
Application Report
SPRAA63–October 2004

Video Encoding Optimization on TMS320DM64x/C64x ™
Cheng Peng... DSP Video Imaging Solutions

ABSTRACT

Digital video encoding plays an important role in many applications such as digital
video surveillance systems and video conference systems. This application report
describes the optimization techniques for a general video encoder on TI
TMS320DM64x/C64x DSP. The TMS320DM64x/C64x is a high-performance digital
medial processor with 2-level memory/cache hierarchy and very-long-instruction-word
(VLIW) architecture. Video encoding optimization on DM64x is a combination of
multiple techniques including algorithm/system optimization, memory buffering
optimization, enhanced direct memory access (EDMA) and cache utilization
optimization.

Contents
1 Introduction to DM64x/ TMS320C64x.. 2
2 Video Encoder System/Algorithm Optimization .. 3
3 Memory Buffering Scheme of a Video Encoder .. 8
4 Enhanced Direct Memory Access (EDMA) Usage.. 11
5 Cache Optimization .. 13
6 References... 14

List of Figures

1 Video Encoding Block Diagram [1] ... 3
2 Macroblock Encoding Loop ... 4
3 Motion Estimation Loop.. 4
4 Pixel Interpolation on DM64x ... 5
5 Macroblock Reconstruction Loop... 6
6 9-SAD Table... 7
7 4-step Fast Search Scheme for ME.. 8
8 Data Dependence of Video Frame in Video Encoder ... 9
9 Video Encoding Buffering Scheme ... 10
10 The Offset of Memory Buffering for PI in Video Encoding................................... 11
11 QDMA Management for ME ... 12
12 Cache Efficiency Analysis of Algorithm Kernels .. 13
13 Cache Efficiency System Level Analysis... 13

List of Tables

1 Video Processing Steps.. 10
2 QDMA Channel and Priority Utilization in Frame-based ME 12
3 MPEG2 Encoder L1 Cache Performance on DM642 .. 14

Video Encoding Optimization on TMS320DM64x/C64x ™SPRAA63–October 2004 1

www.ti.com

1 Introduction to DM64x/ TMS320C64x

Introduction to DM64x/ TMS320C64x

The TMS320DM64x/C64x™ device is based on the second-generation high-performance,
very-long-instruction-word (VLIW) architecture VelociTI.2™ developed by Texas Instruments (TI). The key
features of this device such as VLIW architecture, 2-level memory/cache hierarchy, and EDMA engine
makes it an excellent choice for computationally intensive video/image applications such as video coding
and analysis. When developing an application on DM64x, it is important to fully understand its features
and memory architecture in order to achieve optimized performance.

Using a DM642 as an example, all DSP core and necessary features are listed:
• The enhanced functional units for video/imaging applications

– The VelociTI.2™ extensions in the eight functional units of DM64x include new instructions which
accelerate the performance in video and imaging applications.

• L1/L2 Memory hierarchy
– 16K-byte direct mapped L1P program cache with 32-byte cache line. (8-cycle L1P cache miss

penalty).
– 16K-byte 2-way set-associative L1D data cache with 64-byte cache line. (6-cycle L1D cache miss

penalty).
– 256K-byte L2 unified mapped RAM/cache (flexible RAM/cache allocation, 8-cycle L2 cache miss

penalty)
– L2 4-way set associative cache has128-byte cache line

• Endianess: Little Endian, Big Endian
• 64-bit external memory interface (EMIF)

– Glueless interface to synchronous and asynchronous memories
• 1024M-byte total addressable external memory space
• EDMA Controller (64 Independent Channels)

The on-chip peripheral set includes: three configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC);
a management data input/output (MDIO) module and a VCXO interpolated control port (VIC). The video
port peripherals provide a seamless interface to common video decoder and encoder devices. They
support multiple video resolutions and standards (e. g., ITU-BT.656, BT.1120, SMPTE 125M, 260M,
274M, and 296M).

The features and overheads for memory accesses described above are important for all algorithm
implementations including video coding. 2-level memory/cache hierarchy and EDMA engines essentially
determine the architecture of a video encoder implementation.

Some basic concepts concerning memory/cache hierarchy and EDMA engine need to be considered for
an algorithm implementation. When code size is bigger than the size of L1P, L1P caches misses can
occur, CPU stalls until the required code is fetched. Similarly, L1D cache misses and CPU stalls occur
when the data do not fit in the L1D. All L1P and L1D misses are serviced by L2 cache/SRAM. L2 cache
misses occur if the code and data size is bigger than the size of L2 cache.

Cache-friendly program partitioning and data transfer handling (e.g. reducing L1/L2 misses) are two critical
factors to guarantee video encoder optimal performance. EDMA is preferred to transfer code/data
between L2 SRAM and off-chip memory.

Video Encoding Optimization on TMS320DM64x/C64x ™2 SPRAA63–October 2004

www.ti.com

2 Video Encoder System/Algorithm Optimization

Regulator

Quantizer
(Q)

VLC
encoder

Buffer

Output

Q−1

IDCT

Frame
memory

Motion
compensation

estimation
Motion

DCT

Predictive
frame

Frame
memory

Pre−
processing

Input

Motion
vectors

Video Encoder System/Algorithm Optimization

The block diagram of a general video encoding algorithm is shown in Figure 1. Many video coding
standards such as MPEG2, H.263 and MPEG4 can be derived from this algorithm diagram. In Figure 1,
DCT and quantization (Q) reduce the spatial redundancy of the video. Motion estimation (ME) reduces the
temporal redundancy of the video and VLC is entropy coding to pack the data efficiently.

Figure 1. Video Encoding Block Diagram [1]

Conventional implementation of a video encoder is based on macroblock-level processing. The video
encoder fetches a new macroblock (MB) only after the current MB goes through all the processing steps.
This intuitive approach comes with two drawbacks:
• The overall code size of a video encoder is usually bigger than L1P. The code needs to swap between

L1P and L2P every MB fetching period. It causes significant cache miss penalty.
• It is not efficient to transfer a small chunk of data such as a single MB from external video frame

memory to internal memory by EDMA.

In order to avoid the huge cache miss penalty and CPU stalling, the algorithm can be broken into three
loops/modules and each of them fits in L1P. M macroblocks (MB strip) are processed at a time in each
loop instead of a single macroblock. M, the size of macroblock strip, is only restricted by the available L1D
size. The bigger of M, the better EDMA performance we can expect for data throughput.

Three loops are:
• Marcoblock encoding loop
• Motion estimation loop
• Marcoblock reconstruction loop

As we emphasize above, M macroblocks are fetched and go through one of the three processing loops
together. For example, in the macroblock encoding loop, when M macroblocks are fetched into internal
memory, they are DCT transformed, quantized, and entropy coded. This set of macroblocks is not flushed
out of L1D until the macroblock encoding loop is over. Corresponding programs including DCT,
quantization and VLC kernels are also kept in L1P until all M macroblocks are processed completely in
this loop. Ping/Pong memory buffering scheme driven by EDMA engine helps reducing the initial setup
time needed to perform these loops for a set of macroblocks. It also ensures minimal CPU stalling cycles
because the transfers are overlapped with processing.

Video Encoding Optimization on TMS320DM64x/C64x ™SPRAA63–October 2004 3

www.ti.com

2.1 Macroblock Encoding Loop

RLC+VLCQDCTMB[k]

k<M
?

Yes

Note: M is MB strip size

Buffer

No

2.2 Motion Estimation Loop

MB[k]

k<M
?

Ref
frame

ME

PI

Yes

Buffer
No

Note: M is MB
strip size

Video Encoder System/Algorithm Optimization

Figure 2. Macroblock Encoding Loop

MB[k] is one of M macroblocks (MB strip) in I frame or prediction residue blocks in P/B frame needs to
pass the DCT, quantization, run length coding (RLC), and VLC. After DCT, the DC component and AC
components go through differential encoding process separately. Quantization enables compression
essentially and also introduces the quantization error. Run-length encoding scans the block in zigzag
order. It is followed by variable length code assignment where each pair of run-level is treated as a symbol
and translated into a code. VLC that is composed of table lookup and bit manipulating is a computationally
heavy block in this loop. The lookup tables are formatted such that the code word and corresponding
length are stored as a packed 32-bit quantity. VLC encoding directly writes the encoded bits into a
bit-stream represented in 32 bit quantities. The buffer at the end of this loop depends on the number of
macroblocks to be processed at a time. It is affected by the L1D cache size. The idea is to get all the data
to be processed in the loop in L1D cache, which operates at CPU speeds, and at the same time the total
size of the code operating on this fits L1P. M macroblocks in I frame or the prediction residual blocks in
P/B frame need go through the process shown in Figure 2 together.

Figure 3. Motion Estimation Loop

DM64x provides a rich set of extensive video/image instructions that can implement effectively any motion
estimation scheme. Load non-aligned double word (LDNDW) may read a 64-bit value with any byte
boundary. This instruction is important to accelerate the data fetching from the MB in current frame and
especially searching window in reference frame. It can easily fetch eight aligned pixels from current MB or
non-aligned pixels from searching window. This non-aligned loading is more efficient than the aligned
loading followed by shifting operation in this case. Subtract with absolute value (SUBABS4) instruction

Video Encoding Optimization on TMS320DM64x/C64x ™4 SPRAA63–October 2004

www.ti.com

A u B

w

C D

v

The interpolated half−pixels
are defined as

u=
A+B+1

2

2

A+C+1
v=

A+B+C+D+2

4
w=

A1 A2 A3 A4 B2 B4B3B1

AVGU4 1 CPU cycle

u2 u4u3u1

u1=(A1+B1+1)/2

u2=(A2+B2+1)/2

u3=(A3+B3+1)/2

u4=(A4+B4+1)/2

Video Encoder System/Algorithm Optimization

calculates four absolute values of the difference between the packed 8-bit data contained in the source
registers. DOTPU4, an important video/image instruction returns the dot-product between four pairs of
packed 8-bit values. Since two DOPTPU4 can run in parallel in a single cycle, this instruction accelerates
the sum of absolute difference (SAD) process significantly. The is the core for motion estimation. The idea
of SAD kernel can be summarized in the following steps:

1. Two LDNDW fetches eight pixels from current frame and reference frame
2. Two SUBABS4 calculate 8 Ads
3. Two DOTPU4 accumulate 8 Ads

Both SAD_16x16 and MAD_16x16 functions of the C64x IMGLIB explain how to implement the above
idea in details in Image/Video Processing Library Programmer's Reference (SPRU023).

Pixel interpolation (PI) is also a computationally intensive block in this loop. It is achieved efficiently with
the C64x video processing instruction set. The AVG4 instruction performs 4 averaging operations on
packed 8-bit data and the results are written in unsigned. The AVG2 instruction performs two averaging
operations on packed 16-bit data and returns are written in unsigned integer values. Shift right and merge
byte (SHRMB) shifts the second register right by one byte, and then the least significant byte of the first
register is merged into the most significant byte position. In pixel interpolation, AVG4 calculates the
average value and SHRMB packs the result tightly. The details of PI implementation can be found in
Figure 4.

Figure 4. Pixel Interpolation on DM64x

Video Encoding Optimization on TMS320DM64x/C64x ™SPRAA63–October 2004 5

www.ti.com

2.3 Macroblock Reconstruction Loop

+PredIDCTQ−1MB[k]

k<M
?

Yes

Note: M is MB strip size

Buffer

No

2.4 Fast Motion Estimation Algorithm Optimization

Video Encoder System/Algorithm Optimization

Figure 5. Macroblock Reconstruction Loop

The macroblock strip in I frame or the prediction residual strip in P frame need go through the process
shown in Figure 5 together. Inverse quantization as the name suggests is an exact inverse process of the
quantization process shown in Figure 2. TMS320C64x devices can perform 2400 million dual 16-bit MACs
in one second at a CPU rate of 600 MHz. The MPY2 instruction performs two 16-bit by 16-bit
multiplications between two pairs of signed, packed 16-bit values. The SPACK2 instruction takes two
signed 32-bit quantities and saturates them to signed 16-bit quantities. To remove the overheads of
signed arithmetic and rounding problems with signed values, the sign bit is extracted initially from the
coefficient and inverse quantization operation is performed on the absolute value of the coefficient. The
sign bit is applied to the end result directly.

Block-based motion estimation module shown in Figure 1 has been adopted by every common coding
standard including H.261, H.263, MPEG2, MPEG4 and H.264. The block size of motion estimation may
vary among standards. For example, the ME in H.264 may support up to seven block sizes (16x16, 16x8,
8x16, 8x8, 8x4, 4x8 and 4x4). It is well-known that video coding derives most of its coding efficiency
advantage from motion estimation because it removes the huge video redundancy in temporal domain
significantly. On the other hand, the motion estimation contributes the heaviest computational load for the
whole video encoding. A good video encoder algorithm implementation need keep a good balance
between computational intensity and coding efficiency. Exclusive search (full search) guarantees the
globally best match result in motion estimation. Unfortunately, the computational cost is enormous. For
example, a full search window of +/- 63 in horizontal and +/-63 in vertical would require a processor to
calculate 500 Giga SADs per second [1]. Therefore, pure exclusive search ME is not realistic for an
embedded solution. A real-world motion estimation is a combination of many fast search techniques
together. A widely used 4-step fast searching algorithm is introduced in the rest of this section.

Video Encoding Optimization on TMS320DM64x/C64x ™6 SPRAA63–October 2004

www.ti.com

16
pixels

d[i] 16 pixels

d[i]

Offset

Block 3
Block 2
Block 1

Block 4
Block 5
Block 6

Block 7
Block 8
Block 9

Search image

refBlock 16 pixels

16
pixels

Setup:
 d={8,4,2,1} // d[i] is the distance between current MB and
 //immediately succeeding MB (See Figure 6)

 Process:
 for(i=0; i<4; i++)
 {
 Compute three upper SAD for d[i].
 Compute three central SADs for d[i].
 Compute three lower SADs for d[i].

 Compute the minimum value of the 9−SAD table (see Figure 6)
 Start above process around the minimum location for the new
 distance d[i+1].
 }
 // The overall algorithm is shown in Figure 7.

Video Encoder System/Algorithm Optimization

The block size is assumed to be 16x16 and searching window size is 48x48. The motion estimation by
4-step search is described by the following equations:

Figure 6. 9-SAD Table

Video Encoding Optimization on TMS320DM64x/C64x ™SPRAA63–October 2004 7

www.ti.com

d[i]

d[i]

Partial search
Resulting vector

3 Memory Buffering Scheme of a Video Encoder

Memory Buffering Scheme of a Video Encoder

Figure 7. 4-step Fast Search Scheme for ME

The above 4-step fast searching technique reduces the computational cost significantly. However, this
basic fast ME technique may not provide satisfactory performance alone. We have to combine many
techniques together to achieve an optimized performance. Several potentially fast motion estimation
optimization techniques are listed [1]:
• Hierarchical search using sub-sampled images [2]. N-step (N=2,3,4…) search introduced above is a

good example of hierarchical search scheme.
• Using motion vectors of neighboring MB in the same frame as predictors. (Benefit from Spatial

correlation)
• Using motion vectors of co-located MB in temporally adjacent frames as predictors. (Temporal

Prediction) [3]
• Telescopic search [4]

For example, the combination of N-step searching and image sub-sampling technique can provide a good
result with affordable computational cost. Using this combination as an example, we will go through the
enhanced direct memory access (EDMA) activity of ME in Section 4 later.

In order to get the best performance, many lookup tables, state variables and data buffers associated with
key kernels have to be located in internal memory. The internal SRAM varies on different C64x/DM64x
devices. Except the memory consumed by above essential data, some TMS320DM64x still has enough
internal memory to hold an entire video frame for the encoder to process, the others may not. Some
applications need only run video encoder; the others may run other algorithms including video encoding.
In order to provide a generic video buffering scheme for all DM64x devices in most video application
scenarios, the whole video frames are located in external memory instead of internal memory. Each time,
M macroblocks (MB strip) are transferred to internal buffer from external video buffer by EDMA . As we
mentioned in previous section, M is only restricted by the size of L1D.

Group of picture (GOP) is an important concept in video coding because it defines the coding scheme of
each video frame. Usually, I frame and P frame are defined in GOP for all video coding standard. B frame
is included only in advanced video coding profile such as MPEG4 advanced simple profile and MPEG2
Main profile. In case of I-frames, JPEG-like coding scheme is implemented to remove the spatial

Video Encoding Optimization on TMS320DM64x/C64x ™8 SPRAA63–October 2004

www.ti.com

I B B P B B P B B

Memory Buffering Scheme of a Video Encoder

redundancy. In case of P frame, forward motion estimation is implemented and the previous I/P frame is
used as a reference. In case of B frame, it need not only previous I/P frame for forward ME but also the
following I/P frame for backward ME. The video encoder has to buffer all B frames between two P frames
because of bidirectional ME strategy of B frame. The data dependence of video frames is shown in
Figure 8.

Figure 8. Data Dependence of Video Frame in Video Encoder

It is well known that video capture/display order is different with video coding order for a GOP with B
frame. For example GOP=IBB PBB PBB PBB PBB is ordered for capturing/display and the coding order of
this GOP is GOP’=IPBB PBB PBB PBB... The following table shows how to temporally partition a video
coding algorithm efficiently. The key of video coding algorithm partition is to make CPU loading as
constant as possible temporarily.

Video Encoding Optimization on TMS320DM64x/C64x ™SPRAA63–October 2004 9

www.ti.com

Memory Buffering Scheme of a Video Encoder

Suppose vp is a video frame for processing,
• T(vp): DCT transform and Quantization of vp (I,B,P frames).
• F(vp): Forward motion estimation of vp (B, P frames).
• B(vp): backward motion estimation of vp (B frames)
• C(vp): VLC coding of vp (I,B,P frames)

Table 1. Video Processing Steps

Video I1 B2 B3 P4 B5 B6 P7 B8 B9
frame in
cap-
ture/disp
lay order

Video T(I1)+C(
pro- I1)
cessing ….
steps

….

F(P4) +
C(P4)

B(B2)+B
(B3)+C(
B2)

C(B3)+F
(B5)+F(
B6)

F(P7)+C
(P7)

B(B5)+
B(B6)+C
(B5)

C(B6)+
F(B8)+F
(B9)

An overall video encoding buffering scheme is shown in Figure 9.

Figure 9. Video Encoding Buffering Scheme

Video Encoding Optimization on TMS320DM64x/C64x ™10 SPRAA63–October 2004

www.ti.com

Alignment case 1

Alignment case 2

Alignment case 4

Alignment case 3

32−bit word boundary

24 pixels

Reference frame

4 Enhanced Direct Memory Access (EDMA) Usage

Enhanced Direct Memory Access (EDMA) Usage

Pixel interpolation in frame-based motion estimation loop requires one 18x18 luma block from the
reference frame buffer. To ensure best performance, all EDMA data transfers are 32-bit aligned. It means
that the starting address and transferring data size have to be a multiple of four bytes.

Therefore, an 18x24 luma block has to be transferred for required 18x18 block. Similar offset technique is
implemented in case of chromo block. The additional offset of these blocks need be considered in the
motion estimation loop. The offset of luma block is illustrated in Figure 10.

Figure 10. The Offset of Memory Buffering for PI in Video Encoding

The enhanced direct memory access (EDMA) controller of the DM64x devices is a highly efficient data
transfer engine, capable of handling up to 8 bytes per EDMA cycle, resulting 2.4GB per second of total
data throughput at a CPU rate of 600 MHz. To make our video encoder application fully benefit from the
bandwidth in the transfer engine, it is best to use 32-bit element size whenever possible.

In order to utilize EDMA effectively, we need understand EDMA transfer process well. In EDMA
communication, each data transfer is initiated by a transfer request (TR), which contains all the
information required to perform the transfer: source address, destination address, transfer property,
element count, etc. All submitted TRs are sorted into queues based on priority. When a TR is shifted into
one of the transfer request queues to wait for processing, the transfer priority level determines the queue
to which it is sorted. There are four queues: Q0(urgent), Q1(high), Q2(medium), and Q3 (low)
corresponding to four priority levels, each with a depth of 16 entries. Each transfer requestor is
programmable such that it can submit TRs on any priority level. Only one TR from each priority queue can
be serviced at a time by the address generation/transfer logic. When a TR arrives at the head of queue, it
is moved into the EDMA transfer Controller queue registers, which perform the actual data movement
defined by the TR.

The EDMA has the capability of performing unsynchronized transfers through the use of a QDMA request
by the CPU. In other word, QDMA transfer is synchronized by the CPU. In video encoder, the EDMA
transfer is synchronized by data flow of the algorithm instead of external events. The QDMA is better to
issue a single, independent transfer to quickly move data, rather than to perform periodic or repetitive
transfers like the other EDMA channels. Each submits a transfer request to be processed by the EDMA.
The request are queued according to priority, with higher priority requests services first. Because of the
EDMA structure, all QDMA transfers are submitted using frame synchronization. Therefore, the QDMA
always requests a transfer of one complete frame of data. Only one request is sent for any QDMA
submission. A good video encoder should use all three priority queues (low, medium and high) in parallel
to transfer data between external memory and internal on-chip buffers. A whole QDMA implementation in
ME is illustrated in Figure 11. In Figure 11, only one of double buffers is shown. The fast motion
estimation shown in Figure 11 is combination of N-step search and image sub-sampling technique.

The EDMA channel and priority utilization is shown in Table 2.

Video Encoding Optimization on TMS320DM64x/C64x ™SPRAA63–October 2004 11

www.ti.com

External Memory

Macro Blocks (MB)

Searching

Window

(SW)

Current Frame Reference Frame

Internal Memory

QDMA QDMA

Down sampling Initial ME

Filtered window

ME kernel

Filtered MBs

MBs

Enhanced Direct Memory Access (EDMA) Usage

Figure 11. QDMA Management for ME

Table 2. QDMA Channel and Priority Utilization in Frame-based ME

EDMA channel Priority Buffers Used in Transfer

I frame case

CH3 Low RMB(Cr) (1)

CH4 Low RMB(Y, Cr) (1)

CH6 Low Luma and Chroma info of CMB (2) and
macroblock side information

CH7 Low Chroma(Cr) info of (CMB) (2)

P, B frame

CH2 Medium

CH5 Medium Frame reference region fetch

CH8 High

CH3 Low RMB(Cr) (1)

CH4 Low RMB(Y,Cr) (1)

CH6 Low Me data, mbinfo, CMB (2)

CH7 Low CMB(Cr) (2)

(1) RMB: Reconstructed set of macroblocks after encoding
(2) CMB: Current set of macroblocks from the frame being encode

Video Encoding Optimization on TMS320DM64x/C64x ™12 SPRAA63–October 2004

www.ti.com

5 Cache Optimization

Build Kernels
(DCT, VLC,ME) Debug Tune

Achieve functionality
Tune up performance
using multi−event
profilers, Cache analysis
tools

Optimized
kernels

Kernel 1
(DCT)

Kernel 2
(VLC)

(ME)
Kernel N

Memory
mngmnt System

level
debug

Cache−
optimized

video
codec

Tune up using
cache analysis

tool

Cache Optimization

Maximizing cache effectiveness is one of the key factors for reaching the overall video coding
performance expectation. Cache efficiency improves processor throughput by reducing CPU stall cycles
due to memory activities. As we introduced in section 1, TM320C64x DSP (including DM64x) employs a
highly efficient two level memory architecture for on-chip program and data accesses. In this hierarchy,
the CPU interfaces directly to a dedicated level-one program (L1 P) and data (L1D) cache. These L1
caches operate at the same speed as the CPU., the direct-mapped L1P cache is readable only and the
two-way set associate cache L1D can be read and written. The L1 memories are connected to a second
level on-chip memory called L2. L2 is a unified memory block that contains both program and data. The
L2 cache serves as a bridge between the L1 and off-chip memory. Please refer to Cache Analysis for
Code Composer Studio v2.3 User's Guide (SPRU575) for a detailed documentation of this cache
architecture.

Cache performance analysis and tuning up exists in the overall video coding development life cycle. Using
TI’s new cache analysis tools, we can identify cache efficiency problem areas and visualize them to
facilitate making rapid improvements in cache performance for video coding. The cache optimization for
video coding development can be divided into two distinct stages:
• Perform cache efficiency analysis at the video coding algorithm kernel level with a particular memory

context. (See Figure 12)
• Perform cache efficiency analysis targeted at the whole-application level when CPU and memory

cycles are measured after the integration of the algorithm into an application framework. (See
Figure 13)

Figure 12. Cache Efficiency Analysis of Algorithm Kernels

Figure 13. Cache Efficiency System Level Analysis

Video Encoding Optimization on TMS320DM64x/C64x ™SPRAA63–October 2004 13

www.ti.com

6 References

References

With the cache optimization techniques described above and algorithm optimization introduced in previous
sections, we achieve a good cache performance for a MPEG2 encoder on DM642 (See Table 3). The L2
cache hit/miss number is not shown because it depends on the external memory type used in the system.

Table 3. MPEG2 Encoder L1 Cache Performance on DM642

Event Count/Status Total Count Type

I1d

miss

read 845312 845312 Count

write 3233156 3233156 Count

hit

read 102447507 102447507 Count

write 16918505 16918505 Count

I1p

miss 2148568 2148568 Count

hit 102964973 102964973 Count

Above table tells us the cache miss is marginal for a video encoder benchmark with appropriate cache
optimization.

1. Anurag Jain, Ratna Reddy, Jeremiah Golston, Jagadeesh Sankaran, Programmable Real-time
MPEG-2 Encoding, GSPx 2002

2. Kyoung Won Lim, Jong Beom Ra. Improved hierarchical search block matching algorithm by using
multiple motion vector candidates. Electronic Letters, Volume: 33 Issue:21, 9 Oct. 1997 Page(s):
1771-1772.

3. Ismaeil, I.R.; Docef, A., Kossentini, F., Ward, R. Motion estimation using long-term motion vector
prediction. Data Compression Conference, Proc. 1999 Page(s): 531.

4. J. Lee and B.W. Dickinson. Temporally adaptive motion interpolation exploiting temporal asking in
visual perception. IEEE Trans. Image Proc., 3(5): 513-526, Sep 1994.

Video Encoding Optimization on TMS320DM64x/C64x ™14 SPRAA63–October 2004

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction to DM64x/ TMS320C64x
	2 Video Encoder System/Algorithm Optimization
	2.1 Macroblock Encoding Loop
	2.2 Motion Estimation Loop
	2.3 Macroblock Reconstruction Loop
	2.4 Fast Motion Estimation Algorithm Optimization

	3 Memory Buffering Scheme of a Video Encoder
	4 Enhanced Direct Memory Access (EDMA) Usage
	5 Cache Optimization
	6 References

