Dallas, toxas USA Controleter, Germ	nv Puno, India Bhanghal, Ching Bangalore, India Dangalore, India
ATC 2008 MSP430 Advanced Technical Conference	
Digital Filtering Methodologies f Kripasagar Venkat, MSP430 Appli	or MSP430 Systems cations
5/21/2008	TEXAS INSTRUMENTS

Horner's algorithm		
 Based on the difference in the bit positions of binary 1s in the multiplier 	<i>Fraction</i> 0.12345 = 0.000111111001 _b	Design Equations $X_1 = X \cdot 2^{-3} + X$ $X_2 = X_1 \cdot 2^{-1} + X$
 Finite word-length effects does not affect the multiplier 		$X_3 = X_2 \cdot 2^{-1} + X$ $X_4 = X_2 \cdot 2^{-1} + X$
 Better accuracy compared to the existing methods 		$X_5 = X_4 \cdot 2^{-1} + X$
 Scaling of multipliers not needed and easily 		$X_6 = X_5 \cdot 2 + X$ Final result = $X_6 \cdot 2$
accommodates real-integer multiplies	Integer	Design Equations
 Multipliers have to be known in advance for it to work 	441 – 0110111001 _b	$X_1 = X \cdot 2^2 + X$ $X_2 = X_1 \cdot 2^2 + X$ $X = X_2 \cdot 2^1 + X$
 Dedicated software routine for each multipliers with increase in 		$X_{4} = X_{3} \cdot 2^{1} + X$ $X_{5} = X_{4} \cdot 2^{3} + X$
code size		Final result = $X_5 \cdot 2^{\circ}$

 Lab 1: Exporting From the file menu, so Choose Text Decimal (text file) in a known 	Coefficients elect Export Coefficients and use Browse button to save as a LPF.txt location in local hard drive	
Exit	Factor: D Cancel	
ATC 2008 MSP430 Advanced Technical Conference		
	TEXAS INSTRUMENTS	

Quick step summary: From specifications to design

- •
- Identify the type of filter necessary Spectral analysis of the input signal has it all
 - _ Low-pass, high-pass, band-pass, band-stop, notch
- What sampling frequency works for you? Application specific -> Realistic selection can make all the difference
 - → Heart rate, max of 2kHz → Speech or voice, max of 16kHz
 - → Fancy audio, max of 40kHz
 - MSP430 can do it all
- How good should your filter be?
 - Higher the order, better the performance

Conference

- _ Choose IIR over FIR, if ultimate performance is needed
- Set order based on CPU bandwidth available for filtering, approximately 30-35 cycles for each
- increase in order MSP430 takes care of you from here
 - Efficient MSP430 RISC architecture to boost your performance and reduce power consumption

49

TEXAS INSTRUMENTS

- The tools available online auto-generates efficient MSP430 code in seconds _
- Horner and CSD A pair fostering efficient solutions
- LWDF eliminates the possibility of instability of IIR filters
 - Implementation of all types of filters on the MSP430 show real-time operation possible.
- Final cost reduced with no external circuitry needed

ATC 2008

 Filtering on MSP430 	
 Efficient MSP430 RISC architecture and reduce power consumption 	to boost your performance
 Software efficiency key to low-cost- 	low-power solution
 Extremely simple and efficient with 	easy steps to final design
 Code size is large when Horner's a 	gorithm is used
 Horner and CSD – A pair fostering 	efficient solutions
 Performance close to Floating point 	implementation
 LWDF eliminates the possibility of it 	nstability of IIR filters
 Approximately 30-35 cycles with ev 	ery increase in the order
 Integer-real multiplication no longer 	a CPU overhead
 Implementation of all types of filters operation possible. 	on the MSP430 show real-time
 Final cost is reduced with no extern 	al circuitry needed

