
Application Report 
SPRAAB7 – October 2005 

1 

 Automated Regression Tests and Measurements with the 
CCStudio Scripting Utility 

Vincent Wan, Ki-Soo Lee SDO Applications 

 

ABSTRACT 

The Code Composer Studio Scripting Utility is an interface that provides access to 
CCStudio functionality from either Perl or COM-based languages. 

Using the CCStudio Scripting Utility, a simple user script can automate many common 
actions within the CCStudio IDE. More powerful scripts that take advantage of the 
functionality provided by scripting languages, such as Perl or Visual Basic, can be used 
with the Scripting Utility to create a test bench that fully automates regression testing of an 
application. Important measurement data such as profiling and code coverage statistics 
can also be attained. This application note introduces CCScripting and shows an example 
that automates profiling of an application framework (Reference Frameworks Level 3). 

 

Contents 
1 Introduction .................................................................................................................................. 2 
2 System Requirements.................................................................................................................. 2 
3 CCStudio Scripting Utility............................................................................................................ 2 

3.1 How it Works .......................................................................................................................... 3 
3.2 CCStudio Scripting Utility vs. GEL .......................................................................................... 3 
3.3 CCStudio Scripting Limitations ............................................................................................... 4 
3.4 What’s New in CCStudio Scripting v1.5 .................................................................................. 5 

4 Example: Automation of RF3 Profiling With CCStudio Scripting Utility................................... 5 
4.1 Overview of the Automation.................................................................................................... 5 
4.2 Contents of the Companion Code........................................................................................... 6 
4.3 Running the Script .................................................................................................................. 8 
4.4 Understanding the Script ........................................................................................................ 8 

4.4.1 Command Line Arguments.......................................................................................... 8 
4.4.2 Logging Information and Starting CCStudio .............................................................. 10 
4.4.3 Getting Ready for the Run......................................................................................... 11 
4.4.4 Run and Profile ......................................................................................................... 12 
4.4.5 Finalization................................................................................................................ 13 

4.5 Results ................................................................................................................................. 14 
5 Summary..................................................................................................................................... 15 
6 References.................................................................................................................................. 15 
Appendix A. GEL Synchronicity Table ............................................................................................. 16 

 



SPRAAB7 

2 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 

Figures 
Figure 1. Flowchart of CCStudio Scripting Utility’s Behavior ............................................... 3 
Figure 2. Flowchart of RF3 Profiling Test Bench.................................................................... 6 
Figure 3. Example Test Directory Structure............................................................................ 7 
Figure 4. Snapshot of Profiling Results ................................................................................ 14 

Tables 
Table 1. GEL Synchronicity Table of Built-in GEL Functions................................................... 16 
 

1 Introduction 
As embedded development continues to grow in both scope and complexity, so do the demands 
on unit and system testing. Automating such testing is a crucial part of the development cycle; it 
can substantially decrease time to market.  

The Code Composer Studio Scripting Utility allows you to use familiar scripting languages such 
as Perl or VBA to automate testing and validation of applications. It exposes many useful APIs 
that perform common actions such as launching CCStudio, opening projects, loading programs, 
setting breakpoints, and so on. The Scripting Utility is valuable to anyone who wants to use 
CCStudio to run tests in batch mode and/or write regression tests in Perl or a COM-based 
language. 

This application note briefly introduces the CCStudio Scripting Utility and gives an example that 
automatically profiles an application framework (Reference Frameworks Level 3). The examples 
are written in JScript, an interpreted, object-based scripting language that is Microsoft’s 
implementation of the ECMA 262 language specification. For information on JScript, see the 
MSDN Library. 

2 System Requirements 
The software prerequisites to run the example provided with this application note are: 

• Code Composer Studio v3.1 or greater.  

• CCStudio Scripting Utility v1.5 or greater. Available for download through the CCStudio 
Update Advisor. 

• Windows Script Host (WSH) 5.6 or greater.  

3 CCStudio Scripting Utility 
The CCStudio Scripting Utility provides easy batch-mode access to CCStudio debugging and 
testing functionality through a simple API interface. You can call these APIs from either Perl or a 
COM-based language such as Visual Basic and JScript. While Visual Basic is the COM-based 
scripting language supported by the Scripting Utility in terms of examples and documentation, 
the Scripting Utility works with any COM-based scripting language. 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/js56jsorijscript.asp
http://dspvillage.ti.com/docs/catalog/devtools/selection.jhtml?templateId=5121&path=templatedata/cm/toolswovw/data/ccs_ovw&familyId=44&toolTypeId=30&toolTypeFlagId=2
http://dspvillage.ti.com/docs/catalog/devtools/details.jhtml?templateId=5121&path=templatedata/cm/tooldetail/data/ccs_updateadv_2
http://www.microsoft.com/downloads/details.aspx?FamilyID=c717d943-7e4b-4622-86eb-95a22b832caa&DisplayLang=en


 SPRAAB7 

 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 3 

3.1 How it Works 

The Scripting Utility exposes COM and Perl interfaces to CCStudio APIs. There are over 50 
such APIs. User scripts call the interface APIs to access the CCStudio APIs and automate 
actions in CCStudio as shown in Figure 1. The Scripting API Reference (Reference 1) document 
contains a full list of the APIs available and information on the basic functionality of the Scripting 
Utility. 

All the Scripting APIs have fully synchronous behavior, meaning that the API waits until its action 
is completed and the status (along with any other information specific to the API) is returned. 

 

 
Figure 1. Flowchart of CCStudio Scripting Utility’s Behavior 

3.2 CCStudio Scripting Utility vs. GEL 

People familiar with CCStudio are also most likely familiar with GEL (General Extension 
Language) and use it to automate some tasks within their CCStudio environment. So why use 
CCStudio Scripting instead of GEL? GEL has several limitations that prevent it from being an 
ideal solution for automated testing: 

• It can only be run within the CCStudio IDE. Any GEL actions cannot be performed outside 
of the IDE. It cannot open or close CCStudio. 

• GEL is not fully synchronous. Some of the built-in GEL calls are asynchronous, making it 
difficult to create long, complex scripts where current actions depend on prior actions being 

Code 
Composer 

Studio 

Code Composer 
Studio APIs 

CCS Scripting 
Server

 Microsoft 
Excel 

VBA Script 
 

Perl Script 
or 



SPRAAB7 

4 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 

fully completed. For example, a large program (.out file) may not be fully loaded (via 
GEL_Load()) by the time it starts execution (via GEL_Run()). 

• GEL scripts apply to the control window (a single instance of the CCStudio IDE debug 
window) it is run from (with a few exceptions). This limitation is noticeable during 
heterogeneous debugging where there can be more than one CCStudio control window. 

The Scripting Utility addresses all of these issues. Scripts can run outside the CCStudio IDE and 
can open and close CCStudio. All of the APIs are fully synchronous, and the script can access 
multiple control windows that are open. 

Despite the advantages of the Scripting Utility, there are still benefits of using GEL. Some built-in 
GEL calls offer capabilities beyond those the Scripting API possesses on its own. To remedy 
this, a special Scripting API called TargetEvalExpression() is provided. This API accepts any 
recognized GEL call as its parameter. This allows the script to take advantage of any GEL 
functionality not exposed via the Scripting APIs. 

The Scripting Utility does not replace GEL usage. Rather, it supports GEL usage for automation. 
Using CCStudio Scripting and GEL together provides even greater functionality and flexibility.  

3.3 CCStudio Scripting Limitations 

CCStudio Scripting has the following limitations: 

• Not all CCStudio plug-ins are accessible via scripting. If a plug-in does not expose its APIs, 
then the Scripting Utility does not have access to it. One example is the DSP/BIOS Real-
Time Analysis tools in CCStudio. 

• Not all versions of Perl are supported. Scripting Utility v1.5 supports ActivePerl 5.6 or 5.8, 
depending on the ActivePerl version you specified during installation. Once you have 
selected a version of ActivePerl support, you must uninstall and then reinstall the Scripting 
Utility to use the other version of ActivePerl. To avoid this, make sure you select the correct 
version of ActivePerl is when prompted. 

• If you use a scripting language that supports early binding (such as Perl or VBA), your script 
can refer to the built-in constants described in the CCStudio Scripting documentation (for 
example, ISA_C64 and VERBOSE_ALL). If you use a scripting language that uses late 
binding (such as JScript), you must define the constants in the script by looking up the 
values in the documentation. For convenience, the file ccs_scripting_constants.js has been 
provided with this application note. Your script can include it to automatically import these 
constants when using JScript. A similar approach can be taken for other scripting languages 
that support only late binding. 
NOTE: Both Visual Basic and VBA (Visual Basic for Applications) support both early and 
late binding. VBScript, a lightweight version of the Visual Basic language, supports only late 
binding. 

• While TargetEvalExpression() is a synchronous call in that it waits for a response, when the 
response is returned depends upon the GEL call passed in. If the GEL call is asynchronous, 
TargetEvalExpression() receives an immediate response that the GEL call was evaluated 
and returned, even though the action started by the GEL call may not be complete. This 



 SPRAAB7 

 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 5 

applies to any asynchronous built-in GEL call. See Appendix A for a listing of GEL 
commands and their synchronicity. 
The following example shows one problem that could potentially arise when using 
asynchronous GEL commands in scripting: 

 

ccs.TargetReset(); 
ccs.TargetEvalExpression('GEL_Load("app.out")' );  
ccs.TargetRun(); 

The above code may not work. Since GEL_Load() is asynchronous, TargetEvalExpression() 
may return before the program has finished loading, causing the target to start running 
early. The correct way method is to use the Scripting ProgramLoad() API as follows: 

 

ccs.TargetReset(); 
ccs.ProgramLoad(“app.out”); 
ccs.TargetRun(); 

This API ensures that the program is loaded before returning. In general, it is preferable to 
use Scripting APIs instead of equivalent GEL commands. 

3.4 What’s New in CCStudio Scripting v1.5 

In addition to numerous bug fixes and minor enhancements, version 1.5 provides the following: 

• Added support for ActivePerl 5.8. During installation, you are prompted for which version of 
ActivePerl you want to be supported by the Scripting Utility. 

• Additional profiling support through a new API called ExportProfileData(). This API exports 
collected profiling data to an *.csv file or Microsoft Excel spreadsheet format. 

NOTE: CCStudio Scripting v1.5 does not support CCStudio versions prior to CCStudio v2.40 

4 Example: Automation of RF3 Profiling With CCStudio Scripting Utility 
This section describes how to automate profiling of Reference Frameworks Level 3 (RF3) using 
the CCStudio Scripting Utility. Cycles are collected with the multi-event profiler in the Analysis 
Toolkit (ATK) available in CCStudio 3.1. In order to use this tool, we first ported the application to 
work on the ‘C6416 device cycle accurate simulator (See Reference 2 for details). The simulator 
attempts to imitate the behavior on a ‘C6416 DSK using pin and port connect. 

By using the script described in this section, you can automate running an RF3-based audio 
application and profiling the functions in the application. 

4.1 Overview of the Automation 

This example uses JScript combined with the Windows Scripting Host. This is a logical choice 
for a developer who uses DSP/BIOS and is familiar with its textual configuration tool (Tconf) 
which is JavaScript-based, a close variant of JScript.  

Figure 2 shows the automation flow: 
 



SPRAAB7 

6 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 

Autom ation Script
w ritten in Jscript

W indow s
Scripting

Host

CCS
Scripting

APIs

Executable to be
profiled

- one per platform
(e.g. C6416)

Log files Profiling
results

 
Figure 2. Flowchart of RF3 Profiling Test Bench 

The goal for this example is to load and run the executable for the equivalent of the duration of 
the processing of one audio frame. The ATK can then be used to provide a breakdown of the 
cycles spent in each function called. A log file indicating the status of each automation call and 
an Excel spreadsheet containing the profiling results are produced by each run of the script. 

To run the test script, we created a Windows script file called test.wsf as follows: 
 

<Job id="test"> 
/* Includes */ 
<script language="JScript" src="../include/ccs_scripting_constants.js"/>  
<script language="JScript" src="../include/ATKtprof2xls.js"/> 
<script language="JScript" src="../include/PrintWScriptArgs.js"/> 
/* Main script */ 
<script language="JScript" src="test.js"/>                                
</Job> 

This allows us to include three files when running the script test.js that does the profiling. These 
files define constants and enumerations that are used as part of Scripting, and two functions that 
are used as part of the script: ATKtprof2xls() and PrintWScriptArgs(). As explained in Section 
3.3, the ccs_scripting_constants.js file is included to overcome the limitation that prevents 
scripting languages that uses late binding (such as JScript and VBScript) from directly accessing 
enumerations exported by scripting. 

Run the script, from a command prompt, using this syntax: 
 

cscript test.wsf <list of arguments for test.js script> 

For your convenience, we provide a batch file called runtest.bat to show you an example of the 
arguments that are passed to the script. See Section 4.3 for details. 

4.2 Contents of the Companion Code 

The companion zip file for this application note contains the files used for the example. Unzip the 
file into a directory named my_test_folder, as shown in the Figure 3: 

 



 SPRAAB7 

 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 7 

ATKtprof2xls.js
ccs_scripting_constants.js
PrintWScriptArgs.js

test.wsf
test.js

app_summary.csv
atk_rf3.ini
runtest.bat

log_file.txt

app_summary.xls

CLKR2.txt
CLKX2.txt
FSR2.txt
FSX2.txt
input_data.txt
output_data.txt

app.out
app.tprof Executable and profiling

statistics files

Test scripts

Shared reusable jscript
files

Profiling related files and
test specific files

Log files

Profiling results

Pin and port connect
files

 

Figure 3. Example Test Directory Structure 

The folders under my_test_folder are as follows: 

• include. Contains shared JScript files with reusable functions and constants. 

• rf3sim. Contains the test scripts for the project. This folder holds subfolders that contain 
files specific to different platforms. 

Each platform folder contains the following subfolders: 

• debug. Contains the executable and the raw profiling statistics (.tprof) file is created by the 
ATK when the application is run. 

• runtest. Contains the batch file for running the test script along with the profile configuration 
file and intermediate files generated by the ATK during the spreadsheet generation process. 



SPRAAB7 

8 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 

– logs. Folder used to store log file from each run of the test script. 
– profile_results. Folder used to store result spreadsheets generated by the ATK. 

• simconnect. Contains files necessary to use pin and port connect during simulation. 

4.3 Running the Script 

To run the example, follow these steps: 
1. Configure the ‘C6416 Device Cycle Accurate simulator in CCStudio Setup as per 

Reference 2. It needs to be the only platform configured in order to run the example 
successfully.  

2. Modify the basePath and ccsInstallDir arguments in the runtest.bat file located in the 
runtest directory to match your specific setup. The next section has more information 
about these parameters.  

3. When you are done, enter “runtest” at the command prompt to run the script.  

4.4 Understanding the Script 

This section examines the script file test.js piece by piece. Despite the fact that the script is 
written in JScript, keep in mind that the concepts are applicable to other scripting languages. 

4.4.1 Command Line Arguments 

The script begins by defining a set of command line arguments. These arguments are grouped 
into a global structure called testEnv to minimize namespace pollution. This structure also 
defines other variables such as boardname and cpuname for the purposes of logging this 
information globally. 

 

testEnv = { 
    // base path to .out, script, profile content etc 
    basePath: WScript.Arguments(0), 
  
    // Set test program (location of .out relative to basePath)  
    testProgFile: WScript.Arguments(1), 
 
    // Set test program filename, without the extension  
    testProgFilename: WScript.Arguments(2), 
     
    // Which profile config (.ini), could supply a list of profile configs to run  
    profileConfig: WScript.Arguments(3), 
         
    // do we wish to see CCStudio GUI during script (for test) or run in background? 
    scriptingVisible: WScript.Arguments(4), 
     
    // Paths to log file and profile results 
    logFilePath: WScript.Arguments(5), 
    profileResultsPath: WScript.Arguments(6),  
  
    // breakpoint attributes required (fxn name) 
    breakpointFxnName: WScript.Arguments(7),  
     
    // ; delimited paths to source code for ATK 
    atkSrcPath: WScript.Arguments(8), 



 SPRAAB7 

 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 9 

         
    // CCStudio Install path 
    ccsInstallDir: WScript.Arguments(9), 
 
    // Sim files path (for port/pin connect files) 
    simFilesPath: WScript.Arguments(10), 
    
    // Which MCBSP? (eg dsk6416 uses MCBSP2, dsk6713 uses MCBSP1) 
    mcbspNumber: WScript.Arguments(11), 
     
    // Address of the DXR & DRR for the given MCBSP 
    dxrDrrAddress: WScript.Arguments(12), 
 
    boardName: "", 
    cpuName: "", 
    majorISA: "", 
    minorISA: "" 
}; 

The basePath variable defines the location of the script. Other relative paths begin with 
basePath.  

The testProgFile variable defines the location of the .out file that is to be run, relative to the 
basePath. testProgFilename is the filename (without the .out extension) of the same executable 
file. This duplication is handy to have and helps eliminate some of the tricky string parsing that 
would be necessary otherwise.  

The profileConfig variable defines the relative path to the profile configuration (.ini) file to be 
used for profiling. This file is created before running the script and should have the Collect Code 
Coverage and Exclusive Profile data option selected in order to gather the data necessary for 
the ATK. 

The scriptingVisible variable is a flag to optionally visualize the CCStudio GUI during script 
execution (1 means visible, 0 means invisible). This is useful for debugging and demos. 
However, running CCStudio in the background is faster and should be the preferred option when 
doing “real” work.  

The logFilePath and profileResultsPath variables are relative paths to the locations of the files 
produced by the run.  

The breakpointFxnName variable specifies a location to put a CCStudio breakpoint. This is the 
location at which a CCStudio breakpoint would be set in the code so that when we run the code, 
we know where the program counter ends up. We set it at the start of the function 
thrRxSplitRun() so that it marks the beginning of processing of an audio frame. This function is 
called on each frame to perform pre-processing of input data. By running the code from one hit 
of this breakpoint to another, we can isolate the processing of one audio frame. See the 
Reference Frameworks documentation (Reference 3) for details on the functions in the 
framework. 

The atkSrcPath variable defines the semi-colon delimited paths that point to the locations of the 
source code. This is used by the ATK’s code coverage component to show code coverage 
information on a line-by-line basis in the C sources. The ccsInstallDir variable needs to be 
specified to the script so that the script can find the ATK executables. 



SPRAAB7 

10 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 

The simFilesPath, mcbspNumber, and dxrDrrAddress variables are necessary for running on the 
simulator. simFilesPath contains the necessary port and pin connect files for full McBSP 
peripheral simulation. mcbspNumber selects which McBSP is to be used for data streaming, and 
the dxrDrrAddress is the address corresponding to the DXR (data transmit register) and DRR 
(data receive register) of that particular McBSP, as accessed by the EDMA on the peripheral 
bus. See Reference 2 for details on how pin and port connect are used in RF3. 

4.4.2 Logging Information and Starting CCStudio 

The next portion of the script prepares scripting, logging, and CCStudio environments as follows: 
 

var WshShell = WScript.CreateObject("WScript.Shell"); 
var ccs = WScript.CreateObject("CCS_Scripting_Com.CCS_Scripting");  
 
// Open log file 
ccs.ScriptTraceBegin(testEnv.basePath + testEnv.logFilePath + "\\log_file.txt"); 
ccs.ScriptTraceVerbose(VERBOSE_ALL); 
 
// open whichever config is in CCSetup right now 
ccs.CCSOpenNamed("*", "*", testEnv.scriptingVisible);  
 
testEnv.boardName = ccs.TargetGetBoardName(); 
testEnv.cpuName = ccs.TargetGetCPUName(); 
testEnv.majorISA = ccs.TargetGetMajorISA(); 
testEnv.minorISA = ccs.TargetGetMinorISA(); 
ccs.ScriptTraceWrite("TEST: opened CCS connection: " + testEnv.boardName + " - " +  
    testEnv.cpuName + " - " + testEnv.majorISA + " - " + testEnv.minorISA + "\n"); 
 
/* Output Command line arguments as sanity check */ 
PrintWScriptArgs(); 

After initializing the testEnv global structure, the script creates two objects, one for the Windows 
scripting shell and another for the CCStudio scripting engine. Using APIs offered by both, we 
can access all the functionality needed to automate profiling. The Windows scripting host also 
offers access to other Windows functionality through the export of other objects. (Reference 4).  

CCStudio is launched by using the CCSOpenNamed() function. The call assumes the correct 
simulator is configured in CCStudio Setup and opens it up. It also determines whether the GUI 
will be hidden based on the scriptingVisible argument. A possible improvement to this script is to 
pass in the platform name to select a specific configuration to open in CCStudio. But we’ll leave 
this as an exercise. 

Scripting can log the success or failure of all automation calls to a file. ScriptTraceBegin() 
creates such a file. It is good practice to set the verbosity level to VERBOSE_ALL using 
ScriptTraceVerbose(). This gives the largest amount of information possible and can be useful in 
debugging the script. Furthermore, APIs such as TargetGetCPUName(), TargetGetMajorISA() 
and TargetGetMinorISA() are useful for adding identification information to a log file. 

The PrintWScriptArgs() function call uses Windows Scripting Shell to print out the arguments to 
the script. This is solely done to facilitate script debugging. 



 SPRAAB7 

 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 11 

4.4.3 Getting Ready for the Run 

The next part of the script uses CCStudio Scripting APIs to prepare the environment for running 
the program as follows: 

 

// reset CPU so that numbers are truly same on each run 
ccs.TargetReset(); 
ccs.ScriptTraceWrite("TEST: reset\n"); 
 
// load the .out that we passed in via cmd line 
ccs.ProgramLoad(testEnv.testProgFile);  
ccs.ScriptTraceWrite("TEST: loaded\n");  
 
 
// flip '\' to '/' in the basePath for passing paths to GEL expressions.  
//   Because the usage of '\' requires a preceding escape character, we prefer 
//   to bail and use '/' instead. 
var basePathFwdSlash = testEnv.basePath.replace(/\\/g, "/"); 
testEnv.simFilesPath = testEnv.simFilesPath.replace(/\\/g, "/"); 
 
// do port connect for McBSP data   
var tmp; 
ccs.ScriptTraceWrite("TEST: Connecting Ports...\n");  
tmp = basePathFwdSlash + testEnv.simFilesPath + "/input_data.txt"; 
ccs.TargetEvalExpression('GEL_PortConnect(' + testEnv.dxrDrrAddress + ', 1, 4, 1, "' + tmp + 
'" )' );   
tmp = basePathFwdSlash + testEnv.simFilesPath + "/output_data.txt"; 
ccs.TargetEvalExpression('GEL_PortConnect(' + testEnv.dxrDrrAddress + ', 1, 4, 2, "' + tmp + 
'" )' ); 
 
// do pin connect for McBSP data   
var pin; 
tmp = basePathFwdSlash + testEnv.simFilesPath + "/CLKX" + testEnv.mcbspNumber + ".txt"; 
pin = "CLKX" + testEnv.mcbspNumber; 
ccs.ScriptTraceWrite("TEST: Connecting Pins...\n");  
ccs.TargetEvalExpression('GEL_PinConnect("' + pin + '", "' + tmp + '" )' );   
 
tmp = basePathFwdSlash + testEnv.simFilesPath + "/CLKR" + testEnv.mcbspNumber + ".txt"; 
pin = "CLKR" + testEnv.mcbspNumber; 
ccs.TargetEvalExpression('GEL_PinConnect("' + pin + '", "' + tmp + '" )' );   
 
tmp = basePathFwdSlash + testEnv.simFilesPath + "/FSR" + testEnv.mcbspNumber + ".txt"; 
pin = "FSR" + testEnv.mcbspNumber; 
ccs.TargetEvalExpression('GEL_PinConnect("' + pin + '", "' + tmp + '" )' );   
 
tmp = basePathFwdSlash + testEnv.simFilesPath + "/FSX" + testEnv.mcbspNumber + ".txt"; 
pin = "FSX" + testEnv.mcbspNumber; 
ccs.TargetEvalExpression('GEL_PinConnect("' + pin + '", "' + tmp + '" )' );   
ccs.TargetEvalExpression('GEL_TextOut("Ports and pins successfully connected.\n");');  
 
// set breakpoint at fxn we wish to begin profiling session from 
var bpFxnAddress = ccs.SymbolGetAddress(testEnv.breakpointFxnName); 
ccs.BreakpointSetAddress(bpFxnAddress); 

The script resets the board, loads the executable, sets up pin and port connect using scripting 
APIs, and sets the breakpoint at the beginning of the code (thrRxSplitRun()) for processing an 
audio frame. The example uses TargetEvalExpression() to call GEL commands for port and pin 
connect. These synchronous calls are guaranteed to be completed by the time 
TargetEvalExpression() returns, as shown in Appendix A. 



SPRAAB7 

12 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 

Note the technique of dynamically constructing the GEL calls executed with 
TargetEvalExpression(). If you are an experienced GEL user, you may recall that GEL files do 
not accept any form of command-line parameters. Scripting works around this limitation with the 
TargetEvalExpression() API. This allows you to eliminate hard-coded paths or filenames. 

The syntax for TargetEvalExpression() could be confusing to read for some when used with 
GEL_PortConnect() and GEL_PinConnect(). When evaluated, they call GEL commands with the 
following syntax: 

GEL_PortConnect(<some_address>, 1, 4, 1, “<some_file_path>”) 
GEL_PinConnect("<some_pin_name>", "<some_file_path>" ) 

Because double-quotes are used within the GEL commands themselves, we use single-quotes 
to delimit the different concatenated “chunks” that combine into the argument for 
TargetEvalExpression(). 

4.4.4 Run and Profile 

Next, the script runs the program and profiles the code as follows: 
 

// run to 1st breakpoint 
ccs.TargetRun();  
ccs.ScriptTraceWrite("TEST: ran to breakpoint\n"); 
 
// run to same breakpoint again to put the cache in steady state 
ccs.TargetRun();  
ccs.ScriptTraceWrite("TEST: ran to 2nd breakpoint\n"); 
 
// load the profile config ie Code Coverage & Exclusive counts selected 
testEnv.profileConfig = testEnv.basePath + testEnv.profileConfig; 
ccs.LoadProfileConfiguration(testEnv.profileConfig); 
 
// enable profiling for this frame 
ccs.EnableProfiling(); 
 
// run to same breakpoint again now collecting profiling data 
ccs.TargetRun();  
ccs.ScriptTraceWrite("TEST: ran to 3rd breakpoint\n"); 
 
// need to disable profiling in order to run Code Coverage viewer  
ccs.DisableProfiling(); 
 
// remove any stale files from previous runs 
WshShell.run("cmd /c del \"*.csv\"", 0, true); 
testEnv.profileResultsPath = testEnv.basePath + testEnv.profileResultsPath; 
WshShell.run("cmd /c del \"" + testEnv.profileResultsPath + "\\" 
      + testEnv.testProgFilename + "_summary.xls\"", 0, true); 
 
// Generate ATK results 
ret_val = ATKtprof2xls(testEnv.ccsInstallDir, 
             testEnv.testProgFile, 
             testEnv.testProgFilename, 
             tprofFilename, 
             testEnv.profileResultsPath + "\\" + testEnv.testProgFilename + "_summary.xls", 
             testEnv.atkSrcPath); 
  
ccs.ScriptTraceWrite("TEST: ran ATK coverage & cov2xls. ret_val = " + ret_val + "\n"); 



 SPRAAB7 

 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 13 

In the script, TargetRun() is called three times:  

• Once to run it to the thrRxSplitRun() breakpoint 

• Another time to process the first frame which will populate the cache 

• Once more for profiling 

Before the last run, the script loads the profile configuration file via LoadProfileConfiguration(), 
and enables profiling.  

After completion, the script disables profiling and calls the function ATKtprof2xls() to convert the 
.tprof information file produced by the ATK into an Excel spreadsheet, using command line 
executables provided in the CCStudio installation. 

The ATK is used to profile RF3 because currently the CCStudio profiler is not designed for 
threaded applications. Since RF3 uses software interrupt (SWI) threads extensively, using the 
CCStudio profiler is not an option. The CCStudio profiler can be used only when profiling 
straight-line test code that runs in main(), with minimal context switches. In this case, Scripting 
provides an API named ExportProfileData() to use instead of ATKtprof2xls(). 

4.4.5 Finalization 

The script ends by clearing all breakpoints that were set as part of the procedure as follows: 
              

ccs.BreakpointRemoveAll();  // Clear all breakpoints 
ccs.ScriptTraceWrite("\nTEST: The End\n"); 
ccs.ScriptTraceEnd();    // Close log file 
ccs.CCSClose(1); 

This is a good habit, especially if you intend to load a different test program after this point, as 
existing breakpoints are unlikely to be useful for the next executable. Then the script closes the 
log file and the CCStudio instance. The latter is important because leaving the CCStudio 
executable running consumes valuable system resources. 



SPRAAB7 

14 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 

4.5 Results 

The profile data is produced in an Excel spreadsheet in the profile_results folder. A snapshot of 
the spreadsheet is shown in Figure 4. 

 
Figure 4. Snapshot of Profiling Results 

The spreadsheet shows both code coverage data along with exclusive profiling results for cycle 
counts, cache hits/misses, and more. 

Note that in addition to the Excel spreadsheet, additional intermediate files (.cov, .csv) are 
generated by the ATK. If you want to keep the data in these formats for data merging or post-
processing, you can archive these files instead of the .xls file. See the ATK documentation for 
information on these formats. 



 SPRAAB7 

 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 15 

5 Summary 
The Code Composer Studio Scripting Utility was designed to provide the ability to automate unit- 
and system-level testing of an application with CCStudio. When used with a script that takes 
advantage of the basic features found in standard scripting languages, fully automated portable 
and configurable test benches (such as the example shown in Section 4) can be created to 
perform such critical actions such as benchmarking and regression testing of an application with 
CCStudio.  

6 References 
1. Code Composer Studio Scripting Guide on-line help and HTML-based documentation 

(available in the \bin\utilities\ccs_scripting\docs directory of your CCStudio installation). 

2. Simulating RF3 to Leverage Code Tuning Capabilities (SPRAA73). 

3. Reference Frameworks source code and documentation.  

4. MSDN Library Windows Scripting website.  
 

http://focus.ti.com/docs/apps/catalog/resources/appnoteabstract.jhtml?abstractName=spraa73a
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/scriptinga.asp
https://www-a.ti.com/downloads/sds_support/targetcontent/RF/index.html


SPRAAB7 

16 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 

Appendix A. GEL Synchronicity Table 
Below is a table that lists the synchronistic behavior of all the built-in GEL functions. If a GEL 
function is described as synchronous, then the Scripting API TargetEvalExpression() waits until 
the action associated with that GEL call has been completed. If a GEL function is not 
synchronous, then TargetEvalExpression() can potentially return before the action associated 
with the GEL call has been fully completed. In the latter case, you should look for an equivalent 
CCStudio Scripting API, otherwise results may be timing-dependent. 

Table 1. GEL Synchronicity Table of Built-in GEL Functions 
GEL Function Synchronous? 

GEL_AddInputFile yes 
GEL_AddOutputFile yes 
GEL_Animate no 
GEL_AsmStepInto no 
GEL_AsmStepOver no 
GEL_BreakPtAdd yes 
GEL_BreakPtDel yes 
GEL_BreakPtDisable yes 
GEL_BreakPtReset yes 
GEL_CancelTimer yes 
GEL_ClearProfileConfiguration yes 
GEL_CloseWindow yes 
GEL_DisableRealtime no 
GEL_EnableRealtime no 
GEL_Exit no 
GEL_Go yes (only if location given) 
GEL_Halt no 
GEL_HWBreakPtAdd yes 
GEL_HWBreakPtDel yes 
GEL_HWBreakPtDisable yes 
GEL_HWBreakPtReset yes 
GEL_IsInRealtimeMode yes 
GEL_Load no 
GEL_LoadGel yes 
GEL_MapAdd yes 
GEL_MapAddStr yes 
GEL_MapDelete yes 
GEL_MapOff yes 
GEL_MapOn yes 
GEL_MapReset yes 
GEL_MemoryFill yes 
GEL_MemoryLoad yes 
GEL_MemorySave yes 
GEL_OpenDisassemblyWindow yes 
GEL_OpenMemoryWindow yes 



 SPRAAB7 

 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 17 

GEL Function Synchronous? 
GEL_OpenWindow yes 
GEL_PatchAssembly yes 
GEL_PinConnect yes 
GEL_PinDisconnect yes 
GEL_PortConnect yes 
GEL_PortDisconnect yes 
GEL_ProbePtAdd yes 
GEL_ProbePtDel yes 
GEL_ProbePtDisable yes 
GEL_ProbePtReset yes 
GEL_ProjectBuild no 
GEL_ProjectBuildConfig yes 
GEL_ProjectClose yes 
GEL_ProjectCreateCopyConfig yes 
GEL_ProjectCreateDefaultConfig yes 
GEL_ProjectLoad yes 
GEL_ProjectRebuildAll no 
GEL_ProjectRebuildAllConfig no 
GEL_ProjectRemoveConfig yes 
GEL_ProjectSave yes 
GEL_ProjectSetActive yes 
GEL_ProjectSetActiveConfig yes 
GEL_RefreshWindows no 
GEL_RemoveDebugState no 
GEL_RemoveInputFile yes 
GEL_RemoveOutputFile yes 
GEL_Reset yes 
GEL_Restart yes 
GEL_RestoreDebugState no 
GEL_Run no 
GEL_RunF no 
GEL_SetSimMode yes 
GEL_SetTimer yes 
GEL_SharedMemHaltOnStepOff yes 
GEL_SharedMemHaltOnStepOn yes 
GEL_SharedMemHaltOnWriteOff yes 
GEL_SharedMemHaltOnWriteOn yes 
GEL_SrcDirAdd yes 
GEL_SrcDirRemoveAll yes 
GEL_SrcStepInto no 
GEL_SrcStepOver no 
GEL_StepInto no 
GEL_StepOut no 
GEL_StepOver no 
GEL_SymbolAdd no 
GEL_SymbolAddRel no 



SPRAAB7 

18 Automated Regression Tests and Measurements with the CCStudio Scripting Utility 

GEL Function Synchronous? 
GEL_SymbolDisable no 
GEL_SymbolEnable no 
GEL_SymbolHideSection no 
GEL_SymbolLoad no 
GEL_SymbolLoadRel no 
GEL_SymbolRemove no 
GEL_SymbolShowSection no 
GEL_SyncHalt no 
GEL_SyncRun no 
GEL_SyncStepInto no 
GEL_SyncStepOut no 
GEL_SyncStepOver 
GEL_System 

no 
no 

GEL_TargetTextOut yes 
GEL_TextOut yes 
GEL_TransferToFile yes 
GEL_TransferToFileConfg yes 
GEL_UnloadAllSymbols no 
GEL_UnloadGel yes 
GEL_WatchAdd yes 
GEL_WatchDel yes 
GEL_WatchReset yes 
GEL_XMDef yes 
GEL_XMOff yes 
GEL_XMOn yes 

 
 
 



IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters  stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright   2005, Texas Instruments Incorporated


	Automated Regression Tests and Measurements with the CCStudio Scripting Utility
	Introduction
	System Requirements
	CCStudio Scripting Utility
	How it Works
	CCStudio Scripting Utility vs. GEL
	CCStudio Scripting Limitations
	What’s New in CCStudio Scripting v1.5

	Example: Automation of RF3 Profiling With CCStudio Scripting Utility
	Overview of the Automation
	Contents of the Companion Code
	Running the Script
	Understanding the Script
	Command Line Arguments
	Logging Information and Starting CCStudio
	Getting Ready for the Run
	Run and Profile
	Finalization

	Results

	Summary
	References
	Appendix A. GEL Synchronicity Table


