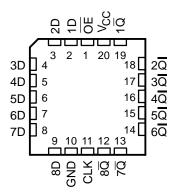
SN54ACT563 ... J OR W PACKAGE SN74ACT563 ... DB, DW, N, NS, OR PW PACKAGE

(TOP VIEW)

SCAS550B - NOVEMBER 1995 - REVISED OCTOBER 2002

- 4.5-V to 5.5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 8.5 ns at 5 V
- Inputs Are TTL-Voltage Compatible
- 3-State Inverted Outputs Drive Bus Lines Directly
- Flow-Through Architecture to Optimize PCB Layout

description/ordering information


The 'ACT563 devices are octal D-type transparent latches with 3-state outputs. When the latch-enable (LE) input is high, the \overline{Q} outputs are set to the complements of the data (D) inputs. When LE is taken low, the \overline{Q} outputs are latched at the inverse logic levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input places the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased high logic level provide the capability to drive bus lines without interface or pullup components.

OE does not affect internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

	•		
OE		\cup_{20}	vcc
1D	2	19] 1Q
2D	[] З	18] 2Q
3D	4	17] 3Q
4D	5	16	4Q
5D	6	15] 5Q
6D	7	14] 6 <mark>Q</mark>
7D	8]	13] 7Q
8D	9	12	8Q
GND	[10	11	LE
	-		•

SN54ACT563 . . . FK PACKAGE (TOP VIEW)

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

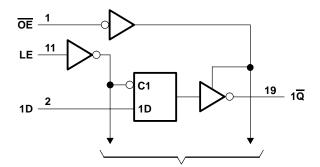
ТА	PACKAGE	≞†	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	PDIP – N	-N Tube SN74ACT563N				
–40°C to 85°C	SOIC - DW	Tube	SN74ACT563DW	ACT563		
	50IC - DW	Tape and reel	SN74ACT563DWR	AC1503		
-40°C 10 85°C	SOP – NS	Tape and reel	SN74ACT563NSR	ACT563		
	SSOP – DB	Tape and reel	SN74ACT563DBR	AD563		
	TSSOP – PW	Tape and reel	SN74ACT563PWR	AD563		
	CDIP – J	Tube	SNJ54ACT5634J	SNJ54ACT563J		
–55°C to 125°C	CFP – W Tube		SNJ54ACT563W	SNJ54ACT563W		
	LCCC – FK	Tube	SNJ54ACT563FK	SNJ54ACT563FK		

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2002, Texas Instruments Incorporated

SCAS550B - NOVEMBER 1995 - REVISED OCTOBER 2002

	FUNCTION TABLE (each latch)											
	INPUTS		OUTPUT									
OE	LE	D	Q									
L	Н	Н	L									
L	н	L	н									
L	L	Х	\overline{Q}_0									
Н	Х	Х	Z									

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V_I (see Note 1) Output voltage range, V_O (see Note 1) Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$ Continuous output current, I_O ($V_O = 0$ to V_{CC}) Continuous current through V_{CC} or GND	-0 -0.5 V to V -0.5 V to V -0.5 V to V DB package DW package N package NS package PW package	CC + 0.5 V CC + 0.5 V ±20 mA ±20 mA ±50 mA ±200 mA 70°C/W 58°C/W 69°C/W 60°C/W
Storage temperature range, T _{stg}	PW package65°0	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCAS550B - NOVEMBER 1995 - REVISED OCTOBER 2002

recommended operating conditions (see Note 3)

		SN54A	CT563	SN74A	CT563	
		MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2	2	2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	Vcc	0	VCC	V
Vo	Output voltage	0,	Vcc	0	VCC	V
ЮН	High-level output current	D D	-24		-24	mA
IOL	Low-level output current	20	24		24	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	2	8		8	ns/V
TA	Operating free-air temperature	-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS		T	A = 25°C	;	SN54A	CT563	SN74A	CT563	UNIT	
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
	1 50 HA	4.5 V	4.4	4.49		4.4		4.4			
	I _{OH} = -50 μA	5.5 V	5.4	5.49		5.4		5.4			
Vou	1011 - 24 mA	4.5 V	3.86			3.7		3.76		V	
Vон	I _{OH} = -24 mA	5.5 V	4.86			4.7		4.76		v	
	I _{OH} = -50 mA [†]	5.5 V				3.85	2				
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V					VIE	3.85			
	le 50 uA	4.5 V		0.001	0.1		0.1		0.1		
	I _{OL} = 50 μA	5.5 V		0.001	0.1	~	0.1		0.1	V	
Ve	a = 24 mA	4.5 V			0.36	UC D	0.5		0.44		
VOL	I _{OL} = 24 mA	5.5 V			0.36	70	0.5		0.44		
	I _{OL} = 50 mA [†]	5.5 V				54	1.65				
	I _{OL} = 75 mA [†]	5.5 V							1.65		
I _{OZ}	$V_{O} = V_{CC}$ or GND	5.5 V			±0.25		±5		±2.5	μA	
lj	$V_{I} = V_{CC} \text{ or } GND$	5.5 V			±0.1		±1		±1	μA	
ICC	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V			4		80		40	μA	
ΔI_{CC}^{\ddagger}	One input at 3.4 V, Other inputs at GND or V _{CC}	5.5 V		0.6			1.6		1.5	mA	
Ci	$V_{I} = V_{CC} \text{ or } GND$	5 V		4.5						pF	

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 2 ms.

[‡]This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

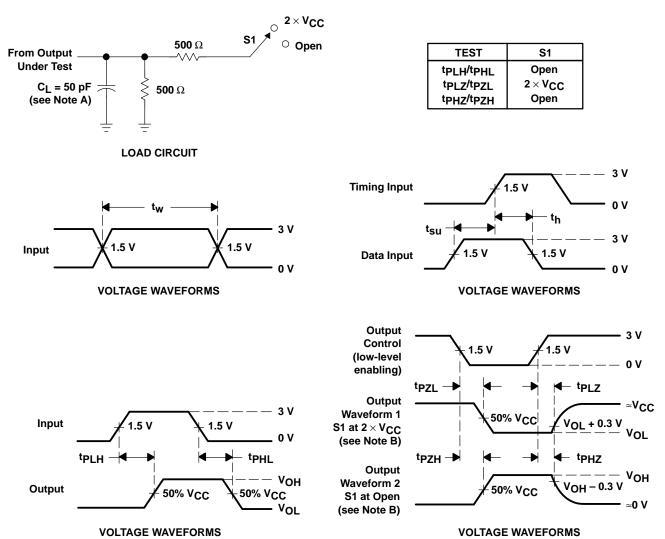
		T _A = 2	25°C	SN54ACT563	SN74A	SN74ACT563	
		MIN	MAX		MIN	MAX	UNIT
tw	Pulse duration, LE high	3		5	3		ns
t _{su}	Setup time, data before LE \downarrow	4		4.5	4.5		ns
th	Hold time, data after LE \downarrow	0		1.5	0		ns

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCAS550B - NOVEMBER 1995 - REVISED OCTOBER 2002

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	Т	ק = 25°C	;	SN54ACT563		SN74ACT563		UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	D	Q	3	7	11.5	1	14.5	2.5	12.5	ns
^t PHL	D	ġ	3	6	10	1	12	2.5	11	115
^t PLH	LE	Q	3	6.5	10.5	1	12.5	2.5	11.5	20
^t PHL	LL	ġ	2.5	5.5	9.5	1	Q 11.5	2	10.5	ns
^t PZH	OE	-	2.5	5.5	9	Q.	11.5	2	10	
^t PZL	ÛE	Q	2	5.5	8.5	$\overline{\Delta}_{0}$	11	2	9.5	ns
^t PHZ	ŌĒ	Q	3.5	6.5	10.5	a 1	12	2.5	11.5	200
^t PLZ	UE	y y	2	4.5	8	1	9.5	1	8.5	ns


operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER	TEST CONDITIONS TYP CL = 50 pF. f = 1 MHz 50		
C _{pd} Power dissipation capacitance	$C_L = 50 \text{ pF}, f = 1 \text{ MHz}$		pF

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCAS550B - NOVEMBER 1995 - REVISED OCTOBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
SN74ACT563DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT563	Samples
SN74ACT563N	ACTIVE	PDIP	Ν	20	20	RoHS & Non-Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74ACT563N	Samples
SN74ACT563PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AD563	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

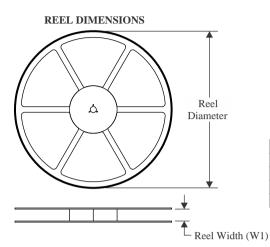
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

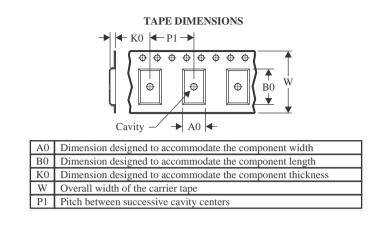
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

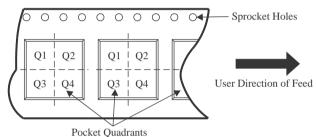
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

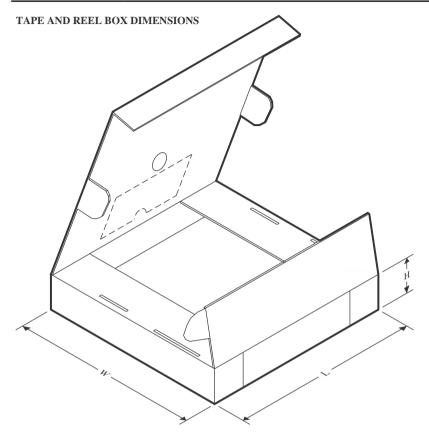


Texas


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

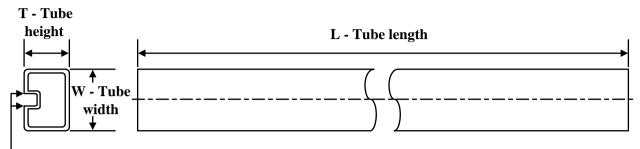

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ACT563DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74ACT563PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

16-Apr-2024

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ACT563DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74ACT563PWR	TSSOP	PW	20	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

16-Apr-2024

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN74ACT563N	N	PDIP	20	20	506	13.97	11230	4.32

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated