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Matching the noise performance of 
the operational amplifier to the ADC

Proper selection of the operational amplifier that drives an
analog-to-digital converter (ADC) in a mixed-signal applica-
tion is critical. The designer must compare issues such as
amplifier noise, bandwidth, settling time, and slew rate to
the ADC’s signal-to-noise ratio (SNR), spurious-free
dynamic range (SFDR), input impedance, and sampling
time. This article specifically addresses the matching of
the noise specifications and performance of an op amp
and a successive approximation register (SAR) ADC in a
single-supply environment.

The noise that the amplifier generates originates from
the input differential stage. The input stage of every
amplifier generates transistor-device noise, which spot-
noise graphs describe as referred-to-input (RTI) noise.
With this graphical information we can determine how
much noise reaches the input terminal of the ADC by 
calculating the referred-to-output (RTO) amplifier noise.

This discussion begins with a description of the amplifier’s
device noise. The amplifier noise sources are then tied
together into one figure of merit, and the units are 
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Figure 1. Typical driver circuit for SAR ADC

converted from volts to an SNR in decibels. Finally, the
impact of the op amp in this mixed-signal circuit (Figure 1)
is determined by calculating the combination of the op
amp SNR value with the ADC’s SNR performance.

Characteristics of the amplifier noise
It is important to understand the noise that the opera-
tional amplifier generates in this application. The typical
performance of the amplifier given in its product datasheet
shows that the op amp noise behavior over frequency has
a signature that is unmistakable (see Figure 2). In this
article, since we will consider the effects of using a single-
supply CMOS amplifier, the input current noise is low
enough that we can ignore it. Here we will consider only
the effects of the amplifier’s voltage noise.

The amplifier noise specification in the typical amplifier
datasheet is an RTI specification. We can model the 
amplifier noise as a voltage source at the non-inverting
input of the amplifier. The electrical characteristics table
of an operational amplifier gives the input voltage noise
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and input voltage noise density specifications (see Figure 2).
The input voltage noise specification (10 µVPP) describes
the low-frequency noise of the amplifier in terms of a
bandwidth. This bandwidth is part of the 1/f noise region
of the amplifier. The transistors in the input stage of the
amplifier, along with the input-stage active load, generate
this noise.

Input voltage noise density calls out a noise figure that
refers to one frequency. For instance, the electrical charac-
teristics table in Figure 2 shows that the input voltage noise
density (end) at 10 kHz is equal to 17 nV/√Hz. Usually this
specification appears in the broadband-noise portion of the
frequency plot (Figure 2). Theoretically, this broadband
noise is flat. Assuming that it is flat is a good estimate of
the amplifier’s behavior. The resistors inside the opera-
tional amplifier primarily generate the broadband noise
whether they are diffused resistors or the source and
drain of the transistors.

The amplifier datasheet contains a typical specification
graph that shows the input voltage noise density versus
frequency. Figure 2 is an example of this type of graph. In
this example, the input voltage noise specification is equal
to the area beneath the input-voltage, noise-density curve

between the specified frequencies of 0.1 and 10 Hz. Note
that the units for this specification are peak-to-peak. To
convert this to an rms value, simply divide the peak-to-peak
value by 6.6 (industry-standard crest factor [CF] = 3.3).

Table 1 contains typical CF values used to convert rms
to peak-to-peak values (and vice versa). To estimate the
peak-to-peak operational amplifier output noise voltage,
multiply the rms output voltage by 2 × CF. To estimate the
ADC peak-to-peak output bit performance, subtract the
bit crest factor (BCF) from the rms specification.
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Figure 2. OPA363 amplifier noise parameters

CREST BIT CREST ADC CONVERSIONS WITHIN
FACTOR (CF) FACTOR (BCF) THE PEAK-TO-PEAK LEVELS

(V) (Bits) (%)

2.6 2.38 99
3.3* 2.72 99.9
3.9 2.96 99.99
4.4 3.14 99.999
4.9 3.29 99.9999

Table 1. Crest factor and bit crest factor values used for
conversions from rms to peak-to-peak

*Industry standard
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We can easily calculate the noise under-
neath the curve in Figure 2 for different
input voltage noise bandwidths in the 1/f
region. The first order of business in this
calculation is to determine the input
noise density at 1 Hz. Once we find that
value, the following simple formula will
provide the rms noise under the curve.

where C is equal to the input noise den-
sity at 1 Hz.

As an example, the amount of rms
noise produced by the amplifier shown
in Figure 2 from 0.1 Hz to 6000 Hz is:

With this calculation, and with the 
amplifier noise gain G = 1, the SNR at
the output of the amplifier for the 1/f noise is:

When we think about noise at these low frequencies, 
we may jump to the conclusion that we should take this
formula down to a very low frequency, such as 0.0001 Hz
(0.0001 Hz = 1 cycle per 2.8 hours). However, at frequen-
cies lower than 0.1 Hz, which is one cycle every 10 seconds,
it is very possible that other things such as temperature,
aging, or component life are changing in the circuit. Realis-
tically, low-frequency noise from the amplifier will probably
not appear at this sample speed; but changes in the circuit,
such as temperature or power supply voltage, may.

The amplifier table of specifications (Figure 2) also
gives the input noise density value. This specification is
always at a higher frequency, in the area where the input
voltage noise is relatively constant. For this region of the
curve, multiplying the square root of the bandwidth and
the noise density derives the noise across this bandwidth. 
For example, if the noise of the amplifier is 17 nV/√Hz at
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10 kHz, the noise from the amplifier across the bandwidth
of 6 kHz to 100 kHz is:

where BW is equal to the bandwidth of interest.
So how do we get from the manufacturer’s graph to an

RTO noise value? We calculate the area beneath the noise
curve and multiply that times the noise gain of the amplifier.
In this example, the noise gain of our circuit is +1 V/V. We
determine the noise that the amplifier contributes in both
regions and then add the two values together using the
square root of the sum of the squares. Figure 3 shows the
formula for this calculation and illustrates the two regions.

Figure 3 separates the noise into two parts. In region e1,
we gain the 1/f noise of the amplifier by the dc gain of the
amplifier circuit, which is +1 V/V. The specifications for
amplifier noise are in nanovolts per square root of hertz.
So the analysis is complete when we multiply the average
noise over the region by the square root of the bandwidth
of that region. For CMOS amplifiers, the 1/f region is usually
from 0.1 Hz to 100 Hz up to 1000 Hz. Since this noise
value is multiplied by the square root of the bandwidth, its
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Figure 3. Typical RTI noise evaluation
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contribution is low. In region e2, the broadband noise of the
amplifier is multiplied by the amplifier circuit gain, which
is again +1 V/V, and the square root of the bandwidth.

Each region contributes to the overall circuit noise:

The total noise at the output of the amplifier is:

With this calculation, the SNR at the output of the amplifier
for the 1/f noise is:

We can validate this noise calculation using the Texas
Instruments (TI) SPICE simulation tool, TINA-TITM. This
tool can be found at amplifier.ti.com under “Engineering
Resources.”
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The two graphs in Figure 4 demonstrate how TINA-TI
can help us understand the noise in our circuit. Figure
4(a) shows the simulated noise response of an amplifier.
Figure 4(b) provides the cumulative noise as frequency
increases. Notice that the noise is very low at the lower
frequencies in Figure 4(b). This is because the lower band-
widths are multiplied by the square root of a small number,
the bandwidth. As frequency increases, the cumulative
noise also increases. One would think that at higher 
frequencies the increases in noise would be less because
of the characteristics of Figure 4(a). As we can see, this is
not true, because the bandwidth multiplier (square root of
the bandwidth) is larger at higher frequencies.

Combining the op amp and ADC noise figures
Once we examine the amplifier for possible noise sources,
it is easy to evaluate the total noise of the system in
Figure 1. This system uses the 16-bit ADC, ADS8325,
whose maximum sample rate is 100 ksps. The typical SNR
of this device is 91 dB.

As we found before, the OPA363 RTO noise is 109.8 dB.
Now we can determine the total noise of the system by
using the op amp SNR and ADC SNR, and applying the
theorem of taking the square root of the sum of the squares.

From this calculation we can see that the amplifier noise
has very little impact on the resolution of the system.
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Figure 4. Graphical representation of RTI noise density and RTO noise
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With the devices in the circuit, the SNR performance will
always be equal to or less than the lowest value. Given this
interaction between the amplifier and ADC, picking a higher-
noise amplifier will give the worst results. For instance, if
we use an amplifier in a gain of 10 V/V that has a typical 
voltage noise specification of end = 45 nV/√Hz at 10 kHz,
then SNRTotal is 82.2 dB. If we use the 16-bit ADS8325,
then SNRTotal is 81.6 dB. In this example, the amplifier is
dominating the noise of the circuit.

There are more factors that have an effect on the ampli-
fier selection process, but amplifier noise can have a sig-
nificant effect on the digital code outcome. If the amplifier
is too noisy, the ADC will reliably convert the noise from
the amplifier circuit to the digital output. On the other
hand, it is possible to have an ADC that is noisier than the
amplifier circuit. If we choose an extremely low-noise
amplifier without evaluating the system, we will probably
spend too much money on one component or the other.
Determining the potential noise in a circuit is always a
daunting challenge, but there are some general rules of
thumb that can be applied to overcome these problems.
We can use the circuit’s frequency range to our advantage
in the calculations; and, when we combine noise sources,
we can use the equation for the square root of the sum of
the squares. By using these tricks we can quickly deter-
mine the compatibility of our amplifier/ADC combination.

In this circuit an amplifier isolates impedances in the
signal chain. Other features, like gain or filtering, can be
added; but regardless of the features we put around the
amplifier, we should always ensure that the amplifier circuit
preserves the integrity of the ADC.
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