

ATC 2008

MSP430 Advanced Technical Conference
Using the flexible '5xx Universal Clock System (UCS) Stefan Schauer

Agenda

msp430

- Introduction into the UCS system
- Oscillators (Overview, Characteristics, typical usage)
- Frequency Locked Loop (FLL)
- Low Power Mode support from the UCS
- Summary

ATC 2008

F5xx Unified Clock System (UCS)

- Three low-freq sources
- LFXT1
- VLO
- REFO
- FLL reference selectable from LFXT1, REFO, or XT2
- ACLK/SMCLK/MCLK can all be driven from any source
- MODOSC provided to modules
- Example: Flash controller and ADC
- PLL for USB devices only
- Up-converts 4-24MHz XT1/2 to internal 48 MHz for USB communication

ATC 2008

UCS Comparison to 4xx and 1xx

- Using best of FLL and Basic Clock
- FLL
- High clock flexibility
- Existing clocks essentially unchanged
- XT1/XT2/DCO/FLL
- Increased clock orthogonality
- Any source can drive any system clock
- Crystal pins muxed with I/O function, defaulting as I/O
- Must be initialized to crystal function
- Clock divider on all clock tree outputs
ATC 2008

MSp430 Advanced Technical Conference.

Low Frequency Clock Sources

Range of choices to fit application needs

	POWER	PRECISION	COST
XTAL	1uA	HIGH	COMPONENT
REFO	3uA	MEDIUM	ZERO
VLO	<500nA	LOW	ZERO

(Current included in Active and LPMO-3 current if clock is used for ACLK)

ATC 2008

High Frequency Clock Sources

Range of choices to fit application needs

	POWER	PRECISION	COST
XTAL (XT1)	$\begin{array}{\|c} \hline 60 \mathrm{uA} @ 12 \mathrm{MHz} \\ 150 \mathrm{uA} @ 20 \mathrm{MHz} \\ 300 \mathrm{uA} @ 32 \mathrm{MHz} \\ \hline \end{array}$	HIGH	COMPONENT
XTAL (XT2)	$\begin{array}{\|c} \hline 60 \mathrm{uA} @ 12 \mathrm{MHz} \\ 150 \mathrm{uA} @ 20 \mathrm{MHz} \\ 300 \mathrm{uA} @ 32 \mathrm{MHz} \\ \hline \end{array}$	HIGH	COMPONENT
DCO	60uA @ 1MHz	Depends on Ref + Jitter	ZERO

(DCO Current included in Active and LPMO current)
ATC 2008

5xx FLL Overview

- FLL: Adjust DCO
frequency in reference to a lower clock source (similar to PLL)
- Normally the FLL is used as source for the MCLK (CPU)
- Very flexible scaling of the output frequency
- Sources for Reference: REFO / LFXT1/XT1 / XT2

- Output frequency: 100 kHz - >32Mhz

ATC 2008

Frequency Locked Loop (FLL) functionality

- The System Clock of controllers has to meet different requirements, according to the application and system conditions:
- High frequency, to react fast onto system hardware requests or events
- Low frequency, to minimize current consumption, EMI,
- Stable frequency for timer applications e.g. real time clock RTC
- Low-Q oscillators to enable start-stop operation with 'zero' delay to operation.
- All these conflicting but essential requests can not be handled, with
- high-Q, fast frequency crystals
- low-Q RC-type oscillators
- Lowest current consumption and frequency stability require the use of a low frequency crystal.
- The compromise used in the MSP430 is to use a low frequency crystal, and to multiply its frequency up to the nominal operating range.

ATC 2008

MSP430 Advanced Technical Conference

Agenda

- Introduction into the UCS system
- Oscillators (Overview, Characteristics, typical usage)
- Frequency Locked Loop (FLL)
- Low Power Mode support from the UCS
- Summary

ATC 2008

Oscillators

- LF oscillator
- HF oscillator
- VLO
- Reference Oscillator
- Start up sequence

LF oscillator

- Support for 32 kHz Crystal
- Startup time < 1000 ms
- Internal Load Caps for Crystal: $2 \mathrm{pF}, 5.5 \mathrm{pF}, 8.5 \mathrm{pF}, 12 \mathrm{pF}$ (effective)
- Adjustment of drive strength (0-3)
- Default: highest setting for highest safety factor
- Oscillator Allowance:
- 210 kOhm at 6pF (Drive Strength: 0 / Safety Factor: 5)
- 300 kOhm at 12pF (Drive Strength: 1 / Safety Factor: 5)
- Separate fault flag for LFXT Oscillator
- Many improvement for stability have been added compared to older families
- Bypass mode to feed in external digital clock

ATC 2008

HF oscillator

- Support for $4-32 \mathrm{MHz}$ Crystal
- Startup time < 10 ms (6 MHz Crystal)
- Oscillator Allowance: 450 Ohm at 6 MHz

320 Ohm at 12 MHz
200 Ohm at 20 MHz
200 Ohm at 32 MHz

- No internal Load Caps for Crystal: (add 1pF from Bond Pads)
- Adjustment of drive strength (default highest setting)
- Bypass mode to feed in external clock
- XT1 and XT2 identical

ATC 2008

VLO (Very LP/LF Oscillator)

- Very low-power, low-cost alternative for 32 kHz crystal in apps that don't require precision
- Power draw figures are included in $\mathrm{I}_{\text {LPM3, vLo }}$
- Introduced on 2xx

Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V_{Cc}	MIN	TYP	MAX	UNIT
fVLO VLO frequency	Measured at ACLK	1.8 V to 3.6 V	4	12	20	kHz
dflviold ${ }_{\text {T }}$ VLO frequency temperature drift	Measured at ACLK ${ }^{(1)}$	1.8 V to 3.6 V		0.5		\%/ ${ }^{\circ} \mathrm{C}$
dfyLodV ${ }_{\text {CC }}$ VLO frequency supply voltage drift	Measured at ACLK ${ }^{(2)}$	1.8 V to 3.6 V		4		\% N
Duty cycle	Measured at ACLK	1.8 V to 3.6 V	40	50	60	\%

(1) Calculated using the box method: $\left(\operatorname{MAX}\left(-40 \ldots 85^{\circ} \mathrm{C}\right)-\operatorname{MIN}\left(-40 \ldots 85^{\circ} \mathrm{C}\right)\right) / \mathrm{MIN}\left(85^{\circ} \mathrm{C} \cdot\left(-40^{\circ} \mathrm{C}\right)\right)$
(2) Calculated using the box method: $(\operatorname{MAX}(1.8 \ldots 3.6 \mathrm{~V})-\operatorname{MIN}(1.8 \ldots 3.6 \mathrm{~V})) \mathrm{MIN}(1.8 \ldots 3.6 \mathrm{~V}) /(3.6 \mathrm{~V}-1.8 \mathrm{~V})$

ATC 2008

Reference Oscillator

- Factory calibrated Oscillator
- Accuracy sufficient for UART Communication (up to 9600 Baud)
- Current Higher then LF Oscillator
- alternative to 32 kHz crystal
- Moderate frequency tolerance over voltage/temp
- Similar to DCO, much better than VLO
- Less accurate than 32 kHz crystal
- Power draw is higher than crystal or VLO
- Is the default FLL reference clock

Internal Reference, Low-Frequency Oscillator (REFO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	$\mathrm{V}_{\text {cc }}$	MIN	TYP	MAX	UNIT
IREFO	REFO oscillator current consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.8 V to 3.6 V		3		$\mu \mathrm{A}$
$\mathrm{f}_{\text {REFO }}$	REFO frequency calibrated	Measured at ACLK	1.8 V to 3.6 V		32768		Hz
REFO absolute tolerance calibrated			1.8 V to 3.6 V			± 3.5	\%
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3 V		\pm TBD		
Duty cycle		Measured at ACLK	1.8 V to 3.6 V	40	50	60	\%
tstart	REFO startup time	40\%/60\% duty cycle	1.8 V to 3.6 V		0.4		ms

ATC 2008

MSP430 Advanced Technical Conference

What Can You Do With REFO?

