

These transceivers are capable of sinking 188 mA of IOL current, which facilitates switching $25-\Omega$ transmission lines on the incident wave. The distributed V_{CC} and GND pins minimize switching noise for more-reliable system operation.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

description (continued)

When V_{CC} is between 0 and 2.1 V , the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V , $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN54ABTH25245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABTH25245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

INPUTS		OPERATION
$\overline{\mathrm{OE}}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DW, JT, and NT packages.

logic diagram (positive logic)

Pin numbers shown are for the DW, JT, and NT packages.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_{I} (except I/O ports) (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the disabled or power-off state, V_{O}	-0.5 V to 5.5 V
Voltage range applied to any output in the high state, V_{O}	-0.5 V to V_{Cc}
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Current into any output in the low state, I_{0} : SN74ABTH25245 (A port)	376 mA
SN74ABTH25245 (B port)	128 mA
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): DW package	$81^{\circ} \mathrm{C} / \mathrm{W}$
NT package	$67^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.
recommended operating conditions (see Note 3)

				SN54ABTH25245	SN74AB	5245	
				MIN MAX	MIN	MAX	
V_{CC}	Supply voltage			$4.5 \quad 5.5$	4.5	5.5	V
V_{IH}	High-level input voltage			2	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage			$0 \quad \mathrm{VCC}$	0	V_{CC}	V
IIK	Input clamp current			-18		-18	mA
			A port	(\% -80		-80	mA
OH	-level output current		B port	A -32		-32	mA
	Low-level output current		A port	$\bigcirc 188$		188	mA
IOL	Low-level output current		B port	- 64		64	
	Input transition rise or fall rate	Outputs enabled	Control inputs	ए 4		4	ns V
$\Delta t \Delta v$	Input transition rise or fall rate	Outputs enabled	A or B ports	10		10	ns/v
$\Delta t / \Delta \mathrm{V}_{\mathrm{CC}}$	Power-up ramp rate			200	200		$\mu \mathrm{s} / \mathrm{V}$
T_{A}	Operating free-air temperature			-55 125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: Unused control pins must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

* On products compliant to MIL-PRF-38535, this parameter does not apply.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This parameter is characterized, but not production tested.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABTH25245		SN74ABTH25245		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1	2.3	3.5	1	\%	1	3.9	ns
tPHL			1	2.4	3.5	1		1	4.3	
tPZH	$\overline{O E}$	A or B	1.5	3.7	5.4	1.5		1.5	6.5	ns
tPZL			1.4	4	5.8	1.4		1.4	6.8	
tPHZ	$\overline{O E}$	A or B	2	4.3	6.1	\bigcirc		2	7.2	ns
tpLZ			2	3.9	5.8	Q 2		2	6.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S 1
$\mathrm{tPLH}^{\mathbf{t}} \mathrm{tPHL}$	Open
$\mathrm{t}^{\mathrm{t} L Z} / \mathrm{t} \mathrm{PZL}$	7 V
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{tPZH}$	Open

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74ABTH25245DWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ABTH25245DWR	SOIC	DW	24	2000	350.0	350.0	43.0

TUBE

— B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T ($\boldsymbol{\mu m}$)	B (mm)
SN74ABTH25245DW	DW	SOIC	24	25	506.98	12.7	4826	6.6

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

