- Members of the Texas Instruments Widebus $+^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Impedance State During Power Up and Power Down
- Released as DSCC SMD 5962-9557801NXD
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}, 64-\mathrm{mA} \mathrm{I}_{\mathrm{OL}}$)
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include 100-Pin Plastic Thin Quad Flat (PZ) Package With $14 \times 14-\mathrm{mm}$ Body Using $0.5-\mathrm{mm}$ Lead Pitch and Space-Saving 100-Pin Ceramic Quad Flat (HS) Package ${ }^{\dagger}$

\dagger The HS package is not production released.

SN54ABTH32543... HS PACKAGE \dagger
(TOP VIEW)

\dagger For HS package availability, please contact the factory or your local TI Field Sales Office.

description

The 'ABTH32543 are 36 -bit registered transceivers that contain two sets of D-type latches for temporary storage of data flowing in either direction. These devices can be used as two 18-bit transceivers or one 36 -bit transceiver. Separate latch-enable ($\overline{\mathrm{LEAB}}$ or $\overline{\mathrm{LEBA}}$) and output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{\mathrm{OEBA}}$) inputs are provided for each register to permit independent control in either direction of data flow.
The A-to-B enable ($\overline{\mathrm{CEAB}})$ input must be low to enter data from A or to output data from B. If $\overline{\mathrm{CEAB}}$ is low and $\overline{\mathrm{LEAB}}$ is low, the A-to- B latches are transparent; a subsequent low-to-high transition of $\overline{\mathrm{LEAB}}$ puts the A latches in the storage mode. With $\overline{C E A B}$ and $\overline{O E A B}$ both low, the 3 -state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$ inputs.

description (continued)

When V_{Cc} is between 0 and 2.1 V , the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above $2.1 \mathrm{~V}, \overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54ABTH32543 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABTH32543 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

| c | FUNCTION TABLE |
| :---: | :---: | :---: | :---: |
| (each 18-bit section) | |

† A-to-B data flow is shown; B-to-A flow control is the same except that it use $\overline{\mathrm{CEBA}}, \overline{\mathrm{LEBA}}$, and $\overline{\mathrm{OEBA}}$.
\ddagger Output level before the indicated steady-state input conditions were established

36-BIT REGISTERED BUS TRANSCEIVERS

WITH 3-STATE OUTPUTS

logic diagram (positive logic)

Pin numbers shown are for the PZ package.

INSTRUMENTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 3)

			SN54ABTH32543		SN74ABTH32543		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{I}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{OH}}$	High-level output current			-24		-32	mA
lOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
$\Delta t / \Delta \mathrm{V}_{\mathrm{CC}}$	Power-up ramp rate		200		200		$\mu \mathrm{s} / \mathrm{V}$
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: Unused control pins must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54ABTH32543			SN74ABTH32543			UNIT		
		MIN	TYP \dagger	MAX	MIN	TYP†	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2			-1.2	V
VOH		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.5			2.5			V		
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-3 \mathrm{~mA}$	3			3					
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-24 \mathrm{~mA}$	2								
		$\mathrm{IOH}=-32 \mathrm{~mA}$				2						
V_{OL}			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$	0.55			0.550.55V			V	
		$\mathrm{IOL}=64 \mathrm{~mA}$										
$\mathrm{V}_{\text {hys }}$		$\mathrm{V}_{\mathrm{CC}}=0$ to $5.5 \mathrm{~V} \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		100			100			mV		
1	Control inputs								± 1	$\mu \mathrm{A}$		
	A or B ports	$\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to 5.5 V ,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND						± 20			
	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	± 1								
	A or B ports					± 20						
$1 /$ (hold)	A or B ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$				100			$\mu \mathrm{A}$		
			$\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}$				-100					
IozPU ${ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=0$ to $2.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $2.7 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{X}$				± 50			± 50	$\mu \mathrm{A}$		
${ }^{\text {OZZPD }}{ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $0, \mathrm{~V}_{\mathrm{O}}=0.5$	V to $2.7 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{X}$			± 50			± 50	$\mu \mathrm{A}$		
$l_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$						± 100	$\mu \mathrm{A}$		
ICEX		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50			50	$\mu \mathrm{A}$		
IO§		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-100	-180	mA		
ICC		$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high			3			3	mA		
		Outputs low			20			20				
		Outputs disabled			2			2				
$\left.{ }^{\text {a }} \mathrm{CC}\right]^{\text {d }}$			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				1			1	mA	
C_{i}	Control inputs		$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V			3.5			3.5		pF	
C_{io}	A or B ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			9.5			9.5		pF		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This parameter is specified by characterization.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{\#} \end{aligned}$		SN54ABTH32543		SN74ABTH32543		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t_{w}	Pulse duration, $\overline{\mathrm{LEAB}}$ or $\overline{\mathrm{LEBA}}$ low		3.3		3.3		3.3		ns
$t_{\text {su }}$	Setup time	Data before $\overline{\overline{L E A B}} \uparrow$ or $\overline{\mathrm{LEBA}} \uparrow$	2.1		2.6		2.1		ns
		Data before $\overline{\overline{C E A B}} \uparrow$ or $\overline{\overline{\mathrm{EEBA}}} \uparrow$	1.7		2		1.7		
$t_{\text {h }}$	Hold time	Data after $\overline{\overline{L E A B}} \uparrow$ or $\overline{\overline{L E B A}} \uparrow$	0.6		1.1		0.6		ns
		Data after $\overline{\mathrm{CEAB}} \uparrow$ or $\overline{\mathrm{CEBA}} \uparrow$	0.9		1.2		0.9		

[^0]switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \dagger \\ & \hline \end{aligned}$			SN54ABTH32543		SN74ABTH32543		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1	3.5	5.2	0.5	6.3	1	5.9	ns
tPHL			1	3.5	5.1	0.5	5.9	1	5.7	
tplH	$\overline{\mathrm{LE}}$	A or B	1.9	4.6	6.3	0.8	7.9	1.9	7.5	ns
tpHL			1.9	4.3	5.9	0.8	6.9	1.9	6.6	
tpZH	$\overline{\mathrm{CE}}$	A or B	1.7	4.3	6.7	0.8	8.3	1.7	8	ns
tPZL			2.6	5.2	8	1	8.8	2.6	8.8	
tPHZ	$\overline{C E}$	A or B	1.6	3.8	6.6	0.5	7.4	1.6	7.1	ns
tpLZ			2.4	4.6	7	1	7.9	2.4	7.5	
tpZH	$\overline{\mathrm{OE}}$	A or B	1.4	3.8	6.1	0.5	7.6	1.4	7.3	ns
tpZL			2.3	4.7	7.4	1	8.2	2.3	8.1	
tPHZ	$\overline{\mathrm{OE}}$	A or B	1.3	3.4	6.1	0.5	6.7	1.3	6.5	ns
tplZ			2	4.2	6.6	0.8	7.2	2	6.9	

† These limits apply only to the SN74ABTH32543.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tpLZ/tPZL	7 V
tPHZ/tPZH	Open

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

TEXAS
InsTruments

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
5962-9557801NXD	ACTIVE	LQFP	PZ	100	90	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { 9557801NXD } \\ & \text { ABTH32543 } \end{aligned}$	Samples
SN74ABTH32543PZ	ACtive	LQFP	PZ	100	90	RoHS \& Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	ABTH32543	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis

OTHER QUALIFIED VERSIONS OF SN54ABTH32543, SN74ABTH32543 :
-Catalog : SN74ABTH32543

- Military : SN54ABTH32543

NOTE: Qualified Version Definitions:
-Catalog - Tl's standard catalog product

- Military - QML certified for Military and Defense Applications

TRAY

Chamfer on Tray corner indicates Pin 1 orientation of packed units.
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature $\left({ }^{\circ} \mathbf{C}\right)$	L (mm)	W $(\mathbf{m m})$	K0 $(\boldsymbol{\mu m})$	P1 $(\mathbf{m m})$	$\mathbf{C L}$ $(\mathbf{m m})$	$\mathbf{C W}$ $(\mathbf{m m})$
5962-9557801NXD	PZ	LQFP	100	90	6×15	150	315	135.9	7620	20.3	15.4	15.45
SN74ABTH32543PZ	PZ	LQFP	100	90	6×15	150	315	135.9	7620	20.3	15.4	15.45

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

PZ (S-PQFP-G100)

PLASTIC QUAD FLAT PACK

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
D. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: \# These limits apply only to the SN74ABTH32543.

