

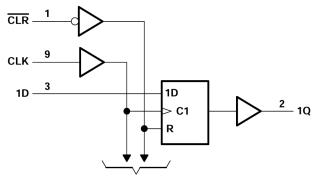
SN74AHCT174 SCLS419G – JUNE 1998 – REVISED MAY 2023

SN74AHCT174 Hex D-Type Flip-Flops with Clear

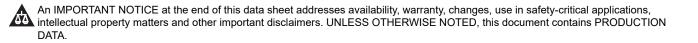
1 Features

- Inputs are TTL-voltage compatible
- · Contain six flip-flops with single-rail outputs
- Latch-Up performance exceeds 250 mA per JESD 17

2 Applications


- Buffer/Storage Registers
- Shift Registers
- Pattern Generators

3 Description


These positive-edge-triggered D-type flip-flops have a direct clear ($\overline{\text{CLR}}$) input.

Package Information							
PART NUMBER	PACKAGE1	BODY SIZE (NOM)					
	D (SOIC, 16)	9.00 mm × 3.90 mm					
	DB (SSOP, 16)	6.2 mm × 5.3 mm					
SN74AHCT174	N (PDIP , 16)	19.3 mm × 6.35 mm					
	NS (SOP, 16)	10.3 mm × 5.3 mm					
	PW (TSSOP, 16)	5.00 mm × 4.40 mm					

1. For all available packages, see the orderable addendum at the end of the data sheet.

To Five Other Channels Figure 3-1. Logic Diagram (Positive Logic)

Table of Contents

1 Features	1
2 Applications	1
3 Description	
4 Revision History	
5 Pin Configuration and Functions	3
6 Specifications	4
6.1 Absolute Maximum Ratings	4
6.2 ESD Ratings	4
6.3 Recommended Operating Conditions	
6.4 Electrical Characteristics	4

6.5 Timing Requirements	5
6.6 Switching Characteristics	
6.7 Noise Characteristics	5
6.8 Operating Characteristics	6
7 Parameter Measurement Information	7
8 Detailed Description	8
8.1 Overview	8
8.2 Functional Block Diagram	8
8.3 Device Functional Modes	

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (April 2002) to Revision G (May 2023)

Page

5 Pin Configuration and Functions

			_	1
CLR [1	U	16] v _{cc}
1Q 🛛	2		15] 6Q
1D 🛛	3		14	6 D
2D 🛛	4		13	5 D
2Q 🛛	5		12	5 Q
3D 🛛	6		11	4 D
3Q 🛛	7		10	4 Q
GND [8		9] сік

Figure 5-1. Package SN74AHCT174 D, DB, DGV, N, NS, or PW Package (Top View)

P	IN	I/O ⁽¹⁾	DESCRIPTION
NO.	NAME	1, 1,0(*)	DESCRIPTION
1	CLR	I	Clear all channels, active low
2	1Q	0	Channel 1, Q output
3	1D	I	Channel 1, D input
4	2D	I	Channel 2, D input
5	2Q	0	Channel 2, Q output
6	3D	I	Channel 3, D input
7	3Q	0	Channel 3, Q output
8	GND	—	Ground
9	CLK	I	Clock all channels, rising edge triggered
10	4Q	0	Channel 4, Q output
11	4D	I	Channel 4, D input
12	5Q	0	Channel 5, Q output
13	5D	I	Channel 5, D input
14	6D	I	Channel 6, D input
15	6Q	0	Channel 6, Q output
16	V _{CC}	_	Positive supply

Table 5-1. Pin Functions

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
V _I ¹	Input voltage range		-0.5	7	V
V _O ¹	Output voltage range		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	(V ₁ < 0)		-20	mA
I _{OK}	Output clamp current	$(V_O < 0 \text{ or } V_O > V_{CC})$		±20	mA
I _O	Continuous output current	$(V_{O} = 0 \text{ to } V_{CC})$		±25	mA
	Continuous current through V _{CC} or GND			±50	mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

			VALUE	UNIT	L
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000		1
V _(ESD)	Electrostatic discharge	Machine Model (MM), per JEDEC specification	±200	V	
		Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 (2)	±1000		

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

(see Note 1)

		SN74AHC	SN74AHCT174	
		MIN MAX 4.5 5.4 2 0.4 0 5.4 0 5.4 0 5.4 0 V _{CI} 4 -4	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.5	V
V _{IH}	High-level input voltage	2		V
V _{IL}	Low-level input voltage		0.8	V
VI	Input voltage	0	5.5	V
Vo	Output voltage	0	V _{CC}	V
I _{ОН}	High-level output current		-8	mA
I _{OL}	Low-level output current		8	mA
Δt/Δv	Input transition rise or fall time		20	ns/V
T _A	Operating free-air temperature	-40	85	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

6.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V	T _A = 25 °C			SN74AH	UNIT
PARAMETER		V _{cc}	MIN	ТҮР	MAX	MIN	MAX	UNIT
N	I _{OH} = -50 μA	4.5 V	4.4	4.5		4.4		V
V _{OH}	I _{OH} = -8 mA	4.5 V	3.94			3.8		v

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	y v	T _A = 25 °C			SN74AHCT174		UNIT
PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	ТҮР	MAX	MIN	MAX	UNIT
V.	I _{OL} = 50 μA	4.5 V			0.1		0.1	V
V _{OL}	I _{OL} = 8 mA	4.5 V			0.36		0.44	v
lı –	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1		±1	μA
I _{CC}	$V_1 = V_{CC} \text{ or }$ GND, $I_0 = 0$	5.5 V			4		40	μA
$\Delta I_{CC}^{(1)}$	One input at 3.4 V, Other inputs at V_{CC} or GND	5.5 V			1.35		1.5	μA
Ci	V _I = V _{CC} or GND	5 V		2	10		10	pF

(1) This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

6.5 Timing Requirements

over recommended operating free-air temperature range, $V_{CC} = 5 V \pm 0.5 V$ (unless otherwise noted)

			T _A = 25	T _A = 25°C SN74AHCT174		SN74AHCT174	
			MIN	MAX	MIN	MAX	UNIT
t _w Pulse duration	CLR low	5		5		20	
		CLK high or low	5		5		ns
+		Data	5		5		20
Setup time t	Setup time before CLK↑	CLR inactive	3.5		3.5		ns
t _h	Hold time, data after CLK↑	·	0		0		ns

6.6 Switching Characteristics

over recommended operating free-air temperature range, $V_{CC} = 5 V \pm 0.5 V$ (unless otherwise noted) (see Figure 7-1)

PARAMETER	FROM	то	LOAD	Т	T _A = 25°C		SN74AHCT174		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
£			C _L = 15 pF	100 ⁽¹⁾	135 ⁽¹⁾		80		MHz
f _{max}			C _L = 50 pF	80	115		65		IVITZ
t _{PHL}	CLR	Any Q	C _L = 15 pF		7.6 ⁽¹⁾	10.4 ⁽¹⁾	1	13	ns
t _{PLH}	01.14	Any Q	C = 15 pE		5.8 ⁽¹⁾	7.8 ⁽¹⁾	1	9	20
t _{PHL}	CLK		C _L = 15 pF		5.8 ⁽¹⁾	7.8 ⁽¹⁾	1	9	ns
t _{PHL}	CLR	Any Q	C _L = 50 pF		8.1	11.4	1	13	ns
t _{PLH}	CLK	Any Q	C = 50 pF		6.3	8.8	1	10	20
t _{PHL}	CLK		C _L = 50 pF		6.3	8.8	1	10	ns
t _{sk(o)}			C _L = 50 pF			1 (2)		1	ns

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

(2) On products compliant to MIL-PRF-38535, this parameter does not apply.

6.7 Noise Characteristics

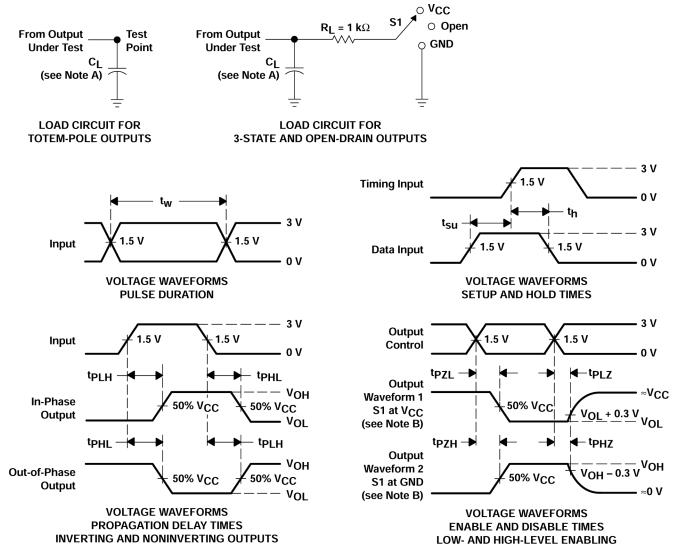
 V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C (see Note 4)

	PARAMETER	SN7	UNIT		
	FARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.8		V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.8		V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}	4			V
V _{IH(D)}	High-level dynamic input voltage	2			V

 V_{CC} = 5 V, C_{L} = 50 pF, T_{A} = 25°C (see Note 4)

	PARAMETER	SN7	UNIT		
	PARAMETER	MIN	TYP	MAX	UNIT
V _{IL(D)}	Low-level dynamic input voltage			0.8	V

(1) Characteristics are for surface-mount packages only.


6.8 Operating Characteristics

T_A = 25°C

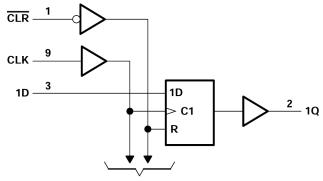
	PARAMETER	TEST CONDITIONS	ТҮР	UNIT
C _{pd}	Power dissipation capacitance	No load, f = 1 MHz	28	pF

7 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z₀ = 50 Ω , t_r \leq 3 ns, t_f \leq 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 7-1. Load Circuit and Voltage Waveforms

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{CC}
t _{PHZ} /t _{PZH}	GND
Open Drain	V _{CC}



8 Detailed Description

8.1 Overview

Information at the data (D) inputs meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going edge of CLK. When CLK is at either the high or low level, the D input has no effect at the output.

8.2 Functional Block Diagram

To Five Other Channels

Figure 8-1. Logic Diagram (Positive Logic)

Pin numbers shown are for the D, DB, DGV, J, N, NS, PW, and W packages.

8.3 Device Functional Modes

	INPUTS ⁽¹⁾		OUTPUT					
CLR	CLK	D	Q					
L	Х	Х	L					
Н	↑ (Н	Н					
Н	↑ (L	L					
Н	L	Х	Qo					

Table 8-1. Function Table

(1) H = High Voltage Level, L = Low Voltage Level, X = Do not Care, Z = High Impedance

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Gly	(2)	(6)	(3)		(4/5)	
SN74AHCT174DBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HB174	Samples
SN74AHCT174DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHCT174	Samples
SN74AHCT174N	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74AHCT174N	Samples
SN74AHCT174NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHCT174	Samples
SN74AHCT174PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HB174	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

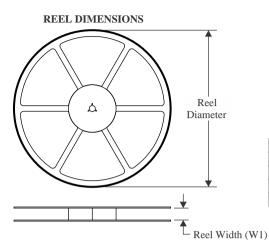
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

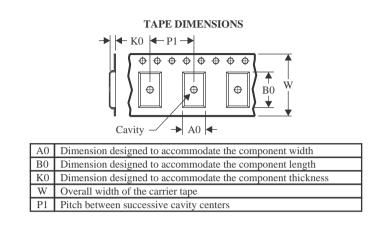
www.ti.com

PACKAGE OPTION ADDENDUM

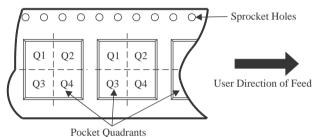
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



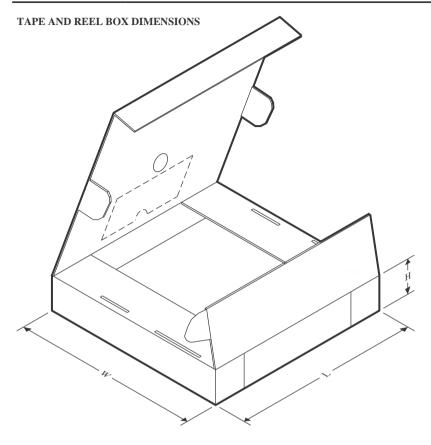

Texas

*All dimensions are nominal


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

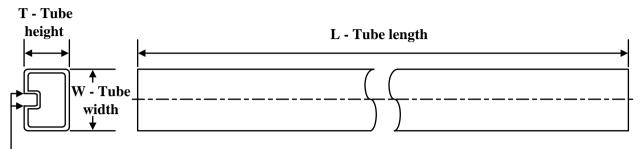

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHCT174DBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74AHCT174DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74AHCT174NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74AHCT174PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

16-Apr-2024

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHCT174DBR	SSOP	DB	16	2000	356.0	356.0	35.0
SN74AHCT174DR	SOIC	D	16	2500	340.5	336.1	32.0
SN74AHCT174NSR	SO	NS	16	2000	356.0	356.0	35.0
SN74AHCT174PWR	TSSOP	PW	16	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

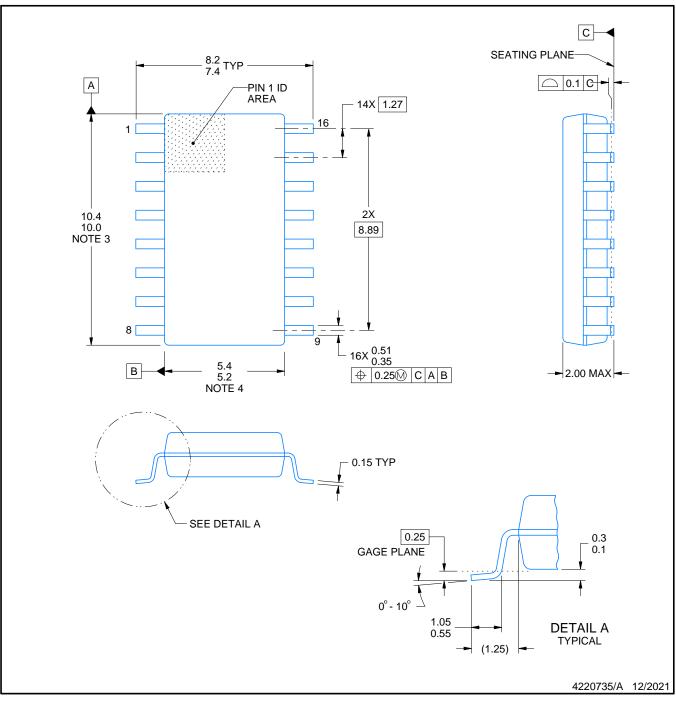
16-Apr-2024

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN74AHCT174N	N	PDIP	16	25	506	13.97	11230	4.32
SN74AHCT174N	N	PDIP	16	25	506	13.97	11230	4.32


NS0016A

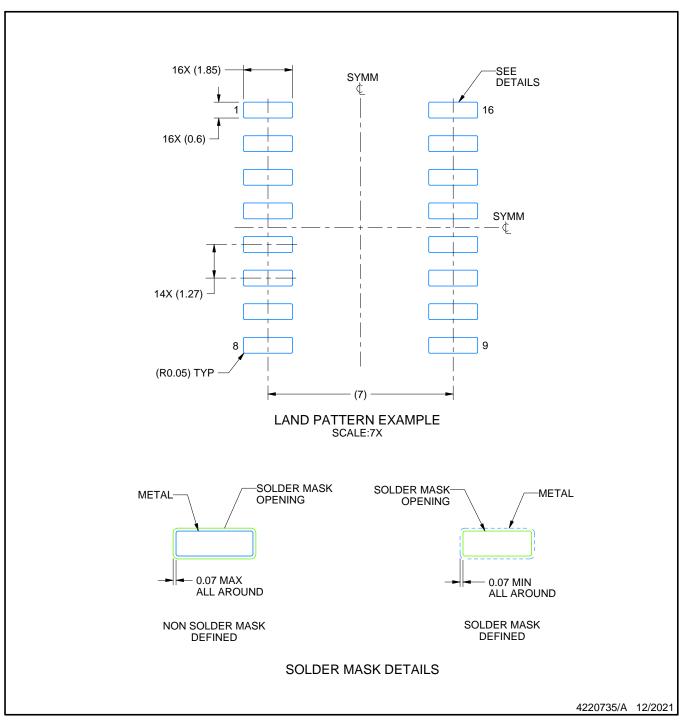
PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

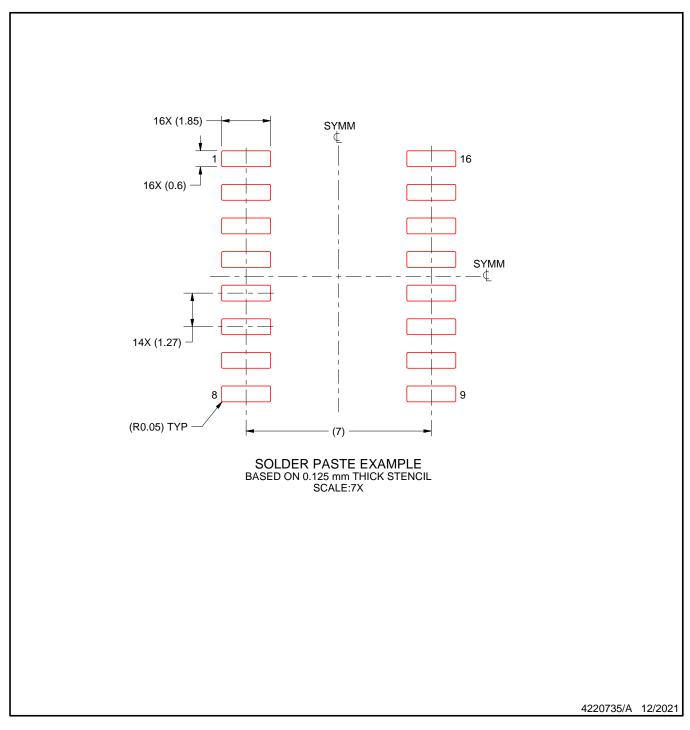
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NS0016A

EXAMPLE STENCIL DESIGN

SOP - 2.00 mm max height

SOP

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

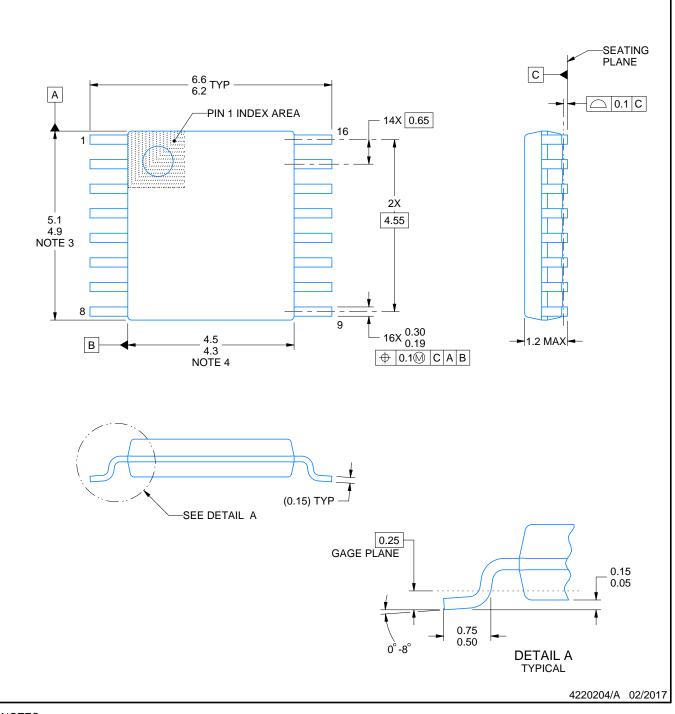
8. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.


PW0016A

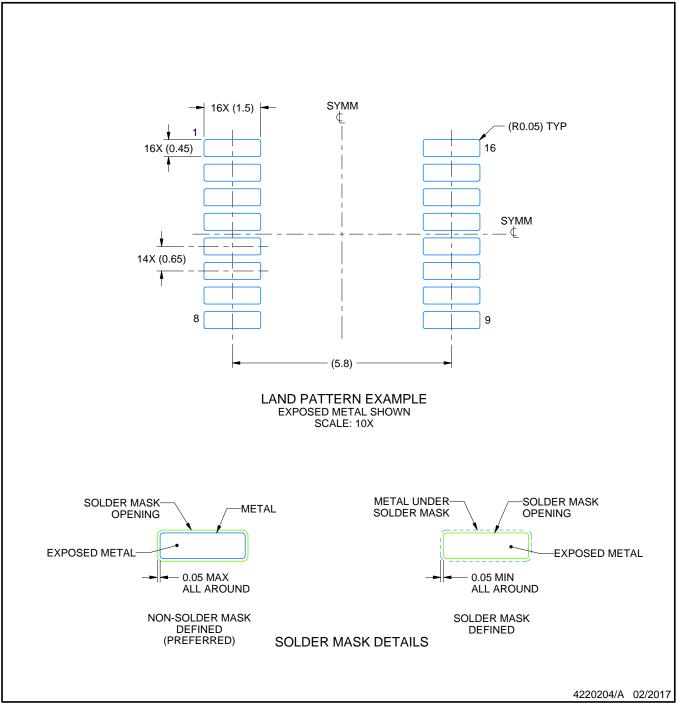
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

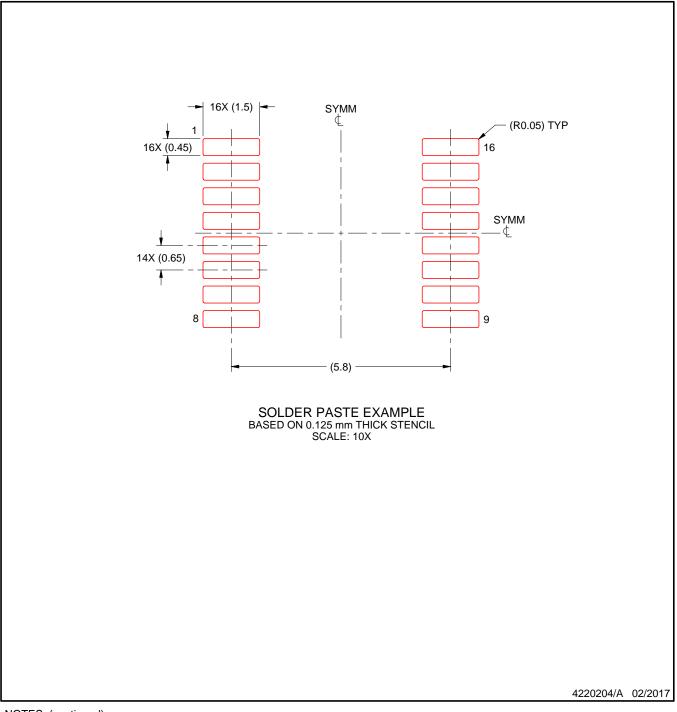
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

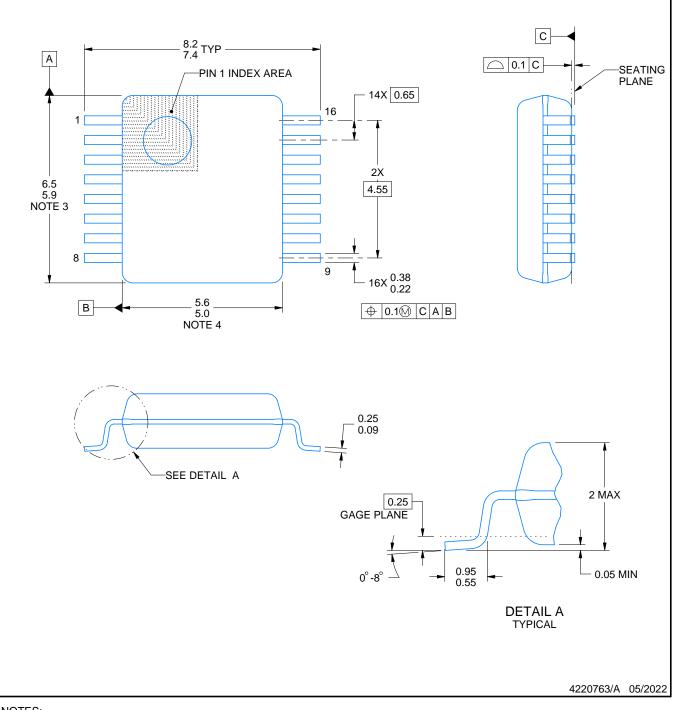
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DB0016A

PACKAGE OUTLINE

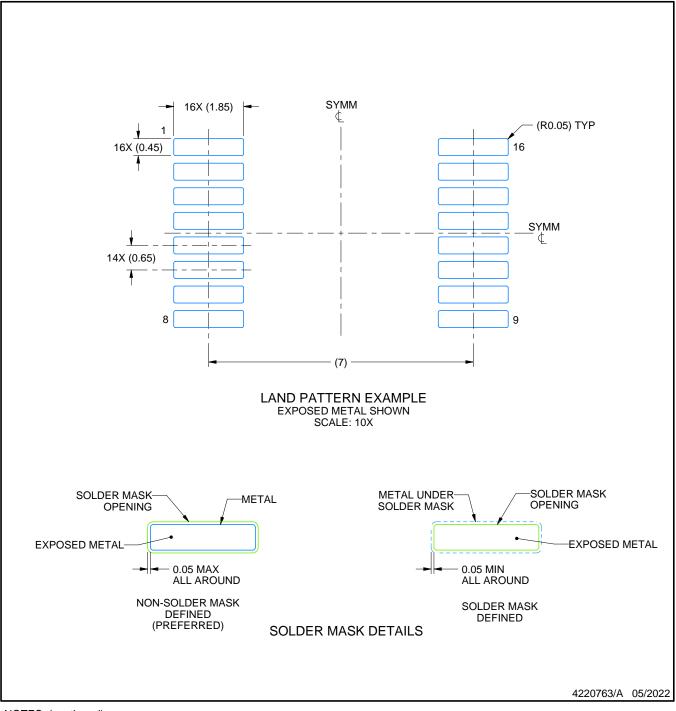
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-150.



DB0016A

EXAMPLE BOARD LAYOUT

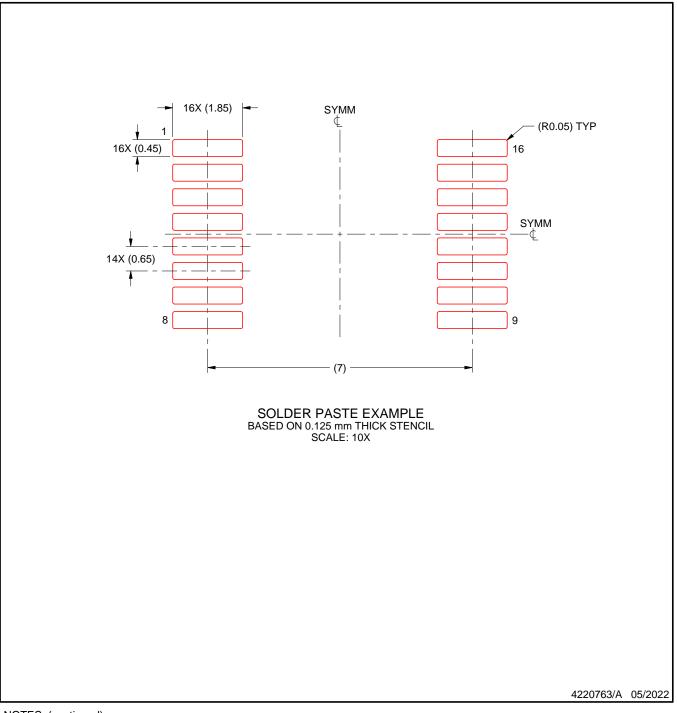
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0016A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated