Add DTMF Generation

and Decoding to DSP-nP
Designs

APPLICATION REPORT: SPRA168

Author: Pat Mock
Semiconductor Systems Engineering

Digital Signal Processing Solutions
1989

‘9 TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’'s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

Add DTMF Generation and Decoding
to DSP-nP Designs

Abstract

Because of the programmability of the digital signal processor, the
TMS32010 can also be programmed to handle Dual-Tone
MultiFrequency (DTMF) encoding and decoding over telephone
lines. For a system already performing digital signal processing
functions using the TMS320, this DTMF capability may be
obtained at no additional hardware cost. This report is a reprinted
article from Electronic Design News. The article details the DTMF
implementation algorithm and provides TMS32010 program
description and code.

Add DTMF Generation and Decoding to DSP-nP Designs 5

*i’
SPRA168

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

6 Add DTMF Generation and Decoding to DSP-nP Designs

Add DITMF

and dec

TELECOIMIM/OATRACOMIM
SPECIAL IS5UE

eneration

'gto

DSP-pP designs

In a computer system that employs a
digital-signal-processing w.P and that’s
equipped for phome-line communications,
the DSP WP can generate and decode
DTMF dialing signals as well as handle
typical DSP functions. Therefore, the
system can both dial out to establish
communications links and accept Touchtone
inputs for remote control of its functions.

Patrick Mock, Texas Instruments

A digital-signal-processing (DSP) p.P can handle Touch-
tone (DTMF) dialing and decoding over telephone lines
in addition to its customary signal-processing chores.
As a consequence, if a computer system already has a
DSP pP and A/D and D/A converters in place, then the
system can decode DTMF signals, and any Touchtone
telephone can serve as a data-entry terminal or a
remote-control console. The only cost for these DTMF
enhancements is additional program space in the
wP’s ROM.

This article outlines a DTMF generating scheme and
describes in detail the implemention of DTMF decoding

. in a specific DSP uP, the TMS32010. Although the

DTMF decoder functions as intended, it fails to meet
AT&T specs exactly because it’s designed to detect
DTMF tones in the presence of speech and because it
suits computer applications like voice-mail and electron-
ic-mail systems, which are not pure telephone applica-
tions. DTMF tone decoders that do meet AT&T specs
usually stop decoding tones if they detect speech. With
a more exacting program, the TMS32010 could meet
AT&T specs to the letter. One of the goals of this
project, however, was to make the DTMF code as
compact as possible to allow the DSP uP to do other
jobs. Some performance was sacrificed as a conse-
quence.

Tone generation is easy

A DTMF tone generator (Ref 1) can consist of a pair
of programmable, second-order harmonic oscillators
(Fig 1). The sample-generation rate of the oscillators
determines the total harmonic distortion of the output.
The higher the sampling rate, the more nearly exact
the signal will be. In all cases, you must choose a
sample-generation rate greater than approximately 7k
samples/sec to achieve an acceptable signal. (Fig 2
explains the DTMF tone-coding scheme.)

Because the telephone company’s official digitizing
rate is 8k samples/sec, most generating circuits run at
this rate. According to the Nyquist criterion, which
specifies that the sampling rate must be at least twice

If a computer can decode DTMF signals,
then any Touchtone telephone can serve as
a data-entry terminal.

the frequency of the highest-frequency signal being
sampled, 8k samples/sec is more than adequate for
generating any valid pair of tones using the TMS32010;
the highest frequency involved is 1633 Hz. Because of a
limitation in the system used to develop the chip’s
tone-generating and -decoding programs, the decoding-
program version listed in Fig 3 runs at 9766 samples/
sec, and all testing was done using this version. Howev-
er, Table 1 presents coefficients for running at 8k
samples/sec; Fig 4’s listing shows the portion of the code
that must be amended for 8k-sample/sec operation.

Fig 5 shows the flow chart for the DTMF tone-
generating algorithm. (The DTMF tone-generating
routine described in Ref 1 takes up 160 words in the
program ROM.) The first step of the algorithm initial-
izes the processor and the interfaces and performs all
other required initialization. The next step retrieves
the digit that’s to be dialed (0 through 9, A through D,
or “#” or “*”) from a specified location in memory. The
digit serves as a pointer within a table that contains the
values required to initialize the resonators.

Because this design uses two oscillators for eight
possible frequencies rather than eight oscillators, to
provide the correct frequencies you must load the

Text continues on pg 212

HIGH-FREQUENCY GROUP

133? Hz 147'|I Hz

1209 Hz
|

LOW-
FREQUENCY
GROUP

Fig 2—Pressing a button on a Touchtone telephone’s 4x4 keypad
generates DTMF signaling tones in pairs. For example, pressing “6”
generates a 770-Hz tone from the low-frequency group and a 1477-Hz
tone from the high-frequency group. Note that the keypad has four
keys (A through D) that are not normally seen_on most phones.
They’re available with some special instruments.

START

TONE 1 DTMF

IMPULSE

* SIGNAL

TONE 2

IY) 9.

Fig 1—A pair of prog

r harmonic oscillators mke up the DTMF tone ge’rwmtor represented by this directed graph.

The delay boxes temporarily hold samples for one iteration. The d

are multiplied by coefficients B and D and summed to

generate a tone sample. The tones, in turn, are summed and sent to a , DIA converter.

vi 1.00 DTMF TONE DECODER TMS320 Assembler vers 1.3
o] *
1 * DTMF TONE DECODER
2 * ¢ Copyright Texas Instruments., 1984
= * by Patrick C. Mock
4 * Northeast Systems Engineering
S *
b *
7 TITL “ DTMF TONE DECODER -
8 IDT ‘vi 1.007
9 *
10 0000 200 B START Go To The Beginning
0001 0017
11 *
12 *
13 0007 css EQU 7 Define Variables
14 0008 cs9 EQU 8
15 000c CsS13 EQU 12
16 000f Cs16 EQU 15
17 0010 CLCK EQU 16
18 0011 MODE EGQU 17
19 0010 ROWMX EQU 14 10 Contains decoded row
20 0011 COLMX EQU 17 11 " " column
21 0012 FOSMAX EQU 18
2z 0013 NEGMAX EQU 19
23 0014 ONE EQU 20
24 0015 LAST EQU 21 16 Contains last decode
25 0016 LAST2 EQU 22
26 0017 COUNT EQU 23
27 0018 RC EQU 24
28 0019 cc EQU 25
z9 001la ROWMAX EQU 2¢
30 001b COLMAX EQU 27
1 001c DAT11 EQU 28
32 0021 DATZ3 EQ 33
a3 0022 DAT14 EQU 34
34 0024 DAT1S EQU 36
25 0028 DAT17 EQU 40
36 0029 DAT27 EQU 41
27 002a DAT18 EQU 4z
38 002b DATZE EQU 43
39 002d DAT29 EQU 45
40 0035 DAT213 EQU S3
41 003b DAT214 EQU 59
42z 003c DATIN EQU &0
43 *
44 # BEGIN DATA TABLES
45 *
46 0002 738b DATA 29579 Real Coeff N=226
47 0003 704¢ DATA 28750
43 0004 écbe DATA 27832
49 0005 63cb DATA 26827
S0 0006 Sb23 DATA 23331
Si 0007 5355 DATA 21333
52 0008 4af3 DATA 19187
53 0009 3efs DATA 16120
sS4 *
SS9 000a 4eff DATA 20223 Real Coeff N=222
Sé6 000b 462b DATA 17963 2nd harmonic
S7 000c¢ 3%a0 DATA 14752
S8 000d 2c58 DATA 11352
S9 000e 01d0 DATA 464
&0 000f ec28 DATA =50&0
&1 0010 d712 DATA -10478
62 0011 c0Q00 DATA -146384
63 *
&4 0012 0200 DATA S12 CLCK = Sample Freguency
65 0013 000a DATA >000A MODE
&6 *
&7 0014 YARas DATA >7FFF POSMAX = Mask for data in
68 0015 8000 DATA >8000 NEGMAX = Mask for data out
69 * Program continues on pg 208

Fig 3—This tone-decoding program for the TMS32010 runs at 9766 samples/sec. However, the official dzmt:zmg rate specified by the phone
pany i8 8k ples/sec; Fig 4 shows the section of code that adapts this program to 8k-sample/sec operation.

70 *
71 0016 0001 TABLE DATA 1 ONE
72 * Start of Program
73 *
74 0017 7f8b START sSovVM
75 0018 6e00 LDPK o]
76 0019 6880 LARP o <Break>
77 001la 7014 LARK 0.ONE
78 001b 7elé LACK TABLE
79 001c &788 NEXT TBLR * Initialize Coefficients
80 001d 1014 SUB ONE
81 001e 400 BANZ NEXT
001 ¢ 001c
82 0020 4811 ouTt MODE, O Set AIB Mode
33 0021 4910 ouT CLCK.,1 Set AIB Clock
84 *
85 *
386 # Load not recognized symbol
87 *
88 0022 Teff NOT LACK >FF
89 0023 6915 DMovV LAST
90 0024 5015 SACL LAST
?1 *
2 0025 7¢89 AGAIN ZAC Zero DFT Loop Variables
93 0026 701f LARK 0.31
94 0027 711c LARK 1,DAT11
95 0028 500 BV 1ERO
0029 002a
96 002a 6881 ZERO LARP 1
7 002b S0a0 SACL *+.0,0
98 002c £400 BANZ ZERO
002d 002a
99 *
100 * Take data and calculate DFT loop
101 *
102 002e Tee2 LACK 226 SET DFT LOOP VARIABLE
103 *
104 002f 5017 LOoP SACL COUNT
105 0030 700f LARK 0,Cs16
106 0031 713b LARK 1,DAT216
107 0032 1214 SUB ONE, 2
108 0033 fc00 BGZ WAIT
0034 0037
109 0035 7007 LARK 0,Cs8
110 0036 712b LARK 1,DAT28
111 *
112 0037 £600 WAIT BIOZ CALC Wait for A/D
0038 003b
113 0039 £900 B WAIT
003a 0037
114 *
115 003b 423c CALC IN DATIN. 2
116 003c 2012 LAC POSMAX
117 003d 783c XOR ‘DATIN Convert data to 320 format
118 003e S503c SACL DATIN
119 *
120 # BEGIN DFT LOOPS
121 *
122 *
123 003f 6as1 FRPT LT *,1
124 0040 2c3c LAC DATIN, 12 X(r)
125 0041 6298 SUBH *— X(n)=Y(n=-2)
126 0042 6d88 MPY * cos(8#C)#Y(n-1)
127 0043 6688 LTD * Y(n=1)->Y¥(n-2) and
128 0044 7f8f APAC
129 0045 7f8f APAC
130 0046 7f8f APAC X(n)+2cos (8#C)*#Y(n—-1)-Y(n=2)
131 0047 5890 SACH #-,0.0 -=> Y(n-1)
132 0048 £S00 BV CHECK
0049 0050
133 004a £400 BANZ FRPT
004b 003f
134 *
135 004c 2017 LAC COUNT

136 004d 1014 SuUB ONE

148
149
1350
151
152
133
154
155
156
157
158
159
1460
141
162
1463
144
1465

166
1467
168
169
170

171
172
173
174
175
174
177
172
179
120
131
182

183
134
1895
136
127

188
189
190
191
192
193

194
195
196

197
198
199
200
201
202z

004¢
004f

Q050
0051

0052
0053
0054
005S
0054

0057
0058
0039

00Sa
005b
005¢
00%5d
005e
00Sf
QOL0
0041
0062
0043
0044
0045
00&é
0067
004
0049

00ba
[ele7Y.)
Q06
006d
00bLe
[sIe7.33
0070
0071
0072
0072
0074
007S
0076
0077
0078
0079

007a
007b
007c
007d
007e
007¢
0030
0031
oo8z

0033

0084
ouss

feQO
002f

7007
712b

£300
00eb
5990
f400
0052

70z
5010
011

710z
7021
2022
S501a
6380
4298
201a
1083
fd400
0067
3110
2038
S01la
6391
400
00%e

7102
7029
202a
S01b
6280
6393
201b
1088
£d00
0077
3111
2082
S01b
6891
£400
00be

201b
101a
£d00
008a
201b
1414
fa00
onzz
&alb

500c

7f8e
101a

BNZ LOoP

Calculate Energy at each frequency

* kX *x

CHECK LARK 0,Css
LARK 1,DATZS8

MAGLP CALL ENERGY

SACH #-,1,0
BANZ MAGLF

*

Compare Energies And Determine Decode Value

LACK 3
SACL ROWMX
SACL CoLMX
*
Find Row Peak

*

ROWS LARK 1.2
LARK 0.DAT23
LAC DAT14
SACL ROWMAX

ROWL LARP O
MAR #—
LAC ROWMAX
SuUB

BGEZ ROWBR

SAR 1, ROWMX
LAC *
SACL ROWMAX
ROWBR MAR *=_1
BANZ ROWL

+*
Find Column Peak

#*

COLUMN LARK 1,2
LARK 0,DAT27
LAC DAT18
SACL COLMAX

coLL LARP o
MAR *—
LAC COLMAX
SUB *

BGEZ COLBR

SAR 1,COLMX
LAC *
SACL COLMAX
COLBR MAR *—-_1
BANZ coLL

*
Check For Valid Signal Strength
*

LAC COLMAX

SuUB ROWMAX

BGEZ COLBIG

ROWBIG LAC COLMAX Reverse Twist
SUB ONE .4
BLZ NOT
LT COLMAX
*
MPYK 12 Ideal 8db = &
*
PAC

SuB ROWMAX

203
204

205
206
207

208
209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231
232
233
234

235
236

237
238
23y
240
241
242
243
244
245
246
247
248
249
250
251
252

253
254
&35
256

257
258

259
260
261
262
263
264
265
266
267

0086
0087
ooss
0089
008a
008b
008c
008d
008e

008f

0090
0091
0092
0093

0094
0095

0096
0097
0098
0099
00%a
009b
009c
009d
009e
009f
00a0
00al
00a2
00a3
00a4
00as
00aé
00a7

00a8
00a®

0Qaa
00ab
O0ac
OOad
0O0ae
Q0af
QObO
00b1
00b2
00b3
00b4
0obS
[ele]-7)
00b7
ooObe
QOb?
0O0ba
OObb

[ele] 14
oobd
OObe
00bf
00cO
00c1

1a00
0022
£900
0094
201a
1414
fa00
0022
bala

8003

7f8e
101b
fa00
0022

bala
82ab

7003
711c
2014
5017
6881
2cag
790
4£8a0
fbOoo
00as3
2017
1014
5017
400
00%a
2017
te00
0022

4alb
32ab

7003
7124
2014
5017
6881
2ca8
790
438a0
fbOO
00b7
2017
1014
S017
400
O0ae
2017
fe00
0022

7e2d
0110
5017
3917
7e03
0010

BLZ NOT
B VROW
COLBIG LAC ROWMAX Twist
SUB ONE. 4
BLZ NOT
LT ROWMAX
*
MPYK 3 Ideal 4db = 3
#*
PAC
SUB COLMAX
BLZ NOT

3*

Check for valid row tone
*

VROW LT ROWMAX
*
MFYK 683 683 = 1/& = —-8dB
*
LARK 0.3
LARK 1.DAT11
LAC ONE
SACL COUNT
RVL LARP 1
LAC #+,12
SPAC

MAR *+.0
BLEZ RCNT

LAC COUNT
SUB ONE
SACL COUNT
RCNT BANZ RVL
LAC COUNT
BNZ NOT

*
Check for valid cclumn tone

*
vcoL LT COLMAX
*
MPYK 683 483 = 1/6 = —-8dB
*
LARK 0,3
LARK 1,DAT1S
LAC ONE
SACL COUNT
cvL LARP 1
LAC #+,12
SPAC
MAR #+_ 0
BLEZ CCNT
LAC COUNT
SUB ONE
SACL COUNT
CONT BANZ [V
LAC COUNT
BNZ NOT
*
* Check 2NDO Harmonic Energy Levels
*
LACK DATZY Calculate address of
ADD ROWMX , 1 row data locations
SACL COUNT
LAR . 1, COUNT
LACK cs9
ADD ROWMX

268
269
270

271
272
273
274
275
276
277

278
279
280
281
282
2383
284
285
286
237
268

289
290
291
292
293
294

295
296
297
278
299
200
201
302

204

00c2
00c3
00c4
00cS
00cé

00c7

00c8
00c9
00ca
00cb

00cc
00cd
00ce
00cf
00do
00d1
00d2
00d3
00d4
00dS
00dé
00d7

00d8

00d?
00da
0Odb

00dc
00dd
0O0de
00df
000
0O0el
00e2
00e3
00e4
00eS
00eé
00e7

0Qeg
00e?®
00ea

00eb
O0ec
00ed
O0ee
O0ef
[e10} o]
00f1
00f2
00f3
00f4
0OfS
00fé&
QOf7
0Of8
QOF9
0O0fa
QOfb
00fc
00Ofd
00fe

S017
3817
800
0O0eb
éala

8fff

7€90
7£90
£d00
0022

7e3S
0111
5017
3917
7e0c
0011
5017
3817
6880
£800
00eb
bailb

£300

7£90
£d0oo
0022

69164
6915
2210
0011
3015
1017
f£f00
0022
2015
1014
fe0O
0025

4alsS
900
0025

2f13
Of&1

5817
6a98
6d17
7t8e
5917
baa8
&d17
7f8e
5917
298
1788
7fe8
5388
4£a88
4£d88
718e
117
7t8d

*

3*
*

*
ENERGY

SACL
LAR
CALL

LT

MPYK

SPAC
SFAC
BGEZ

LACK
ADD
SACL
LAR
LACK
ADD
SACL
LAR
LARP
CALL

LT

MPYK

SPAC
BGEZ

Load recognized number and check that

oMoV
DMOV
LAC
ADD
SACL
SUB
BZ
LAC

SUB
BNZ

ouT
B

COUNT
0,COUNT
ENERGY

ROWMAX

4095

NOT

DAT213
coLMX, 1
COUNT
1,COUNT
cs13
COLMX
COUNT
0,COUNT
0
ENERGY

COLMAX

2048

NOT

LAST2
LAST
ROWMX , 2
CoLMx
LAST
COUNT
NOT

LAST
LASTZ2
AGAIN

LAST, 2
AGAIN

Calculate enerqy level

ROWMAX/8

ROWMAX/4 > 2nd Har

Calculate address of
col data locations

Calculate energy level

TEST CODE

-12dB = 1/16

it is new

Return if same number

2 Passes to recognize

<break>

Energy Calculation Subroutine

LAC
ADD
SACH
LT
MPY
PAC
SACH
LT
MPY
PAC
SACH
LAC
SUB
ABS
SACH
LT
MPY
PAC
SUB
RET

END

NEGMAX, 15
#,15.1
COUNT

*—

COUNT

COUNT, 1
4+
COUNT

COUNT, 1
#-_15
#,15

#*

*
*

COUNT, 1S

NEGMAX = >8000

-1/2 + CSn/2

D2(C3n-1)/2

Di#D2(CSn—-1)/2

abs(D2-D1)/2

((D2-D1)/2)"2
((D2-D1)"2)/4-D1#D2(CSNn-1)/2

DTMF decoding doesn’t necessarily require
elaborate DSP routines; the routine
presented here leaves room for several other
DSP routines in the DSP p.P.

oscillators’ coefficients (B1, D1, B2, and D2 in Fig 1)
prior to the start of signaling. (The use of eight
oscillators would decrease execution time but would
require four times as much memory as two oscillators.)
After initializing the resonators, the program loops
repeatedly through the resonator code and generates
samples of the appropriate high- and low-frequency
tones. Then the program sums the pairs of tone sam-
ples. The DSP pP then feeds this sum to an external
D/A converter, and the resulting analog output is the
DTMF signal.

Frequency specs aren’t the only ones DTMF tones
have to meet; duration specs apply also. According to
AT&T specs, 10 digits/sec (or 100 msec/digit) is the
maximum data rate for Touchtone signals. AT&T speci-
fications state that within its allotted 100-msec interval,
a tone must be present for at least 45 msec and no more
than 556 msec. During the remainder of the 100-msec
interval, the tone generator must be quiet to allow the
receiver’'s DTMF decoder to settle. Therefore, a count-
er makes sure that the generated tone’s duration meets
the minimum time—approximately 45 msec—to mini-
mize computing time. After the tone’s been on for a
sufficiently long time, the D/A converter is zeroed and
maintained at the zero-output level so that the total on
time and off time equals 100 msec.

Although DTMF tone-decoding schemes require con-

TABLE 1—RECOMMENDED DFT LENGTHS
AT AN 8-kHz SAMPLING RATE

1ST HARMONIC
N = 205 DUR = 25.6 mSEC = (18 20 22 24 31 34 38 42)
2ND HARMONIC
N = 201 DUR = 25.1 mSEC = (35 39 43 47 61 67 74 82)

COEFFICIENTS N =205 N=201
1ST HARMONIC ~ 2ND HARMONIC
697 27906 15036
770 26802 11287
852 25597 7363
941 24295 3323
1209 19057 - 10805
1336 168529 -16384
1477 12945 -22153
1633 9166 - 27440

Glossary

Center frequency offset—the offset of the center
of the recognition bandwidth from the nominal
DTMF frequencies.

DFT—discrete Fourier transform.
DTMF—dual-tone multifrequency signaling sys-
tem used by the telephone company for dialing.
Guard time—the duration of the shortest DTMF
tone a detector will recognize.

IIR—infinite impulse response (a type of digital
filter).

Log-Linear—transformation of logarithmically
compressed data from a codec back to linear
form.

Recognition bandwidth—the percent change
from the nominal frequencies that a detector will
tolerate.

Reverse twist—the condition that exists when a
DTMF signal’s row amplitude is greater than the
column amplitude.

Standard twist—the condition that exists when a
DTMF signal’s column amplitude is greater than
the row amplitude.

Talk-off—a measure of the detector’s ability to
ignore speech signals that look like DTMF signals.
Twist—the difference, in decibels, between the
loudest row tone’s amplitude and the loudest col-
umn tone’s amplitude.

TABLE 2—DFT PROGRAM SPECIFICATIONS

DFT SIZE: FIRST HARMONIC

N = 226
K = (16, 18, 20, 22, 28, 31, 34, 38)
SECOND HARMONIC N

=222
K = (32, 35, 39, 43, 55, 61, 67, 74)

PROGRAM WORDS - 255 WORDS
DATA MEMORY WORDS = 60 WORDS
SAMPLING FREQUENCY = 9766 SAMPLES/SEC
SAMPLING INTERVAL =- 102.4 4SEC
DFT LOOP TIME - 45 ySEC
TOTAL DFT TIME - 23.2 mSEC

TIME REQUIRED BY
THE DECISION LOGIC 150 4SEC (ONE SAMPLE

MISSED BETWEEN DFTs)

siderably more code than do generation schemes, the
decoding program in Fig 3 takes less than twice as
much code as the simpler generating program. Fur-
thermore, both programs are much smaller than the
total capacity of the DSP pP. In this case, rather than
being called as a result of a keystroke (as the generating
algorithm is), the decoding algorithm continually pro-
cesses signal samples and so must be interleaved with
other DSP functions. The algorithm must run continu-
ally because, after all, it doesn’t know whether or not
DTMF tones are present until after it processes the
input.

The discrete Fourier transform (DFT) algorithm
employed in the program listing is known as Goertzel’s
algorithm (Ref 2). This algorithm is compact and needs
only one real coefficient per frequency to determine
magnitude (Fig 6); although extracting magnitude and
phase requires complex coefficients and hence more
complex programming, you can decode DTMF signals

*
+BEGIN DATA TABLES
* Real Coeff N=20S5

DATA 27906 697
DATA 26802 770
DATA 25597 as1
DATA 24295 941
DATA 19057 1209
DATA 16527 1336
DATA 12945 1477
DATA 9166 1633
- 2nd harmonic Real Coeff N=201
DATA 15036 1394
DATA 11287 1540
DATA 7363 1702
DATA 3323 1882
DATA -1080S 2418
DATA -16384 2672
DATA -22153 2954
DATA ~27440 3266
*
DATA 419 CLCK = Sample Frequency
DATA >000A MODE
*
DATA >7FFF POSMAX = Mask for data in
DATA >8000 NEGMAX = Mask for data out
*
*
TABLE DATA 1 ONE
* Start of Program Ak fadadadedodod

*

START SOVM
LDPK (o]
LARP [o] <Break>
LARK 0,0NE
LACK TABLE

NEXT TBLR * Initialize Coefficients
SUB ONE
BANZ NEXT
ouT MODE, O Set AIB Mode
ouT CLCK,1 Set AIB Clock
*
*
* Load not recognized symbol
*
NOT LACK >FF
DMOV LAST
SACL LAST
>
AGAIN ZAC Zero DFT Loop Variables
LARK 0,31
LARK 1,DAT11
BV ZERO
2ERO LARP 1
SACL *+,0,0
BANZ ZERO

*

Take data and calculate DFT loop
LACK 205 SET DFT LOOP VARIABLE

LOOP SACL COUNT
LARK 0,C816
LARK 1,DAT216

suB ONE, 2
BGZ WAIT
LARK 0,CS8
LARK 1,DAT28

Fig 4—This amendment of Fig 3’s listing adapts the tone-generating routine to 8k-sample/sec operation. It’s a substitute routine for lines
43 to 122. :

DTMEF decoders that meet ATOT specs
usually stop decoding tones if they detect the
presence of speech.

simply by extracting the magnitude of a tone’s frequen-
cy components and ignoring their phase. In addition,
instead of waiting for a complete sample set to begin
processing, Goertzel’s algorithm processes each sample
as it arrives.

Goertzel’s algorithm takes the form of a series of
second-order IIR (infinite-impulse-response) filters.
Notice that, in Fig 6, you can divide the directed graph
into two parts: a left-hand part that includes the two
feedback elements (boxes marked “delay”) and a right-
hand portion leading to the output that has no feedback
elements. For DTMF decoding, you are interested only
in the last iteration (N—1) of the algorithm. Conse-
quently, because the right-hand branches don’t involve
feedback, there’s no need to execute these branches of

TABLE 3—TONE DECODER TEST RESULTS

BANDWIDTH TEST RESULTS:

TONE %HIGH %LOW TONE %HIGH %LOW

697 25 3.5 1209 24 3.0
770 37 23 1336 23 25
852 39 17 1477 1.3 29
841 33 17 1633 24 16

SPECIFICATIONS REQUIRE: MIN = 1.5% AND MAX = 3.5%

AMPLITUDE RATIO TEST RESULTS
TWIST REVERSE TWIST

SPECIFICATIONS >4.0dB >8.0 dB
DIGIT 1 53 8.4
DIGIT § 57 2.0
DIGIT 8 8.3 9.7
DIGIT 16 54 95

DYNAMIC RANGE: 25 dB (SPECIFICATION 25 dB)
NOISE TEST: PASSES AT -24 dBV

TALK-OFF IMMUNITY: ONE FALSE RECOGNITION
PER 1000 CALLS (SPEC 1500)

Fig 5—The directed graph in Fig I translates into a program that
follows this flowchart. Note the step that produces a quiet period.

the algorithm until the last iteration of the algorithm..

What’s not obvious from the directed graph of the
algorithm is that the left-hand constant, 2cos(2wk/N), is
the same as the right-hand constant, Wy, for calculat-
ing the magnitude of DTMF signals. W¥y is a complex
number, and the left-hand constant is not. However,
the program calculates the magnitude squared of the
output of the algorithm. Squaring a complex number
always yields a real number, and in this case, squaring
the right-hand constant yields a real number that’s the
same as the left-hand constant. Therefore, Goertzel's
algorithm, adapted to DTMF decoding, not only exe-
cutes quickly because it has few steps, but it also takes
up little memory space because it uses few constants.

Given a time-ordered sample set of size N, processing
each sample means you'll do N iterations of the algo-
rithm. If k is the frequency you’re solving the trans-
form for, then the values k and N determine the
coefficients of each IIR filter. The values of k and N and
the sampling rate also determine how accurately the
transform discriminates between in-band and out-of-
band frequencies.

Specifically, k is a discrete integer corresponding to
the frequency you're solving for. It’s defined as

k=N xfrequency/(sample rate).

(Note that you must round off the frequency of interest
to an integer.) Wy is a frequently encountered constant
in digital signal processing. It’s defined as

Why=exp(—2mjk/N).

Because the sampling rate and the frequencies you’re

The decoding algorithm processes signal
samples continnously, so the DSP |i.P must
interleave the decoding with other DSP
Sunctions.

extracting are fixed (by the phone company), the sam-
ple-set length (N) is the only parameter you can vary.
In order to obtain the best performance from the
transform, the length of the sample set must be opti-
mized with respect to two conflicting criteria: The
sample set must be small enough so that the decoder
can accumulate a complete set in an interval that’s short
enough to keep up with the DTMF digit-transmission
rate; conversely, the sample set must be long enough so
that the transform discriminates between in-band and
out-of-band signals. An exhaustive and inelegant com-
puterized search of all possible combinations of k and N
resulted in the sample lengths listed in Tables 1 and 2
and used in the Fig 3 and 4 program listings.

Companding not accounted for

This design assumes that the analog input is linearly
encoded. This is often not the case, because many
phone signals are compressed logarithmically by a
codec. In such cases, you must first perform a log-to-
linear expansion before submitting the samples to the
DFT algorithm. (Ref 3 describes how to do companding
with the TMS32010 if your system doesn’t incorporate
companding hardware.)

Fig 7 shows how samples are fed, in effect, into a

Fig 6—A simplified form of Goertzel’s algorithm, represented by
this directed graph, decodes DTMF tones. A program that imple-
ments it can save processing steps by performing the calculations
illustrated by the right-hand portion of this graph for just the last
iteration. Furthermore, for DTMF-decoding purposes, this compact
algorithm requires only one constant per frequency because both the
right-hand and left-hand constants have the same value.

DETECTOR FOR 770 Hz

DETECTOR FOR 852 Hz

DETECTOR FOR 941 Hz

—==] DETECTOR FOR 1200 Hz

f—o={ DETECTOR FOR 1336 Hz -

DETECTOR FOR 477 Hz J—

DETECTOR FOR 1633 Hz

o
DECISION
ya LOGIC
72
va
72
] -)
J 72
L y)
J 72
)
72
g . £
J 72

Fig 7—The tone decoder employs 16 of the transforms shown in Fig
harmonics.

6. They extract each of the eight Touchtone frequencies and their second

Goertzel’s algorithm, a discrete Fourier
transform algorithm, operates as a series of
second-order IIR filters.

parallel array of 16 DFT algorithms. There is one DFT
for each of the eight frequencies and each of the second
harmonics of the eight frequencies. You need the second
harmonics as well as the fundamentals to discriminate
between speech and DTMF tones. Of course, they
execute serially because they are sections of code—not
physical devices.

As Fig 8's flowchart shows, after initializing the
processor, the program feeds the first sample to the
IIR filters. After all the samples have been processed,
each filter’s current value is squared. This operation
yields the magnitude of the strength of the signal at
each of the eight DTMF frequencies and each second
harmonic of the DTMF frequencies.

The program next compares the data against several
thresholds. It performs four principal checks. First,
after finding the strongest signals in the high- and
low-frequency groups, it simply determines whether
any valid DTMF tones are present at all. If the strong-
est signals are not above a minimal value (22 in Fig 3’s
program), the program does no more processing and
begins collecting another sample set.

Second, if valid DTMF tones are present, the pro-
gram checks the strongest signals in the low and high
(row and column) groups for twist—the ratio of the
row-tone amplitude to the column-tone amplitude. This
ratio must be between certain values for the DTMF
tones to be valid. (Because of the frequency response of
telephone systems, the high tones are attenuated.
Consequently, the phone company doesn’t expect the
high and low groups to have exactly the same amplitude
at the receiver, even though they were transmitted at
the same strength.)

Third, the program compares the amplitude of the
strongest signal in each group to the amplitudes of the
rest of the tones in its group. Again, the strongest tone
must stand out from the other tones in its group by a
certain ratio.

Finally, the program checks to see that the strongest
signals are above one threshold while their correspond-
ing second harmonics are below another threshold.
Checking for strong harmonics insures that the DSP
system won’'t confuse speech for DTMF signals.
(Speech has significant even-order harmonics; DTMF
signals don't.)

Fig 8—The tone-decoder program does far more than simply detect
the presence of DTMF signals; it also performs an elaborate series of
checks to ensure that the tones are within specifications and that a
valid tone is new data that must be acted on.

OTMF TONE DETEGTION

BELOW
THA D

The DTMF-decoding program checks the
signal pair to establish tone validity, and
then it determines whether the pair
constitutes new information.

If the DTMF signal pair passes all these compari-
sons, then it’s a valid tone pair that corresponds to a
digit. Just because it’s valid, however, doesn’t mean
that the corresponding digit is necessarily new informa-
tion. The remaining two steps of the program compare
the current digit to the two most recently derived
digits. First, the program checks to see if the current
digit is the same as the second-to-last digit. If they
match, then the program assumes the tone hasn’t
changed lately. If they differ, it performs one final
check to see if the current digit matches the last digit
received. If these are the same, then the DTMF tone
has changed recently and remained stable for two
iterations. This means you finally have a valid new
digit. If they don’t match, it means the tone has
changed since the last sample was acquired but hasn’t
remained stable long enough. Consequently, the pro-
gram loops back without signaling that a new digit has
arrived. If the new tone is really valid and stable, the
next iteration of the algorithm will recognize the digit
as valid because the new current digit will now match
the previously received digit.

There are two reasons for checking three successive
digits at each pass. First, the check eliminates the need
to generate hits every time a tone is present; acknowl-
edging it only once is enough. As long as the tone is
present, it can be ignored until it changes. Second,
comparing digits improves noise characteristics and
speech immunity.

The implementation of the decoder algorithm follows
the specification listed in Table 2. The TMS32010’s
Harvard architecture separates data and program
memory. The data memory is on chip. The program
keeps the tables required by the decoding algorithm in
on-chip data memory. These tables take up more than
half the available data-memory locations. Depending on
your application, you might have to store the tables in
program memory and move the tables onto the chip
every time the decoding algorithm runs. This will free
the on-chip memory for other uses, but it will obviously
increase the decoding algorithm’s execution time.

Checking the decoder’s performance

Evaluating the performance of a DTMF decoder is
more difficult than evaluating the performance of a
DTMF generator. You can check the generator very
simply with a spectrum analyzer. To test the decoder,
on the other hand, you have to determine not only that
it will decode valid tones, but that it will both reject
invalid signals and operate properly in the presence of

noise. Testing the decoder using AT&T’s published test
method is an all-day affair and requires a specific
instrumentation suite. Prerecorded tapes of various
test tones speed things considerably. For example,
Mitel's (San Diego, CA) $90 CM7291 test cassette tape
cuts the evaluation time of DTMF tone receivers to less
than 90 minutes, according to the company (Ref 4).
The TMS32010’s DTMF decoder was tested against
the Mitel test tape. The test results given in Table 3
indicate that the receiver can detect all tones. And the
receiver bandwidths conformed almost exactly to all
AT&T specs. There were only three tones for which the
decoder was slightly off. In two instances, results were
0.2% too large and, in one instance, 0.2% too small. The
other AT&T specs were met perfectly, including the
twist’s dynamic range at 25 dB, the guard time at 20
msec, and the white-noise test at 24 dBV. EDN

References

1. Clark, N V, “DTMF Encoder Demonstration,” Texas
Instruments internal publication, February 1984.

2. Oppenheim, A V, and Schafer, R W, Digital Signal
Processing, Prentice-Hall, Englewood Cliffs, NJ, 1975 (see
Section 6.1).

3. Companding Routines for the TMS32010, Application
Note SPRA001, Texas Instruments, Dallas, TX.

4. Tone Receiver Test Cassette #CM7291, Mitel Technical
Data Manual, Mitel Semiconductor, 2321 Morena Blvd,
Suite M, San Diego CA 92110. Phone (619) 276-3421.

5. Touch-Tone/RTM calling—Requirements for Central
Office, AT&T Compatibility Bulletin No 105, August 8,
1975.