- Periodic wakeup for apps in which these are true...
- Don't need crystal accuracy...
- But need better accuracy than VLO
- More cost-sensitive than power-sensitive
- Can you do RTC?
- Not really -- +/-2\% error means $\sim+/-1 / 2$ hour error every day
- But not bad as a 'walking wounded' RTC mode in event of crystal failure!

ATC 2008

MODOSC

- Internal oscillator to help automate operation of some modules
- Substitute for source clock in Flash module No configuration of $\mathrm{f}_{\mathrm{FTG}}$ required No Risk of bad programming due to wrong Flash clock
- Serves as ADC12_A's internal oscillator (ADC12OSC)
- ~5MHz
- Not available to system clocks - direct to modules
- Generally for applications in which drift isn't critical
- Activation on demand
- Flash activates it automatically when programming or erasing
- ADC12 activates it when chosen as conversion clock

ATC 2008

MSP430 Advanced Technical Conference.

Oscillator Allowance

- Load Capacitance CL contains C1, C2 and CS
- The amplification capability of the oscillator inverter is replaced with a negative resistance-RINV
- The quartz crystal is replaced by the load resonance resistance RL (effective resistance) and the effective Reactance LQ.

ATC 2008

Condition for oscillation: $\mathrm{I}-\mathrm{R}_{\mathrm{INV}}=\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{Qmax}}$

Safety Factor:
$\mathrm{SF}=\frac{\mathbf{R}_{\mathrm{Q} \max }}{\mathbf{R}_{\mathrm{Lmax}}}$

Safety Factor	Qualification
SF <1.5	unsuitable
$1.5 \leq$ SF <2	risky
$2 \leq$ SF <3	suitable
$3 \leq$ SF <5	safe
SF ≥ 5	very safe

Crystal Layout

- Crystal as close the to MSP430 as possible
- Short and direct traces, no traces underneath
- Keep away switching signals
- Ground crystal can, use guard ring around leads
- Ground plane underneath crystal

ATC 2008

Texas
INSAS

Oscillator startup sequence

```
void LFXT_START(void)
    P7SEL |= 0x03; // enable XT1 for LFXTAL
    UCSCTL6_L |= XT1DRIVE1_L+XT1DRIVE0;
    // Highest drive setting for XT1 startup
    while (SFRIFG1 & OFIFG) { // check OFIFG fault flag
        while (SFRIFG1 & OFIFG) { // check OFIFG fault flag
        UCSCTL7 &= ~(DCOFFG+XT1LF0FFG+XT1HFOFFG+XT20FFG);
        SFRIFG1 &= ~OFIFG; // Clear OFIFG fault flag
    }
}
```

- Ports have to be enabled for Oscillator usage (PxSEL)
- Select the required drive strength and load XCAP (default is highest)
- No Software delay loop is required anymore (done in Hardware)

ATC 2008

Oscillator Fault / Fail-Safe Modes

- Fault detection (XT1, DCO, XT2)
- Flag set if oscillator enabled but not operating properly
- Cristal Oscillator Clocks will switch to save backup clock
- Flags must be reset by software: Not Automatic!
- Fail-safe modes ensure minimal operation if primary clock source fails
- For MCLK/SMCLK/ACLK:
- If LFXT1 is selected and it fails: reverts to REFO
- If HFXT1/XT2 is selected and it fails: reverts to DCO
- During an oscillator fault, DCOCLK active even at lowest DCO tap, to provide clock for the CPU

ATC 2008
MSP430 Advanced Technical Conference

Oscillator Fail-Safes vs 2xxI4xx

- Similar to $2 x x / 4 x x$, except....
- If LF crystal fails, REFO now takes over
- In 2xx/4xx, DCO takes over (only for WDT+)
- Robust, but large freq difference can affect operation
- REFO and crystal have same nominal frequency, allowing similar functionality
- Remember:
- REFO tolerance isn't as tight - not a replacement for crystal in all cases
- Current draw is higher than crystal -- 3uA (typ)

ATC 2008

Oscillator failsafe - Backup clocks

Oscillator Fault Handling

- Write NMI oscillator fault handlers for robustness!
- Fault detection outputs are "flags" and therefore latched
- LFOF, DCOF are now XT1LFOFFG, DCOFFG, etc.
- Specific OF Flags feed into OFIFG, which is also latched (as it was in $2 x x / 4 x x$)
- Source flags must be cleared manually
- Difference to $2 \mathrm{xx} / 4 \mathrm{xx}$: Self-cleared when condition ceased, and were not called "flags"
- OFIE no longer automatically cleared (Nested NMI interrupts of same level are not accepted by hardware)

ATC 2008

Agenda

MSP430
 Ultra-Low-Power MCu
 th Trus

- Introduction into the UCS system
- Oscillators (Overview, Characteristics, typical usage)
- Frequency Locked Loop (FLL)
- Low Power Mode support from the UCS
- Summary

FLL

- Understanding a FLL , difference to an PLL
- FLL: Regulation and Modulation
- Clock Accuracy (cycle by cycle, average, stability)
- Setting for certain Clock frequency
- Understanding the error of an FLL

ATC 2008

Understanding an FLL

- The FLL aligns the frequency (and phase) of the DCO to the lowfrequency clock, in order to provide increased stability and determinability of the frequency.
- The FLL operates as a continuous frequency integrator. An up/down counter that follows the loop control corrects permanently the multiplication factor N . The follow-up or up-date rate is identically to the crystal's frequency rate. Using a $32,768 \mathrm{kHz}$ crystal the rate is $30.5 \mu \mathrm{~s}$.
- The accumulated frequency error is the same as that of the crystal's. The time deviation from one machine cycle to another is typically less than 10%.

ATC 2008

MSP430 Advanced Technical Conference

Digital Controlled Oscillator

- The operating range is controlled by:
- DCORSELO...DCORSEL2
- Wide Range Area
- Digital Controlled Oscillator is controlled by
- DCO0...DCO5
- Frequency Tap for fine adjustment
- Five modulation bits MOD0 to MOD4 to define the timing interval

FLL: Blockdiagram

Note: The SCG0 bit in the Status Register (SR) controls the FLL loop (open or closed).

ATC 2008

MSP430 Advanced Technical Conference

FLL: Digital Oscillator Loop Control

$$
f_{(\mathrm{DCOCLK})}=\mathrm{D} \times(\mathrm{N}+1) \times \mathrm{f}_{(\text {FLLReflclock })} / \mathrm{n}
$$

- D: FLL Loop Divider in UCSCTL2 (FLLD bits)
- N: Multiplier Bits in UCSCTL2 (FLLN bits) (must be greater then 0)
- n : DCO tap selection in UCSCTL 0 (Modified automatically by the FLL)
ATC 2008

FLL: Selection of Nominal Frequency

Figure 10. Typical DCO Frequency

FLL: Modulation

ATC 2008

FLL: Regulation and Modulation

- On each Ref Clock Cycle the DCO tap and the modulation is updated
- The DCO could get one tap up or down.
- If the Frequency is locked the Tap will stay almost the same and only the Modulation is changed.
- The Modulation allows to change the DCO with each DCO clock cycle to the adjusted frequency and the frequency of the Tap +1 to get less time for zero frequency error.

ATC 2008

Understanding the Error of an FLL

- Clock Accuracy:

Average stability

- Example for the 'Lock time’ of the FLL
- Shown:

1 MHz required Frequency
DCO $=943000 \mathrm{MHz}$
DCO+1 = 1037540 MHz

- Clock Error < 0.1% after 50 clock cycles
- Clock Error < 0.003\% after 100 clock cycles

Understanding the Error of an FLL

- Clock Accuracy: Cycle by cycle

- FLL could change the DCO frequency with each FLLREF clock cycle
- Modulation could change the DCO frequency with each DCO clock cycle

FLL versus PLL

\(\left.$$
\begin{array}{|l|c|c|}\hline & \text { FLL } & \text { PLL } \\
\hline \text { Cycle by Cycle Accuracy } & \text { Jitter of } \sim 10 \% & \text { Very small } \\
\hline \text { Frequency step size } & \sim 10 \% & - \\
\hline \text { Long time Freq. Error } & \sim 0 & \sim 0 \\
\hline \text { Startup time } & <5 \text { us } & >100 \text { clock cycles } \\
\hline \text { Overshoot possible } & \text { Vimited } & \text { Possible good } \\
\hline \begin{array}{l}\text { Support for Low Power } \\
\text { Mode }\end{array}
$$ \& Simple \& Limited due to long

startup time\end{array}\right]\)| Switch on/off |
| :--- |

ATC 2008

Synchronization on Clock Switching

- Hardware controlled clock switching between asynchronous sources to avoid Glitches.
- The current clock cycle continues until the next rising edge.
- The clock remains high until the next rising edge of the new clock.
- The new clock source is selected and continues with a full high period.

ATC 2008
MSP430 Advanced Technical Conference

Setting for certain Clock frequency

```
void init_fll(unsigned int fsystem, const unsigned int fcrystal)
{
    UCSCTL2 &= ~(0x3FF); // Reset FN bits
    // Choose the system frequency divider
    UCSCTL2= FLLD__x|((fsystem/fcrystal) - 1);
                            // Set Loop Controll and feedback devider
    UCSCTL0 = 0x000; // Set DCO to lowest Tap
    UCSCTL1= DCORSEL_x ; // Set DCO to required Range
}// End of fll_init()
```

ATC 2008

Agenda

Mspq40
 mstansoment new
 * paxamess

- Introduction into the UCS system
- Oscillators (Overview, Characteristics, typical usage)
- Frequency Locked Loop (FLL)
- Low Power Mode support from the UCS
- Summary

ATC 2008

Low Power Mode support from the UCS

- The FLL provides the fastest clock on and off switching with a stabilized clock. (LDO on +6 clocks)
- Dynamic change of clock sources to select lowest possible clock for the application/module.
- Any clock request from a peripheral module will cause its respective clock off signal to be overridden.
- Clocks are just on as required.
- Clock could be switched on without CPU wake up.
- Keep in mind: Current consumption for a certain task is independent from the clock, if the System is in LPM during the remaining time, but a e.g. a Timer needs a higher current when it is running on a higher speed then required.
ATC 2008

Getting the Application more robust

- The watchdog, due to its security requirement, actively selects the VLOCLK source if the originally selected clock source is not available.
- Many security aspects are already covered by hardware but take respect of the Fail save mechanism in your application to take the proper actions.
- Implement OSC Fault Interrupt Service Routine
- Using an input clock divider could prevent system locks or errors due to spikes (esp. for external clocks).

ATC 2008

Fully Automatic Clock Requests

- A module can use a clock request to force its source to stay active, even when entering LPMx
- LPMx otherwise goes into effect
- When clock request goes away, clock shuts down \& LPMx fully implemented
- Used much more in $5 x x$ than in previous families

$$
\begin{array}{c|c}
\text { Direct clock request } & \begin{array}{c}
\text { WDTACLLON WDTSMCLKON } \\
\text { in Watchdog mode }
\end{array} \\
\text { Watch Dog Timer Module }
\end{array}
$$

ATC 2008
MSP430 Advanced Technical Conference

Review of Available Clocks

Clock	Frequency (nominal)	Precision	Current Draw	Crystal Required
High-Frequency				
DCO	$\begin{gathered} 100 \mathrm{kHz}- \\ 32 \mathrm{MHz} \end{gathered}$	Low	60uA	
HFXT1/2	4-32MHz	High	60uA @ 12MHz	X
MODOSC	5MHz	n/a	n/a	
Low-Frequency				
LFXT1	32kHz	High	300nA	X
VLO	12kHz	Low	OnA*	
REFO	32kHz	Medium/High	3uA	

* Included in $\mathrm{I}_{\text {LPM } 3, ~ v L o ~}$ spec (~1.2uA)

ATC 2008

MSP430 Advanced Technical Conference

Summary

- Many focus was set on safety and flexibility to meet your application requirements as good as possible.
- Configuration may needs a few more things to consider due to the higher flexibility.
- Default settings are already set to meet most of the common requirements.
- Crystal less operation possible in many cases.

ATC 2008

Thank you

ATC 2008

ATC 2008

