SBAS331D -AUGUST 2004-REVISED APRIL 2010

32-Channel, Current-Input Analog-to-Digital Converter

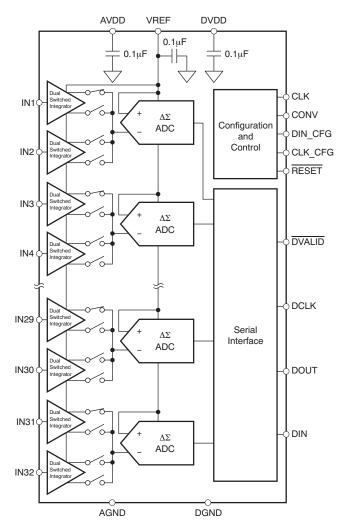
Check for Samples: DDC232

FEATURES

- Single-Chip Solution to Directly Measure 32 Low-Level Currents
- High-Precision, True Integrating Function
- Integral Linearity: ±0.025% of Reading ±1.0ppm of FSR
- Very Low Noise: 5.3ppm of FSR
- Low Power: 7mW/channel
- Adjustable Full-Scale Range
- Adjustable Speed
 - Data Rate up to 6kSPS
 - Integration Times as low as 166.5μs
- Daisy-Chainable Serial Interface
- In-Package Bypass Capacitors Simplify PCB Design

APPLICATIONS

- CT Scanner DAS
- Photodiode Sensors
- X-Ray Detection Systems


DESCRIPTION

The DDC232 is a 20-bit, 32-channel, current-input analog-to-digital (A/D) converter. It combines both current-to-voltage and A/D conversion so that 32 separate low-level current output devices, such as photodiodes, can be directly connected to its inputs and digitized.

For each of the 32 inputs, the DDC232 provides a dual-switched integrator front-end. This configuration allows for continuous current integration: while one integrator is being digitized by the onboard A/D converter, the other is integrating the input current. Adjustable integration times range from 166 μ s to 1s, allowing currents from fAs to μ As to be continuously measured with outstanding precision.

The DDC232 has a serial interface designed for daisy-chaining in multi-device systems. Simply connect the output of one device to the input of the next to create the chain. Common clocking feeds all the devices in the chain so that the digital overhead in a multi-DDC232 system is minimal.

The DDC232 uses a +5V analog supply and a +2.7V to +3.6V digital supply. Operating over the temperature range of 0°C to +70°C, the DDC232 BGA-64 package is offered in two versions: the DDC232C for low-power applications, and the DDC232CK when higher speeds are required.

Protected by US Patent #5841310

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DEVICE FAMILY COMPARISON

PRODUCT	# OF CHANNELS	FULL-SCALE	MAXIMUM DATA RATE	POWER/CHANNEL	PACKAGE- LEAD
DDC112	2	1000pC ⁽¹⁾	20kSPS	40mW	SO-28
DDC112K	2	1000pC ⁽¹⁾	3.3kSPS	40mW	TQFP-32
DDC114	4	350pC	3.3kSPS	13mW	QFN-48
DDC118	8	350pC	3.3kSPS	13mW	QFN-48
DDC316	16	12pC	100kSPS	28mW	BGA-64
DDC232C	32	350pC	3.1kSPS	7mW	BGA-64
DDC232CK	32	350pC	6.2kSPS	10mW	BGA-64

⁽¹⁾ Using external integration capacitors.

PACKAGE/ORDERING INFORMATION

For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder on www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)

AVDD to AGND	-0.3V to +6V
DVDD to DGND	-0.3V to +3.6V
AGND to DGND	±0.2V
VREF Input to AGND	2.0V to AVDD + 0.3V
Analog Input to AGND	-0.3V to +0.7V
Digital Input Voltage to DGND	-0.3V to DVDD + 0.3V
Digital Output Voltage to DGND	-0.3V to AVDD + 0.3V
Operating Temperature	0°C to +70°C
Storage Temperature	−60°C to +150°C
Junction Temperature (T _J)	+150°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

www.ti.com

ELECTRICAL CHARACTERISTICS

At T_A = +25°C, AVDD = +5V, DVDD = +3.0V, VREF = +4.096V, t_{INT} = 333 μ s for DDC232C or 166 μ s for DDC232CK, Range 7, and continuous mode operation, unless otherwise noted.

			DDC232C			DDC232CF	•	
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
ANALOG INPUT RANGE								
Range 0			12.5			12.5		pC
Range 1		45	50	55	45	50	55	pC
Range 2		90	100	110	90	100	110	pC
Range 3		135	150	165	135	150	165	pC
Range 4		180	200	220	180	200	220	pC
Range 5		225	250	275	225	250	275	pC
Range 6		270	300	330	270	300	330	pC
Range 7		315	350	385	315	350	385	pC
Negative Full-Scale Range		-0.4% of Po	sitive Full-S	Scale Range	-0.4% of Po	sitive Full-	Scale Range	pC
DYNAMIC CHARACTERISTICS								
Data Rate			3	3.125		6	6.2	kSPS
ntegration Time, t _{INT}	Continuous Mode	320		1,000,000	160		1,000,000	μS
	Noncontinuous Mode	50			50			μS
System Clock (CLK)	Clk_4x = 0	1		5	1		10	MHz
	Clk_4x = 1	4		20	4		40	MHz
Data Clock (DCLK)				20			20	MHz
Configuration Clock (CLK_CFG)				20			20	MHz
ACCURACY								
Noise, Low-Level Input ⁽¹⁾	C _{SENSOR} (2) = 50pF		5.3	7		5.3	7	ppm of FSR ⁽³⁾ , rm
ntegral Linearity Error ⁽⁴⁾		±0.025% Rea	ading ± 1.0p	ppm FSR, typ	±0.025% Rea	ading ± 1.0	ppm FSR, typ	
		±0.05% Rea	ding ± 1.5pp	om FSR, max	±0.05% Rea	ding ± 1.5p	pm FSR, max	
Resolution	No Missing Codes, Format = 1	20			19 ⁽⁵⁾			Bits
	No Missing Codes, Format = 0	16			16			Bits
Input Bias Current			±0.1	±10		±0.1	±10	pA
Range Error Match ⁽⁶⁾			0.1	0.5		0.1	0.5	% of FSR
Range Sensitivity to VREF	VREF = 4.096 ±0.1V		1:1			1:1		
Offset Error			±200	±1000		±200	±1000	ppm of FSR
Offset Error Match ⁽⁶⁾			±100			±100		ppm of FSR
DC Bias Voltage ⁽⁷⁾	Low-Level Input (< 1% FSR)		±0.1	±2		±0.1	±2	mV
Power-Supply Rejection Ratio	at DC		100	±800		100	±800	ppm of FSR/V

- Input is less than 1% of full-scale.
- C_{SENSOR} is the capacitance seen at the DDC232 inputs from wiring, photodiode, etc. FSR is Full-Scale Range.

- A best-fit line is used in measuring nonlinearity.

 Output word is 20 bits with 19 bits no missing codes.
- Matching between side A and side B of the same input.
- Voltage produced by the DDC232 at its input that is applied to the sensor.

Copyright © 2004-2010, Texas Instruments Incorporated

ELECTRICAL CHARACTERISTICS (continued)

At T_A = +25°C, AVDD = +5V, DVDD = +3.0V, VREF = +4.096V, t_{INT} = 333 μ s for DDC232C or 166 μ s for DDC232CK,

Range 7, and continuous mode operation, unless otherwise noted.

	-		DDC232C			DDC232CF	(
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
PERFORMANCE OVER TEMPERATUR	E							
Offset Drift			±0.5	5(8)		±0.5	5 ⁽⁸⁾	ppm of FSR/°C
Offset Drift Stability			±0.2	2 ⁽⁸⁾		±0.2	2 ⁽⁸⁾	ppm of FSR/minute
DC Bias Voltage Drift ⁽⁹⁾			±3			±3		μV/°C
Input Bias Current Drift	$T_A = +25^{\circ}C \text{ to } +45^{\circ}C$		0.01	1 (8)		0.01	1 (8)	pA/°C
Range Drift ⁽¹⁰⁾			25	50		25	50	ppm/°C
Range Drift Match ⁽¹¹⁾			±5			±5		ppm/°C
REFERENCE								
Voltage		4.000	4.096	4.200	4.000	4.096	4.200	V
Input Current ⁽¹²⁾	Average Value with $t_{INT} = 333 \mu s$		325					μΑ
	Average Value with $t_{\text{INT}} = 166.5 \mu \text{s}$					650		μΑ
DIGITAL INPUT/OUTPUT								
Logic Levels								
V_{IH}		0.8 DVDD		DVDD + 0.1	0.8 DVDD		DVDD + 0.1	V
V _{IL}		-0.1		0.2 DVDD	-0.1		0.2 DVDD	V
V _{OH}	$I_{OH} = -500 \mu A$	DVDD - 0.4			DVDD - 0.4			V
V _{OL}	$I_{OL} = 500 \mu A$			0.4			0.4	V
Input Current (I _{IN})	$0 < V_{IN} < DVDD$			±10			±10	μΑ
Data Format ⁽¹³⁾		S	traight Bina	ry	S	traight Bina	iry	
POWER-SUPPLY REQUIREMENTS								
Analog Power-Supply Voltage (AVDD)		4.75	5.0	5.25	4.9	5.0	5.1	V
Digital Power-Supply Voltage (DVDD)		2.7	3.0	3.6	2.7	3.0	3.6	V
Supply Current								
Analog Current			41			60		mA
Digital Current			3.7			8.0		mA
Total Power Dissipation			224	288		290		mW
Per Channel Power Dissipation			7	9		10		mW/Channel

- (8) Ensured by design, not production tested.(9) Voltage produced by the DDC232 at its input that is applied to the sensor.
- (10) Range drift does not include external reference drift.
- (11) Matching between side A and side B of the same input.
- (12) Input reference current decreases with increasing t_{INT} (see the *Voltage Reference* section, page 10).
 (13) Data format is Straight Binary with a small offset. The number of bits in the output word is controlled by the Format bit.

PIN CONFIGURATION

View				Colu	umns					
	Н	G	F	E	D	С	В	Α		
	IN21	IN22	IN23	IN24	IN25	IN26	IN27	IN28	1	
	IN5	IN6	IN7	IN8	IN9	IN10	IN11	IN12	2	
	IN17	IN18	IN19	IN20	IN29	IN30	IN31	IN32	3	
	IN1	IN2	IN3	IN4	IN13	IN14	IN15	IN16	4	Rows
	QGND	AGND	AGND	AGND	AGND	AGND	AGND	AGND	5	Ψo
	AGND	AVDD	AVDD	AVDD	AGND	DGND	VREF	VREF	6	
	DVALID	DIN_CFG	CLK_CFG	DGND	DGND	RESET	DVDD	DGND	7	
	DCLK	DGND	CLK	NC O	DOUT	DGND	DIN	CONV	8	

PIN DESCRIPTIONS

PIN	LOCATION	FUNCTION	DESCRIPTION
IN1-32	Rows 1–4	Analog Input	Analog Inputs for Channels 1 to 32
QGND	H5	Analog	Quiet Analog Ground
AGND	G5, F5, E5, D5, C5, B5, A5, D6, H6	Analog	Analog Ground
DGND	A7, C6, D7, E7, C8, G8	Digital	Digital Ground
AVDD	E6, F6, G6	Analog	Analog Power Supply, +5V Nominal
VREF	A6, B6	Analog Input	External Voltage Reference Input, +4.096V Nominal
DVALID	H7	Digital Output	Data Valid Output, Active Low
DIN_CFG	G7	Digital Input	Configuration Register Data Input
CLK_CFG	F7	Digital Input	Configuration Register Clock Input
RESET	C7	Digital Input	Digital Reset, Active Low
DVDD	В7	Digital	Digital Power Supply, 3.3V Nominal
CONV	A8	Digital Input	Conversion Control Input; 0 = Integrate on Side B, 1 = Integrate on Side A
DIN	B8	Digital Input	Serial Data Input
DOUT	D8	Digital Output	Serial Data Output
NC	E8	No Connect	Do not connect; must be left floating.
CLK	F8	Digital Input	Master Clock Input
DCLK	H8	Digital Input	Serial Data Clock Input

Product Folder Link(s): DDC232

TYPICAL CHARACTERISTICS

At $T_A = +25$ °C, unless otherwise indicated.

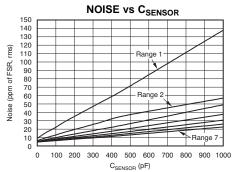


Figure 1.

Table 1. NOISE vs C_{SENSOR} (ppm of FSR, rms)

CSENSOR	NOISE (ppm of FSR, rms)									
(pF)	Range 0	Range 1	Range 2	Range 3	Range 4	Range 5	Range 6	Range 7		
0	27	9.1	6.3	5.5	5.2	5	4.9	4.8		
22	38	12	7.9	6.5	5.8	5.5	5.3	5.1		
47	51	15	9.8	7.7	6.7	6.1	5.8	5.5		
68	59	18	11	8.5	7.3	6.6	6.1	5.8		
100	74	22	13	9.9	8.3	7.4	6.8	6.3		
150	100	29	16	12	10	8.7	7.8	7.2		
330	180	50	27	19	15	13	11	10		
470	250	67	36	25	19	16	14	12		
1000	520	130	57	49	37	30	26	22		

Table 2. NOISE vs C_{SENSOR} (fC, rms)

CSENSOR				NOISE	(fC, rms)			
(pF)	Range 0	Range 1	Range 2	Range 3	Range 4	Range 5	Range 6	Range 7
0	0.34	0.46	0.63	0.83	1.04	1.25	1.47	1.68
22	0.48	0.60	0.79	0.98	1.16	1.38	1.59	1.79
47	0.64	0.75	0.98	1.16	1.34	1.53	1.74	1.93
68	0.74	0.90	1.10	1.28	1.46	1.65	1.83	2.03
100	0.93	1.10	1.30	1.49	1.66	1.85	2.04	2.21
150	1.25	1.45	1.60	1.80	2.00	2.18	2.34	2.52
330	2.25	2.50	2.70	2.85	3.00	3.25	3.30	3.50
470	3.13	3.35	3.60	3.75	3.80	4.00	4.20	4.20
1000	6.50	6.50	5.70	7.35	7.40	7.50	7.80	7.70

Table 3. NOISE vs C_{SENSOR} (electrons, rms)

CSENSOR	NOISE (electrons, rms)								
(pF)	Range 0	Range 1	Range 2	Range 3	Range 4	Range 5	Range 6	Range 7	
0	2100	2840	3930	5140	6490	7800	9170	10400	
22	2960	3740	4930	6080	7240	8580	9920	11100	
47	3970	4680	6110	7200	8360	9510	10800	12000	
68	4600	5610	6860	7950	9110	10200	11400	12600	
100	5770	6860	8110	9260	10300	11500	12700	13700	
150	7800	9050	9980	11200	12400	13500	14600	15700	
330	14000	15600	16800	17700	18700	20200	20500	21800	
470	19500	20900	22400	23400	23700	24900	26200	26200	
1000	40500	40500	35500	45800	46100	46800	48600	48000	

Submit Documentation Feedback

Copyright © 2004–2010, Texas Instruments Incorporated

THEORY OF OPERATION

GENERAL DESCRIPTION

The block diagram of the DDC232 is shown in Figure 2. The device contains 32 identical input channels that perform the function of current-to-voltage integration followed by a multiplexed A/D conversion. Each input has two integrators so that the current-to-voltage integration can be continuous in time. The output of the 64 integrators are switched to 16 delta-sigma $(\Delta\Sigma)$

converters via multiplexers. With the DDC232 in the continuous integration mode, the output of the integrators from one side of the inputs will be digitized while the other 32 integrators are in the integration mode. This integration and A/D conversion process is controlled by the system clock, CLK. The results from side A and side B of each signal input are stored in a serial output shift register. The DVALID output goes low when the shift register contains valid data.

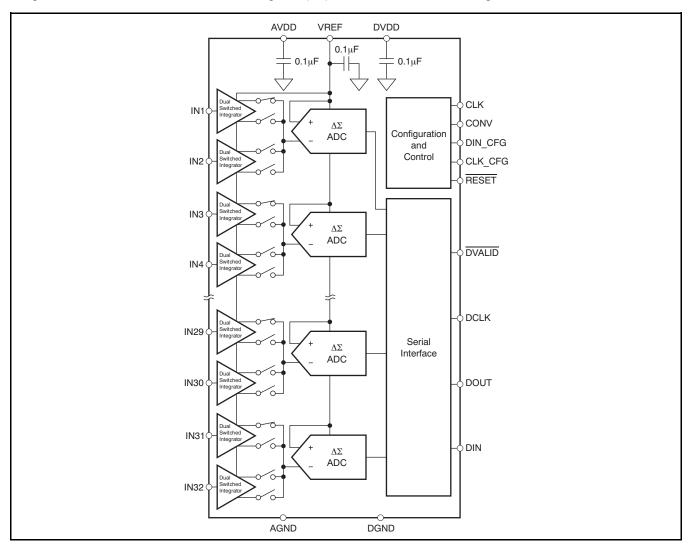


Figure 2. DDC232 Block Diagram

DEVICE OPERATION

Basic Integration Cycle

The topology of the front end of the DDC232 is an analog integrator as shown in Figure 3. In this diagram, only input IN1 is shown. The input stage consists of an operational amplifier, a selectable feedback capacitor network (C_F) , and several switches that implement the integration cycle. The timing relationships of all of the switches shown in Figure 3 are illustrated in Figure 4. Figure 4 conceptualizes the operation of the integrator input stage of the DDC232 and should not be used as an exact timing tool for design.

See Figure 5 for the block diagrams of the reset, integrate, wait, and convert states of the integrator section of the DDC232. This internal switching network is controlled externally with the convert pin (CONV) and the system clock (CLK). For the best noise performance, CONV must be synchronized with the rising edge of CLK. It is recommended that CONV toggle within ±10ns of the rising edge of CLK.

The noninverting inputs of the integrators are connected to ground. Consequently, the DDC232 analog ground should be as clean as possible. In Figure 3, the feedback capacitors (C_F) are shown in parallel between the inverting input and output of the

operational amplifier. At the beginning of a conversion, the switches $S_{A/D}$, S_{INTA} , S_{INTB} , S_{REF1} , S_{REF2} , and S_{RESET} are set (see Figure 4).

At the completion of an A/D conversion, the charge on the integration capacitor (C_F) is reset with S_{REF1} and S_{RESET} (see Figure 4 and Figure 5a). This is done during reset. In this manner, the selected capacitor is charged to the reference voltage, VREF. Once the integration capacitor is charged, S_{REF1} and S_{RESET} are switched so that VREF is no longer connected to the amplifier circuit while it waits to begin integrating (see Figure 5b). With the rising edge of CONV, S_{INTA} closes, which begins the integration of side A. This process puts the integrator stage into its integrate mode (see Figure 5c).

Charge from the input signal is collected on the integration capacitor, causing the voltage output of the amplifier to decrease. The falling edge of CONV stops the integration by switching the input signal from side A to side B (S_{INTA} and S_{INTB}). Prior to the falling edge of CONV, the signal on side B was converted by the A/D converter and reset during the time that side A was integrating. With the falling edge of CONV, side B starts integrating the input signal. At this point, the output voltage of the side A operational amplifier is presented to the input of the $\Delta\Sigma$ A/D converter (see Figure 5d).

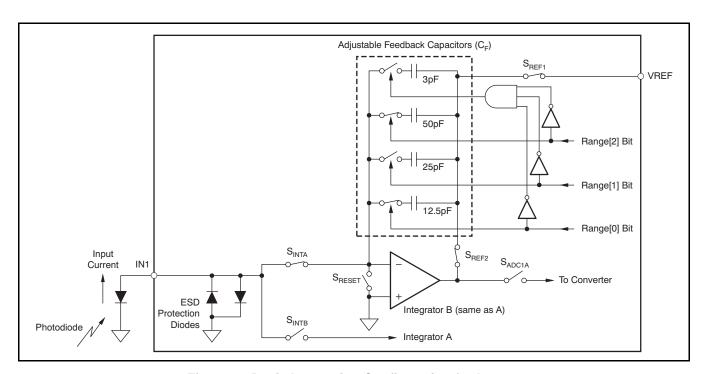


Figure 3. Basic Integration Configuration for Input 1

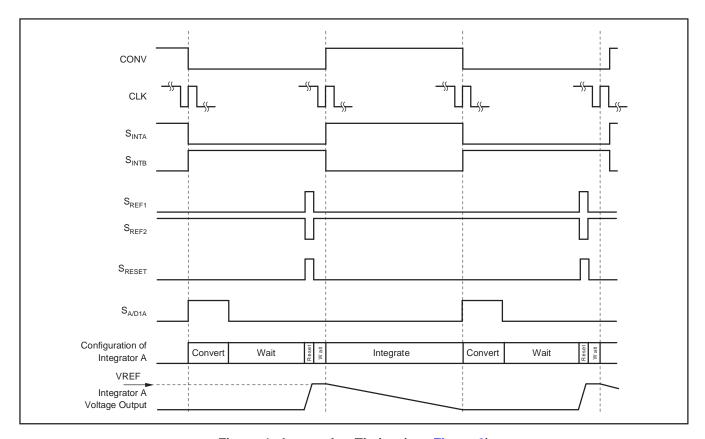


Figure 4. Integration Timing (see Figure 3)

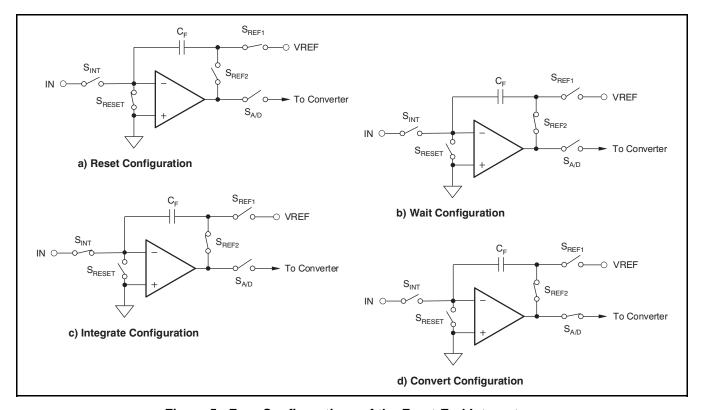


Figure 5. Four Configurations of the Front-End Integrators

Integration Capacitors

There are seven different capacitors available on-chip for both sides of every channel in the DDC232. These internal capacitors are trimmed in production to achieve the specified performance for range error of the DDC232. The range control bits (Range[2:0]) change the capacitor value for all integrators. Consequently, all inputs and both sides of each input will always have the same full-scale range. Table 4 shows the capacitor value selected for each range selection.

Table 4. Range Selection

	RANG	E CONTRO	L BITS	_	INPUT
RANGE	Range[2]	Range[1]	Range[0]	C _F (pF, typ)	RANGE (pC, typ)
0	0	0	0	3	-0.04 to 12.5
1	0	0	1	12.5	-0.2 to 50
2	0	1	0	25	-0.4 to 100
3	0	1	1	37.5	-0.6 to 150
4	1	0	0	50	-0.8 to 200
5	1	0	1	62.5	-0.1 to 250
6	1	1	0	75	-1.2 to 300
7	1	1	1	87.5	-1.4 to 350

Voltage Reference

The external voltage reference is used to reset the integration capacitors before an integration cycle begins. It is also used by the $\Delta\Sigma$ converter while the converter is measuring the voltage stored on the integrators after an integration cycle ends. During this sampling, the external reference must supply the

charge needed by the $\Delta\Sigma$ converter. For an integration time of $333\mu s$, this charge translates to an average VREF current of approximately $325\mu A.$ The amount of charge needed by the $\Delta\Sigma$ converter is independent of the integration time; therefore, increasing the integration time lowers the average current. For example, an integration time of $800\mu s$ lowers the average VREF current to $135\mu A.$

It is critical that VREF be stable during the different modes of operation (see Figure 5). The $\Delta\Sigma$ converter measures the voltage on the integrator with respect to VREF. Since the integrator capacitors are initially reset to VREF, any drop in VREF from the time the capacitors are reset to the time when the converter measures the integrator output will introduce an offset. It is also important that VREF be stable over longer periods of time because changes in VREF correspond directly to changes in the full-scale range. Finally, VREF should introduce as little additional noise as possible.

For these reasons, it is strongly recommended that the external reference source be buffered with an operational amplifier, as shown in Figure 6. In this circuit, the voltage reference is generated by a +4.096V reference. A low-pass filter to reduce noise connects the reference to an operational amplifier configured as a buffer. This amplifier should have low noise and input/output common-mode ranges that support VREF. Even though the circuit in Figure 6 might appear to be unstable due to the large output capacitors, it works well for most operational amplifiers. It is **not** recommended that series resistance be placed in the output lead to improve stability since this can cause a drop in VREF, which produces large offsets.

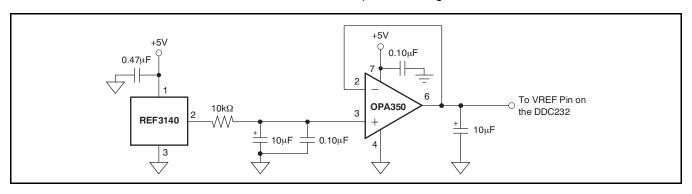


Figure 6. Recommended External Voltage Reference Circuit for Best Low-Noise Operation

Frequency Response

The frequency response of the DDC232 is set by the front-end integrators and is that of a traditional continuous time integrator, as shown in Figure 7. By adjusting t_{INT} , the user can change the 3dB bandwidth and the location of the notches in the response. The frequency response of the $\Delta\Sigma$ converter that follows the front-end integrator is of no consequence because the converter samples a held signal from the integrators. That is, the input to the $\Delta\Sigma$ converter is always a DC signal. Since the output of the front-end integrators are sampled, aliasing can occur. Whenever the frequency of the input signal exceeds one-half of the sampling rate, the signal will fold back down to lower frequencies.

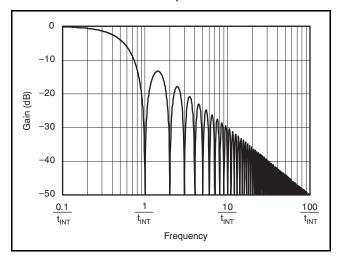
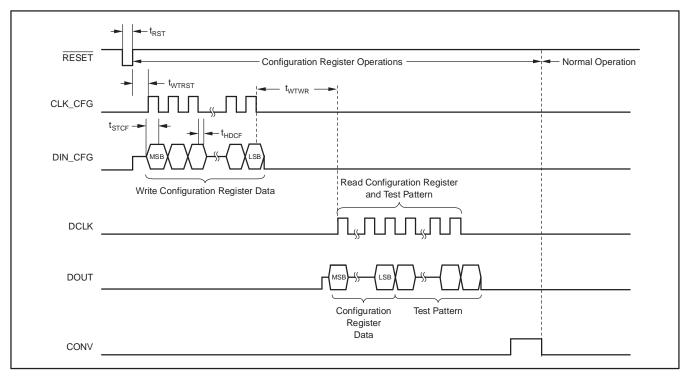


Figure 7. Frequency Response

CONFIGURATION REGISTER

Some aspects of device operation are controlled by the onboard configuration register. The DIN_CFG, CLK_CFG, and RESET pins are used to write to this register. When beginning a write operation, hold CONV low and strobe RESET; see Figure 8. Then begin shifting in the configuration data on DIN_CFG. Data are written to the configuration register most significant bit first. The data are internally latched on the falling edge of CLK_CFG. Partial writes to the configuration register are not allowed—make sure to send all 12 bits when updating the register.


Optional readback of the configuration register is available immediately after the write sequence. During readback, the 12-bit configuration data followed by a 4-bit revision ID and the test pattern are shifted out on the DOUT pin on the rising edge of DCLK.

NOTE: Wth Format = 1, the test pattern is 304 bits, with only the last 72 bits non-zero. This sequence of outputs is repeated twice for each DDC232 and daisy-chaining is supported in configuration readback. Table 5 shows the test pattern configuration during readback. Table 6 shows the timing for the configuration register read and write operations. Strobe CONV to begin normal operation.

Table 5. Test Pattern During Readback

Format BIT	TEST PATTERN (Hex)	TOTAL READBACK BITS
0	30F066012480F6h	512
1	30F066012480F69055h	640

NOTE: CLK must be running during Configuration Register write and read operations.

Figure 8. Configuration Register Write and Read Operations

Table 6. Timing for the Configuration Register Read/Write

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t _{WTRST}	Wait Required from Reset High to First Rising Edge of CLK_CFG	2			μS
t _{WTWR}	Wait Required from Last CLK-CFG of Write Operation to First CLK_CFG of Read Operation	2			μS
t _{STCF}	Set-Up Time from DIN_CFG to Falling Edge of CLK_CFG	10			ns
t _{HDCF}	Hold Time for DIN_CFG After Falling Edge of CLK_CFG	10			ns
t _{RST}	Pulse Width for RESET Active	1			μS

www.ti.com

Table 7. Configuration Register

Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Range[1]	Range[0]	Format	Version	Clk 4x	0	0	0	0	0	Test

Bits 11–9 Range[2:0]. Full-scale range.

 000: 12.5pC
 100: 200pC

 001: 50pC
 101: 250pC

 010: 100pC
 110: 300pC

011: 150pC 111: 350pC (default)

Bit 8 Format. Data output format. This bit selects how many bits are used in the data output word.

0: 16-Bit Output

1: 20-Bit Output (default)

Bit 7 Version. Device version setting.

Must be set to '0' for DDC232C Must be set to '1' for DDC232CK

Bit 6 Clk_4x. System clock divider. The Clk_4x input enables an internal divider on the system clock.

When $Clk_4x = 1$, the system clock is divided by 4. This allows a 4X faster system clock, which in turn provides a finer quantization of the integration time because the CONV signal needs to be synchronized with the system clock for the best performance.

0: Internal Clock Divider = 1 (default)

1: Internal Clock Divider = 4

Clk_4x BIT	CLK DIVIDER VALUE	CLK FREQUENCY	INTERNAL CLOCK FREQUENCY
0	1	5MHz	5MHz
1	4	20MHz	5MHz

Bits 5–1 These bits must be set to '0'.

Bit 0 Test. Diagnostic test mode enable. When Test mode is used, the inputs (IN1 through IN32) are disconnected from the DDC232 integrators to enable the user to measure a zero input signal

regardless of the current supplied to the inputs. Test mode works with both Continuous and

Noncontinuous modes.

0: Test Mode Off (default)

1: Test Mode On

DIGITAL INTERFACE

The digital interface of the DDC232 outputs the digital results via a synchronous serial interface consisting of a data clock (DCLK), a valid data pin (DVALID), a serial data output pin (DOUT), and a serial data input pin (DIN). The integration and conversion process is fundamentally independent of the data retrieval process. Consequently, the CLK and DCLK frequencies need not be the same, though for best performance, it is highly recommended that they be derived from the same clocking source to keep the phase relationship constant. DIN is only used when multiple converters are cascaded and should be tied to DGND otherwise. Depending on t_{INT}, CLK, and DCLK, it is possible to daisy-chain multiple converters. This greatly simplifies the interconnection and routing of the digital outputs in those applications where a large number of converters are needed. Configuration of the DDC232 is set by a dedicated register addressed using the DIN CFG CLK_CFG pins.

System and Data Clocks (CLK and CONV)

The system clock is supplied to CLK and the data clock is supplied to DCLK. It is recommended that the CLK pin be driven by a free-running clock source (that is, do not start and stop CLK between conversions). Make sure the clock signals are clean—avoid overshoot or ringing. For best performance, generate both clocks from the same clock source. DCLK should be disabled by taking it low after the data has been shifted out or while CONV is transitioning.

When using multiple DDC232s, pay close attention to the DCLK distribution on the printed circuit board (PCB). In particular, make sure to minimize skew in the DCLK signal because this can lead to timing violations in the serial interface specifications. See the *Cascading Multiple Converters* section for more details.

Data Valid (DVALID)

The DVALID signal indicates that data are ready. Data retrieval may begin after DVALID goes low. This signal is generated using an internal clock divided down from the system clock, CLK. The phase relationship between this internal clock and CLK is set when power is first applied and is random. Since the user must synchronize CONV with CLK, the DVALID signal will have a random phase relationship with CONV. This uncertainty is ±1/f_{CLK}. Polling

DVALID eliminates any concern about this relationship. If the data read back is timed from CONV, make sure to wait for the required amount of time. For Continuous mode, this time is given by t_{CMDR} . For Noncontinuous mode, use t_{NCDR1} or t_{NCDR2} , as appropriate. See Table 9 for details.

Reset (RESET)

The DDC232 is reset asynchronously by taking the RESET input low, as shown in Figure 9. Make sure the release pulse is at least $1\mu s$ wide. After resetting the DDC232, wait at least four conversions before using the data. It is very important that RESET is glitch-free to avoid unintentional resets.

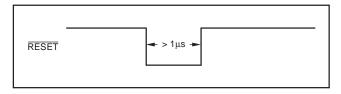


Figure 9. Reset Timing

Conversion Rate

The conversion rate of the DDC232 is set by a combination of the integration time (determined by the user) and the speed of the A/D conversion process. The A/D conversion time is primarily a function of the system clock (CLK) speed. One A/D conversion cycle encompasses the conversion of two signals (one side of each dual integrator feeding the modulator) and the reset time for each of the integrators involved in the two conversions. In most situations, the A/D conversion time is shorter than the integration time. If this condition exists, the DDC232 will operate in the continuous mode. When the DDC232 is in the continuous mode, the sensor output is continuously integrated by one of the two sides of each input.

In the event that the A/D conversion takes longer than the integration time, the DDC232 will switch into a Noncontinuous mode. In Noncontinuous mode, the A/D converter is not able to keep pace with the speed of the integration process. Consequently, the integration process is periodically halted until the digitizing process catches up. These two basic modes of operation for the DDC232—Continuous and Noncontinuous modes—are described below.

Continuous and Noncontinuous Operational Modes

Figure 10 shows the state diagram of the DDC232. In all, there are eight states. Table 8 provides a brief explanation of each state.

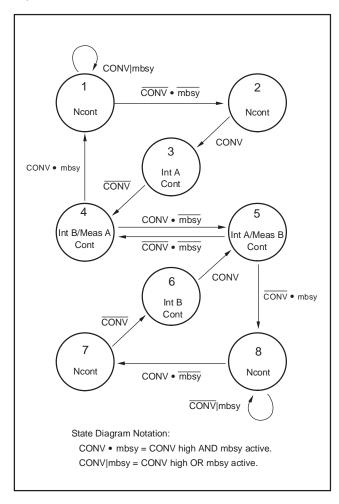


Figure 10. Integrate/Measure State Diagram

Four signals are used to control progression around the state diagram: CONV, mbsy, and their complements. The state machine uses the level as opposed to the edges of CONV to control the progression. mbsy is an internally-generated signal not available to the user. It is active whenever a measurement/reset/auto-zero (m/r/az) cycle is in progress.

During the Continuous (Cont) mode, mbsy is not active when CONV toggles. The nonintegrating side is always ready to begin integrating when the other side finishes its integration. Consequently, monitoring the current status of CONV is all that is needed to know the current state. Cont mode operation corresponds to states 3 to 6. Two of the states, 3 and 6, only perform an integration (that is, no m/r/az cycle).

mbsy becomes important when operating in the Noncontinuous (Ncont) mode (states 1, 2, 7, and 8). Whenever CONV is toggled while mbsy is active, the DDC232 will enter or remain in either Ncont state 1 (or 8). After mbsy goes inactive, state 2 (or 7) is entered. This state prepares the appropriate side for integration. In the Ncont states, the inputs to the DDC232 are grounded.

One interesting observation from the state diagram is that the integrations always alternate between sides A and B. This relationship holds for any CONV pattern and is independent of the mode. States 2 and 7 ensure this relationship during the Ncont mode.

When power is first applied to the DDC232, the beginning state is either 1 or 8, depending on the initial level of CONV. For CONV held high at power-up, the beginning state is 1. Conversely, for CONV held low at power-up, the beginning state is 8. In general, there is a symmetry in the state diagram between states 1–8, 2–7, 3–6, and 4–5. Inverting CONV results in the states progressing through their symmetrical match.

Table 8. State Descriptions

STATE	MODE	DESCRIPTION
1	Ncont	Complete m/r/az of side A, then side B (if previous state is state 4). Initial power-up state when CONV is initially held high.
2	Ncont	Prepare side A for integration.
3	Cont	Integrate on side A.
4	Cont	Integrate on side B; m/r/az on side A.
5	Cont	Integrate on side A; m/r/az on side B.
6	Cont	Integrate on side B.
7	Ncont	Prepare side B for integration.
8	Ncont	Complete m/r/az of side B, then side A (if previous state is state 5). Initial power-up state when CONV is initially held low.

Product Folder Link(s): DDC232

TIMING EXAMPLES

Continuous Mode

A few timing diagrams help illustrate the operation of the integrate/measure state machine. These diagrams are shown in Figure 11 through Figure 16. Table 9 gives generalized timing specifications in units of CLK periods for Clk_4x = 0. If Clk_4x = 1, these values increase by a factor of 4 because of the internal clock divider. Values (in μ s) for Table 9 can be easily found for a given CLK.

Figure 11 shows a few integration cycles beginning with initial power-up for a Cont mode example. The

top signal is CONV and is supplied by the user. The next line indicates the current state in the state diagram. The following two traces show when integrations and measurement cycles are underway. The internal signal mbsy is shown next. Finally, $\overline{\text{DVALID}}$ is given. As described in the data sheet, $\overline{\text{DVALID}}$ goes active low when data are ready to be retrieved from the DDC232. It stays low until DCLK is taken high and then back low by the user. The text below the $\overline{\text{DVALID}}$ pulse indicates the side of the data available to be read and arrows help match the data to the corresponding integration.

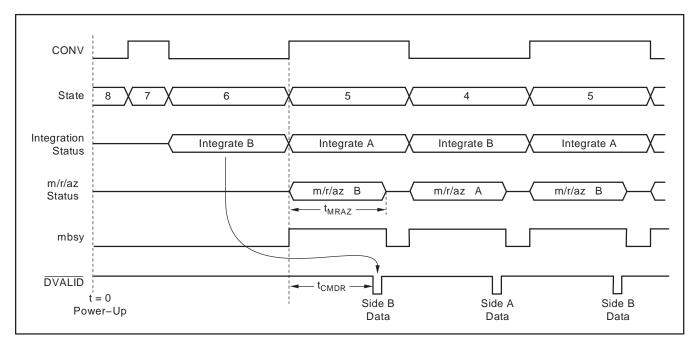


Figure 11. Continuous Mode Timing

Table 9. Timing Specifications Generalized in CLK Periods

		VALUE (CLK Periods with Clk_4x = 0)	
SYMBOL	DESCRIPTION	DDC232C	DDC232CK
t _{MRAZ}	Continuous mode, m/r/az cycle	1552 ± 2	1612 ± 2
t _{CMDR}	Continuous mode, data ready	1382 ± 2	1382 ± 2

In Figure 11, the first state is Ncont state 8. The DDC232 always powers up in the Ncont mode. In this case, the first state is 8 because CONV is initially low. After the first two states, Cont mode operation is reached and the states begin toggling between 4 and 5. From now on, the input is being continuously integrated, either on side A or side B. The time needed for the m/r/az cycle, t_{MRAZ}, is the same time that determines the boundary between the Cont and

Ncont modes described earlier in the *Continuous and Noncontinuous Operational Modes* section. DVALID goes low after CONV toggles in time t_{CMDR}, indicating that data are ready to be retrieved.

See Figure 12 for the timing diagram of the internal operations occurring during Continuous mode operation. Table 10 gives the timing specifications of the internal operations occurring during Continuous mode operation.

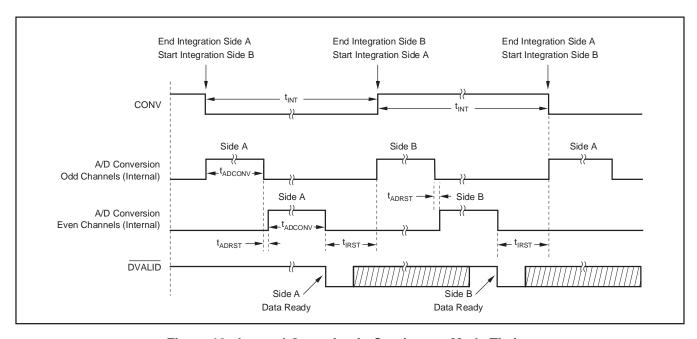


Figure 12. Internal Operation in Continuous Mode Timing

Table 10. Timing Characteristics for the Internal Operation in Continuous Mode

		DDC232C (CLK = $5MHz$, $Clk_4x = 0$)			DDC232CK (CLK = 10MHz, Clk_4x = 0)				
SYMBOL	DESCRIPTION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
t _{INT}	Integration Period (continuous mode)	320		1,000,000	160		1,000,000	μS	
t _{ADCONV}	A/D Conversion Time (internally controlled)		135.6			68		μS	
t _{ADRST}	A/D Conversion Reset Time (internally controlled)		3.2			2.2		μS	
t _{IRST}	Integrator Reset Time (internally controlled)		36			21.8		μS	

Noncontinuous Mode

Figure 13 and Figure 14 illustrate operation in Noncontinuous mode.

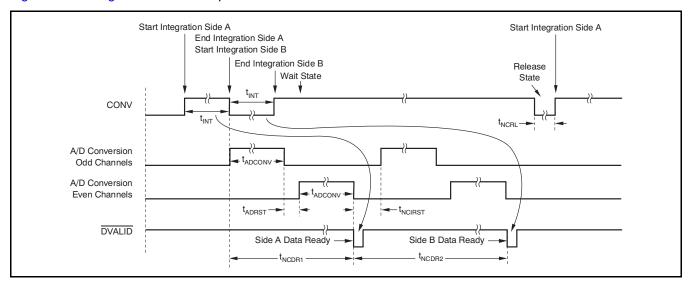


Figure 13. Conversion Detail for the Internal Operation of Noncontinuous Mode with Side A Integrated First

Table 11. Timing Characteristics for the Internal Operation in Noncontinuous Mode

		DDC232C (CLK = 5MHz, Clk_4x = 0)		DDC232CK (CLK = 10MHz, Clk_4x = 0)				
SYMBOL	DESCRIPTION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
t _{INT}	Integration Time (Noncontinuous mode)	50		1,000,000	50		1,000,000	μS
t _{ADCONV}	A/D Conversion Time (internally controlled)		135.6			67.8		μS
t _{ADRST}	A/D Conversion Reset Time (internally controlled)		3.2			1.6		μS
t _{NCIRST}	Noncontinuous Mode Integrator Reset Time (internally controlled)		30.4			15.2		μS
t _{NCRL}	Release Time	0.4			0.2			μS
t _{NCDR1}	1st Noncontinuous Mode Data Ready		276.5			138.2		μS
t _{NCDR2}	2nd Noncontinuous Mode Data Ready		304.8			152.4		μS

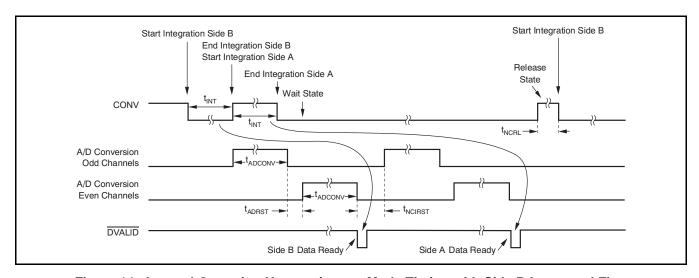


Figure 14. Internal Operation Noncontinuous Mode Timing with Side B Integrated First

Changing Between Modes

Changing from Cont to Ncont mode occurs whenever $t_{\text{INT}} < t_{\text{MRAZ}}$. Figure 15 shows an example of this transition. In this figure, Cont mode is entered when the integration on side A is completed before the m/r/az cycle on side B is complete. The DDC232 completes the measurement on sides B and A during states 8 and 7 with the input signal shorted to ground. Ncont integration begins with state 6.

Changing from Ncont to Cont mode occurs when t_{INT}

is increased so that t_{INT} is always $\geq t_{\text{MRAZ}}$ as shown in Figure 16 (see Figure 13 and Table 11, page 18). With a longer t_{INT} , the m/r/az cycle has enough time to finish before the next integration begins and continuous integration of the input signal is possible. For the special case of the very first integration when changing to the Cont mode, t_{INT} can be $< t_{\text{MRAZ}}$. This is allowed because there is no simultaneous m/r/az cycle on the side B during state 3—therefore, there is no need to wait for it to finish before ending the integration on side A.

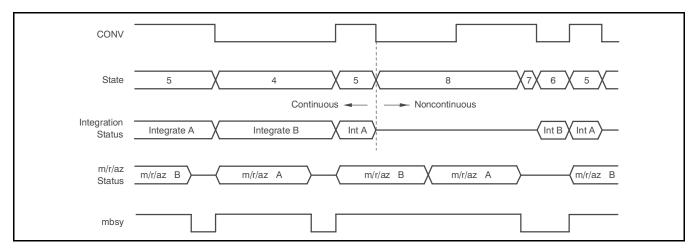


Figure 15. Changing from Continuous Mode to Noncontinuous Mode

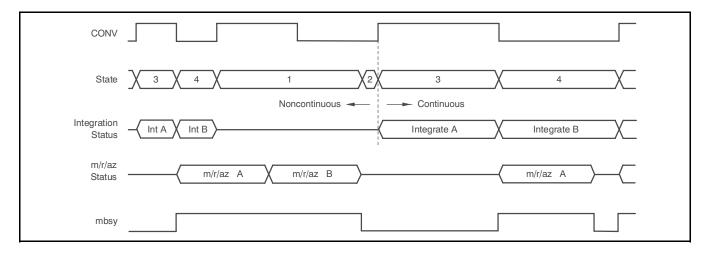


Figure 16. Changing from Noncontinuous Mode to Continuous Mode

DATA FORMAT

The serial output data are provided in an offset binary code as shown in Table 12. The Format bit in the configuration register selects how many bits are used in the output word. When Format = 1, 20 bits are used. When Format = 0, the lower 4 bits are truncated so that only 16 bits are used. Note that the LSB size is 16 times bigger when Format = 0. An offset is included in the output to allow slightly negative inputs (for example, from board leakages) from clipping the reading. This offset is approximately 0.4% of the positive full-scale.

DATA RETRIEVAL

In both the Continuous and Noncontinuous modes of operation, the data from the last conversion are available for retrieval on the falling edge of DVALID (see Figure 17 and Table 13). Data are shifted out on the falling edge of the data clock, DCLK.

Table 12. Ideal Output Code⁽¹⁾ vs Input Signal

INPUT SIGNAL	IDEAL OUTPUT CODE FORMAT = 1	IDEAL OUTPUT CODE FORMAT = 0
≥ 100% FS	1111 1111 1111 1111 1111	1111 1111 1111 1111
0.001531% FS	0000 0001 0000 0001 0000	0000 0001 0000 0001
0.001436% FS	0000 0001 0000 0000 1111	0000 0001 0000 0000
0.000191% FS	0000 0001 0000 0000 0010	0000 0001 0000 0000
0.000096% FS	0000 0001 0000 0000 0001	0000 0001 0000 0000
0% FS	0000 0001 0000 0000 0000	0000 0001 0000 0000
-0.3955% FS	0000 0000 0000 0000 0000	0000 0000 0000 0000

(1) Excludes the effects of noise, INL, offset, and gain errors.

Make sure not to retrieve data around changes in CONV because this can introduce noise. Stop activity on DCLK at least $10\mu s$ before or after a CONV transition.

Setting the Format bit = 0 (16-bit output word) will reduce the time needed to retrieve data by 20% since there are fewer bits to shift out. This can be useful in multichannel systems requiring only 16 bits of resolution.

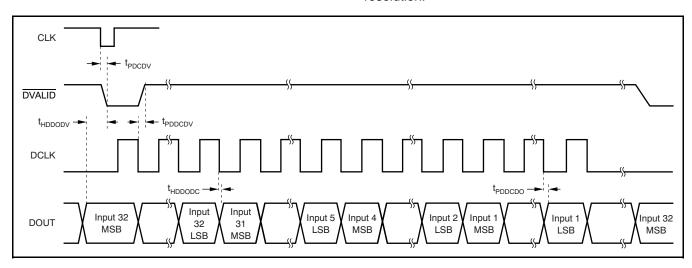


Figure 17. Digital Interface Timing for Data Retrieval From a Single DDC232

Table 13. Timing for DDC232 Data Retrieval

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t _{PDCDV}	Propagation Delay from Falling Edge of CLK to DVALID Low	10			ns
t _{PDDCDV}	Propagation Delay from Falling Edge of DCLK to DVALID High	5			ns
t _{HDDODV}	Hold Time that DOUT is Valid Before the Falling Edge of DVALID		400		ns
t _{HDDODC}	Hold Time that DOUT is Valid After Falling Edge of DCLK	4			ns
t _{PDDCDO} (1)	Propagation Delay from Falling Edge of DCLK to Valid DOUT			25	ns

(1) With a maximum load of one DDC232 (4pF typical) with an additional load of 5pF.

20

Product Folder Link(s): DDC232

Cascading Multiple Converters

Multiple DDC232 units can be connected in serial configuration; see Figure 18.

DOUT can be used with DIN to daisy-chain multiple DDC232 devices together to minimize wiring. In this mode of operation, the serial data output is shifted through multiple DDC232s; see Figure 18.

Figure 19 shows the timing diagram when the DIN input is used to daisy-chain several devices. Table 14 gives the timing specification for data retrieval using DIN.

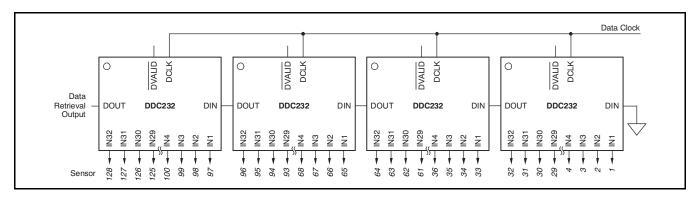


Figure 18. Daisy-Chained DDC232s

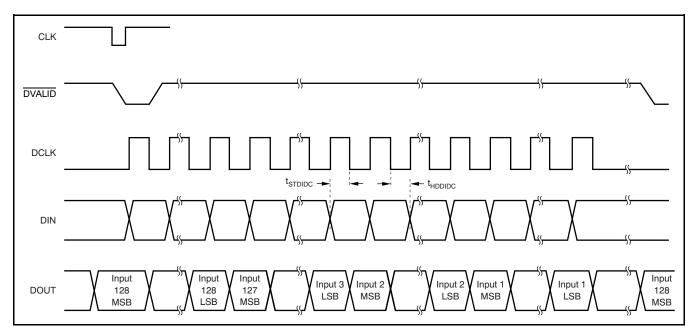


Figure 19. Timing When Using DDC232 DIN Function; See Figure 18

Table 14. Timing for DDC232 Data Retrieval Using DIN

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t _{STDIDC}	Set-Up Time from DIN to Falling Edge of DCLK	10			ns
t _{HDDIDC}	Hold Time for DIN After Falling Edge of DCLK	10			ns

RETRIEVAL BEFORE CONV TOGGLES (CONTINUOUS MODE)

Data retrieval before CONV toggles is the most straightforward method. Data retrieval begins soon after $\overline{\text{DVALID}}$ goes low and finishes before CONV toggles, as shown in Figure 20. For best performance, data retrieval must stop t_{SDCV} before CONV toggles. This method is most appropriate for longer integration times. The maximum time available for readback is $t_{\text{INT}}-t_{\text{CMDR}}-t_{\text{SDCV}}$.

For DCLK = 10MHz and CLK = 5MHz, the maximum number of DDC232s that can be daisy-chained together (Format = 1) is calculated by Equation 1:

$$\frac{t_{INT} - (t_{CMDR} + t_{SDCV})}{(20 \times 32)\tau_{DCLK}}$$
 (1)

NOTE: $(16 \times 32)\tau_{DCLK}$ is used for Format = 0, where t_{DCLK} is the period of the data clock. For example, if t_{INT} = 1000 μ s and DCLK = 10MHz, the maximum number of DDC232s with Format = 1 is shown in Equation 2:

$$\frac{1000\mu s - 286.8\mu s}{(640)(100ns)} = 11.14 \rightarrow 11 DDC232$$
 (2)

(or 13 for Format = 0)

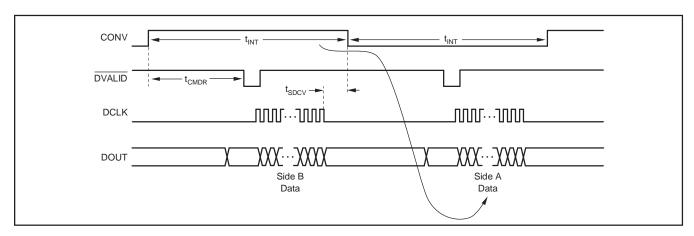


Figure 20. Readback Before CONV Toggles

Table 15. Timing Characteristics for Readback

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t _{SDCV}	Data Retrieval Shutdown Before or After Edge of CONV	10			μS

RETRIEVAL AFTER CONV TOGGLES (CONTINUOUS MODE)

For shorter integration times, more time is available if data retrieval begins after CONV toggles and ends before the new data are ready. Data retrieval must wait t_{SDCV} after CONV toggles before beginning. See Figure 21 for an example of this. The maximum time available for retrieval is t_{CMDR} – $(t_{SDCV}$ + $t_{HDDODV})$, regardless of t_{INT} . The maximum number of DDC232s that can be daisy-chained together with Format = 1 is calculated by Equation 3:

$$\frac{266\mu s}{(20\times32)\tau_{DCLK}} \tag{3}$$

NOTE: $(16 \times 32)\tau_{DCLK}$ is for Format = 0.

For DCLK = 10MHz, the maximum number of DDC232s is four (or five for Format = 0).

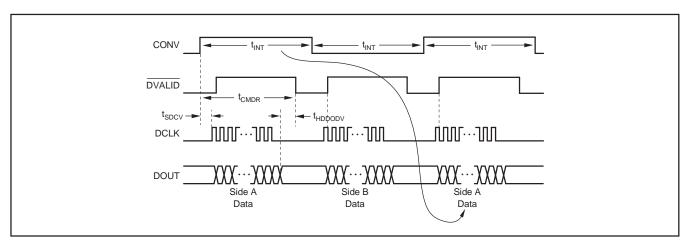


Figure 21. Readback After CONV Toggles

RETRIEVAL BEFORE AND AFTER CONV TOGGLES (CONTINUOUS MODE)

For the absolute maximum time for data retrieval, data can be retrieved before and after CONV toggles. Nearly all of t_{INT} is available for data retrieval. Figure 22 illustrates how this is done by combining the two previous methods. Pause the retrieval during CONV toggling to prevent digital noise, as discussed previously, and finish before the next data are ready. The maximum number of DDC232s that can be daisy-chained together with Format = 1 is:

$$\frac{t_{INT} - (t_{SDCV} + t_{SDCV} + t_{HDDODV})}{(20 \times 32)\tau_{DCLK}}$$
(4)

NOTE: $(16 \times 32)\tau_{DCLK}$ is used for Format = 0.

For t_{INT} = 400 μ s and DCLK = 10MHz, the maximum number of DDC232s is five (or seven for Format = 0).

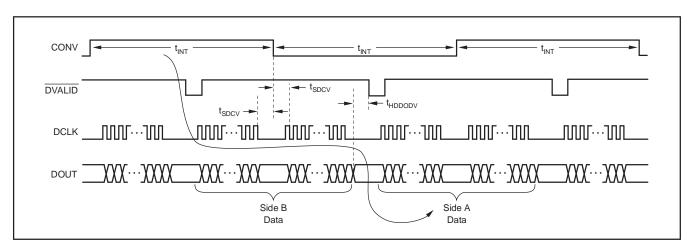


Figure 22. Readback Before and After CONV Toggles

RETRIEVAL: NONCONTINUOUS MODE

Retrieving in Noncontinuous mode is slightly different as compared with the <u>Continuous</u> mode. As illustrated in <u>Figure 23</u>, <u>DVALID</u> goes low in time t_{NCDR1} after the first integration completes. If t_{INT} is shorter than this time, all of t_{NCDR2} is available to retrieve data before the other side data are ready. For $t_{INT} > t_{NCDR1}$, the first integration data are ready before the second integration completes. Data retrieval must be delayed

until the second integration completes, leaving less time available for retrieval. The time available is $t_{NCDR2}-(t_{INT}-t_{NCDR1})$. Data from the second integration must be retrieved before the next round of integration begins. This time is highly dependent on the pattern used to generate CONV. As with the continuous mode, data retrieval must halt before and after CONV toggles (t_{SDCV}) and be completed before new data are ready (t_{HDDDDV}) .

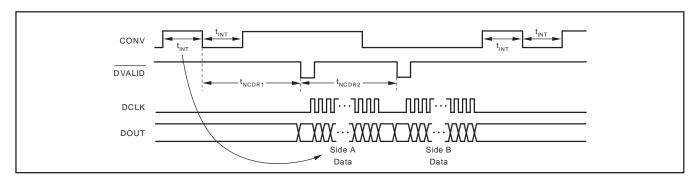


Figure 23. Readback in Noncontinuous Mode

POWER-UP SEQUENCING

Prior to power-up, all digital and analog inputs must be low. At the time of power-up, all of these signals should remain low until the power supplies have stabilized, as shown in Figure 24. At this time, begin supplying the master clock signal to the CLK pin. Wait for time t_{POR} , then give a RESET pulse. After releasing RESET, the configuration register must be programmed. Table 16 shows the timing for the power-up sequence.

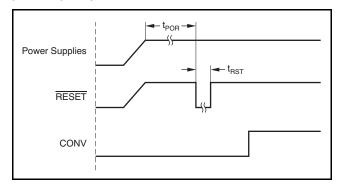


Figure 24. DDC232 Timing at Power-Up

Table 16. Timing Characteristics for DDC232
Power-Up Sequence

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t _{POR}	Wait After Power-Up Until Reset	250			ms
t _{RST}	Reset Low Width	1			μS

LAYOUT

POWER SUPPLIES AND GROUNDING

Both AVDD and DVDD should be as quiet as possible. It is particularly important to eliminate noise from AVDD that is nonsynchronous with the DDC232 operation. Figure 25 illustrates how to supply power to the DDC232. Each supply of the DDC232 should be bypassed with $10\mu F$ solid tantalum capacitors. It is recommended that both the analog and digital grounds (AGND and DGND) be connected to a single ground plane on the printed circuit board (PCB).

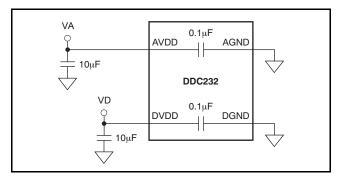


Figure 25. Power-Supply Connections

Shielding Analog Signal Paths

As with any precision circuit, careful PCB layout will ensure the best performance. It is essential to make short, direct interconnections and avoid stray wiring capacitance—particularly at the analog input pins and QGND. These analog input pins are high-impedance and extremely sensitive to extraneous noise. The QGND pin should be treated as a sensitive analog signal and connected directly to the supply ground with proper shielding. Leakage currents between the PCB traces can exceed the input bias current of the DDC232 if shielding is not implemented. Digital signals should be kept as far as possible from the analog input signals on the PCB.

www.ti.com

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision C (September 2006) to Revision D	Page
•	Revised document format to meet current standards	1
•	Updated data sheet to include new DDC232CK information	1

22-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
201-000795	ACTIVE	NFBGA	ZXG	64	1000	RoHS & Green	SNAGCU	Level-3-260C-168 HR	0 to 70	DDC232	Samples
DDC232CKZXGR	ACTIVE	NFBGA	ZXG	64	1000	RoHS & Green	SNAGCU	Level-3-260C-168 HR	0 to 70	DDC232K	Samples
DDC232CKZXGT	ACTIVE	NFBGA	ZXG	64	250	RoHS & Green	SNAGCU	Level-3-260C-168 HR	0 to 70	DDC232K	Samples
DDC232CZXGR	ACTIVE	NFBGA	ZXG	64	1000	RoHS & Green	SNAGCU	Level-3-260C-168 HR	0 to 70	DDC232	Samples
DDC232CZXGT	ACTIVE	NFBGA	ZXG	64	250	RoHS & Green	SNAGCU	Level-3-260C-168 HR	0 to 70	DDC232	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

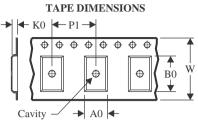
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

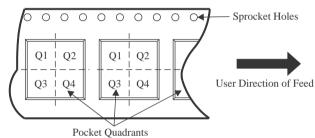
22-Dec-2020

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

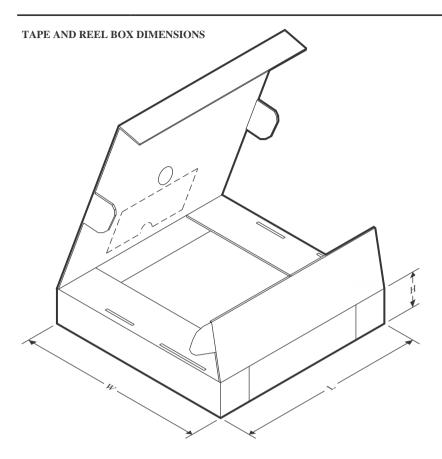

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Dec-2023


TAPE AND REEL INFORMATION

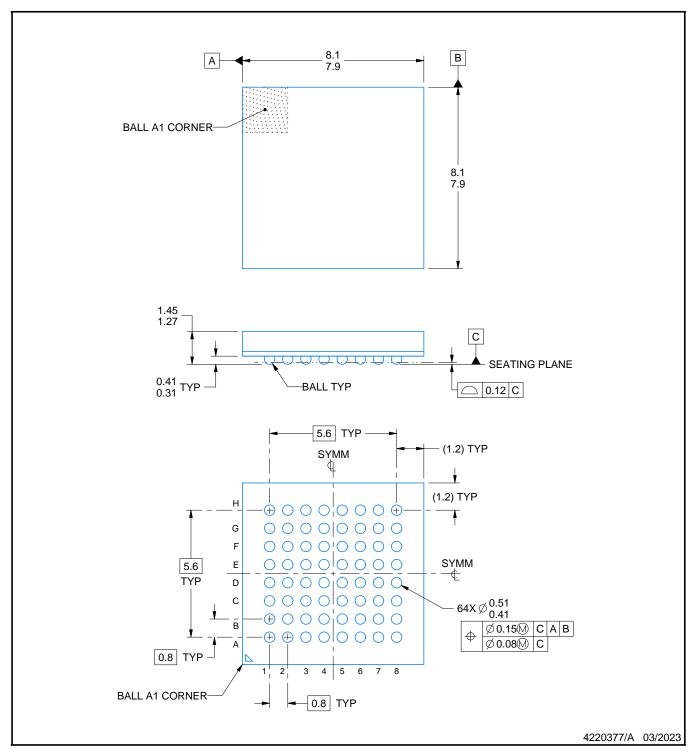
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DDC232CKZXGR	NFBGA	ZXG	64	1000	330.0	16.4	8.3	8.3	2.25	12.0	16.0	Q1

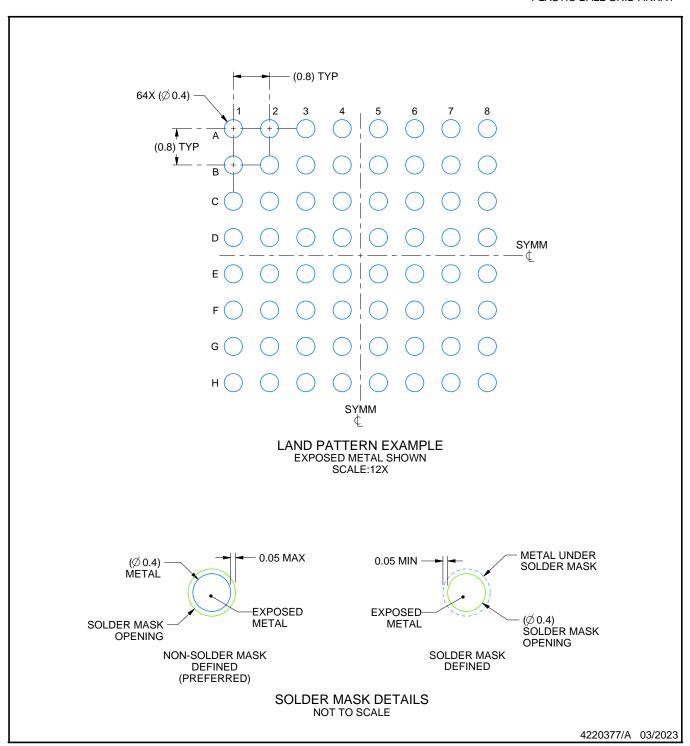
www.ti.com 5-Dec-2023



*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	DDC232CKZXGR	NFBGA	ZXG	64	1000	350.0	350.0	43.0	

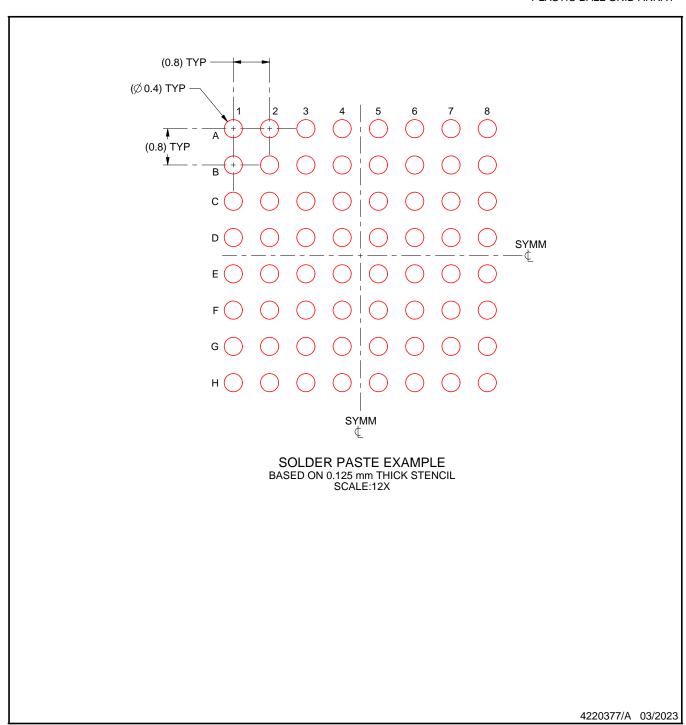
PLASTIC BALL GRID ARRAY



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is lead-free.

PLASTIC BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).

PLASTIC BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated