
Application Report
SPRA887 – March 2003

1

Image Processing Examples Using the TMS320C64x
Image/Video Processing Library (IMGLIB)

Chris Chung
Oliver Sohm

TMS320C6000 Software Applications

ABSTRACT

The TMS320C64x image/video processing library (IMGLIB) provides a set of C-callable,
assembly-optimized functions commonly used in imaging applications. While IMGLIB can be
used to develop practical real-time applications with its high performance and ease of use,
there are several important factors to consider in a system environment for attaining optimal
performance mainly due to the data-intensive nature of imaging applications. This application
report presents the usage and performance of several IMGLIB functions to help users utilize
IMGLIB in their system development, and also presents performance analysis with three
kinds of memory scenarios to help understand potential overhead related to memory
hierarchy.

Contents

1 Introduction 2.

2 Benchmarking 3.
2.1 Emulation/Simulation Setup 3.
2.2 Cycle Count Measurement 5.
2.3 Example Scenarios and Expected Performance 6.

2.3.1 Scenario 1: Data in L1D 6.
2.3.2 Scenario 2: Data in L2 SRAM 7.
2.3.3 Scenario 3: Data in Off-Chip Memory 7.

2.4 Data Alignment 10.

3 Examples 10.
3.1 Histogram 10.
3.2 Threshold 11.
3.3 Dithering 12.
3.4 Correlation 13.

4 References 13.

List of Figures

Figure 1. Memory Hierarchy and Potential Overhead 2.
Figure 2. Linker Command File for Scenarios 1 and 2 6.
Figure 3. Linker Command File for Scenario 3 8.
Figure 4. Simplified Double Buffering Code 9.

TMS320C64x is a trademark of Texas Instruments.

Trademarks are the property of their respective owners.

SPRA887

2 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

List of Tables
Table 1. C6416TEB Key Features 3.
Table 2. Stall Cycles Related to L1D 7.
Table 3. Compute-Bound vs. Memory-Bound 7.
Table 4. IMG_histogram Benchmarks 10.
Table 5. IMG_thr_gt2max Benchmarks 11.
Table 6. IMG_errdif_bin Benchmarks 12.
Table 7. IMG_corr_3x3 Benchmarks 13.

1 Introduction
Imaging applications are often considered as data-intensive, as well as compute-intensive,
because they typically process large amount of data in real time, requiring efficient data transfer
mechanisms as well as high computing power. TMS320C64x is an advanced, very long
instruction word (VLIW) processor, suitable for imaging applications with its high computing
power and large on-chip memory. It also provides enhanced direct memory access (EDMA) and
cache to efficiently transfer data to/from off-chip memory. To help TMS320C64x users shorten
the time-to-market in system development, Texas Instruments provides a set of
assembly-optimized key imaging functions, named imaging/video processing library (IMGLIB).
Each function in the IMGLIB is designed to produce the best performance possible by optimally
utilizing available resources and avoiding potential resource conflicts. Therefore, when
developing a system utilizing IMGLIB, it is important to understand potential overhead related to
memory hierarchy, in order to estimate and improve the actual performance of a system being
developed.

Figure 1 shows the memory hierarchy of C64x and related potential overhead. For example,
without considering compulsory misses, when the program is bigger than the size of the
level-one program cache (L1P), L1P cache misses can occur, stalling the central processing unit
(CPU) until the required code is fetched. Similarly, when the data do not fit in the level-one data
cache (L1D), L1D cache misses stall the CPU. All L1P and L1D misses are serviced by the
level-two cache/static random-access memory (L2 cache/SRAM).

CPU

L1P L1D

L2 Cache/SRAM

Off-chip memory

C64x

L1 program cache misses

L1 data cache misses

1

2

1

4
EDMA/EMIF

3

2
L2 cache misses

2

3

Off-chip memory accesses4

Figure 1. Memory Hierarchy and Potential Overhead

C64x is a trademark of Texas Instruments.

SPRA887

3 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

Similar to the L1D misses, L2 cache misses occur if the code and data do not fit in the L2 cache.
The L2 miss overhead can be significant, compared to the L1P/L1D miss overhead, because the
L2 cache needs to communicate with slow off-chip memory via EDMA. Considering the growing
speed disparity between the processor and off-chip memory, careful data transfer handling (e.g.,
reducing L2 misses) is one of critical factors for attaining higher performance.

L2 SRAM can also be used to service L1D/L1P misses. However, EDMA is required to transfer
code/data between L2 SRAM and off-chip memory if the code and data do not fit in the L2
SRAM. The data transfer with EDMA is typically more effective than that with L2 cache due to its
nature of longer burst transactions, reducing memory access latency overhead. However, the
EDMA transfer involves more programming effort because data transfers and synchronization
have to be manually managed. TMS320C64x provides both cache and EDMA mechanisms to
allow users to choose the right mechanism, depending on situations.

This application report presents the usage and performance of several IMGLIB functions to help
TMS320C64x users utilize IMGLIB in system development. In addition, performance analysis
with three kinds of memory scenarios is presented to help understand potential overhead related
to memory hierarchy.

2 Benchmarking

2.1 Emulation/Simulation Setup

A TMS320C6416 test and evaluation board (TEB) is used in this application report to measure
cycle counts for IMGLIB examples. Table 1 lists key features of the C6416 TEB, which are
important factors in performance analysis and optimization. More details on the C6416 internal
memory structure and operations can be found in TMS320C64x DSP Two-Level Internal
Memory Reference Guide (SPRU610).

Table 1. C6416TEB Key Features

Item Description

C6416 Clock frequency 500 MHz

L1P 16K-byte, direct-mapped, 32-byte cache line

L1D 16K-byte, 2-way set associative, 64-byte cache line

L2 SRAM 8-cycle L1P miss penalty, 6-cycle L1D miss penalty, up to 1M byte

L2 cache 8-cycle L1P/D miss penalty, up to 256K bytes, 4-way set associative, 128-byte
cache line

L2 to L1D read path 256 bits

L1D to L2 write buffer 64-bit, merge with 4 outstanding write misses

EMIF EMIF-A: 64-bit bus, EMIF-B: 32-bit bus

SDRAM Clock frequency 133 MHz

Bus width 64 bits (two 32-bit modules) connected to EMIF-A

Page size 2K bytes

SPRA887

4 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

The C6416 TEB is connected to a PC through an XDS560 board, and a Code Composer
Studio Integrated Development Environment (IDE) configuration, based on “_C64xx XDS560
Emulator Address 0”, is used as follows. If you use other types of interfaces, e.g., XDS510,
please make sure to choose the right configuration.

Code Composer Studio is a trademark of Texas Instruments.

SPRA887

5 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

Be sure to select the right General Extension Language (GEL) file for the C6416 TEB.

If you use simulation, select “C6416 Fast Sim Ltl Endian”. The cycle counts obtained from
simulation might not be accurate, especially with off–chip memory accesses.

Software version numbers used in this application report are as follows:

• Code Composer Studio: version 2.1

• C64 IMGLIB: version 1.02b

2.2 Cycle Count Measurement

The built-in timer in C6416 is used to measure cycle counts for IMGLIB examples. The following
sample code shows how to set up the timer and measure cycle counts with Chip Support Library
(CSL).

 hTimer = TIMER_open(TIMER_DEVANY,0); /* open a timer */

 /*–––*/
 /* Configure the timer. 1 count corresponds to 8 CPU cycles in C64 */
 /*–––*/
 /* control period initial value */
 TIMER_configArgs(hTimer, 0x000002C0, 0xFFFFFFFF, 0x00000000);
 /* ––– */
 /* Compute the overhead of calling the timer. */
 /* ––– */
 start = TIMER_getCount(hTimer); /* to remove L1P miss overhead */
 start = TIMER_getCount(hTimer);
 stop = TIMER_getCount(hTimer);
 overhead = stop – start;

 start = TIMER_getCount(hTimer);
 /* –– */
 /* Call a function here. */
 /* –– */
 diff = (TIMER_getCount(hTimer) – start) – overhead;
 TIMER_close(hTimer);
 printf(”%d cycles \n”, diff*8);

The maximum resolution of the timer is 8 CPU cycles, since the input clock to the timer is fixed
to the CPU clock divided by eight. The function call overhead for TIMER_getCount() is roughly
measured and compensated. Additional information on the timer registers can be found in the
TMS320C6000 Peripherals Reference Guide (SPRU190).

SPRA887

6 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

2.3 Example Scenarios and Expected Performance

Three kinds of scenarios are presented in this report, considering potential overhead related to
memory hierarchy:

1. When data are in L1D

2. When data are in L2 SRAM

3. When data are in off-chip memory.

In these examples, L1P miss overhead can be ignored because the examples are small enough
to fit L1P. However, L1P misses have to be carefully managed in the case where L1P thrashing
overhead is significant.

2.3.1 Scenario 1: Data in L1D

This scenario is shown to validate the formula cycle counts listed in the TMS320C64x
Image/Video Processing Library Programmer’s Reference (SPRU023). Note that the formula
cycle count assumes flat memory, not considering any overhead related to memory hierarchy.
Figure 2 shows a linker command file used for this scenario. For more information on linker
commands, refer to the TMS320C6000 Optimizing Compiler User’s Guide (SPRU187).
Information on TMS320C6000 memory maps can be found in the TMS320C6000 Assembly
Language Tools User’s Guide (SPRU186).

Since all code and data are initially stored in L2SRAM, the example function is called twice, to
eliminate L1P/L1D miss overhead, and a cycle count for the second call is measured.

MEMORY

{

 L2SRAM: o = 00000000h l = 00100000h /* 1 Mbytes */

}

SECTIONS

{

 .cinit > L2SRAM

 .text > L2SRAM

 .stack > L2SRAM

 .bss > L2SRAM

 .const > L2SRAM

 .data > L2SRAM

 .far > L2SRAM

 .switch > L2SRAM

 .sysmem > L2SRAM

 .tables > L2SRAM

 .cio > L2SRAM

}

Figure 2. Linker Command File for Scenarios 1 and 2

TMS320C6000 is a trademark of Texas Instruments.

SPRA887

7 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

2.3.2 Scenario 2: Data in L2 SRAM

In this scenario, L1D miss overhead needs to be considered. The linker command file for
Scenario 1 (shown in Figure 2) is used for this scenario. Table 2 lists expected stall cycles
related to L1D read and/or write transactions. When there are read transactions only, the
number of stall cycles (without considering pipelined misses) is the number of L1D read misses
times L1D miss penalty (i.e., 6 cycles). In case of write transactions only, there is no stall unless
the write buffer is full.

When there are both read and write transactions, the L1D read miss penalty can increase
because any write transaction in the write buffer has to be flushed before a read miss is serviced
to maintain data coherency.

Table 2. Stall Cycles Related to L1D

Transaction Number of Stall Cycles

Read transaction only Number of L1D read misses * L1D miss penalty

Write transaction only No stall cycle unless the write buffer is full

Read and write transactions Number of L1D read misses * (L1D miss penalty + additional cycles for write buffer flush)

2.3.3 Scenario 3: Data in Off-Chip Memory

When data are in off-chip memory, either (1) L2 cache or (2) L2 SRAM with EDMA is used to
transfer the data in off-chip memory. When L2 cache is used, there will be L2 cache miss
overhead as well as L1D miss overhead. In addition, the L1D read miss penalty is higher with L2
cache (i.e., 8 cycles) than with L2SRAM (i.e., 6 cycles). On the other hand, the off-chip memory
access has to be manually managed with L2 SRAM, whereas it is seamlessly handled by the
cache controller with L2 cache.

EDMA is typically advantageous over cache in terms of performance for the following three
reasons. First, the overhead of access latency with EDMA is less than that with cache, since a
EDMA transfer can be much longer than a cache line transfer. Second, computation and data
transfers can be tightly overlapped with EDMA, which often results in significant performance
improvement. Third, the L2 write-allocate policy can result in more data transfers than needed
(i.e., load/allocate/writeback instead of load/store).

With EDMA, the overall processing time depends on the ratio between the compute time and the
data transfer time, as categorized into two conditions listed in Table 3. In the compute-bound
condition where the compute time is greater than the data transfer time, the overall processing
time is determined by the compute time. Note that the compute time is defined as the processing
time without the overhead of off-chip memory accesses. The data transfer time is defined as the
time to transfer data to/from off-chip memory, which consists of memory access latency and
burst transfer time.

Table 3. Compute-Bound vs. Memory-Bound

Condition Description Overall Processing Time

Compute-bound Compute time > data transfer time Compute time + time for the first load and last store transfers

Memory-bound Compute time < data transfer time Data transfer time + EDMA management overhead

SPRA887

8 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

To reduce the access latency overhead in memory accesses, the burst transfer must be long
enough. However, too long burst transfers can cause negative effect in compute-bound cases
because time for the first load and last store transfers cannot be hidden behind the
compute-time. In the memory-bound condition where the compute time is less than the data
transfer time, the overall processing time is determined by the data transfer time; thus further
improving the compute time does not contribute to higher performance.

From an experiment on the C6416TEB, the cycle count of 34,000 was measured in transferring
64K bytes of data between on–chip and off–chip memories. This cycle count will be used to
analyze EDMA examples in Section 3.

Figure 3 shows a linker command file used for this scenario.

MEMORY

{

 L2SRAM: o = 00010000h l = 000F0000h /* 960 kbytes */

 CE0: o = 80000000h l = 01000000h /* 16 Mbytes */

}

SECTIONS

{

 .cinit > L2SRAM

 .text > L2SRAM

 .stack > L2SRAM

 .bss > L2SRAM

 .const > L2SRAM

 .data > L2SRAM

 .far > L2SRAM

 .switch > L2SRAM

 .sysmem > L2SRAM

 .tables > L2SRAM

 .cio > L2SRAM

 .imgbuf > CE0 /* User created data section for off–chip memory */

}

Figure 3. Linker Command File for Scenario 3

The following statements are used to allocate image arrays to a user-defined section (.imgbuf) in
off-chip memory.
#pragma DATA_SECTION(in_image,”.imgbuf”)

#pragma DATA_SECTION(out_image,”.imgbuf”)

Figure 4 shows a double buffering code used for EDMA transfers, which utilizes the DAT module
in CSL. The double buffering code is simplified for easier explanation, thus it can only handle the
case where the total data size is a multiple of the buffer size times two. It uses two sets of input
and output buffers, called InBuffA/OutBuffA and InBuffB/OutBuffB. With the two sets of buffers,
the CPU can process data with one set of buffers while EDMA transfers data in another set of
buffers.

SPRA887

9 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

The DAT_wait() is used to wait for a transfer to complete. The DAT_copy() issues a data transfer
that happens in the background of CPU processing. The first two blocks of input data are
transferred to input buffers before the double buffering loop begins. Once the transfers have
completed, you can process the data in InBuffA and store the results to OutBuffA. The data in
OutBuffA is sent to off-chip memory, and the next DAT_copy() begins copying the next input
block to InBuffA for future processing. While these two transfers are occurring, you process the
data in InBuffB and store the results to OutBuffB. When it is done, the result in OutBuffB is sent
to off-chip memory.

number_of_transfers = total_data_size / buffer_size;

/*––––––––––––––– Initial transfers ––––––––––––––––––––––––––––*/

id_InBuffA = DAT_copy(in_image, InBuffA, buffer_size);

id_InBuffB = DAT_copy(in_image + buffer_size, InBuffB, buffer_size);

/* Begin Double Buffering */

for(i=0; i < number_of_transfers; i+=2)

{

 DAT_wait(id_InBuffA); /* wait for transfers to complete */

 DAT_wait(id_OutBuffA);

 /* ––– */

 /* Process the data in InBuffA and store the results to OutBuffA */

 /* ––– */

 Process(InBuffA, OutBuffA, buffer_size);

 id_OutBuffA = DAT_copy(OutBuffA, out_image + (i* buffer_size), buffer_size);

 if(i < number_of_transfers–2)

 id_InBuffA = DAT_copy(in_image + ((i+2)* buffer_size), InBuffA,

 buffer_size);

 DAT_wait(id_InBuffB);

 DAT_wait(id_OutBuffB);

 /* ––– */

 /* Process the data in InBuffB and store the results to OutBuffB */

 /* ––– */

 Process(InBuffB, OutBuffB, buffer_size);

 id_OutBuffB = DAT_copy(OutBuffB, out_image + (i+1)* buffer_size],

 buffer_size);

 if(i < number_of_transfers–2)

 id_InBuffB = DAT_copy(in_image + ((i+3)* buffer_size), InBuffB,

 buffer_size);

}

Figure 4. Simplified Double Buffering Code

SPRA887

10 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

2.4 Data Alignment

Due to the structure of internal memory/cache, some IMGLIB functions require input/output
memory arrays to be aligned to a specific boundary. This restriction must be carefully managed
in all C64x devices for attaining optimal performance. As an example, the following statement is
used to allocate the array (input) to a 8-byte boundary.

#pragma DATA_ALIGN (input, 8)

The C64x compiler automatically aligns arrays of all types to an 8-byte boundary if they are not
declared in a struct statement. When dynamic memory allocation is used, the allocated memory
is also aligned to an 8-byte boundary, regardless of types. More information on data alignment
rules by the compiler can be found in the TMS320C6000 Optimizing Compiler User’s Guide
(SPRU187).

The structure of internal memory/cache on the C64x generation varies from device to device.
Therefore, refer to the appropriate device data sheet to determine the structure of a particular
device.

3 Examples
This section presents the usage and performance of few IMGLIB functions: histogram,
threshold, dithering, and correlation. To minimize the variation in cycle count measurement, be
sure to select the Reset menu (under Debug in Code Composer Studio) before running an
example. The cycle counts listed in this section were measured in Release mode.

3.1 Histogram

Image histogram is used to count the number of occurrences of pixel intensity in an image,
which is widely used in image analysis and enhancement. The IMG_histogram function, which
computes the histogram on an 8-bit image, is defined as:

void IMG_histogram (unsigned char * restrict in_data, int n, short accumulate,
short * restrict t_hist, short * restrict hist)

The maximum number of pixels that can be counted in each bin is 65535. Note that a temporary
array, t_hist, must have 1024 16-bit entries and be initialized to zero. For example, with EDMA,
this function is called for a block of data. Therefore, t_hist, must be cleared before each call. The
input array (in_data) must be aligned to a 4-byte boundary and the number of input data (n)
must be a multiple of 8. Table 4 lists IMG_histogram benchmarks.

Table 4. IMG_histogram Benchmarks

Number of Cycles

Data In On-Chip Memory
Data In Off-Chip Memory

(500-MHz CPU, 133-MHz SDRAM)

Number of
Data (N)

Formula (9/8) * N
+ 228 Scenario 1 (L1D)

Scenario 2
(L2 SRAM)

Scenario 3
(EDMA) Transfer Cycles

8,192 9,444 9,448 10,224† – –

65,536 73,956 – 80,344† 90,320‡ 34,000

† Without further L1D optimization
‡ With 8K-byte EDMA buffers

SPRA887

11 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

The cycle count for Scenario 1 is close to the formula cycle count because no cache miss
occurred. For Scenario 2, there will be L1D miss overhead (i.e., 6 cycles) for every 64 bytes of
input data. For example, the expected number of cycles with 64K bytes of data is 80,100 cycles
[80,344 = 73,956 (i.e., formula cycles) + 65,536 (i.e., number of data in bytes) / 64 (i.e., L1D
cache line) * 6 (i.e., L1D miss overhead with L2 SRAM)], which is close to the measured cycle
count of 80,344.

Since the cycle count for Scenario 2 (i.e., 80,344) is larger than the transfer cycles (i.e., 34,000
from section 2.3.3) in this example, this function is considered as compute-bound with EDMA;
thus, expected performance includes time for the first and last block transfers as well as the
performance of Scenario 2. Another overhead to consider is the time to clear t_hist eight times
instead of one, which increases the overall processing time since this function is compute-bound.

3.2 Threshold

Image threshold has many different uses in image/video processing systems, including
converting grayscale images to binary images for morphological processing, and converting
image formats suitable for segmentation. The IMGLIB contains four threshold functions:

• IMG_thr_gt2max: pixels greater than the threshold are set to 255.

• IMG_thr_gt2thr: pixels greater than the threshold are set to the threshold.

• IMG_thr_le2min: pixels less than or equal to the threshold are set to 0.

• IMG_thr_le2thr: pixels less than or equal to the threshold are set to the threshold.

The four functions are defined as:
void IMG_thr_gt2max (const unsigned char * restrict in_data, unsigned char *
restrict out_data, short cols, short rows, unsigned char threshold)

void IMG_thr_gt2thr (const unsigned char * restrict in_data, unsigned char *
restrict out_data, short cols, short rows, unsigned char threshold)

void IMG_thr_le2min (const unsigned char * restrict in_data, unsigned char *
restrict out_data, short cols, short rows, unsigned char threshold)

void IMG_thr_le2thr (const unsigned char * restrict in_data, unsigned char *
restrict out_data, short cols, short rows, unsigned char threshold)

Note that the number of data is specified in two-dimension variables, cols and rows. The input
(in_data) and output (out_data) arrays must be aligned to an 8-byte boundary and must not be
overlapped. The number of input data (cols * rows) must be at least 16 and a multiple of 16.
Table 5 lists IMG_gt2max benchmarks.

Table 5. IMG_thr_gt2max Benchmarks

Number of Cycles

Data In On-Chip Memory
Data In Off-Chip Memory

(500-MHz CPU, 133-MHz SDRAM)

Number of
Data (N)

Formula
0.1875 * N + 22 Scenario 1 (L1D)

Scenario 2
(L2 SRAM)

Scenario 3
(EDMA) Transfer Cycles

8,192 1,558 1,568 2,856† – –

65,536 12,310 – 22,576† 69,112‡ 68,000

† Without further cache optimization
‡ With 16K-byte EDMA buffers

SPRA887

12 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

The cycle count for Scenario 1 is close to the formula cycle count because no cache
miss occurred. For Scenario 2, there will be L1D write miss overhead as well as L1D read miss
overhead for every 64 bytes of data. For example, the expected number of cycles with
64K bytes of data is 18,454 cycles [18,454 = 12,310 (i.e., formula cycles) + 65,536 (i.e., number
of data in bytes) / 64 (i.e., L1D cache line) * 6 (i.e., L1D read miss penalty with L2 SRAM)],
which shows about 18% error compared to the measured cycle count of 22,576. This is because
L1D read miss stall cycle count increases when the write buffer is not empty.

Since the cycle count of Scenario 2 (i.e., 22,576) is much less than the transfer cycles
(i.e., 68,000) in this example, this function is considered as memory-bound with EDMA; thus,
expected cycle count includes the data transfer cycles and EDMA management overhead. In
this case, further improving the compute time does not contribute to higher performance.

3.3 Dithering

Image dithering is commonly used in printing applications. The C64 IMGLIB dithering function
(IMG_errdif_bin) implements the Floyd-Steinberg error diffusion algorithm,which is defined as:

void IMG_errdif_bin (unsigned char * restrict errdif_data, int cols, int rows,
short * restrict err_buf, unsigned char thresh)

The err_buf[] arrary must be initialized to 0 prior to the first call. Each pixel in the errdif_data[] is
compared against a user-specified threshold (thresh). Pixels larger than the threshold are set to
255, while other pixels are set to 0. The error value for a pixel is propagated to the neighboring
pixels using the Floyd-Steinberg filter. The number of columns (cols) must be at least 2. Table 6
lists IMG_errdif_bin benchmarks.

Table 6. IMG_errdif_bin Benchmarks

Number of Cycles

Formula
Data In On-Chip Memory

Data In Off-Chip Memory
(500-MHz CPU, 133-MHz SDRAM)

Number of Data
(N = COLS * ROWS)

Formula
(4 * COLS + 11) *

ROWS + 7
Scenario 1

(L1D)
Scenario 2
(L2 SRAM)

Scenario 3
(EDMA) Transfer Cycles

8,192 = 128 * 64 33,479 33,488 34,280† – –

65,536 = 256 * 256 264,967 – 271,184† 286,616‡ 68,000

† Without further cache optimization
‡ With 4K-byte EDMA buffers

The cycle count for Scenario 1 is close to the formula cycle count due to no cache misses. For
Scenario 2, there will be L1D miss overhead (i.e., 6 cycles) for every 64 bytes of input data. For
example, the expected number of cycles with 64K bytes of data is 271,111 cycles [271,111 =
264,967 (i.e., formula cycles) + 65,536 (i.e., number of data in bytes) / 64 (i.e., L1D cache line) *
6 (i.e., L1D miss overhead with L2 SRAM)], which is close to the measured cycle count of
271,184. There is no additional stall cycle related to write buffer full, since the input memory is
used as the output memory (i.e., in–place computation).

Since the cycle count for Scenario 2 (i.e., 271,184) is larger than the transfer cycles
(i.e., 68,000) in this example, this function is considered as compute-bound with EDMA; thus,
expected cycle count includes cycles for the first and last block transfers as well as the cycles of
Scenario 2.

SPRA887

13 Image Processing Examples Using the TMS320C64x Image/Video Processing Library (IMGLIB)

3.4 Correlation

Image correlation is used for image matching. The IMGLIB correlation function (IMG_corr_3x3)
computes correlation of an image with a 3x3 mask. The output will have the highest value at the
best-matched input image location. The IMG_corr_3x3 is defined as:

void IMG_corr_3x3 (const unsigned char * restrict in_data, int * restrict
out_data, const unsigned char mask[3][3], int x_dim, int n_out)

This function needs to be called once for each row. However, it may be invoked for multiple rows
at a time by setting the number of output (n_out) to a multiple of the width (x_dim). In this case,
two outputs at the end of each row will have meaningless values, thus care must be taken when
interpreting the results. All arrays (in_data, out_data and mask) must not be overlapped. The
number of outputs (n_out) must be a multiple of 8. Table 7 lists IMG_corr_3x3 benchmarks.

Table 7. IMG_corr_3x3 Benchmarks

Number of Cycles

Data In On-Chip Memory
Data In Off-Chip Memory

(500-MHz CPU, 133-MHz SDRAM)

Number of
Data (N)

Formula
1.5 * N + 22 Scenario 1 (L1D)

Scenario 2
(L2 SRAM)

Scenario 3
(EDMA) Transfer Cycles

8,192 12,310 12,320 13,232† – –

65,536 98,326 – 105,560† 184,504‡ 174,250

† Without further cache optimization
‡ With 4K-byte input and 16-kbyte output EDMA buffers

In Scenarios 1 and 2, this example is similar to the image threshold in section 3.2, since it has
separate input and output arrays.

The IMG_corr_3x3 function requires N+2 rows of input data to compute N rows of output results.
Due to the nature of block processing with EDMA, input image blocks are overlapped by 2 rows.
Therefore, the size of input data becomes 73,728 bytes [73,728 = 65,536 +
(65,536/4,096)*(2*256)] and the total size of data transfers is 335,872 bytes (335,872 = 73,728 +
65,536*4), which corresponds to 174,250 cycles (174,250 = 34,000 * 335,872 / 65,536). Since
the cycle count of Scenario 2 (i.e., 105,560) is less than the transfer cycles (i.e., 174,250) in this
example, this function is considered as memory-bound; thus, expected cycle count includes the
data transfer cycles and EDMA management overhead.

4 References
1. TMS320C64x DSP Two-Level Internal Memory Reference Guide (SPRU610).
2. TMS320C6000 Peripherals Reference Guide (SPRU190).
3. TMS320C64x Image/Video Processing Library Programmer’s Reference (SPRU023).
4. TMS320C6000 Optimizing Compiler User’s Guide (SPRU187).
5. TMS320C6000 Assembly Language Tools User’s Guide (SPRU186).
6. TMS320C6000 Chip Support Library API Reference Guide (SPRU401).
7. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Addison-Wesley

Publishing Company, New York, 1992.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

