
Application Report
SZZA045 - January 2004

1

Implementing a 4-mA to 20-mA Current Loop on TI DSPs

Steve Sams and Jim Lyday Signal Processing Solutions/Semiconductor Group

ABSTRACT

Use of 4-mA to 20-mA (4−20 mA) current loops has become the standard in the
process-control industry due to their increased resistance to noise compared to
voltage-modulated signals. TI digital signal processors (DSPs) increasingly are becoming
the standard for microcontrollers in a control application. Therefore, an opportunity exists to
connect the many sensors and electromechanical devices on the market with a current loop,
using microcontrollers to translate the signals. Using TI DSPs and Burr−Brown devices, an
example illustrates applications that combine these two technologies to create a complete
current-loop solution.

Contents

1 4-mA to 20-mA (4−20 mA) Current Loop 2.
2 DSP Applications 2.

2.1 Receiver Applications 3.
2.2 Transmitter Applications 4.

3 A DSP and Current-Loop Example 5.
4 Conclusion 6.
5 References 7.
Appendix A. Code to Interface Between DSP and 4−20-mA Current Loops 8.

A.1 App_MAIN.c 8.
A.2 DAC.c 9.
A.3 sys243.h 13.
A.4 prot243.h 14.
A.5 ioreg.h 15.
A.6 dac.h 16.

List of Figures

1 Example of a Current Loop 2.
2 DSP and Current-Loop Example 5.

List of Tables

1 3−Bit A/D Conversion Chart for 4−20-mA Current Loop 3.

Trademarks are the property of their respective owners.

SZZA045

2 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

1 4-mA to 20-mA (4−20 mA) Current Loop

Current loops are a method of transmitting information. The information is carried as a current of
varying levels of intensity, representing a continuum of values similar to the voltage output of an
analog-to-digital (A/D) converter, but without the noise and line-length concerns. For the
4−20-mA current loop, 4 mA normally represents the zero-value output of the sensor, and 20 mA
represents the full-scale output.

Sensor

Transmitter ReceiverCurrent Source

+ −+ −

− +

Figure 1. Example of a Current Loop

A typical current loop includes a sensor, transmitter, receiver, and current source (or power
supply). The sensor measures a physical parameter (e.g., temperature) and provides an output
voltage. The transmitter converts the sensor’s output to a proportional 4−20-mA dc current. The
receiver converts the 4−20-mA current into a voltage for additional processing and/or display.
The current source supplies the power for the entire system. In our example, the power supply is
built into the transmitter.

The 4−20-mA current has many advantages. It is not susceptible to noise, making its use ideal
for industrial environments. The signal can travel over long distances and is limited only by the
current source, allowing information to be sent or received from remote locations. Wire-break
detection is simple due to the 4-mA offset of the zero value. (If the receiver reads 0 mA, there is
a break in the circuit.)

2 DSP Applications

Digital signal processors (DSPs), with their capabilities and characteristics, are a perfect
complement to current loops. The capabilities consist of real-time signal processing and
complex algorithm computing. Two of the complementary characteristics are low power
consumption and being a complete system on chip. In a complete DSP current-loop solution, the
DSP can be located at the receiver or the transmitter of the current loop.

Specifically, TI C2xxx DSPs particularly are well suited for control applications. All feature built-in
A/D converters, complex event managers, pulse-width modulation (PWM), and many other
control-oriented features. Some include onboard flash memory for program stability and speed.
They can be used to monitor a variety of process characteristic values and to calculate a
response accordingly. Furthermore, their ease of high-level language programmability via
emulator enables rapid code development and easy software upgrades.

SZZA045

3 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

2.1 Receiver Applications

At the receiver, the DSP adds computing power and versatility to the current loop. When
receiving the data, the DSP can process the data with more complex algorithms than
programmable logic controllers (PLCs), which are commonly used in control loops. The DSP can
collect large amounts of data. In a recent survey, system integrators “cited information gathering
as the emerging trend in automation system requirements.”[6] Systems that start out as simple
control and monitoring “evolve into comprehensive data mining systems, performing analysis on
trends, costs, tolerances, etcetera.”[6]

The industry standard for sensors and monitoring equipment is the 4−20-mA current loop
because of its high noise tolerance. However, DSPs cannot directly handle a current input. Most
DSPs accept only digital data, requiring external current-to-voltage conversion, followed by A/D
conversion.

A/D conversion is the process of changing continuously varying data into discrete digital
quantities. The magnitude of the data depends upon the number of bits and a reference voltage.
As an example, if a hypothetical 3-bit A/D converter were used on a 4−20-mA current loop, the
resolution of the A/D conversion is (20−4)/(23−1), or ~2.29 mA. For the current loop, a possible
conversion chart is shown in Table 1.

Table 1. 3-Bit A/D Conversion Chart for 4−20-mA Current Loop

Digital Value 4−20-mA Current-Loop Value
(mA)

000 x = 4

001 4 < x = 6.29

010 6.29 < x = 8.57

011 8.57 < x = 10.86

100 10.86 < x = 13.14

101 13.14 < x = 15.43

110 15.43 < x = 17.71

111 17.71 < x = 20

NOTE: Clearly, three bits would be insufficient; the
table is for illustrative purposes only.

The C2xxx DSPs have built-in two-channel A/D converters. By utilizing the two channels, two
A/D conversions can occur simultaneously. The C24x family features 10-bit converters, while the
C28xx family has 12-bit A/D converters. This saves on-board chip space, power consumption,
and glue logic. If more resolution is required, the DSPs have a 16-bit bus that connects easily
with external 16-bit A/D converters. However, the DSP still cannot directly handle current
signals; it can only perform conversions on voltages.

A common method of converting a 4−20-mA signal to voltage is to use a 250-� precision
resistor, connected between the signal and ground. This causes a 5-V drop at full scale and
uses 100 mW of power. The RCV420 device has a sense resistance of 75 �, causing a 1.5-V
drop at full scale and using 30 mW of power.

The Burr-Brown RCV420 device provides a sense-chip conversion from a variety of input
current-loop configurations and can convert to a variety of output voltage ranges. In addition, the
RCV420 allows voltage offset correction and voltage range correction.

SZZA045

4 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

With TI DSP devices monitoring system sensors, sophisticated algorithms can be implemented
to determine system conditions and calculate appropriate responses. These can range from
using Fast Fourier Transforms (FFTs) to filter for particular characteristics to simply monitoring
conditions at threshold levels. The DSP then can respond via digital response, PWM,
digital-to-analog (D/A) conversion, or other options.

2.2 Transmitter Applications

When a DSP is used to provide external control to a system, often it is necessary to provide an
analog control signal. The C2xxx families have 16-bit buses, so it is possible to provide 216 or
65536 steps of high-speed resolution when using a 16-bit parallel input D/A converter, such as
the TI DAC8541. If high speed is not necessary, many DSPs can accept serial data through a
serial-port interface (SPI).

Once the signal has been converted to an analog voltage, many systems require the control
signal in a current-loop format. The XTR110 can accept a 0−5-V signal and convert it to a
4−20-mA signal.

Many current-loop converters require external powering of the current loop, but the XTR110 can
self-power the loop. It then can be used to control a variety of control devices such as valves,
motors, solenoids, etc.

Feedback from the target control devices can be supplied by a current loop to implement a
control loop that ensures optimum adjustment by the system. A proportional-integral-derivative
(PID) equation loop implements feedback that is optimized to provide the fastest possible
response without creating a nonconvergent oscillation about the desired target.[8]

The proportional term of the PID loop simply limits the response as it approaches a target. This
form of process control has been around since the early days of steam engines. James Watt
used a ball to limit steam flow as it approached the maximum acceptable value. This control acts
as a governor, with the limitation that the proportional controller stops working when the process
variable is close to the setpoint, and leaves a nonzero error.

The integral term of the PID loop eliminates the error left from the proportional term of the PID
loop. This has been understood since the 1930s. At its simplest, this process automatically
resets the setpoint to an artificial value so that the process variable matches the desired
setpoint. “This automatic reset operation is mathematically identical to integrating the error and
adding that total to the output of the controller’s proportional term.”[8] Proportional-integral (PI)
action does not ensure error-free feedback. If the integral action is too aggressive, a PI controller
can cause closed-loop instability by overcorrecting for an error and creating a new error of
greater magnitude in the opposite direction. When this occurs, the controller experiences
hunting, which is the phenomenon of the controller driving its output back and forth between fully
on and fully off.

SZZA045

5 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

The derivative term of the PID loop can prevent hunting and enable fast response to
fundamental changes in the system. The derivative action is active only when the error is
changing. When an abrupt change to the error is introduced (e.g., the setpoint is changed), the
derivative action forces the controller to start corrective action immediately, before the integral or
proportional action responds. When successfully implemented, a full PID controller can appear
to anticipate the requirements necessary to maintain the process variable at the new setpoint.[8]
Unfortunately, adding the derivative action to a full PID controller does not guarantee a perfect
feedback loop. If the derivative action is too aggressive, it can cause hunting by itself. In
applications that require slow and steady changes in the controller’s output, it may be advisable
to use a PI controller, leaving off the derivative action completely. Also, for applications that
involve noisy measurements, the derivative term contributes to the output of the control every
time the process variable appears to change.

Thus, while the PID controller is not perfect, it had become the state of the art by the 1950s and
remains predominant to this day.[8] A DSP, with its ability to implement a PID equation, is an
ideal choice to control a feedback loop.

3 A DSP and Current-Loop Example

For reference, an example of a system using current loops to provide signals to and from a DSP
is shown in Figure 2. Such a system of can use a sophisticated mathematical algorithm to
calculate the current state of the system, predict the direction of the system, and implement an
effective PID loop to dynamically adjust the system.

Sensor

XTR
110 Current Loop

RCV
420 A/D DSP

D/A
XTR
110

Current Loop

Load

Valve,
Motor, Etc.

C2XXX

Pot

Figure 2. DSP and Current-Loop Example

This system was built and demonstrated in a laboratory environment. A sensor was represented
by a potentiometer connected between 5 V and ground, with the wiper arm connected to an
XTR110. This configuraiton provided an easily adjustable laboratory simulation of a system
sensor with a 4−20-mA output, such as a thermocouple.

This current loop then was provided to an RCV420, which converted the signal to 0−5 V. This
signal was fed to a C2xxx DSP for A/D conversion. The DSP used in the laboratory was the
320F240, which is available in both commercial and military configurations.

SZZA045

6 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

The DSP calculated an appropriate response and sent out a target value intended for the
system control device, in this case a 4−20-mA controlled valve. This control required conversion
of the output voltage to a 4−20-mA current, which was implemented by an XTR110 device.

A PID feedback loop was not implemented in the laboratory, but one easily could have been
implemented by using the potentiometer built into the valve and routing the resultant voltage into
an unused channel on the 10-bit A/D converter on the 320F240.

4 Conclusion

Current loops are a critical element of many industrial control applications because of their
superior line length and noise suppression. DSPs increasingly are becoming critical elements of
the control system, providing capabilities to interpret system conditions, calculate a response,
and control the response via PID loops. Utilizing TI DSPs, DACs, ADCs, and current-loop
transmitters/receivers, a complete control system can be implemented with a minimum of cost,
board area, and power consumption.

SZZA045

7 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

5 References

1. 4−20mA Current Loop Primer (Datel Application Note DMS-AN20), DATEL, Inc.,
http://www.datel.com/data/meters/dms-an20.pdf.

2. Vance VanDoren, “Loop Tuning Fundamentals,” Control Engineering, July 2003: 30−32.

3. Morten Moller, How They Work: The 4−20mA Current Loop, sensorland.com,
http://www.sensorland.com/HowPage028.html.

4. RCV420 Precision 4mA to 20mA Current Loop Receiver (TI Literature Number SBVS019),
Texas Instruments. http://focus.ti.com/lit/ds/symlink/rcv420.pdf.

5. Mark R. Stitt and David Kunst, IC Building Blocks Form Complete Isolated 4−20mA
Current-Loop Systems (TI Literature Number SBOA017), Texas Instruments.
http://focus.ti.com/lit/an/sboa017/sboa017.pdf.

6. Vance VanDoren, “System Integrators Broaden Their Horizons,” Control Engineering, May
2003: 47−51.

7. XTR110 Precision Voltage-to-Current Converter/Transmitter (TI Literature Number SBOS141),
Texas Instruments. http://focus.ti.com/lit/ds/symlink/xtr110.pdf.

8. Vance VanDoren, “PID: Still the One,” Control Engineering, October 2003: 32−37.

SZZA045

8 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

Appendix A. Code to Interface Between DSP and 4−20-mA Current Loops

The attached code is used to demonstrate the hardware interface between the DSP and the
4−20-mA current loops.

A.1 App_MAIN.c

App_MAIN.c contains the main routine. It initializes several variables, initializes the onboard
ADC, and initializes the wait states for writing to the DAC on the F243 EVM board. Next, it reads
in a value from the ADC. This value has been converted from a current loop to a voltage (value
provided simulates system process data). It right shifts the data to align with the DAC, then
writes out the DAC for conversion to analog voltage that is converted to a current loop that
drives a valve controller.

/* Code used to demo interface of F243 with 4−20mA signals */
/* Code was generated for the F243 EVM board utilizing routines */
/* provided with the Code Composer / EVM software set */
/* App_MAIN.c */

#include ”sys243.h”
#include ”prot243.h”

/*declarations for external test routines*/

/*variable declarations */
unsigned int error_code; /* ls byte = error code */
unsigned int mon_level;
unsigned int mon_chan;
unsigned int valve_chan;
volatile unsigned int configdata;

void set_wait(void)
{
 configdata = IOWSB1; /* 2 waits for off chip I/O */
 OUTMAC(_WSGR, configdata);
}

void bad_trap(void)
{
 while(1); /* a place to hang if illegal trap */
}

void app_init(void) /*initializing some variables for startup*/
{
 error_code = 0; /* show no error */
 mon_chan = 1; /* use ADC channel 1 for simulated process monitor */
 valve_chan = 1; /* use DAC channel 1 for valve control */
 set_wait(); /* set up wait states for I/O, located in dac.c */
}

void main(void)
{
 unsigned int error_state;

 app_init(); /* init variables & hardware */
 atod_init(); /* located in dac.c */

SZZA045

9 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

 while (error_code !=1)
 {
 mon_level = read_atod(mon_chan); /* read in the data via onboard ADC*/
 mon_level >>= 4; /* right shift 4 to align w/ DAC */
 write_dac(mon_chan,mon_level);
/* adjust valve position to equal relative input voltage */
 }

error_finish:
 goto error_finish; /* a place to break if error */
}

A.2 DAC.c

DAC.c contains the routines write_dac() and read_atod(). These routines handle the hardware
interface to place data out on the DAC and read in from the onboard ADC.

/*−−*/
/* SPECTRUM DIGITAL INC. */
/*−−*/
/* tests external dac to on chip ad requires loop back */
/* connector */
/*−−*/
/* file name: dac.c */
/* Started on: 02/11/1997 by mls */
/* Last update: 02/18/2000 by rrp for 243 */
/* */
/* 11/15/02 */
/* Updated by Steve Sams to read from controls and output*/
/* to valve controller via DAC */
/*−−*/

#include ”dac.h”
#include ”ioreg.h”
#include ”prot243.h”
#include ”sys243.h”

volatile unsigned int dacdata;
volatile unsigned int ADCVals[8];
volatile unsigned int CmpValLow[8];
volatile unsigned int CmpValHigh[8];
volatile unsigned int CmpValErrL[8];
volatile unsigned int CmpValErrH[8];

/*
 ======================= CODE FOLLOWS ============================
*/
unsigned int dac_delay(volatile unsigned int ctr2)
{
 volatile unsigned int ctr1;

 ctr1 = 0;
 while (ctr2)
 {

ctr1++;
ctr2−−;

 }

SZZA045

10 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

 return(ctr1);
}

#define MS_TIME_LOOP 0x0680

unsigned int wait_ms(volatile unsigned int delay_val)
{
 unsigned int i;
 unsigned int ms_ctr;

 for (i = 0; i < delay_val; i++)
 {

ms_ctr = MS_TIME_LOOP;

while (ms_ctr)
{
 ms_ctr−−;
}

 }

 return(delay_val);
}

void write_dac(unsigned int dac_num, unsigned int dac_val)
{
 unsigned int write_dac_status;

 if (dac_num < 4)
 {
 dacdata = dac_val; /* put in global location */

 switch (dac_num)
 {
 case DAC0:
 OUTMAC(_DAC0, dacdata);
 break;

 case DAC1:
 OUTMAC(_DAC1, dacdata);
 break;

 case DAC2:
 OUTMAC(_DAC2, dacdata);
 break;

 case DAC3:
 OUTMAC(_DAC3, dacdata);
 break;

 }

 asm(” nop”);
 asm(” nop”);
 asm(” nop”);
 asm(” nop”);
 asm(” nop”);

SZZA045

11 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

 asm(” nop”);

 OUTMAC(_DAC_XFER, dacdata); /* just need a write, any data */
 }

}

void clear_fifos(void)
{
 volatile unsigned int dummy_val;
 volatile unsigned int ADCtrl2;

 ADCtrl2 = *(volatile unsigned int *)ADCTRL2;

 while((ADCtrl2 & ADCFIFO1ST)) /* FIFO Empty */
 {
 dummy_val = *(volatile unsigned int *) ADCFIFO1; /* read fifo #1 */
 dummy_val = *(volatile unsigned int *) ADCFIFO1; /* read fifo #1 */
 ADCtrl2 = *(volatile unsigned int *)ADCTRL2;
 }

 while((ADCtrl2 & ADCFIFO2ST)) /* FIFO Empty */
 {
 dummy_val = *(volatile unsigned int *) ADCFIFO2; /* read fifo #1 */
 dummy_val = *(volatile unsigned int *) ADCFIFO2; /* read fifo #1 */
 ADCtrl2 = *(volatile unsigned int *)ADCTRL2;
 }
}

void ad2_init(void)
{

 volatile unsigned int ADCtrl1;
 volatile unsigned int ADCtrl2;
 volatile unsigned int RdADCtrl1;
 volatile unsigned int RdADCtrl2;

 /* Set prescaller */

 ADCtrl2 = ADC_PRESCALE1;
 *(volatile unsigned int *)ADCTRL2 = ADCtrl2;

 /* Enable AD 1 */

 ADCtrl1 = ADC_SOFT | ADC2EN |ADC1EN;
 *(volatile unsigned int *)ADCTRL1 = ADCtrl1;

 /* Clear out any old results */
 clear_fifos();

 RdADCtrl2 = *(volatile unsigned int *)ADCTRL2;
 RdADCtrl1 = *(volatile unsigned int *)ADCTRL1;

 if (RdADCtrl1 & ADCINTFLAG)
 {

SZZA045

12 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

 *(volatile unsigned int *)ADCTRL1 = RdADCtrl1;
 }

 RdADCtrl1 = *(volatile unsigned int *)ADCTRL1;

}

#define ADC_ERROR 0xFFFF

volatile unsigned int read_atod(unsigned int chan_num)
{
 volatile unsigned int ADCtrl1;
 volatile unsigned int ADCtrl2;
 volatile unsigned int TimeOutCtr;
 volatile unsigned int ADCFifoVal1;
 volatile unsigned int ADCFifoVal2;
 volatile unsigned int chan_num1;
 volatile unsigned int chan_num2;

 chan_num1 = chan_num;
 chan_num2 = chan_num;

 if (chan_num1 > 8)
 {

return((unsigned int)ADC_ERROR);
 }
 else
 {

chan_num1 <<= 1;
chan_num2 <<= 4;

 }

 /* Make sure Conversion is not in progress */

 do
 {

ADCtrl1 = *(volatile unsigned int *)ADCTRL1;
 }while(ADCtrl1 & ADCEOC);

 /* set the mux */

 ADCtrl1 = *(volatile unsigned int *)ADCTRL1;

 ADCtrl1 = (ADC_SOFT | chan_num2 | chan_num1 | ADC2EN | ADC1EN);
 *(volatile unsigned int *)ADCTRL1 = ADCtrl1;

 /* turn on enable bits and start of conversion */
 ADCtrl1 |= (ADCIMSTART | ADCSOC);
 asm(” nop”);
 asm(” nop”);
 asm(” nop”);
 *(volatile unsigned int *)ADCTRL1 = ADCtrl1;

 asm(” nop”);
 asm(” nop”);
 asm(” nop”);

SZZA045

13 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

 /* Read Back For Debug */
 ADCtrl1 = *(volatile unsigned int *)ADCTRL1;

 asm(” nop”);
 asm(” nop”);
 asm(” nop”);

 TimeOutCtr = 0xffff;

 while (TimeOutCtr−−)
 {

ADCtrl1 = *(volatile unsigned int *)ADCTRL1;

/* Finished the Conversion */
if(!(ADCtrl1 & ADCEOC))
{
 break;
}

 }

 if(TimeOutCtr)
 {

ADCFifoVal1 = *(volatile unsigned int *)ADCFIFO1;
/* ADCFifoVal1 >>= 6; shift it down −− commented out − want original

val SS*/
ADCFifoVal2 = *(volatile unsigned int *)ADCFIFO2;
/* ADCFifoVal2 >>= 6; shift it down −− commented out − want

original val SS*/
return(ADCFifoVal1);

 }

 return((unsigned int)ADC_ERROR);
}

A.3 sys243.h

sys243.h declares a variety of constants and defines a pair of useful macros: INMAC and
OUTMAC. These macros are convenient for writing and reading from hardware mapped to the
I/O space.

/*−−−*/
/* Header file for EVM243 Hardware Dependent Routines */
/* filename: sys243.h */
/* Includes: CAN Bus */
/* Switches */
/* LEDS */
/* Internal 203 UART */
/* External Memory */
/*−−−*/
/* Spectrum Digital Incorporated */
/* Copyright (c) 1998 Spectrum Digital Inc. */
/*−−−*/
/* Target: EVM320C243 Assy:504030 */
/*−−−*/

SZZA045

14 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

#define UINT16 unsigned short

#define UINT8 unsigned char
#define GREG 0x0005 /* location of GREG Register */

#define LOW_BYTE_MASK 0x00FF /* Mask out upper byte keep low */
#define HIGH_BYTE_MASK 0xFF00 /* Mask out lower byte keep high */

#define BYTE0 0x0000 /* Byte 0 is low byte D0−D7 */
#define BYTE1 0x0001 /* Byte 1 is high byte D8−D15 */

/* Wait State Bits */

#define PSWSB0 0x0001
#define PSWSB1 0x0002
#define PSWSB2 0x0004
#define DSWSB0 0x0008
#define DSWSB1 0x0010
#define DSWSB2 0x0020
#define IOWSB0 0x0048
#define IOWSB1 0x0080
#define IOWSB2 0x0100

/* Macro Expansion Declarations*/
#define _WSGR 0FFFFh /* wait state generator reg in I/O space */

#define STR(x) #x
#define OUTMAC(address,data) \
 asm(” LDPK _”STR(data)); \
 asm(” OUT _”STR(data) ”,” STR(address))

#define INMAC(address,data) \
 asm(” LDPK _”STR(data)); \
 asm(” IN _”STR(data) ”,” STR(address))

A.4 prot243.h

prot243.h declares the global routines that are used.
/*−−*/
/* SPECTRUM DIGITAL INC. */
/*−−*/
/* Prototype file */
/* */
/*−−*/
/* file name: prot243.h */
/* Started on: 02/11/1997 by mls */
/* Last update: 02/18/2000 by rrp for 243 */
/* 06/11/2003 by Steve Sams for app demo */
/*−−*/

unsigned int dac_delay(volatile unsigned int);
void write_dac(unsigned int, unsigned int);

volatile unsigned int read_atod(unsigned int chan_num);
void atod_init(void);
void clear_fifos(void);

SZZA045

15 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

unsigned int dactest(void);

unsigned int wait_ms(volatile unsigned int delay_val);

void set_wait(void);
void bad_trap(void);
void test_init(void);
void error_process(unsigned int);

A.5 ioreg.h

ioreg.h declares the memory locations of the various control registers on the F243.
/*−−*/
/* SPECTRUM DIGITAL INC. */
/*−−*/
/* I/O control registers include file */
/* */
/*−−*/
/* file name: ioreg.h */
/* Started on: 02/11/1997 by mls */
/* Last update: 02/18/2000 by rrp for 243 */
/*−−*/

/*
 I/O register addresses
*/
#define OCRA 0x7090
#define OCRB 0x7092
#define ISRA 0x7094
#define ISRB 0x7096

#define PADATDIR 0x7098

#define PBDATDIR 0x709A

#define PCDATDIR 0x709C

#define PDDATDIR 0x709E
/*
 OCRA & OCRB bit definitions
*/
#define OPA0 0x0001
#define TXD_FUNCTION 0x0001
#define OPA1 0x0002
#define RXD_FUNCTION 0x0002
#define OPA2 0x0004
#define OPA3 0x0008
#define OPA4 0x0010
#define OPA5 0x0020
#define OPA6 0x0040
#define OPA7 0x0080
#define OPA8 0x0100
#define OPA9 0x0200
#define OPA10 0x0400
#define OPA11 0x0800
#define OPA12 0x1000
#define OPA13 0x2000
#define OPA14 0x4000

SZZA045

16 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

#define OPA15 0x8000

#define OPB0 0x0001
#define OPB1 0x0002
#define OPB2 0x0004
#define OPB3 0x0008
#define OPB4 0x0010
#define OPB5 0x0020
#define OPB6 0x0040
#define OPB7 0x0080
#define OPB8 0x0100
#define OPB9 0x0200
#define OPB10 0x0400
#define OPB11 0x0800
#define OPB12 0x1000
#define OPB13 0x2000
#define OPB14 0x4000
#define OPB15 0x8000

/*
 IO register bit definitions
*/
#define IOPx0 0x0001
#define IOPx1 0x0002
#define IOPx2 0x0004
#define IOPx3 0x0008
#define IOPx4 0x0010
#define IOPx5 0x0020
#define IOPx6 0x0040
#define IOPx7 0x0080

#define x0DIR 0x0100
#define x1DIR 0x0200
#define x2DIR 0x0400
#define x3DIR 0x0800
#define x4DIR 0x1000
#define x5DIR 0x2000
#define x6DIR 0x4000
#define x7DIR 0x8000

A.6 dac.h

dac.h declares memory locations for ADC registers on the F243 and the locations in the I/O
memory space where the DAC is located.

/*−−*/
/* SPECTRUM DIGITAL INC. */
/*−−*/
/* Off chip parallel DAC include file */
/* */
/*−−*/
/* file name: dac.h */
/* Started on: 02/11/1997 by mls */
/* Last update: 02/18/2000 by rrp for 243 */
/*−−*/

/*
 Offchip DACT test include file for EVM320C240

SZZA045

17 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

 filename: dac.h
 original: 02/26/97 by: mls
 last update: 02/26/97 by: mls
*/

#define DAC_DELAY_CNT 0x0200
#define LOW_BYTE_MASK 0x00FF
#define MIN_DAC_VAL 0x0000
/* #define MAX_DAC_VAL 0x0FFF */ /* 12 bit, 0−4095 */
#define MAX_DAC_VAL 0x1000 /* 12 bit, 0−4095 */
#define MIN_ADC_VAL 0x0000
/* #define MAX_ADC_VAL 0x03FF */ /* 10 bit, 0−1023 */
#define MAX_ADC_VAL 0x0400

/*
 Write Only
*/
#define DAC0 0 /* 1st digital to analog converter */
#define DAC1 1 /* 2nd digital to analog converter */
#define DAC2 2 /* 3rd digital to analog converter */
#define DAC3 3 /* 4th digital to analog converter */
#define DAC_XFER 4 /* transfer data */

/*
 Macro Expansion Declarations
*/
#define _DAC_BASE 00000h

/*
 Write Only
*/
#define _DAC0 _DAC_BASE+0 /* 1st digital to analog converter */
#define _DAC1 _DAC_BASE+1 /* 2nd digital to analog converter */
#define _DAC2 _DAC_BASE+2 /* 3rd digital to analog converter */
#define _DAC3 _DAC_BASE+3 /* 4th digital to analog converter */
#define _DAC_XFER _DAC_BASE+4 /* transfer data */

/*
 2 channel A/D definitions
*/
/**/
/* Dual 10−bit ADC Module for C240 */
/**/
struct dual_adc
{
 unsigned int adctrl1; /* 0x7032 in data space */
 unsigned int adcsp1; /* 0x7033 in data space */
 unsigned int adctrl2; /* 0x7034 in data space */
 unsigned int adcsp2; /* 0x7035 in data space */
 unsigned int adcfifo1; /* 0x7036 in data space */
 unsigned int adcsp3; /* 0x7037 in data space */
 unsigned int adcfifo2; /* 0x7058 in data space */
};

/**/
/* Define pointers to memory mapped peripherals */
/**/

SZZA045

18 Implementing a 4-mA to 20-mA Current Loop on TI DSPs

#define ADCTRL1 0x07032
/*
 ADC Control Reg 1 at 0x7032 on C240
*/
#define ADCSOC 0x0001
#define ADC1CHSEL 0x000E
#define ADC2CHSEL 0x0070
#define ADCEOC 0x0080
#define ADCINTFLAG 0x0100
#define ADCINTEN 0x0200
#define ADCCONRUN 0x0400
#define ADC1EN 0x0800
#define ADC2EN 0x1000
#define ADCIMSTART 0x2000
#define ADC_FREE 0x4000
#define ADC_SOFT 0x8000

/*ADC Control Reg 2 at 0x7034 on C240*/
#define ADCTRL2 0x07034

#define ADCEXTSOC 0x0100
#define ADCEVSOC 0x0200

#define ADCFIFO1ST 0x0018
#define ADCFIFO2ST 0x00C0

#define ADC_PRESCALE1 0x0000
#define ADC_PRESCALE2 0x0001
#define ADC_PRESCALE4 0x0002
#define ADC_PRESCALE8 0x0003
#define ADC_PRESCALE12 0x0004
#define ADC_PRESCALE16 0x0005
#define ADC_PRESCALE24 0x0006
#define ADC_PRESCALE32 0x0007

/* FIFOS */

#define ADCFIFO1 0x7036
#define ADCFIFO2 0x7038

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

