
FEATURES

- Member of the Texas Instruments Widebus™
 Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- DOC™ (Dynamic Output Control) Circuit Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- Less Than 2-ns Maximum Propagation Delay at 2.5-V and 3.3-V V_{CC}

- Dynamic Drive Capability Is Equivalent to Standard Outputs With I_{OH} and I_{OL} of ± 24 mA at 2.5-V V_{CC}
- Overvoltage-Tolerant Inputs/Outputs Allow Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78. Class II
- Package Options Include Plastic Thin Shrink Small-Outline (DGG) and Thin Very Small-Outline (DGV) Packages

DESCRIPTION

A Dynamic Output Control (DOC^{TM}) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOC^{TM}) Circuitry Technology and Applications, literature number SCEA009.

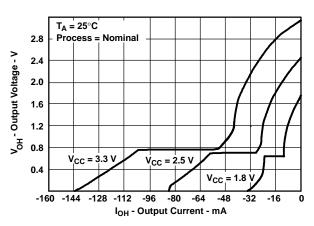


Figure 1. Output Voltage vs Output Current

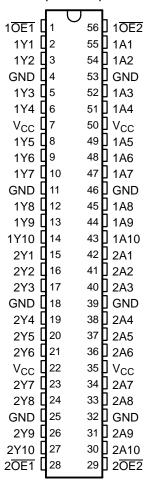
This 20-bit noninverting buffer/driver is operational at 1.2-V to 3.6-V V_{CC} , but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

The SN74AVC16827 is composed of two 10-bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable ($1\overline{OE1}$ and $1\overline{OE2}$ or $2\overline{OE1}$ and $2\overline{OE2}$) inputs must both be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10-bit buffer section are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVC16827 is characterized for operation from -40°C to 85°C.

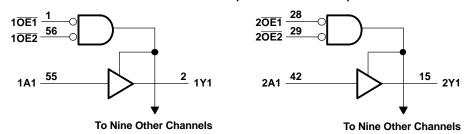

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, EPIC, DOC are trademarks of Texas Instruments.

TERMINAL ASSIGNMENTS

DGG OR DGV PACKAGE (TOP VIEW)

FUNCTION TABLE (EACH 10-BIT BUFFER/DRIVER)


	INPUTS		OUTPUT
OE1	OE2	Α	Υ
L	L	L	L
L	L	Н	Н
Н	X	X	Z
X	Н	X	Z

LOGIC SYMBOL(1) 1 10E1 EN1 56 10E2 28 & 20E1 EN2 29 2OE2 55 2 1 1 ▽ 1Y1 1A1 3 54 1Y2 1A2 5 52 1A3 1Y3 51 6 1A4 1Y4 8 49 1A5 1Y5 48 9 1Y6 1A6 47 10 1A7 1Y7 45 12 1A8 1Y8 44 13 1Y9 1A9 43 14 1Y10 1A10 15 42 2A1 1 2♡ 2Y1 41 16 2A2 2Y2 40 17 2A3 2Y3 38 19 2A4 2Y4 20 37 2Y5 2A5 36 21 2Y6 2A6 34 23 2A7 2Y7 33 24 2A8 2Y8 31 26 2A9 2Y9 30 27 2A10 2Y10

(1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

LOGIC DIAGRAM (POSITIVE LOGIC)

SN74AVC16827 20-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES176I-DECEMBER 1998-REVISED JUNE 2005

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Voltage range applied to any output in the high-imp	pedance or power-off state ⁽²⁾	-0.5	4.6	V
Vo	Voltage range applied to any output in the high or I	ow state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GND			±100	mA
0	Decline the second increase (4)	DGG package		64	°C/W
θ_{JA}	Package thermal impedance ⁽⁴⁾	DGV package		48	C/VV
T _{stg}	Storage temperature range	-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.2	3.6	V
		V _{CC} = 1.2 V	V _{CC}		
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	$0.65 \times V_{CC}$		
V_{IH}	High-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	$0.65 \times V_{CC}$		V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2		
		V _{CC} = 1.2 V		GND	
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		$0.35 \times V_{CC}$	
V_{IL}	Low-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		0.8	
V_{I}	Input voltage	-	0	3.6	V
Vo	Output voltage	Active state	0	V_{CC}	V
۷0	Output voltage	3-state	0	3.6	٧
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		-2	
1	Static high-level output current ⁽¹⁾	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-4	mA
I _{OHS}	Static high-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-8	ША
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		-12	
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2	
	Static low lovel output current(1)	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		4	mA
I _{OLS}	Static low-level output current ⁽¹⁾	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		8	IIIA
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		12	
$\Delta t/\Delta v$	Input transition rise or fall rate	$V_{CC} = 1.4 \text{ V to } 3.6 \text{ V}$		5	ns/V
T _A	Operating free-air temperature	·	-40	85	ô

⁽¹⁾ Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ±24 mA at 3.3-V V_{CC}. See Figure 1 for V_{OL} vs I_{OL} and V_{OH} vs I_{OH} characteristics. Refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOC™) Circuitry Technology and Applications*, literature number SCEA009.

⁽²⁾ The input negative-voltage and output ratings may be exceeded if the input and output current ratings are observed.

³⁾ This value is limited to 4.6 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51.

SN74AVC16827

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT	
		$I_{OHS} = -100 \mu A,$	$V_{IH} = V_{CC}$	1.4 V to 3.6 V	V _{CC} - 0.2				
		$I_{OHS} = -2 \text{ mA},$	V _{IH} = 0.91 V	1.4 V	1.05				
V_{OH}		$I_{OHS} = -4 \text{ mA},$	V _{IH} = 1.07 V	1.65 V	1.2			V	
		$I_{OHS} = -8 \text{ mA},$	V _{IH} = 1.7 V	2.3 V	1.75				
		$I_{OHS} = -12 \text{ mA},$	V _{IH} = 2 V	3 V	2.3				
		I _{OLS} = 100 μA		1.4 V to 3.6 V			0.2		
		$I_{OLS} = 2 \text{ mA},$	V _{IL} = 0.49 V	1.4 V			0.4		
V_{OL}		$I_{OLS} = 4 \text{ mA},$	V _{IL} = 0.57 V	1.65 V			0.45	V	
		$I_{OLS} = 8 \text{ mA},$		2.3 V			0.55		
		I _{OLS} = 12 mA,	V _{IL} = 0.8 V	3 V			0.7		
I_{\parallel}		$V_I = V_{CC}$ or GND		3.6 V			±2.5	μΑ	
I _{off}		V_I or $V_O = 3.6 \text{ V}$		0			±10	μΑ	
I _{OZ}		$V_O = V_{CC}$ or GND,	$V_{IH} = V_{CC}$	3.6 V		±	12.5	μΑ	
I _{CC}		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ	
	Control inputs	V V or CND		2.5 V		4			
_	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		4		"F	
Ci	Data innuta	V V or CND		2.5 V		2.5		pF	
	Data inputs	$V_I = V_{CC}$ or GND	3.3 V		2.5				
0	Outpute	V V or CND	V V STONE			6.5		_	
C _o	Outputs	$V_O = V_{CC}$ or GND		3.3 V		6.5		pF	

⁽¹⁾ Typical values are measured at $T_A = 25$ °C.

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2 through Figure 5)

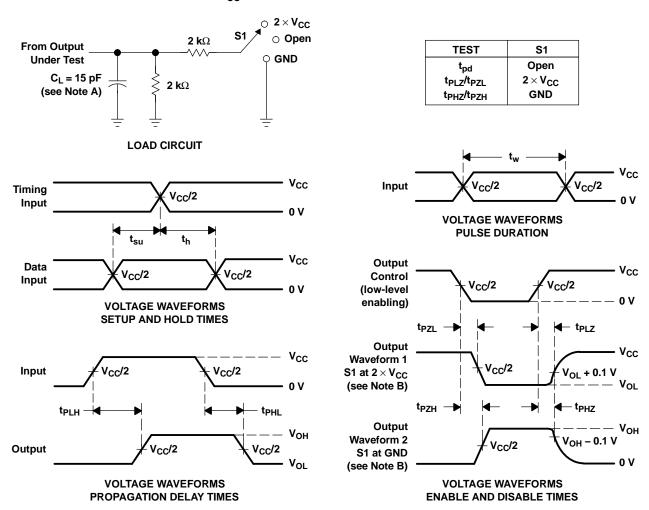
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.2 V	V _{CC} = ± 0.		V _{CC} = ± 0.1		V _{CC} = ± 0.2		V _{CC} = :		UNIT
	(INFOT)	(001F01)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	Α	Y	3	0.4	3.2	0.9	2.9	0.8	1.9	0.5	1.7	ns
t _{en}	ŌĒ	Υ	8.7	2.3	9.1	2.1	8	1.4	5.6	1.2	5.1	ns
t _{dis}	ŌĒ	Υ	7.5	2.7	8.3	2.5	7.3	0.9	4.9	1	4.7	ns

Switching Characteristics⁽¹⁾

 $T_A = 0$ °C to 85°C, $C_L = 0$ pF

PARAMETER	FROM	FROM TO (INPUT) (OUTPUT)		3.3 V 5 V	UNIT
	(IIVFOT)	(001701)	MIN	MAX	
t _{pd}	А	Y	0.09	0.67	ns

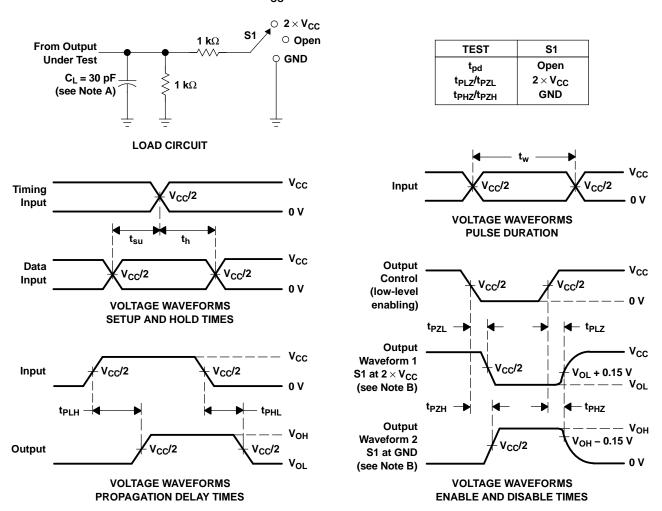
⁽¹⁾ Texas Instruments SPICE simulation data


Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETE	TEST (CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT		
C	Power dissipation	Outputs enabled	C - 0	f = 10 MHz	31	35	40	~F	
C_{pd}	capacitance	Outputs disabled	$C_L = 0,$	I = IO WINZ	6	6	6	p⊦	

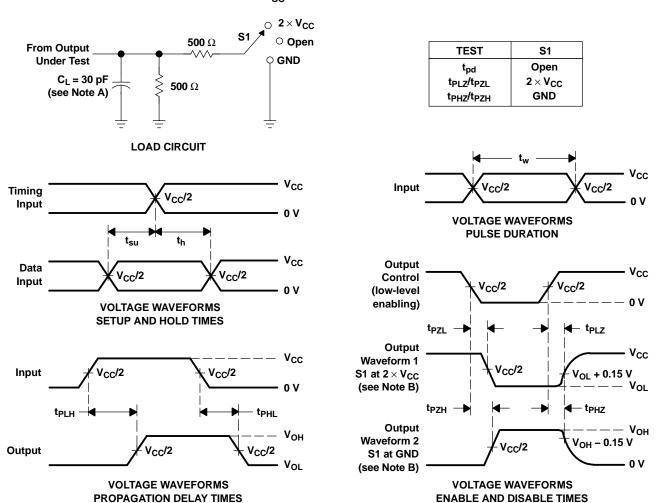
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.2 \text{ V}$ AND 1.5 V \pm 0.1 V



- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 $\Omega,\,t_{f}\leq$ 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 2. Load Circuit and Voltage Waveforms

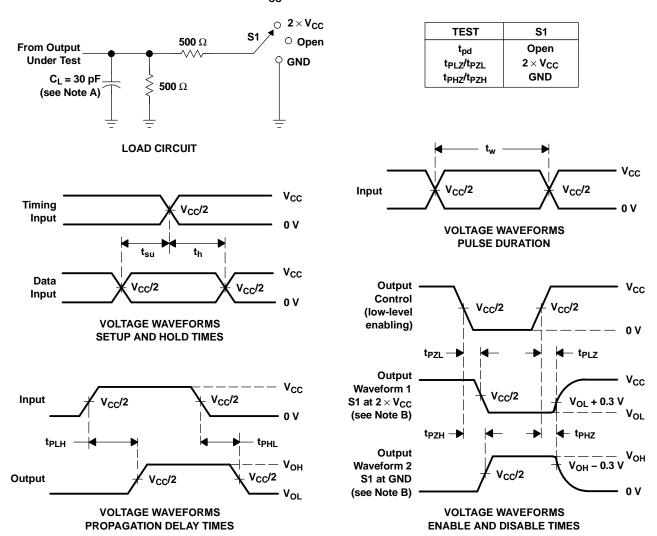
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$



- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V ± 0.2 V



- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq 2$ ns, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 4. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 5. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AVC16827DGGR	ACTIVE	TSSOP	DGG	56	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AVC16827	Samples
SN74AVC16827DGVR	ACTIVE	TVSOP	DGV	56	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CVA827	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

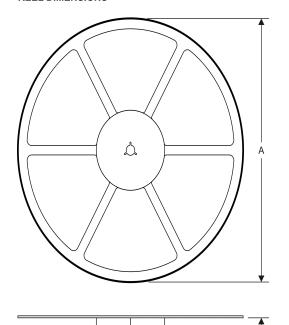
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

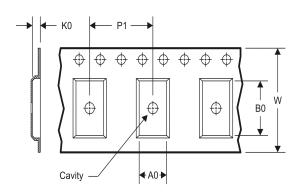
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


10-Dec-2020

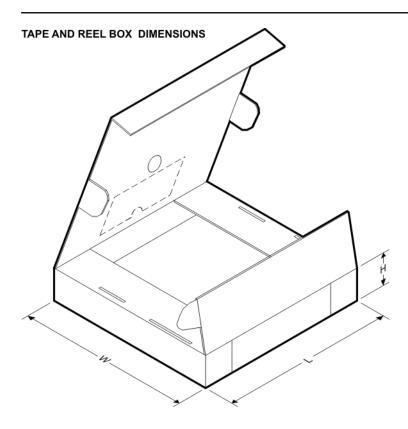
PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS


A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AVC16827DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN74AVC16827DGVR	TVSOP	DGV	56	2000	330.0	24.4	6.8	11.7	1.6	12.0	24.0	Q1

www.ti.com 14-Jul-2012

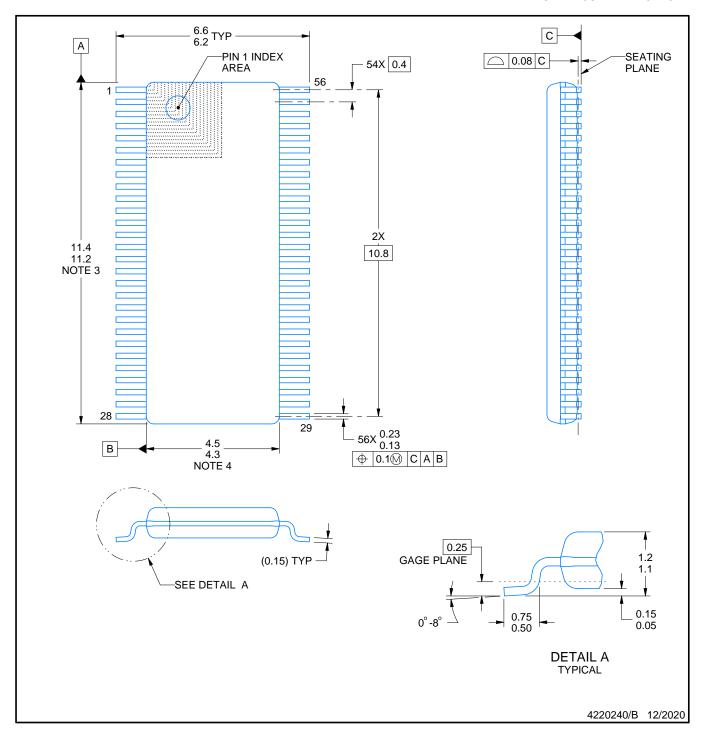
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AVC16827DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0
SN74AVC16827DGVR	TVSOP	DGV	56	2000	367.0	367.0	45.0

DGV (R-PDSO-G**)

24 PINS SHOWN

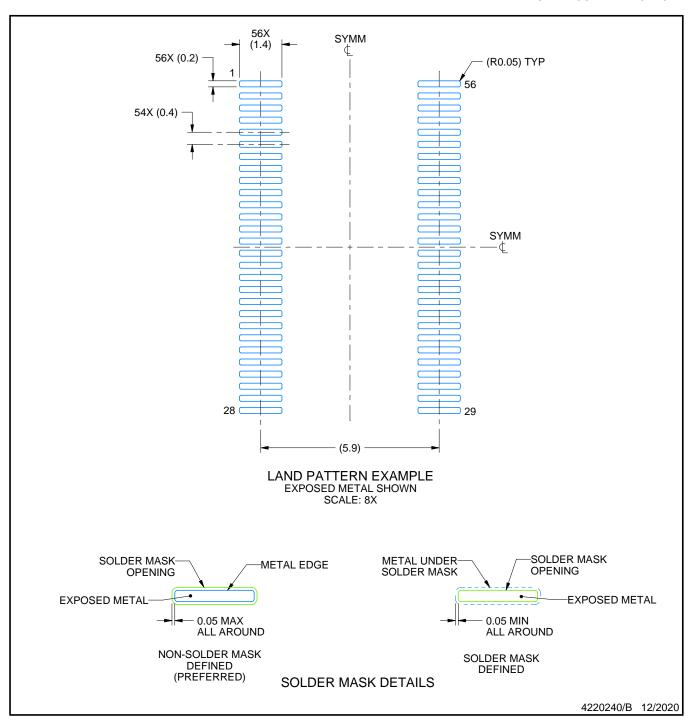
PLASTIC SMALL-OUTLINE


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

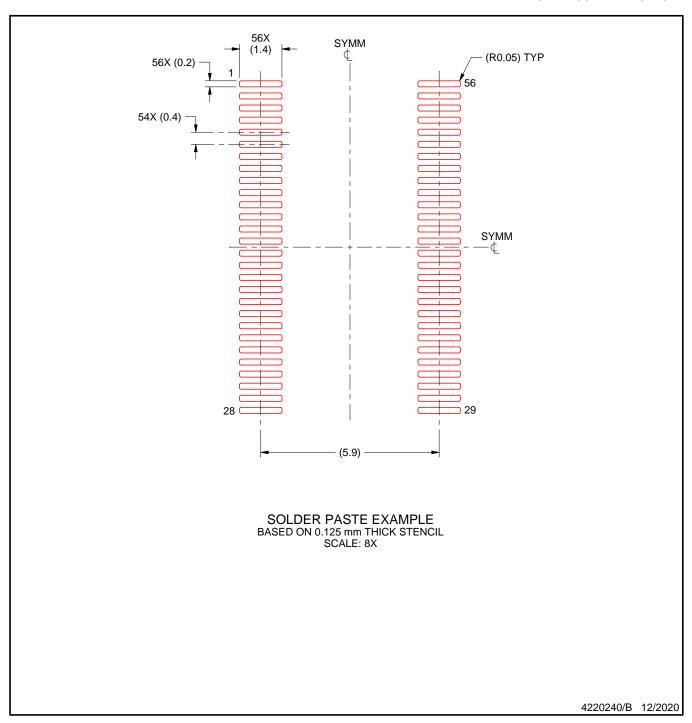
D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

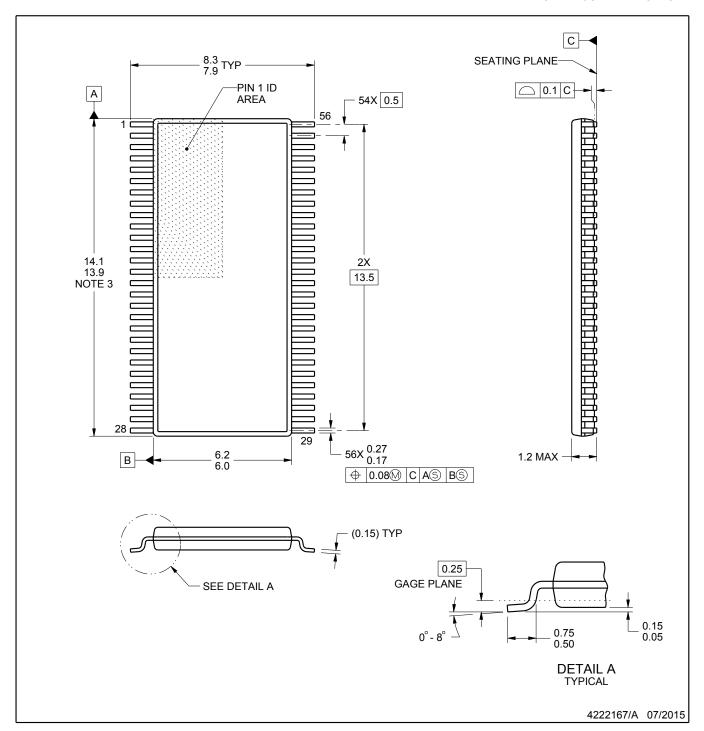
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-194.



NOTES: (continued)

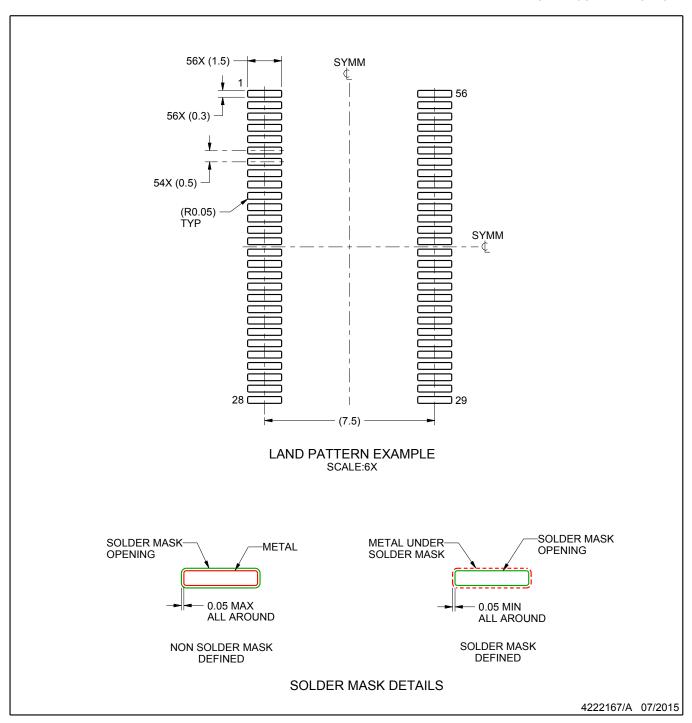
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NOTES: (continued)

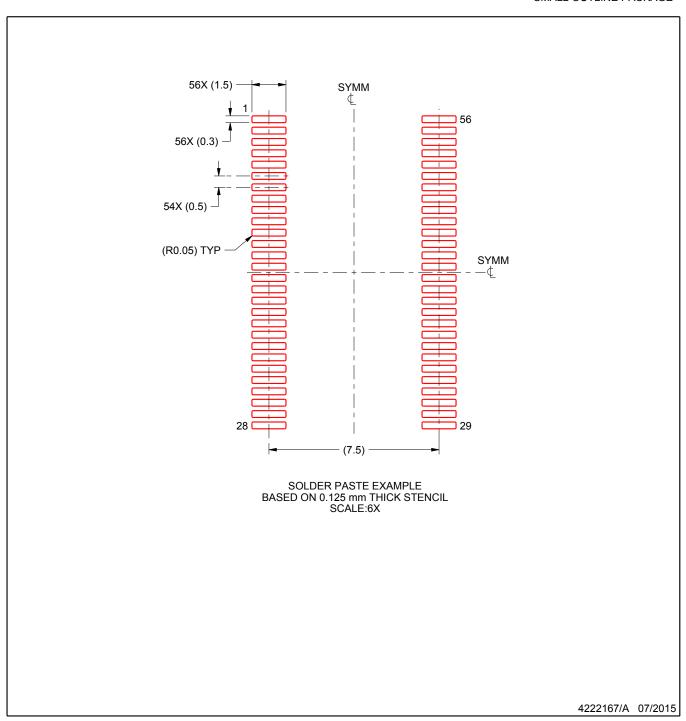
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated