
1 Introduction

2 Usage From C

Application Report
SLAA307A–July 2006–Revised August 2007

Using the Timer_A UART Library
Lane Westlund .. MSP430 Applications

ABSTRACT
This document serves as an overview describing the use of the Timer_A UART library
within an existing C or assembly project. The Timer_A UART library encapsulates
commonly used routines for transmitting and receiving bytes using UART. These
functions are written in assembly to be optimized for the MSP430, but can be called
from any C program that includes the ta_uart.h header file.

It is often desirable for smaller memory MSP430 devices without a UART-capable hardware module to
communicate through UART. It might also be the case that a MSP430 device with a UART capable
hardware module is already using that module, and additional UART communication is needed. In these
cases, it becomes necessary to allow for UART communication through use of the Timer_A module. Using
the Timer_A for UART communication is preferable over ‘bit-banging’ a port pin, as it allows for more
precise bit timing and for the device to remain in a low-power mode between bits.

The Timer_A UART library includes the files necessary to configure the Timer_A to transmit full-duplex
UART communication over a variety of speeds. The library encapsulates the functions relating to servicing
interrupts, and receiving or sending data. This allows users of the library to simply initialize the library, and
call send or receive functions on each byte transmitted.

Also included in the library are a series of code examples, intended to illustrate various methods of
initializing and using the library.

void main (void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

TI_initTimer(callBack, _32Khz_ACLK_04800_Bitime, TASSEL_1);
_EINT();
LPM3;

}

int callBack(unsigned char c)
{
TI_TA_UART_STATUS_FLAGS &= ~TI_TA_RX_RECEIVED; // allows for RX during TX
TI_TX_Byte(c); // echo byte
return TA_UART_STAY_LPM; // return to LPM3

}

The file ta_uart.h must be included in order to gain access to the variables and functions when using the
library from a C program.

This program is a demonstration of a simple UART echo program. Characters that are received are then
immediately transmitted back to the sender.

In order to set up the library to receive and send bytes, the initTimer function needs to be called only once
at the start of the program. It is this function that initializes the timer to be able to receive and send bytes
with the correct timing.

SLAA307A–July 2006–Revised August 2007 Using the Timer_A UART Library 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA307A

www.ti.com

Usage From C

The first parameter to this function is a function pointer. This function pointer serves as a callback function.
This callback function must accept a char as its only parameter and return an integer. Once the library has
successfully received a UART byte, it passes this byte back to the main program by calling the callback
function with the received byte as a parameter.

The next parameter is the bit time. It is the amount of Timer_A clocks to time for bit. This number is
dependent on the baud rate desired and the clock source given to Timer_A, but typically can be computed
as:

Bit time = Timer_A input clock/Desired baud rate

The header file for this library includes several predefined values for various baud rates based on specific
clock settings.

The final parameter is the setting for the TASSEL bits for the TACTL register of Timer_A.

Note: This parameter is ORed directly into the TACTL register. Therefore, the bits are in
positions 9 and 8. It is recommended to simply use the standard bit definitions as seen in
the example. See the appropriate MSP430 User’s Guide for more information on Timer_A
input clocks and register settings.

After the initialization function has been called properly and the GIE bit is enabled, UART bytes are
received by the library. Once a byte is received, the callback function is called. The parameter to the
callback function is the received byte. It should be noted that this callback function is called from within the
Timer_A1 interrupt service routine, so all effort should be spent to minimize its processing time.

In the previous example, the callback function simply returns a value. When the callback function returns a
value other than 0, the library knows to exit low-power mode. Returning a 0 causes the device to return to
the low-power mode it was in before receiving the character. For convenience, these return values have
been given easy-to-read definitions in the header file. In this example, the definition is used to cause the
device to stay in LPM3.

In the example, the callback function is used to simply call the TX_Byte() function. This example echoes
the received character. Before calling the TX_Byte() function, the TI_TA_RX_RECEIVED bit is cleared
from TI_TA_UART_STATUS_FLAGS. This bit blocks the receiving of further bytes. Clearing this bit allows
bytes to be received during the transmission of a byte.

Another possibility would be to have the ISR have the device exit its low-power mode. The main loop can
handle the data transmission by calling TX_Byte() and passing it the global TI_RXData, which is filled with
the last byte received.

Using the Timer_A UART Library2 SLAA307A–July 2006–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA307A

www.ti.com

3 Usage From Assembly

4 Compiling the Library

4.1 Using Timer_A With the Library

Usage From Assembly

#include <msp430x11x1.h>
EXTERN initTimer
EXTERN TX_Byte
EXTERN TI_RXData
EXTERN TI_TA_UART_STATUS_FLAGS
#define TI_TA_TX_READY 0x01
#define TI_TA_RX_RECEIVED 0x02
;--

RSEG CSTACK ; Define stack segment
;--

RSEG CODE
;--
RESET mov.w #SFE(CSTACK), SP ; Initialize stackpointer
StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT

mov.w #callBack, R12 ; move function ptr, 1st param
mov.w #0x07, R14 ; Bitime for 4800, 2nd param
push.w #TASSEL_1 ; Select Clock Source, 3rd param
call #TI_initTimer
add.w #0x02, SP ; cleanup from parameters

Mainloop bis.w #LPM3+GIE, SR ; Enter LPM3, enable interrupts

callBack
bic.b #TI_TA_RX_RECEIVED, &TI_TA_UART_Status_Flags
call #TI_TX_Byte
mov.w #0x00, R12 ; return 0 to stay in LPM3
ret

;--
; Interrupt Vectors

COMMON INTVEC
;--

ORG RESET_VECTOR ; MSP430 RESET Vector
DW RESET ;
END

The assembly example has exactly the same functionality as the previous C example and is included in
the zip file.

This library is distributed as source code and is intended to be compiled with a project. Because it will be
compiled, there are some steps that could be required before using the library:

• Changing the include file in the library to match the device
• Changing the definition of TACLK_MCLK_SYNC (see Section 4.3)
• Changing the definition of USE_C_CONTEXT_SAVE (see Section 4.4)

The library relies on Timer_A operating in continuous mode. Furthermore, the library makes use of CCR1
and CCR2 and their associate interrupt service routine (ISR). This being the case, CCR0 and its ISR are
still left available for use.

As long as the operating mode and clock source are not changed for Timer_A during its operation, UART
communications are not affected. See the source code included in the example usage directory for an
example of using CCR0 to time an interval during UART communication. Using the additional registers of
Timer_A5 is not possible with the library, however, the source code of the library is provided and could be
modified to allow for this.

SLAA307A–July 2006–Revised August 2007 Using the Timer_A UART Library 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA307A

www.ti.com

4.2 Timing Considerations

4.3 MCLK and Timer Clock

4.4 C Context Save

4.5 Cycle Count and Code Size

Compiling the Library

As with any serial communications interface, it is important to consider both the speed at which data can
be received, as well as the speed at which the data can be processed. For data to be processed, the CPU
has to store the data, and possibly perform some calculations, before receiving a subsequent byte.
Because the callback function used by this library is called from an ISR, it is important to consider this
timing. If interrupts are enabled and the RX flags are cleared in the callback function (as is done in some
included examples), the callback function must be written so that it exits before another byte is received.
Failing to do this could lead to nested interrupts, stack overflows, and corrupted data.

An important step in using the timer as a UART module is reading the current count of Timer_A. If MCLK
and the Timer Clock are synchronized, this can be accomplished by simply moving the contents of the
TAR register to TACCR2. Following this, an offset can be added to TACCR2 to time the first bit.

If MCLK and the Timer Clock are not synchronized, a simple move could yield unpredictable results. For
this reason, the timer is used in synchronized capture mode to record the most recent Timer_A count
value. This method is reliable, but more time consuming.

Due to these tradeoffs, it is left to the end user to determine if these clocks are synchronized. In the case
that they are not synchronized, TACLK_MCLK_SYNC should be commented out in IAR and set to 0 in
CCE. Doing this causes the code to be compiled in slightly different ways.

If a C callback function is provided, it is necessary for the library to preserve additional CPU registers (C
scratch registers) across the callback function call, as these registers could be affected by the callback
function. If it can be guaranteed that the callback function does not modify the C scratch registers, they
need not be preserved. Preserving the C scratch registers consumes additional code space and execution
cycles. Therefore a macro within the library is provided to control whether to preserve the C scratch
registers (USE_C_CONTEXT_SAVE is commented in in IAR, or set to 1 in CCE) or to leave them as is
(USE_C_CONTEXT_SAVE is commented out in IAR, or set to 0 in CCE). This tradeoff is left to the end
user. Refer to the compiler documentation for more details regarding the C calling conventions.

Table 1. Cycle Count (IAR)

Function TA_UART.s43

TI_initTimer 59

TI_setCallbackFunction 13

TI_TX_Byte ~64 (depending on loops)

Table 2. Code Size (IAR)

TACLK_MCLK_SYNC USE_C_CONTEXT_SAVE SIZE (bytes)

0 0 296

0 1 308

1 0 280

1 1 292

4 Using the Timer_A UART Library SLAA307A–July 2006–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA307A

www.ti.com

5 Included Library Files

5.1 Variable Description

Included Library Files

Note: In the zip file accompanying this application report, there are directories for the IAR and
CCE source. The files in these directories are functionally equivalent, and only contain
minor changes to allow for compiling using CCE or IAR, respectively.

ta_uart.s43
This file includes all needed functions and variables to perform UART communication using Timer_A
for a variety of speeds.

ta_uart.h
This file includes the definitions for the functions and variables used in ta_uart.s43. This file must be
included in any C program that uses the library. It also includes a series of precomputed bit times for
use by the timer initialization function.

ta_uart_32khz_9600.s43
This file is included specifically for the case when 9600 baud communication is driven using a 32-kHz
clock. The library contains the identical interface, except that the init timer function needs only a
callback function, because the timer source and baud rate are implied.

ta_uart_32khz_9600.h
This file includes the nessecary definitions and functions for using the 32-kHz 9600-baud version of the
library. This file must be included in any C program that uses this library.

Note: All TI_UART library variables begin with the ‘TI_’ prefix in order to avoid collision with any
other variable names used in an end application.

TI_RXData
This is the last byte to have been received by the UART library. In the callback function, this value is
identical to the callback function’s parameter. This variable is provided as a convenient method of
gaining access to the last received character outside of the callback function. Outside the callback
function, it cannot be ensured that this value will remain consistent, as further received characters
cause the TI_UART library to change its value. Because this frequency is application dependent, it
remains up to the user to understand if this value must be saved to another location before use and
how quickly it must be used before being changed.

TI_TA_UART_StatusFlags
This byte contains several bits whose role is defined using the included header. These bits are:

TI_TA_RX_RECEIVED
This bit is set when a byte has been received into TI_RXData. This bit must be cleared using
software, in order to allow further bytes to be received.

TI_TA_TX_READY
This bit is set when the library is ready to transmit a byte. When TX_Byte is called, it clears this
bit. Subsequent calls to TX_Byte immediately return. When the byte is transmitted, this bit is
reset to one.

SLAA307A–July 2006–Revised August 2007 Using the Timer_A UART Library 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA307A

www.ti.com

5.2 Function Description

Included Library Files

TI_initTimer(…..)
This function initializes the Timer_A for UART character transmission and reception. The required
parameters are:

• int (*callBack)(unsigned char)
This is the function which is called when a UART character is received. This function should return a
zero if low-power mode should be maintained, or a non-zero value to exit the previous low-power
mode.

• unsigned int Bitime
This value is the number of Timer_A clocks that should be counted in order to time one bit.

• unsigned int clock_source
This is the setting for the TASSEL bits for the TACTL register of Timer_A.

Note: This parameter is ORed directly into the TACTL register, therefore, the bits are in
positions 9 and 8. It is recommended to simply use the TASSEL standard bit definitions
from the MSP430 header files for this parameter.

TI_setCallbackFunction(int (*callBack)(unsigned char))
This function takes a function pointer identical to the initTimer() function. This function can be used to
change the callback function without reinitializing the timer. Note that if a UART RX is in process while
this function is called, the newly received byte is sent to the new callback function.

TI_TX_Byte(unsigned char c)
Calling this function causes the TA_UART library to transmit the character in variable ‘c’.

6 Using the Timer_A UART Library SLAA307A–July 2006–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA307A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Usage From C
	3 Usage From Assembly
	4 Compiling the Library
	4.1 Using Timer_A With the Library
	4.2 Timing Considerations
	4.3 MCLK and Timer Clock
	4.4 C Context Save
	4.5 Cycle Count and Code Size

	5 Included Library Files
	5.1 Variable Description
	5.2 Function Description

