequency = 1850 Hz
– Higher pass-band ripple = 0.5 dB
– Higher stop-band attenuation = 50 dB
– Filter type = LWDF Elliptical
– Order = 14

• Demo
– Close all projects in CCE

• Right click on the active project and select Delete
• In the next window select DO NOT DELETE CONTENTS

– From Project menu select Open Existing Project
– Select Root Directory using Browse button to Desktop. Choose lab folder IIR_ filter
– Check box only for IIR_for_BPF directory and click Finish
– Debug Active Project and hit Advanced Run

46

Lab 5B: Results Summary

• Signal is a multi-tone signal with the following frequencies:
• f1=500Hz, f2=1300Hz, f3=3850Hz

Sampling frequency = 8000Hz
Filter length = 9
Example CPU frequency = 8 MHz
Cycles available between samples = 1000
Filter execution cycles = 501
% CPU Utilization = 50.1 %
Code size in bytes = 858

Real-time MSP430 Performance

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

Frequency

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

Frequency

UNFILTERED
SPECTRUM

FILTERED
SPECTRUM

24

47

Lab 5C: IIR Notch Filter

• Filter specifications
– Sampling frequency = 400 Hz
– Notch frequency = 60 Hz
– Filter type = IIR
– Order = 2

• Demo
– Close all projects in CCE

• Right click on the active project and select Delete
• In the next window select DO NOT DELETE CONTENTS

– From Project menu select Open Existing Project
– Select Root Directory using Browse button to Desktop. Choose lab folder

IIR_filter
– Check box only for IIR_for_Notch directory and click Finish
– Debug Active Project and hit Advanced Run

48

Lab 5C: Results Summary

• Signal is a multi-tone signal with the following frequencies:
• f1=50Hz, f2=60Hz, f3=70Hz

Sampling frequency = 400Hz
Filter length = 2
Example CPU frequency = 1 MHz
Cycles available between samples = 2500
Filter execution cycles = 131
% CPU Utilization = 5.24 %
Code size in bytes = 260

Real-time MSP430 Performance

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

UNFILTERED
SPECTRUM

FILTERED
SPECTRUM

25

49

Quick step summary:
From specifications to design
• Identify the type of filter necessary

– Spectral analysis of the input signal has it all
– Low-pass, high-pass, band-pass, band-stop, notch

• What sampling frequency works for you?
– Application specific Realistic selection can make all the difference

Heart rate, max of 2kHz
Speech or voice, max of 16kHz
Fancy audio, max of 40kHz

– MSP430 can do it all
• How good should your filter be?

– Higher the order, better the performance
– Choose IIR over FIR, if ultimate performance is needed
– Set order based on CPU bandwidth available for filtering, approximately 30-35 cycles for each

increase in order
• MSP430 takes care of you from here

– Efficient MSP430 RISC architecture to boost your performance and reduce power consumption
– The tools available online auto-generates efficient MSP430 code in seconds
– Horner and CSD – A pair fostering efficient solutions
– LWDF eliminates the possibility of instability of IIR filters
– Implementation of all types of filters on the MSP430 show real-time operation possible.
– Final cost reduced with no external circuitry needed

50

Conclusion
• Filtering on MSP430

– Efficient MSP430 RISC architecture to boost your performance
and reduce power consumption

– Software efficiency key to low-cost-low-power solution
– Extremely simple and efficient with easy steps to final design
– Code size is large when Horner’s algorithm is used
– Horner and CSD – A pair fostering efficient solutions
– Performance close to Floating point implementation
– LWDF eliminates the possibility of instability of IIR filters
– Approximately 30-35 cycles with every increase in the order
– Integer-real multiplication no longer a CPU overhead
– Implementation of all types of filters on the MSP430 show real-time

operation possible.
– Final cost is reduced with no external circuitry needed

26

51

Thank you

