

SLVS925A - APRIL 2009-REVISED JULY 2013

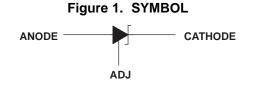
# 2.5-V INTEGRATED REFERENCE CIRCUIT

Check for Samples: LT1009M

## FEATURES

- Excellent Temperature Stability
- Initial Tolerance: 0.2% Typical
- Dynamic Impedance: 0.6 Ω Typical
- Wide Operating Current Range
- Directly Interchangeable With LM136

- Needs No Adjustment for Minimum Temperature Coefficient
- Available in Military (–55°C/125°C) Temperature Range <sup>(1)</sup>
- (1) Custom temperature ranges available


## **DESCRIPTION/ORDERING INFORMATION**

The LT1009 reference circuit is a precision-trimmed 2.5-V shunt regulator featuring low dynamic impedance and a wide operating current range. The reference tolerance is achieved by on-chip trimming, which minimizes the initial voltage tolerance and the temperature coefficient,  $\alpha_{VZ}$ .

Although the LT1009 needs no adjustments, a third terminal (ADJ) allows the reference voltage to be adjusted  $\pm 5\%$  to eliminate system errors. In many applications, the LT1009 can be used as a terminal-for-terminal replacement for the LM136-2.5, which eliminates the external trim network.

The LT1009 uses include 5-V system references, 8-bit analog-to-digital converter (ADC) and digital-to-analog converter (DAC) references, and power-supply monitors. The device also can be used in applications such as digital voltmeters and current-loop measurement and control systems.

The LT1009 is characterized for operation from -55°C to 125°C.



### ORDERING INFORMATION<sup>(1)</sup>

| T <sub>A</sub> | PACKAGE(BARE DIE) <sup>(2)</sup> | ORDERABLE PART NUMBER |
|----------------|----------------------------------|-----------------------|
| -55°C to 125°C | CHIPTRAY                         | LT1009MKGD1           |

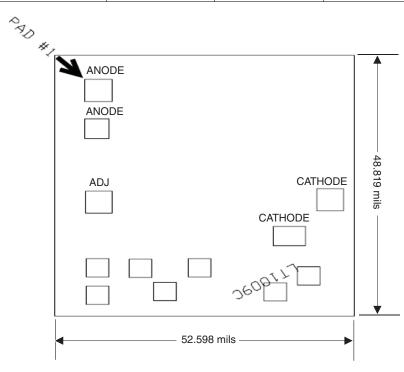
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

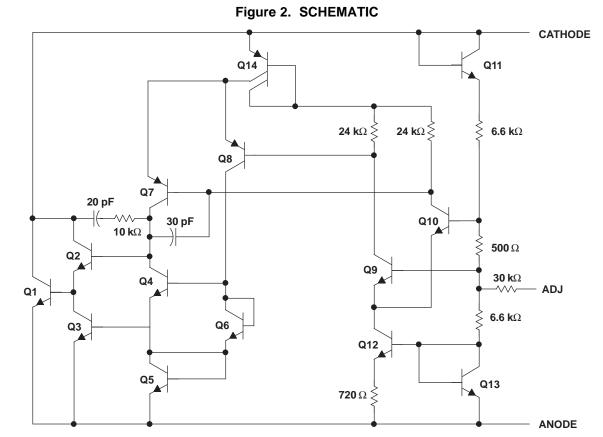
## BARE DIE INFORMATION

| DIE THICKNESS | BACKSIDE FINISH        | BOND PAD METALIZATION<br>COMPOSITION |
|---------------|------------------------|--------------------------------------|
| 15 Mils       | Silicon with backgrind | AlCu/TiW                             |




Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.






### Table 1. Bond Pad Coordinates in Microns - Rev A

| DISCRIPTION    | PAD NUMBER | а        | b        | С        | d        |
|----------------|------------|----------|----------|----------|----------|
| ANODE          | 1          | 127.000  | 127.000  | 243.840  | 243.840  |
| ANODE          | 2          | 335.280  | 127.000  | 439.420  | 231.140  |
| ADJ            | 3          | 716.280  | 130.810  | 833.120  | 243.840  |
| Do not connect | 4          | 1073.150 | 133.350  | 1169.670 | 229.870  |
| Do not connect | 5          | 1217.930 | 133.350  | 1314.450 | 229.870  |
| Do not connect | 6          | 1075.690 | 316.230  | 1172.210 | 412.750  |
| Do not connect | 7          | 1197.610 | 420.370  | 1294.130 | 516.890  |
| Do not connect | 8          | 1073.150 | 567.690  | 1169.670 | 664.210  |
| Do not connect | 9          | 1200.150 | 890.270  | 1296.670 | 986.790  |
| Do not connect | 10         | 1116.330 | 1032.510 | 1212.850 | 1129.030 |
| CATHODE        | 11         | 902.970  | 929.640  | 1004.570 | 1066.800 |
| CATHODE        | 12         | 703.580  | 1115.060 | 820.420  | 1229.360 |







NOTE: All component values shown are nominal.

### ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>

over operating free-air temperature range (unless otherwise noted)

|                  |                                                       | MIN | MAX | UNIT |
|------------------|-------------------------------------------------------|-----|-----|------|
| I <sub>R</sub>   | Reverse current                                       |     | 20  | mA   |
| I <sub>F</sub>   | Forward current                                       |     | 10  | mA   |
| TJ               | Operating virtual junction temperature <sup>(2)</sup> |     | 150 | °C   |
| T <sub>stg</sub> | Storage temperature range                             | -65 | 150 | °C   |

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) Maximum power dissipation is a function of  $T_J(max)$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any allowable ambient temperature is  $P_D = (T_J(max) - T_A)/\theta_{JA}$ . Operating at the absolute maximum  $T_J$  of 150°C can affect reliability.

## **RECOMMENDED OPERATING CONDITIONS**

|                |                                      | MIN | MAX | UNIT |
|----------------|--------------------------------------|-----|-----|------|
| T <sub>A</sub> | Operating free-air temperature range | -55 | 125 | °C   |



## **ELECTRICAL CHARACTERISTICS**

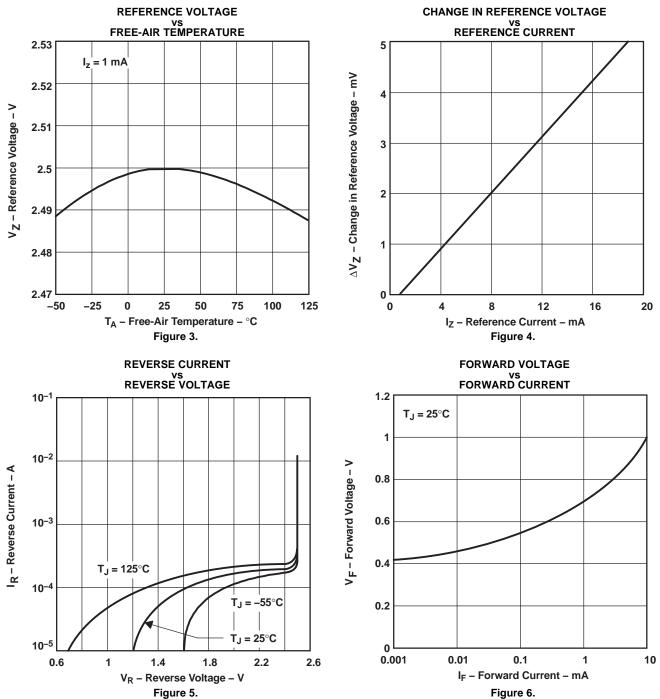
at specified free-air temperature

|                         |                                                                           | TEAT CONDITIONS                                                            | -          | LT1009M |         |       |          |  |
|-------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|------------|---------|---------|-------|----------|--|
|                         | PARAMETER                                                                 | TEST CONDITIONS T <sub>A</sub>                                             |            | MIN     | TYP MAX |       | UNIT     |  |
| M                       | Deference veltage                                                         | 1 1                                                                        | 25°C       | 2.49    | 2.5     | 2.51  | V        |  |
| Vz                      | Reference voltage                                                         | $I_Z = 1 \text{ mA}$                                                       | Full range | 2.46    |         | 2.535 | v        |  |
| V <sub>F</sub>          | Forward voltage                                                           | I <sub>F</sub> = 2 mA                                                      | 25°C       | 0.4     |         | 1     | V        |  |
|                         |                                                                           | $I_Z = 1 \text{ mA},$<br>$V_{ADJ} = \text{GND to } V_Z$                    | 25%0       | 125     |         |       |          |  |
|                         | Adjustment range                                                          | $I_Z = 1 \text{ mA},$<br>$V_{ADJ} = 0.6 \text{ V to } V_Z - 0.6 \text{ V}$ | — 25°C     | 45      |         |       | mV       |  |
| $\Delta V_{Z(temp)}$    | Change in reference voltage with temperature                              |                                                                            | Full range |         |         | 15    | mV       |  |
| $\alpha V_Z$            | Average temperature<br>coefficient of reference<br>voltage <sup>(1)</sup> | $I_Z = 1 \text{ mA}, V_{ADJ} = \text{open}$                                | Full range |         | 20      | 35    | ppm/ °C  |  |
| A) /                    | Change in reference                                                       |                                                                            | 25°C       |         | 6       | 10    |          |  |
| $\Delta V_Z$            | voltage with current                                                      | $I_{Z} = 400 \ \mu A \text{ to } 10 \ \text{mA}$                           | Full range |         |         | 12    | mV       |  |
| $\Delta V_Z / \Delta t$ | Long-term change in<br>reference voltage                                  | I <sub>Z</sub> = 1 mA                                                      | 25°C       |         | 20      |       | ppm/ khr |  |
| 7                       | Deference impedance                                                       | 1 1                                                                        | 25°C       |         | 0.6     | 1.6   | 0        |  |
| Zz                      | Reference impedance                                                       | $I_Z = 1 \text{ mA}$                                                       | Full range |         |         | 1.8   | Ω        |  |

(1) The deviation parameter V<sub>Z(dev)</sub> is defined as the difference between the maximum and minimum values obtained over the recommended operating temperature range, measured at I<sub>Z</sub> = 1 mA. The average full-range temperature coefficient of the reference voltage (αV<sub>Z</sub>) is defined as:

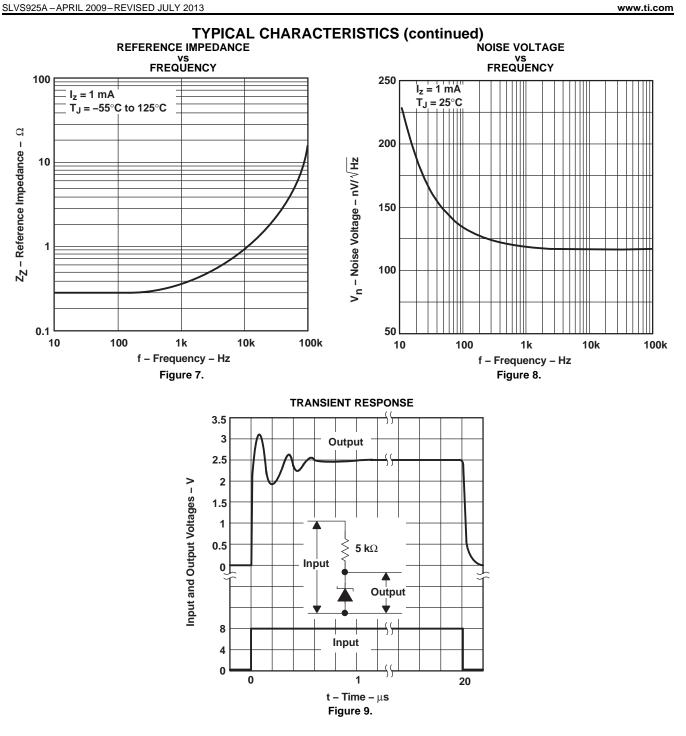


 $\alpha V_Z$  can be positive or negative, depending upon whether the minimum  $V_Z$  or maximum  $V_Z$ , respectively, occurs at the lower temperature.




SLVS925A - APRIL 2009 - REVISED JULY 2013

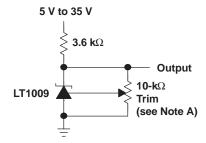
#### www.ti.com


## **TYPICAL CHARACTERISTICS**

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

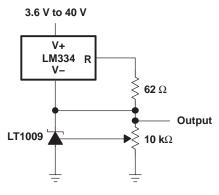


Texas INSTRUMENTS


SLVS925A - APRIL 2009-REVISED JULY 2013






#### SLVS925A - APRIL 2009-REVISED JULY 2013

## **APPLICATION INFORMATION**



A. This does not affect temperature coefficient. It provides ±5% trim range.

### Figure 10. 2.5-V Reference





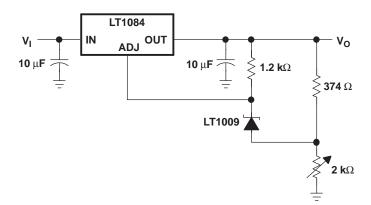



Figure 12. Power Regulator With Low Temperature Coefficient



SLVS925A - APRIL 2009-REVISED JULY 2013

www.ti.com

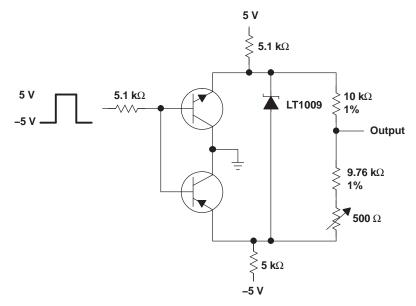



Figure 13. Switchable ±1.25-V Bipolar Reference

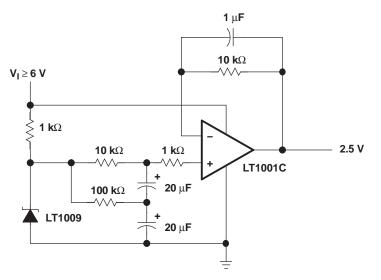



Figure 14. Low-Noise 2.5-V Buffered Reference



10-Dec-2020

## PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2) | Lead finish/<br>Ball material | MSL Peak Temp<br>(3) | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|-----------------|-------------------------------|----------------------|--------------|-------------------------|---------|
| LT1009MKGD1      | ACTIVE        | XCEPT        | KGD                | 0    | 100            | RoHS & Green    | Call TI                       | N / A for Pkg Type   | -55 to 125   |                         | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(<sup>6)</sup> Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF LT1009M :



# PACKAGE OPTION ADDENDUM

10-Dec-2020

Catalog: LT1009

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated