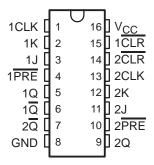
SDFS048A - D2932, MARCH 1987 - REVISED OCTOBER 1993

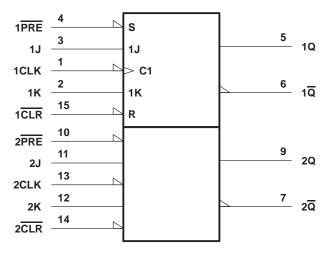

 Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs

description

The SN74F112 contains two independent J-K negative-edge-triggered flip-flops. A low level at the preset (PRE) or clear (CLR) inputs sets or resets the outputs regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the J and K inputs meeting the setup time requirements is transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. The SN74F112 can perform as a toggle flip-flop by tying J and K high.

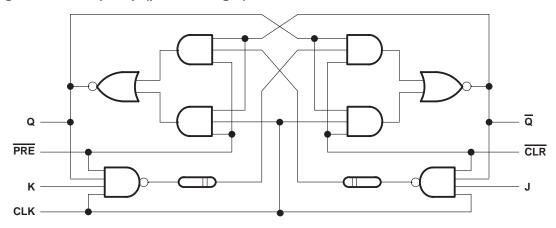
The SN74F112 is characterized for operation from 0°C to 70°C.

D OR N PACKAGE (TOP VIEW)


FUNCTION TABLE

		OUTI	PUTS			
PRE	CLR	CLK	J	K	Q	Q
L	Н	Х	Χ	Х	Н	L
Н	L	X	Χ	X	L	Н
L	L	X	Χ	X	H [†]	H [†]
Н	Н	\downarrow	L	L	Q_0	\overline{Q}_0
Н	Н	\downarrow	Н	L	Н	L
Н	Н	\downarrow	L	Н	L	Н
Н	Н	\downarrow	Н	Н	Toggle	
Н	Н	Н	Х	Χ	Q ₀	\overline{Q}_0

[†] The output levels in this configuration are not guaranteed to meet the minimum levels for V_{OH}. Furthermore, this configuration is nonstable; that is, it will not persist when either PRE or CLR returns to its inactive (high) level.


SDFS048A - D2932, MARCH 1987 - REVISED OCTOBER 1993

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram, each flip-flop (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	1.2 V to 7 V
Input current range	-30 mA to 5 mA
Voltage range applied to any output in the high state	\dots -0.5 V to V _{CC}
Current into any output in the low state	40 mA
Operating free-air temperature range	0°C to 70°C
Storage temperature range	-65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input voltage ratings may be exceeded provided the input current ratings are observed.

SDFS048A - D2932, MARCH 1987 - REVISED OCTOBER 1993

recommended operating conditions

		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			V
V _{IL}	Low-level input voltage			0.8	V
ΙK	Input clamp current			-18	mA
I _{OH}	High-level output current			- 1	mA
IOL	Low-level output current			20	mA
TA	Operating free-air temperature	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	Т	EST CONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK		$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.2	V
V		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -1 \text{ mA}$	2.5	3.4		V
VOH		V _{CC} = 4.75 V,	$I_{OH} = -1 \text{ mA}$	2.7			V
VOL		$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 20 \text{ mA}$		0.3	0.5	V
Ц		$V_{CC} = 5.5 \text{ V},$	V _I = 7 V			0.1	mA
lн		$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			20	μΑ
	J or K					- 0.6	
I₁∟	PRE or CLR	$V_{CC} = 5.5 V$,	V _I = 0.5 V			-3	mA
	CLK					- 2.4	
los‡		V _{CC} = 5.5 V,	VO = 0	-60		-150	mA
Icc		$V_{CC} = 5.5 \text{ V},$	See Note 2		12	19	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTE 2: ICC is measured with all outputs open, the Q and \overline{Q} outputs alternately high and the clock input grounded at the time of measurement.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			V _{CC} =	= 5 V, 25°C	MIN	MAX	UNIT
			MIN	MAX			
fclock	Clock frequency		0	110	0	100	MHz
	Pulse duration	CLK high or low	4.5		5		ns
t _W	r uise duration	CLR or PRE low	4.5		5	115	
	Saturatima data hafara CLK	High	4		5		no
t _{su}	Setup time, data before CLK↓	Low	3		3.5	ns	
4.	Hold time data often CLIV	High	0		0		
t _h	Hold time, data after CLK↓	Low	0		0		ns
t _{su}	Setup time, inactive state, data before CLK↓§	CLR or PRE high	4		5	·	ns

[§] Inactive-state state setup time is also referred to as recovery time.

[‡] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SN74F112 DUAL NEGATIVE-EDGE-TRIGGERED J-K FLIP-FLOP WITH CLEAR AND PRESET

SDFS048A - D2932, MARCH 1987 - REVISED OCTOBER 1993

switching characteristics (see Note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _l R _l	CC = 5 V _ = 50 pl _ = 500 s _ = 25°C	F, Ω,	V _{CC} = 4.5 C _L = 50 pl R _L = 500 C T _A = MIN	UNIT	
			MIN	TYP	MAX	MIN	MAX	
f _{max}			110	130		100		MHz
t _{PLH}	CLK	Q or $\overline{\mathbb{Q}}$	1.2	4.6	6.5	1.2	7.5	ns
^t PHL	OLK	QOIQ	1.2	4.6	6.5	1.2	7.5	115
^t PLH	PRE or CLR	Q or $\overline{\mathbb{Q}}$	1.2	4.1	6.5	1.2	7.5	ns
^t PHL	TINE OF CER	Q 01 Q	1.2	4.1	6.5	1.2	7.5	115

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 3: Load circuits and waveforms are shown in Section 1.

www.ti.com 16-Apr-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74F112DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	(6) NIPDAU	Level-1-260C-UNLIM	0 to 70	F112	
SINT-FITZBIK	AOTIVE	0010		10	2300	Norio a orcen	INII DAO	ECVCI 1 2000 OIVEIIVI	0 10 70	1 112	Samples
SN74F112N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74F112N	Samples
SN74F112NE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74F112N	Samples
SN74F112NSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74F112	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

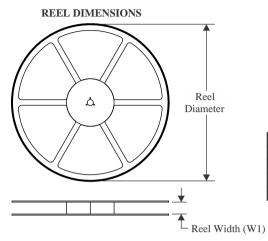
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

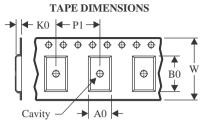
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

www.ti.com 16-Apr-2024


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

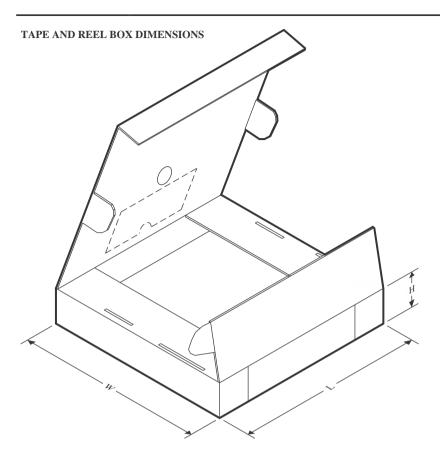
PACKAGE MATERIALS INFORMATION

www.ti.com 16-Apr-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

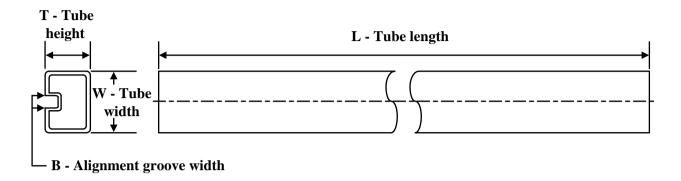


*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74F112DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74F112NSR	so	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Apr-2024

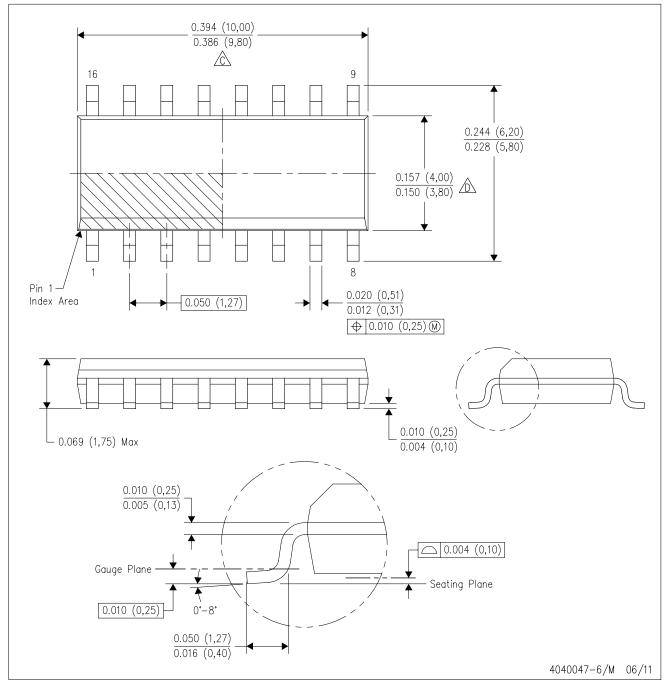

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
SN74F112DR	SOIC	D	16	2500	340.5	336.1	32.0	
SN74F112NSR	SO	NS	16	2000	356.0	356.0	35.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Apr-2024

TUBE



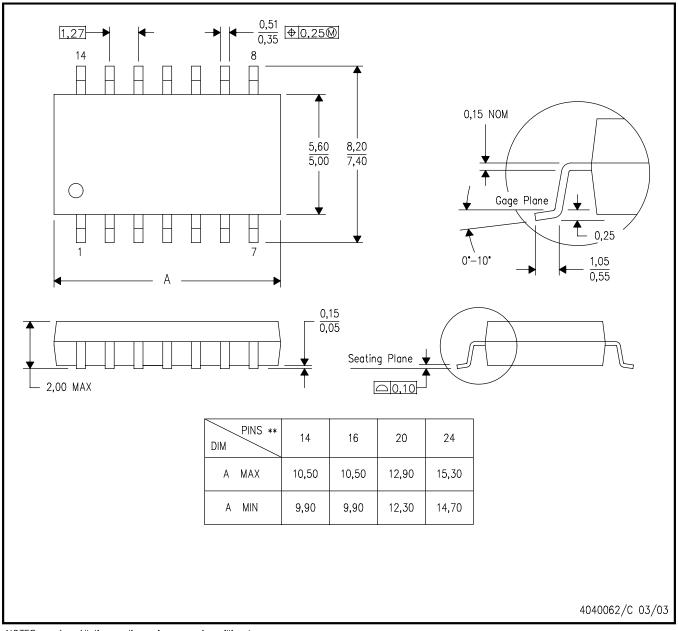
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74F112N	N	PDIP	16	25	506	13.97	11230	4.32
SN74F112N	N	PDIP	16	25	506	13.97	11230	4.32
SN74F112NE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74F112NE4	N	PDIP	16	25	506	13.97	11230	4.32

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

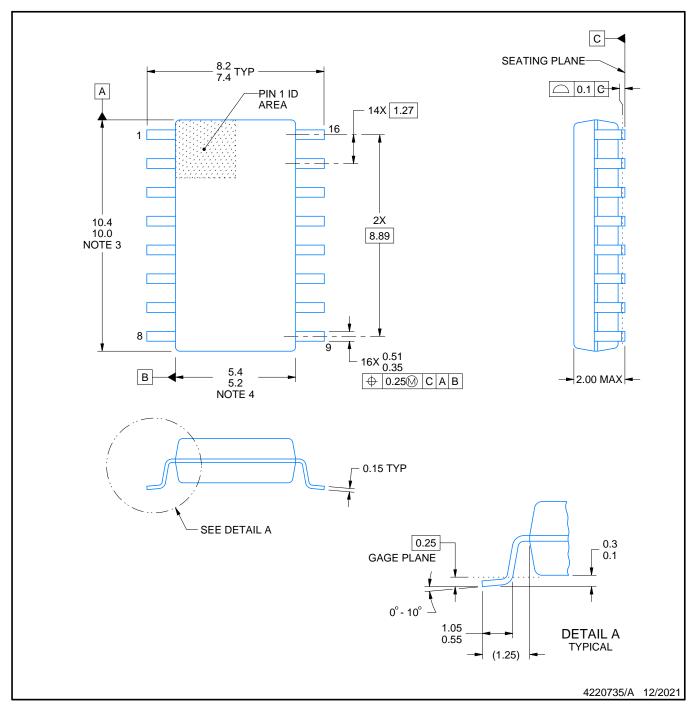
PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

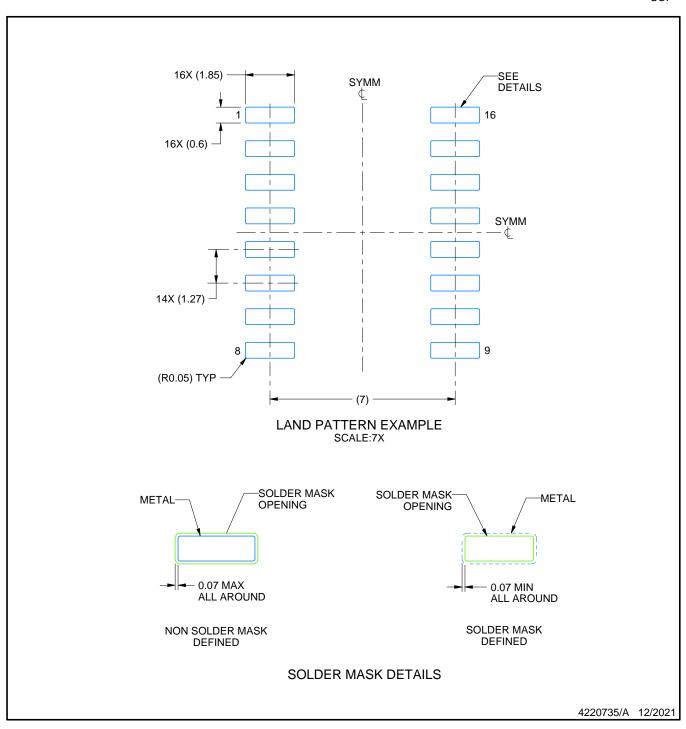
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

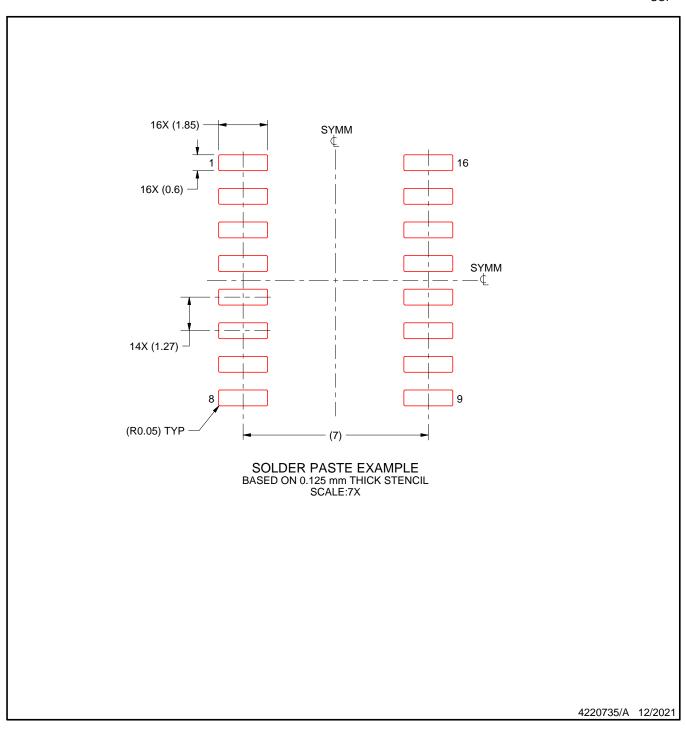
SOP


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

SOF



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated