
SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

- Qualified for Automotive Applications
- Retriggerable/Resettable Capability
- Trigger and Reset Propagation Delays Independent of R_X, C_X
- Triggering From the Leading or Trailing Edge
- Q and Q Buffered Outputs Available
- Separate Resets
- Wide Range of Output Pulse Widths
- Schmitt-Trigger Input on A and B Inputs
- Retrigger Time Is Independent of C_X
- Fanout (Over Temperature Range)
 - Standard Outputs ... 10 LSTTL Loads
 - Bus Driver Outputs ... 15 LSTTL Loads

description/ordering information

The CD74HC4538 is a dual retriggerable/resettable precision monostable multivibrator for fixed-voltage timing applications. An external resistor (R_X) and

- Balanced Propagation Delay and Transition
 Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- V_{CC} Voltage = 2 V to 6 V
- High Noise Immunity N_{IL} or N_{IH} = 30% of V_{CC}, V_{CC} = 5 V

external capacitor (C_X) control the timing and accuracy for the circuit. Adjustment of R_X and C_X provides a wide range of output pulse widths from the Q and \overline{Q} terminals. The propagation delay from trigger input-to-output transition and the propagation delay from reset input-to-output transition are independent of R_X and C_X .

Leading-edge triggering (A) and trailing-edge triggering (\overline{B}) inputs are provided for triggering from either edge of the input pulse. An unused A input should be tied to GND and an unused \overline{B} input should be tied to V_{CC} . On power up, the IC is reset. Unused resets and sections must be terminated. In normal operation, the circuit retriggers on the application of each new trigger pulse. To operate in the nontriggerable mode, \overline{Q} is connected to \overline{B} when leading-edge triggering (A) is used, or Q is connected to A when trailing-edge triggering (\overline{B}) is used. The period (τ) can be calculated from τ = (0.7) R_X , C_X ; R_{MIN} is 5 $k\Omega$. C_{MIN} is 0 pF.

ORDERING INFORMATION[†]

T _A PACKA		(AGE [‡]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 125°C	SOIC - M	Tape and reel	CD74HC4538QM96Q1	HC4538M
-40°C to 125°C	TSSOP - PW	Tape and reel	CD74HC4538QPWRQ1	HC4538M

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

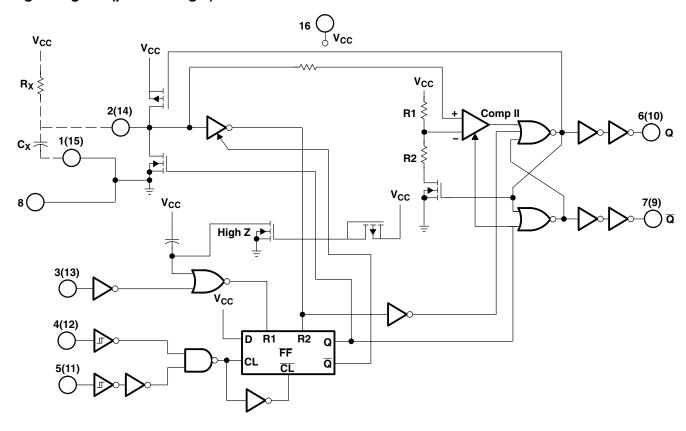
SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

FUNCTION TABLE

	INPUTS		OUTPUTS				
R	Α	Q	Q				
L	Х	Х	L	Н			
Х	Н	Χ	L	Н			
Х	Χ	L	L	Н			
Н	L	\downarrow	Л	ъ			
Н	\uparrow	Н	Л	ъ			

NOTE: H = High voltage level

L = Low voltage level

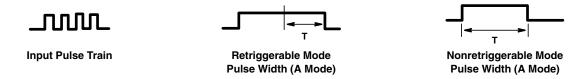

 \uparrow = Transition from low to high level

↓ = Transition from high to low level

☐ = one low-level pulse

X = Irrelevant

logic diagram (positive logic)


SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

FUNCTIONAL TERMINAL CONNECTIONS

FUNCTION		TO NUMBER		TO NUMBER	INPUT PI TERMINAL	ULSE TO . NUMBER	OTHER CONNECTIONS		
	MONO ₁	MONO ₂	MONO ₁	MONO ₂	MONO ₁	MONO ₂	MONO ₁	MONO ₂	
Leading-edge trigger/retriggerable	3, 5	11, 13			4	12			
Leading-edge trigger/nonretriggerable	3	13			4	12	5–7	11–9	
Trailing-edge trigger/retriggerable	3	13	4	12	5	11			
Trailing-edge trigger/nonretriggerable	3	13			5	11	4–6	12–10	

NOTES: 1. A retriggerable one-shot multivibrator has an output pulse width that is extended one full time period (T) after application of the last trigger pulse.

2. A nontriggerable one-shot multivibrator has a time period (T) referenced from the application of the first trigger pulse.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$)	±20 mA
Output clamp current, I_{OK} ($V_O < -0.5 \text{ V}$ or $V_O > V_{CC} + 0.5 \text{ V}$)	±20 mA
Switch current per output pin, I_O ($V_O > -0.5 \text{ V}$ or $V_O < V_{CC} + 0.5 \text{ V}$)	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ_{JA} (see Note 2): M package	73°C/W
PW package	108°C/W
Maximum junction temperature, T _J	150°C
Lead temperature (during soldering):	
At distance $1/16 \pm 1/32$ inch $(1,59 \pm 0,79 \text{ mm})$ from case for 10 s max	300°C
Storage temperature range, T _{stg}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltages are referenced to GND, unless otherwise specified.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

recommended operating conditions (see Note 3)

				MIN	MAX	UNIT
V_{CC}	Supply voltage			2	6	V
			V _{CC} = 2 V	1.5		
V_{IH}	High-level input voltage		$V_{CC} = 4.5 \text{ V}$	3.15		V
			V _{CC} = 6 V	4.2		
			V _{CC} = 2 V		0.5	
V_{IL}	Low-level input voltage		$V_{CC} = 4.5 \text{ V}$		1.35	V
			V _{CC} = 6 V		1.8	
VI	Input voltage			0	V_{CC}	V
Vo	Output voltage			0	V_{CC}	V
			V _{CC} = 2 V	0	1000	
		Reset input	$V_{CC} = 4.5 \text{ V}$	0	500	
١.	langua kanang ikinan (wina panal fall) kinan		V _{CC} = 6 V	0	400	
t _t	Input transition (rise and fall) time		V _{CC} = 2 V	0	Unlimited	ns
		Trigger inputs A or B	$V_{CC} = 4.5 \text{ V}$	0	Unlimited	
			V _{CC} = 6 V	0	Unlimited	
R _X	External timing resistor (see Note 4)			5		kΩ
C _X	External timing capacitor (see Note 4)			0	·	F
T _A	Operating free-air temperature			-40	125	°C

NOTES: 3. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

4. The maximum allowable values of R_X and C_X are a function of leakage of capacitor C_X , leakage of the CD74HC4538, and leakage due to board layout and surface resistance. Values of R_X and C_X should be chosen so that the maximum current into pin 2 or pin 14 is 30 mA. Susceptibility to externally induced noise signals may occur for $R_X > 1$ M Ω .

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST (CONDITIONS	l _o	v _{cc}	T _A = 2	25°C	T _A = -		T _A = -40°C TO 125°C		UNIT
			(mA)		MIN	MAX	MIN	MAX	MIN	MAX	
				2 V	1.9		1.9		1.9		
		CMOS loads	-0.02	4.5 V	4.4		4.4		4.4		
V _{OH}	$V_i = V_{iH}$ or V_{iL}			6 V	5.9		5.9		5.9		V
		TTI Jacoba	-4	4.5 V	3.98		3.84		3.7		
		TTL loads	-5.2	6 V	5.48		5.34		5.2		
				2 V		0.1		0.1		0.1	
		CMOS loads	0.02	4.5 V		0.1		0.1		0.1	
V _{OL}	$V_i = V_{iH}$ or V_{iL}			6 V		0.1		0.1		0.1	V
		TTI Jacoba	4	4.5 V		0.26		0.33		0.4	
		TTL loads	5.2	6 V		0.26		0.33		0.4	
	V V « CND	A, B, R		6 V		±0.1		±1		±1	
I _I	$V_I = V_{CC}$ or GND	R _X C _X (see Note 5)		6 V		±0.05		±0.5		±0.5	μ A
		Quiescent	0	6 V		8		80		160	μΑ
lcc	$V_I = V_{CC}$ or GND	Active, Q = high, Pins 2 and 14 at V _{CC} /4	0	6 V		0.6		0.8		1	mA
C _{IN}	C _L = 50 pF					10		10		10	pF

NOTE 5: When testing I_{IL} , the Q output must be high. If Q is low (device not triggered), the pullup P device is ON and the low-resistance path from V_{DD} to the test pin causes a current far exceeding the specification.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

	PARAMETER	V _{CC}	T _A = 25°C			T _A = -		T _A = -	UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
		2 V	80			100		120		
t _w	Input pulse width	4.5 V	16			20		24		ns
		6 V	14			17		20		
		2 V	5			5		5		
t _{su}	Reset setup time	4.5 V	5			5		5		ns
		6 V	5			5		5		
t _{rr}	Retrigger time (see Figure 4)	5 V		175						ns
	Output pulse-width match, same package			±1						%

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO	LOAD	v _{cc}	T,	_A = 25°C	;	T _A = -		T _A = -		UNIT		
	(INPUT)	(OUTPUT)	CAPACITANCE	CAPACITANCE	CAPACITANCE		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
				2 V			250		315		375			
	A 15	0 0	C _L = 50 pF	4.5 V			50		63		75			
	A, \overline{B}	Q or Q		6 V			43		54		64			
			C _L = 15 pF	5 V		21								
t _{pd}	^t pd		2 V			250		315		375	ns			
	R	0 0	C _L = 50 pF	4.5 V			50		63		75			
	К	Q or Q		6 V			43		54		64			
			C _L = 15 pF	5 V		21								
				2 V			75		95		110			
t _t			C _L = 50 pF	4.5 V			15		19		22	ns		
				6 V			13		16		19			
τţ			C _L = 50 pF	3 V	0.64		0.78	0.612	0.812	0.605	0.819	me		
η, ι			OL = 50 pr	5 V	0.63		0.77	0.602	0.798	0.595	0.805	ms		

 $[\]overline{^{\dagger}}$ Output pulse width with R_X = 10 k Ω and C_X = 0.1 μ F

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, input t_r , $t_f = 6 \text{ ns}$, $C_L = 15 \text{ pF}$

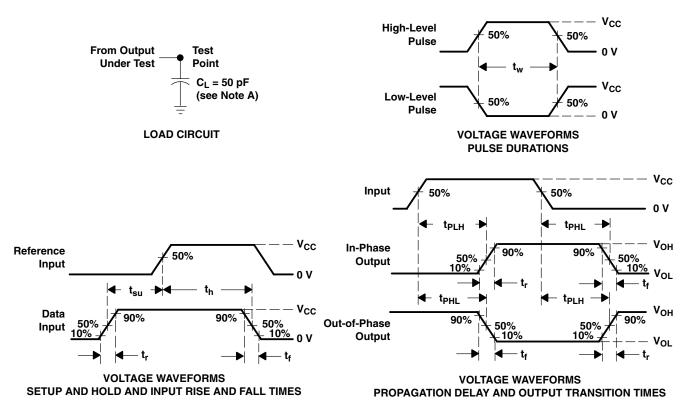
	PARAMETER	TYP	UNIT
С	Power dissipation capacitance (see Note 6)	136	pF

NOTE 6: C_{pd} is used to determine the dynamic power consumption, per one shot.

 $P_{D} = (C_{pd} + C_{X}) V_{CC}^{2} f_{I} \Sigma (C_{L} V_{CC}^{2} f_{O})$

f_I = input frequency

f_O = output frequency


C_L = output load capacitance

C_X = external capacitance

 V_{CC} = supply voltage, assuming $f_I \ll I/\tau$

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r = 6$ ns, $t_f = 6$ ns.
- C. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

TYPICAL CHARACTERISTICS

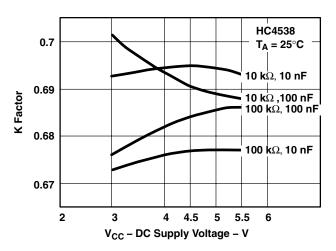


Figure 2. K Factor vs DC Supply Voltage

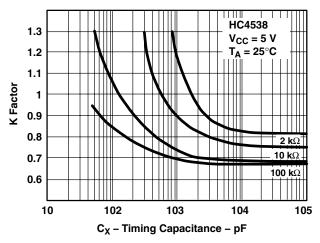


Figure 3. K Factor vs C_X

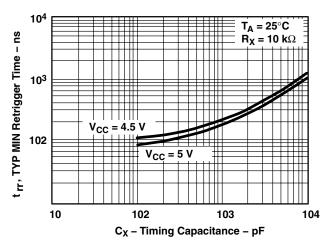


Figure 4. Minimum Retrigger Time vs Timing Capacitance

SCLS595A - NOVEMBER 2004 - REVISED APRIL 2008

TYPICAL APPLICATION DATA

power-down mode

During a rapid power-down condition (as would occur with a power-supply short circuit with a poorly filtered power supply), the energy stored in C_X could discharge into pin 2 or pin 14. To avoid possible device damage in this mode when C_X is $\geq 0.5 \, \mu F$, a protection diode with a 1-A rating or higher (1N5395 or equivalent) and a separate ground return for C_X should be provided (see Figure 5).

An alternate protection method is shown in Figure 6, where a $51-\Omega$ current-limiting resistor is inserted in series with C_X . Note that a small pulse-duration decrease occurs, however, and R_X must be increased appropriately to obtain the originally desired pulse duration.

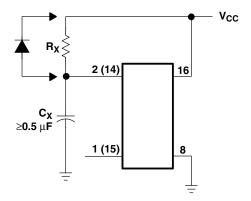


Figure 5. Rapid-Power-Down Protection Circuit

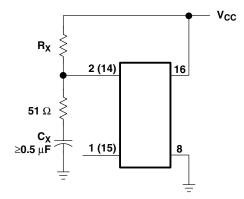


Figure 6. Alternative Rapid-Power-Down Protection Circuit

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing		Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD74HC4538QM96G4Q1	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4538M	Samples
CD74HC4538QPWRG4Q1	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4538M	Samples
CD74HC4538QPWRQ1	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4538M	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

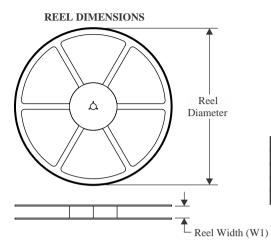
10-Dec-2020

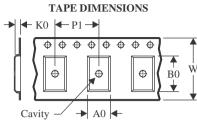
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD74HC4538-Q1:

● Catalog: CD74HC4538

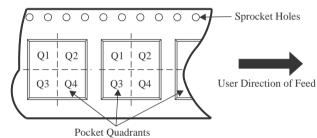
Military: CD54HC4538


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

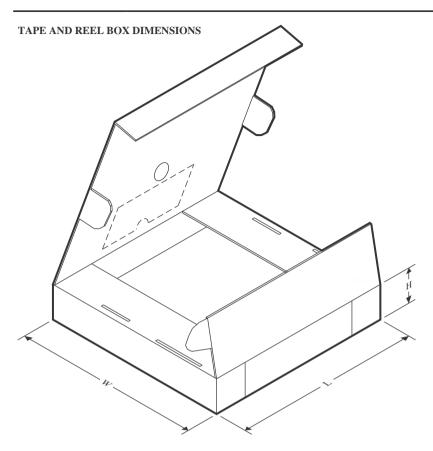
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

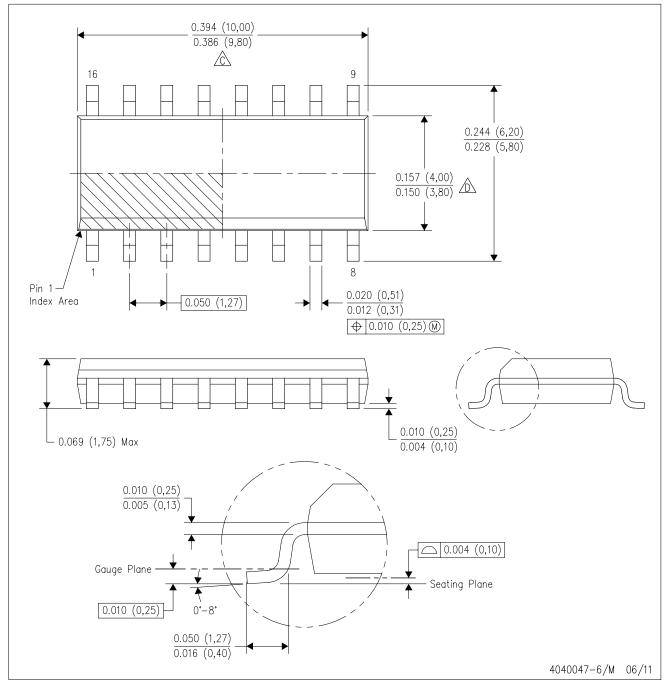


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4538QPWRG4Q1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4538QPWRQ1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

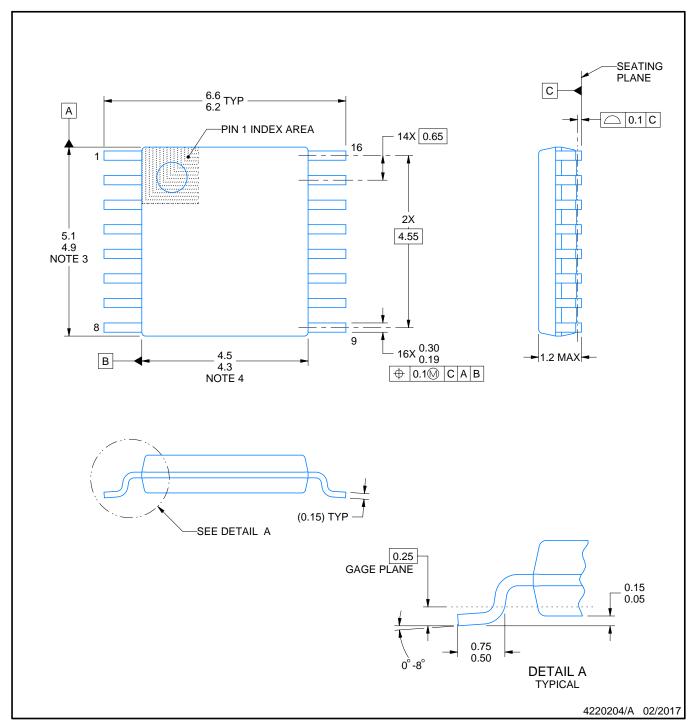


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC4538QPWRG4Q1	TSSOP	PW	16	2000	356.0	356.0	35.0
CD74HC4538QPWRQ1	TSSOP	PW	16	2000	356.0	356.0	35.0

D (R-PDS0-G16)

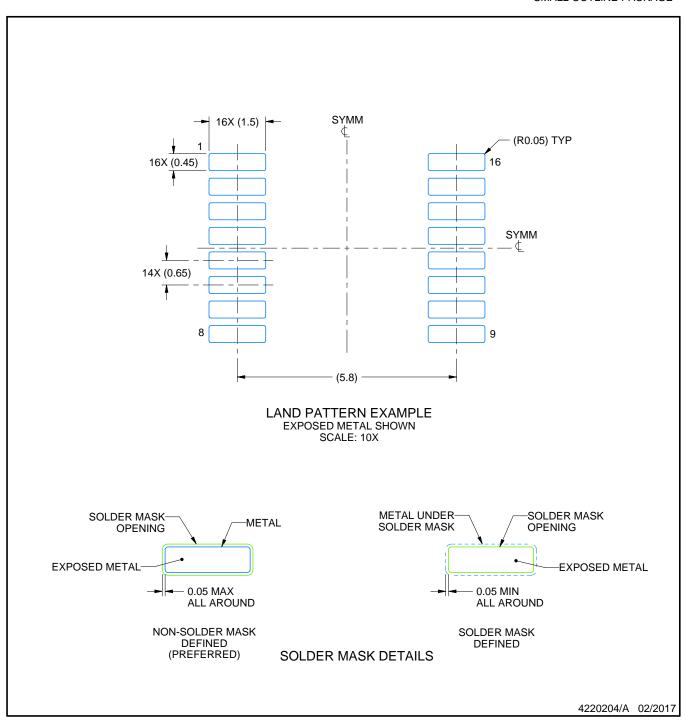
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

SMALL OUTLINE PACKAGE

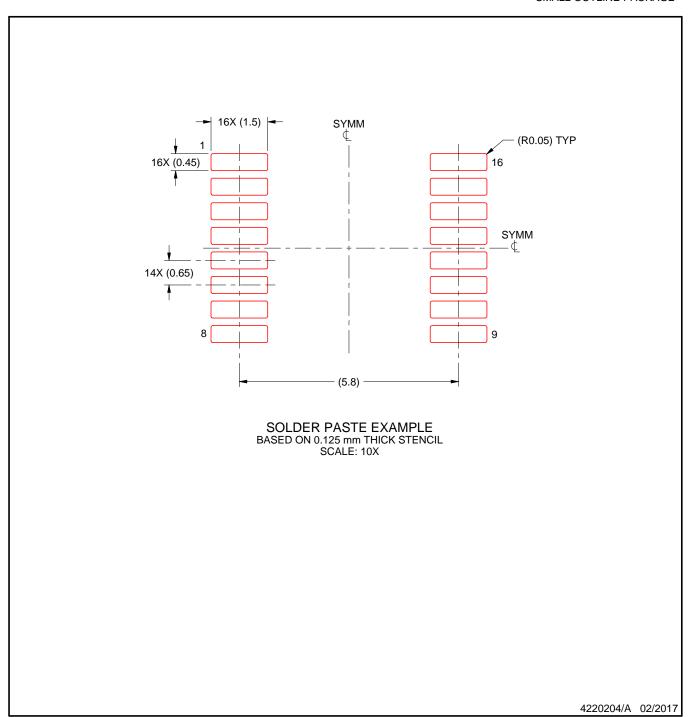
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated