- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family

- UBT ${ }^{\text {M }}$ Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Operates From 1.65 V to 3.6 V
- Max $t_{\text {pd }}$ of 4.4 ns at 3.3 V
- $\pm 24-m A$ Output Drive at 3.3 V
- Simultaneously Generates and Checks Parity
- Option to Select Generate Parity and Check or Feed-Through Data/Parity in A-to-B or B-to-A Directions
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)

description/ordering information

This 18-bit (dual-octal) noninverting registered transceiver is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.

The SN74ALVCH16901 is a dual 9-bit to dual 9-bit parity transceiver with registers. The device can operate as a feed-through transceiver or it can generate/check parity from the two 8-bit data buses in either direction.

The SN74ALVCH16901 features independent clock (CLKAB or CLKBA), latch-enable (LEAB or LEBA), and dual 9-bit clock-enable ($\overline{C L K E N A B}$ or $\overline{\text { CLKENBA }}$) inputs. It also provides parity-enable ($\overline{\mathrm{SEL}}$) and parity-select (ODD/EVEN) inputs and separate error-signal (ERRA or ERRB) outputs for checking parity. The direction of data flow is controlled by $\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}}$. When $\overline{\text { SEL }}$ is low, the parity functions are enabled. When $\overline{\text { SEL }}$ is high, the parity functions are disabled, and the device acts as an 18-bit registered transceiver.

ORDERING INFORMATION

$T_{\mathbf{A}}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP - DGG	Tape and reel	SN74ALVCH16901DGGR	ALVCH16901

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description/ordering information (continued)

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The A and BI/Os and APAR and BPAR inputs have bus-hold circuitry. Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

Function Tables

FUNCTION \dagger

INPUTS					$\begin{gathered} \text { OUTPUT } \\ \text { B } \end{gathered}$
CLKENAB	$\overline{\text { OEAB }}$	LEAB	CLKAB	A	
X	H	X	X	X	Z
X	L	H	X	L	L
X	L	H	X	H	H
H	L	L	X	X	$\mathrm{B}_{0} \ddagger$
L	L	L	\uparrow	L	L
L	L	L	\uparrow	H	H
L	L	L	L	X	$\mathrm{B}_{0} \ddagger$
L	L	L	H	X	B_{0} §

\dagger A-to-B data flow is shown; B-to-A flow is similar, but uses $\overline{O E B A}$, LEBA, and CLKENBA.
\ddagger Output level before the indicated steady-state input conditions were established
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low

PARITY ENABLE

INPUTS			OPERATION OR FUNCTION	
$\overline{\text { SEL }}$	$\overline{\text { OEBA }}$	$\overline{\text { OEAB }}$		
L	H	L	Parity is checked on port A and is generated on port B.	
L	L	H	Parity is checked on port B and is generated on port A .	
L	H	H	Parity is checked on port B and port A .	
L	L	L	Parity is generated on port A and B if device is in FF mode.	
H	L	L		Q_{A} data to B, Q_{B} data to A
H	L	H	Parity functions are disabled;	Q_{B} data to A
H	H	L	18-bit registered transceiver.	Q_{A} data to B
H	H	H		Isolation

Function Tables (Continued)

PARITY											
INPUTS								OUTPUTS			
$\overline{\text { SEL }}$	$\overline{\text { OEBA }}$	OEAB	ODD/EVEN	Σ OF INPUTS $A 1-A 8=H$	Σ OF INPUTS $\mathrm{B} 1-\mathrm{B} 8=\mathrm{H}$	APAR	BPAR	APAR	$\overline{\text { ERRA }}$	BPAR	$\overline{\text { ERRB }}$
L	H	L	L	0, 2, 4, 6, 8	N/A	L	N/A	N/A	H	L	Z
L	H	L	L	1, 3, 5, 7	N/A	L	N/A	N/A	L	H	Z
L	H	L	L	0, 2, 4, 6, 8	N/A	H	N/A	N/A	L	L	Z
L	H	L	L	1, 3, 5, 7	N/A	H	N/A	N/A	H	H	Z
L	L	H	L	N/A	0, 2, 4, 6, 8	N/A	L	L	Z	N/A	H
L	L	H	L	N/A	1, 3, 5, 7	N/A	L	H	Z	N/A	L
L	L	H	L	N/A	0, 2, 4, 6, 8	N/A	H	L	Z	N/A	L
L	L	H	L	N/A	1, 3, 5, 7	N/A	H	H	Z	N/A	H
L	H	L	H	0, 2, 4, 6, 8	N/A	L	N/A	N/A	L	H	Z
L	H	L	H	1, 3, 5, 7	N/A	L	N/A	N/A	H	L	Z
L	H	L	H	0, 2, 4, 6, 8	N/A	H	N/A	N/A	H	H	Z
L	H	L	H	1, 3, 5, 7	N/A	H	N/A	N/A	L	L	Z
L	L	H	H	N/A	0, 2, 4, 6, 8	N/A	L	H	Z	N/A	L
L	L	H	H	N/A	1, 3, 5, 7	N/A	L	L	Z	N/A	H
L	L	H	H	N/A	0, 2, 4, 6, 8	N/A	H	H	Z	N/A	H
L	L	H	H	N/A	1, 3, 5, 7	N/A	H	L	Z	N/A	L
L	H	H	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	H	Z	H
L	H	H	L	1, 3, 5, 7	1, 3, 5, 7	L	L	Z	L	Z	L
L	H	H	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	H	H	Z	L	Z	L
L	H	H	L	1,3,5,7	1, 3, 5, 7	H	H	Z	H	Z	H
L	H	H	H	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	L	Z	L
L	H	H	H	1, 3, 5, 7	1, 3, 5, 7	L	L	Z	H	Z	H
L	H	H	H	0, 2, 4, 6, 8	0, 2, 4, 6, 8	H	H	Z	H	Z	H
L	H	H	H	1, 3, 5, 7	1, 3, 5, 7	H	H	Z	L	Z	L
L	L	L	L	N/A	N/A	N/A	N/A	PE†	Z	PE†	Z
L	L	L	H	N/A	N/A	N/A	N/A	PO \ddagger	Z	PO \ddagger	Z

[^0]functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed..
2. This value is limited to 4.6 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V_{Cc}	MIN TYP \dagger	MAX	UNIT	
V_{OH}		$\mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.65 V to 3.6 V	$\mathrm{V}_{\mathrm{CC}}-0.2$		V	
		$\mathrm{OH}=-4 \mathrm{~mA}$	1.65 V	1.2			
		$\mathrm{OH}=-6 \mathrm{~mA}$	2.3 V	2			
		$\mathrm{IOH}=-12 \mathrm{~mA}$	2.3 V	1.7			
		2.7 V	2.2				
		3 V	2.4				
		$\mathrm{OH}=-24 \mathrm{~mA}$	3 V	2			
V_{OL}			$\mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A}$	1.65 V to 3.6 V		0.2	V
		$\mathrm{IOL}=4 \mathrm{~mA}$	1.65 V		0.45		
		$\mathrm{IOL}=6 \mathrm{~mA}$	2.3 V		0.4		
		$\mathrm{IOL}=12 \mathrm{~mA}$	2.3 V		0.7		
		2.7 V		0.4			
		$\mathrm{IOL}=24 \mathrm{~mA}$	3 V	0.55			
1			$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	3.6 V	± 5		$\mu \mathrm{A}$
${ }^{1}$ (hold)		$\mathrm{V}_{1}=0.58 \mathrm{~V}$	1.65 V	25		$\mu \mathrm{A}$	
		$\mathrm{V}_{1}=1.07 \mathrm{~V}$	1.65 V	-25			
		$\mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}$	2.3 V	45			
		$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$	2.3 V	-45			
		$\mathrm{V}_{1}=0.8 \mathrm{~V}$	3 V	75			
		$\mathrm{V}_{1}=2 \mathrm{~V}$	3 V	-75			
		$\mathrm{V}_{1}=0$ to $3.6 \mathrm{~V} \ddagger$	3.6 V	± 500			
${ }^{\text {IOZ }}$ §		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND	3.6 V	± 10		$\mu \mathrm{A}$	
ICC		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND, $\quad \mathrm{IO}=0$	3.6 V		40	$\mu \mathrm{A}$	
${ }^{\text {I }} \mathrm{CC}$		One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND	3 V to 3.6 V	750		$\mu \mathrm{A}$	
C_{i}	Control inputs	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	3.3 V	3		pF	
C_{io}	A or B ports	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND	3.3 V	7.5		pF	
C_{0}	$\overline{\text { ERR }}$ ports	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND	3.3 V	6		pF	

[^1]timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency			\dagger		125		125		125	MHz
$t_{\text {w }}$	Pulse duration	CLK个	\dagger		3		3		3		ns
		LE high	\dagger		3		3		3		
$\mathrm{t}_{\text {su }}$	Setup time	A, APAR or B, BPAR before CLK \uparrow	\dagger		1.9		2		1.7		ns
		$\overline{\text { CLKEN }}$ before CLK \uparrow	†		2.1		2.1		1.7		
		A, APAR or B, BPAR before LE \downarrow	†		1.4		1.3		1.2		
$t^{\text {h }}$	Hold time	A, APAR or B, BPAR after CLK \uparrow	\dagger		0.4		0.4		0.5		ns
		$\overline{\text { CLKEN }}$ after CLK \uparrow	\dagger		0.5		0.5		0.7		
		A, APAR or B, BPAR after LE \downarrow	\dagger		0.9		1.1		0.9		

\dagger This information was not available at the time of publication.

SN74ALVCH16901

18-BIT UNIVERSAL BUS TRANSCEIVER
 WITH PARITY GENERATORS/CHECKERS

SCES010F - JULY 1995 - REVISED SEPTEMBER 2004
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

\dagger This information was not available at the time of publication.
operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{C C}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	UNIT	
			TYP	TYP	TYP			
C_{pd}	Power dissipation capacitance	Outputs enabled		$C_{L}=50 \mathrm{pF}, \quad \mathrm{f}=10 \mathrm{MHz}$	\dagger	22	27	pF
		Outputs disabled	\dagger		5	8		

[^2]
PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

vOLTAGE WAVEFORMS PULSE DURATION

[^3]NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
D. The outputs are measured one at a time, with one transition per measurement.
E. tpLZ and tphZ are the same as $\mathrm{t}_{\mathrm{dis}}$.
F. tpZL and tpZH are the same as ten.
G. tPLH and tPHL are the same as $t_{p d}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74ALVCH16901DGGR	ACtive	TSSOP	DGG	64	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16901	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

W1
TAPE AND REEL INFORMATION
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74ALVCH16901DGGR	TSSOP	DGG	64	2000	330.0	24.4	8.4	17.3	1.7	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVCH16901DGGR	TSSOP	DGG	64	2000	367.0	367.0	45.0

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to TI's Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

[^0]: † Parity output is set to the level so that the specific bus side is set to even parity.
 \ddagger Parity output is set to the level so that the specific bus side is set to odd parity.

[^1]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
 § For I/O ports, the parameter IOZ includes the input leakage current.

[^2]: \dagger This information was not available at the time of publication.

[^3]: VOLTAGE WAVEFORMS
 ENABLE AND DISABLE TIMES

