
SLRS024 - DECEMBER 1976 - REVISED MAY 1990

PERIPHERAL DRIVERS FOR HIGH-VOLTAGE HIGH-CURRENT DRIVER **APPLICATIONS**

- Characterized for Use to 300 mA
- **High-Voltage Outputs**
- No Output Latch-Up at 55 V (After Conducting 300 mA)
- **Medium-Speed Switching**
- **Circuit Flexibility for Varied Applications** and Choice of Logic Function
- **TTL-Compatible Diode-Clamped Inputs**
- Standard Supply Voltages
- Plastic DIP (P) With Copper Lead Frame **Provides Cooler Operation and Improved** Reliability

D OR P PACKAGE (TOP VIEW)

SUMMARY OF SERIES SN75471

DEVICE	LOGIC OF COMPLETE CIRCUIT	PACKAGES
SN75471	AND	D, P
SN75472	NAND	D, P
SN75473	OR	D, P

description

Series SN75471 dual peripheral drivers are functionally interchangeable with series SN75451B and series SN75461 peripheral drivers, but are designed for use in systems that require higher breakdown voltages than either of those series can provide at the expense of slightly slower switching speeds than series 75451B (limits are the same as series SN75461). Typical applications include high-speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.

The SN75471, SN75472, and SN75473 are dual peripheral AND, NAND, and OR drivers, respectively, (assuming positive logic), with the output of the logic gates internally connected to the bases of the npn output transistors.

Series SN75471 drivers are characterized for operation from 0°C to 70°C.

SN75471 THRU SN75473 DUAL PERIPHERAL DRIVERS

SLRS024 - DECEMBER 1976 - REVISED MAY 1990

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage, V _I	5.5 V
Inter-emitter voltage (see Note 2)	5.5 V
Off-state output voltage, VO	70 V
Continuous collector or output current (see Note 3)	400 mA
Peak collector or output current ($t_W \le 10$ ms, duty cycle $\le 50\%$, see Note 3)	500 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

- NOTES: 1. Voltage values are with respect to the network GND, unless otherwise specified.
 - 2. This is the voltage between two emitters, A and B.
 - 3. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

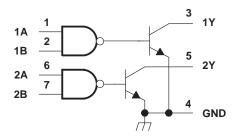
DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
Р	1000 mW	8.0 mW/°C	640 mW

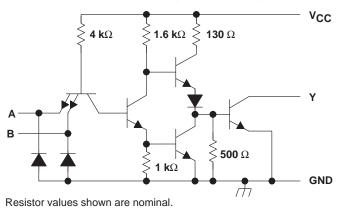
recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-level input voltage, V _{IL}			0.8	V
Operating free-air temperature, T _A	0		70	°C

logic symbol†


1A $\frac{1}{2}$ & \triangleright \triangle 1Y 2A $\frac{6}{7}$ 2S 2Y

SN75471 FUNCTION TABLE (each driver)


	Α	В	Y
Γ	L	L	L (on state)
ı	L	Н	L (on state)
ı	Н	L	L (on state)
L	Н	Н	H (off state)

positive logic: Y = AB or A + B

logic diagram (positive logic)

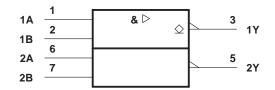
SN75471 schematic (each driver)

resistor valdes shown are norminal.

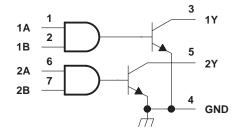
electrical characteristics over recommended operating free-air temperature range

	DADAMETED	TEST SOUDITIONS	SN75471			
	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
٧IK	Input clamp voltage	$V_{CC} = 4.75 \text{ V}, I_{I} = -12 \text{ mA}$		-1.2	-1.5	V
IOH	High-level output current	$V_{CC} = 4.75 \text{ V}, V_{IH} = 2 \text{ V}, V_{OH} = 70 \text{ V}$			100	μΑ
1/0.	Low-level output voltage	$V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OL} = 100 \text{ mA}$		0.25	0.4	V
VOL		$V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OL} = 300 \text{ mA}$		0.5	0.7	ı v
I _I	Input current at maximum input voltage	$V_{CC} = 5.25 \text{ V}, V_I = 5.5 \text{ V}$			1	mA
ΙΗ	High-level input current	$V_{CC} = 5.25 \text{ V}, V_I = 2.4 \text{ V}$			40	μΑ
I _{IL}	Low-level input current	$V_{CC} = 5.25 \text{ V}, V_I = 0.4 \text{ V}$		-1	-1.6	mA
ICCH	Supply current, outputs high	$V_{CC} = 5.25 \text{ V}, V_{I} = 5 \text{ V}$		7	11	mA
ICCL	Supply current, outputs low	$V_{CC} = 5.25 \text{ V}, V_I = 0$		52	65	mA

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

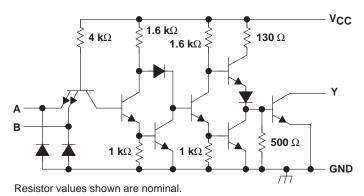
	PARAMETER		TEST CONDITIONS		SN75471		
	FARAMETER	1231 00	NDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output				30	55	
tPHL	Propagation delay time, high-to-low-level output	I _O ≈ 200 mA,	C _L = 15 pF,		25	40	20
tTLH	Transition time, low-to-high-level output	$R_L = 50 \Omega$,	See Figure 1		8	20	ns
tTHL	Transition time, high-to-low-level output				10	20	
Vон	High-level output voltage after switching	V _S = 55 V, See Figure 2	$I_O \approx 300 \text{ mA},$	V _S -18		·	mV


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic symbol†

†This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)



SN75472 FUNCTION TABLE (each driver)

Α	В	Υ
L	L	H (off state)
L	Н	H (off state)
Н	L	H (off state)
Н	Н	L (on state)

positive logic: $\underline{}$ Y = AB or A + B

SN75472 schematic (each driver)

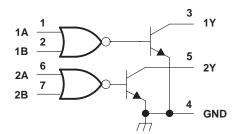
electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CONDITIONS	SN75472			UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = 4.75 \text{ V}, I_{I} = -12 \text{ mA}$		-1.2	-1.5	V
IOH	High-level output current	$V_{CC} = 4.75 \text{ V}, V_{IH} = 2 \text{ V}, V_{OH} = 70 \text{ V}$			100	μΑ
V Law	Low-level output voltage	$V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OL} = 100 \text{ mA}$		0.25	0.4	V
VOL		$V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OL} = 300 \text{ mA}$		0.5	0.7	
Ц	Input current at maximum input voltage	$V_{CC} = 5.25 \text{ V}, V_I = 5.5 \text{ V}$			1	mA
ΊΗ	High-level input current	$V_{CC} = 5.25 \text{ V}, V_{I} = 2.4 \text{ V}$			40	μΑ
Ι _Ι L	Low-level input current	$V_{CC} = 5.25 \text{ V}, V_{I} = 0.4 \text{ V}$		-1	-1.6	mA
ICCH	Supply current, outputs high	$V_{CC} = 5.25 \text{ V}, V_{I} = 5 \text{ V}$		13	17	mA
ICCL	Supply current, outputs low	$V_{CC} = 5.25 \text{ V}, V_{I} = 0$		61	76	mA

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

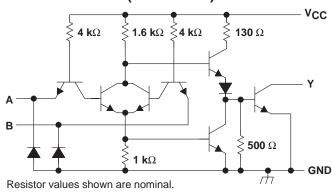
	PARAMETER		TEST CONDITIONS		SN75472		
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output				45	65	
tPHL	Propagation delay time, high-to-low-level output	I _O ≈ 200 mA,	$C_L = 15 pF$,		30	50	no
tTLH	Transition time, low-to-high-level output	$R_L = 50 \Omega$,	See Figure 1		13	25	ns
tTHL	Transition time, high-to-low-level output				10	20	
VOH	High-level output voltage after switching	V _S = 55 V, See Figure 2	IO ≈ 300 mA,	V _S -18			mV



logic symbol†

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)



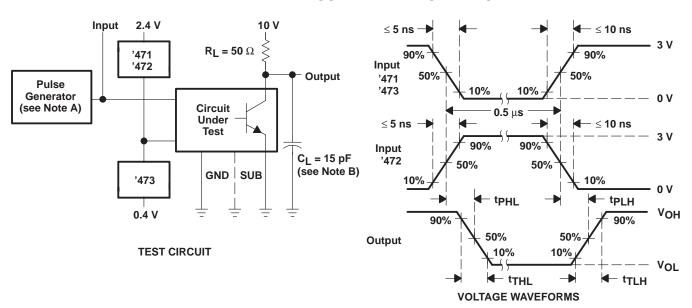
FUNCTION TABLE (each driver)

Α	В	Y
L	L	L (on state)
L	Н	H (off state)
Н	L	H (off state)
Н	Н	H (off state)

positive logic: $Y = A + B \text{ or } \overline{A} \overline{B}$

schematic (each driver)

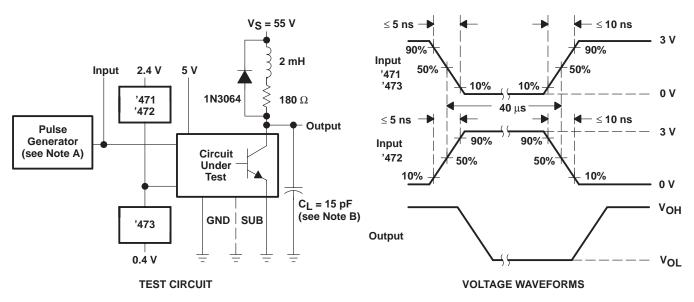
electrical characteristics over recommended operating free-air temperature range


	DADAMETED	TEST COMPITIONS		SN75473		
	PARAMETER	TEST CONDITIONS	MIN	TYP [‡]	MAX	UNIT
٧ _{IK}	Input clamp voltage	$V_{CC} = 4.75 \text{ V}, I_{I} = -12 \text{ mA}$		-1.2	-1.5	V
IOH	High-level output current	$V_{CC} = 4.75 \text{ V}, V_{IH} = 2 \text{ V}, V_{OH} = 70 \text{ V}$			100	μΑ
\/o.	Low-level output voltage	$V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OL} = 100 \text{ mA}$		0.25	0.4	V
VOL		$V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OL} = 300 \text{ mA}$		0.5	0.7	V
Ц	Input current at maximum input voltage	$V_{CC} = 5.25 \text{ V}, V_I = 5.5 \text{ V}$			1	mA
ΊΗ	High-level input current	$V_{CC} = 5.25 \text{ V}, V_I = 2.4 \text{ V}$			40	μΑ
I _I L	Low-level input current	$V_{CC} = 5.25 \text{ V}, V_I = 0.4 \text{ V}$		-1	-1.6	mA
ICCH	Supply current, outputs high	$V_{CC} = 5.25 \text{ V}, V_{I} = 5 \text{ V}$		8	11	mA
ICCL	Supply current, outputs low	$V_{CC} = 5.25 \text{ V}, V_I = 0$		58	76	mA

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CO	SI	UNIT			
	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output				30	55	
tPHL	Propagation delay time, high-to-low-level output	I _O ≈ 200 mA,	C _L = 15 pF,		25	40	ns
tTLH	Transition time, low-to-high-level output	$R_L = 50 \Omega$,	See Figure 1		8	25	
tTHL	Transition time, high-to-low-level output]			10	25	
VOH	High-level output voltage after switching	V _S = 55 V, See Figure 2	$I_O \approx 300 \text{ mA},$	V _S -18		·	mV


PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, $Z_{\mbox{\scriptsize O}}\approx$ 50 Ω

B. C_L includes probe and jig capacitance.

Figure 1. Switching Times

NOTES: A. The pulse generator has the following characteristics: PRR \leq 12.5 kHz, $Z_O\approx$ 50 Ω

B. C_L includes probe and jig capacitance.

Figure 2. Latch-Up Test

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN75471D	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75471	Samples
SN75471DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75471	Samples
SN75471P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN75471P	Samples
SN75472D	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75472	Samples
SN75472P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN75472P	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

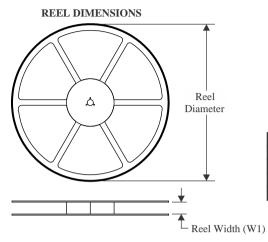
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

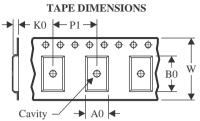
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

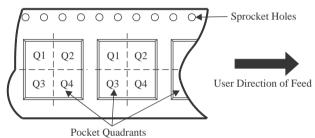
10-Dec-2020


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

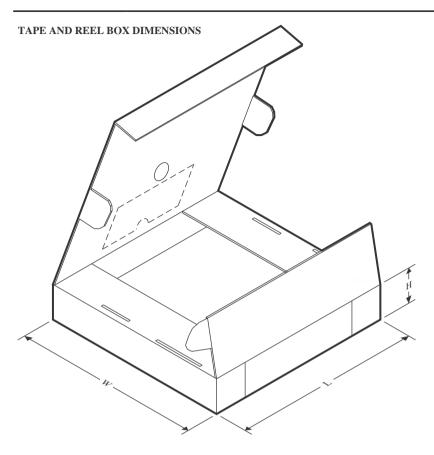
PACKAGE MATERIALS INFORMATION

www.ti.com 25-Oct-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

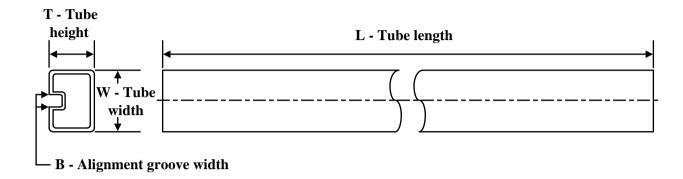


*All dimensions are nominal

Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75471DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Oct-2023


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75471DR	SOIC	D	8	2500	340.5	338.1	20.6

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Oct-2023

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN75471D	D	SOIC	8	75	507	8	3940	4.32
SN75471P	Р	PDIP	8	50	506	13.97	11230	4.32
SN75472D	D	SOIC	8	75	507	8	3940	4.32
SN75472P	Р	PDIP	8	50	506	13.97	11230	4.32

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

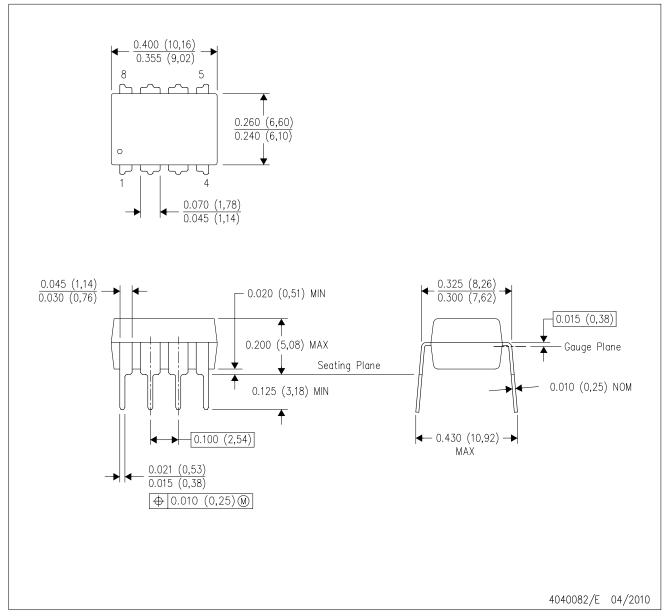
SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated