

ADJUSTABLE BATTERY-BACKUP SUPERVISOR FOR RAM RETENTION

FEATURES

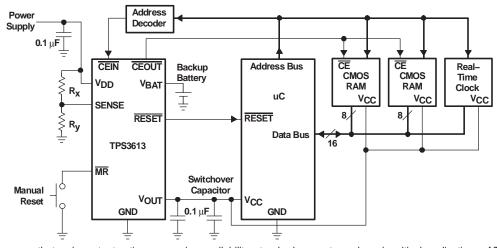
- Supply Current of 40 μA (Max)
- Battery Supply Current of 100 nA (Max)
- Supply Voltage Supervision Range:
 - Adjustable
 - Other Versions Available on Request
- Backup-Battery Voltage Can Exceed V_{DD}
- Power-On Reset Generator With Fixed 100-ms Reset Delay Time
- Active-High and Active-Low Reset Output
- Chip-Enable Gating: 3 ns (at V_{DD} = 5 V) Max Propagation Delay
- 10-Pin MSOP Package
- Temperature Range: -40°C to 85°C

APPLICATIONS

- Fax Machines
- Set-Top Boxes
- Advanced Voice Mail Systems
- Portable Battery-Powered Equipment
- Computer Equipment
- Advanced Modems
- Automotive Systems
- Portable Long-Time Monitoring Equipment
- Point-of-Sale Equipment

DESCRIPTION

The TPS3613-01 supervisory circuit monitors and controls processor activity by providing backup-battery switchover for data retention of CMOS RAM.


During power-on, reset (RESET and \overline{RESET}) is asserted when the supply voltage (V_{DD} or V_{BAT}) becomes higher than 1.1 V.

Thereafter, the supply voltage supervisor monitors V_{DD} at the SENSE pin through external feedback resistors and keeps reset active as long as SENSE remains below the threshold voltage, V_{IT} .

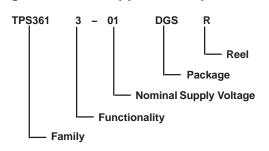
An internal timer delays the release of the reset state to ensure proper system reset. The delay time starts after SENSE rises above the threshold voltage, V_{IT}.

When SENSE drops below V_{IT} , reset becomes active again.

The TPS3613-01 is available in a 10-pin MSOP package and is characterized for operation over a temperature range of -40°C to +85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.



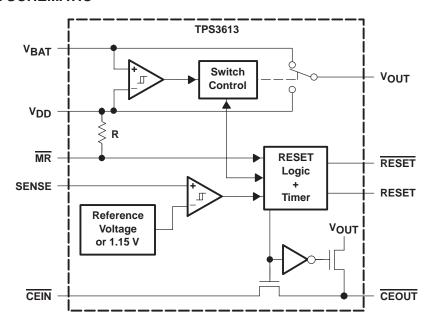
PACKAGE INFORMATION

TA	DEVICE NAME	MARKING
-40°C to +85°C	TPS3613-01DGSR [†]	AFK

[†]The DGSR passive indicates tape and reel of 2500 parts.

ordering information application specific versions

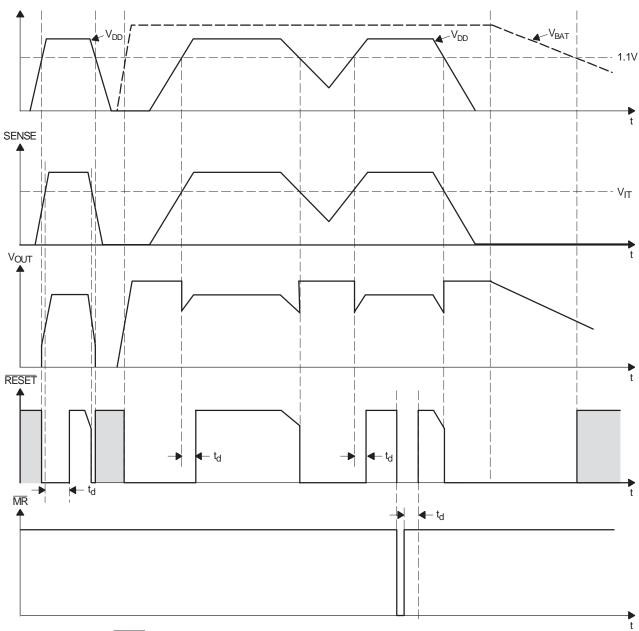
DEVICE NAME	NOMINAL VOLTAGE [‡] , V _{NOM}
TPS3613-01 DGS	Adjustable


[‡] For other threshold voltages, contact the local TI sales office for availability and lead-time.

FUNCTION TABLE

SENSE > VIT	V _{DD} > V _{BAT}	MR	CEIN	V _{OUT}	RESET	RESET	CEOUT
0	0	0	0	VBAT	0	1	DIS
0	0	0	1	VBAT	0	1	DIS
0	0	1	0	V _{BAT}	0	1	DIS
0	0	1	1	VBAT	0	1	DIS
0	1	0	0	V_{DD}	0	1	DIS
0	1	0	1	V_{DD}	0	1	DIS
0	1	1	0	V_{DD}	0	1	DIS
0	1	1	1	V_{DD}	0	1	DIS
1	0	0	0	V_{DD}	0	1	DIS
1	0	0	1	V_{DD}	0	1	DIS
1	0	1	0	V_{DD}	1	0	0
1	0	1	1	V_{DD}	1	0	1
1	1	0	0	V_{DD}	0	1	DIS
1	1	0	1	V_{DD}	0	1	DIS
1	1	1	0	V_{DD}	1	0	0
1	1	1	1	V_{DD}	1	0	1

FUNCTIONAL SCHEMATIC

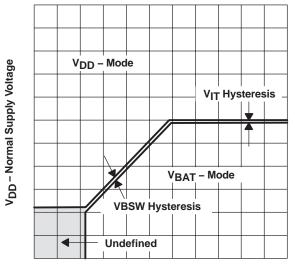


Terminal Functions

TERMIN	IAL	I/O	DESCRIPTION
NAME	NO.		
CEIN	5	I	Chip-enable input
CEOUT	6	0	Chip-enable output
GND	3	- 1	Ground
MR	4	I	Manual reset input
RESET	7	0	Active-high reset output
RESET	9	0	Active-low reset output
SENSE	8	I	Adjustable sense input, assumed to be connect to V _{DD} throught feedback resistences. Call your local contacts for other application connections.
VBAT	10	- 1	Backup-battery input
V_{DD}	2	I	Input supply voltage
VOUT	1	0	Supply output

TIMING DIAGRAM

NOTE: Shaded area in RESET is undefined.



detailed description backup-battery switchover

In case of a brownout or power failure, it may be necessary to preserve the contents of RAM. If a backup battery is installed at V_{BAT} , the device automatically switches the connected RAM to backup power when V_{DD} fails. In order to allow the backup battery (for example, 3.6-V lithium cells) to have a higher voltage than V_{DD} , these

supervisors do not connect V_{BAT} to V_{OUT} when V_{BAT} is greater than V_{DD} . V_{BAT} only connects to V_{OUT} (through a 15- Ω switch) when V_{DD} falls below V_{IT} and V_{BAT} is greater than V_{DD} . When V_{DD} recovers, switchover is deferred either until V_{DD} crosses V_{BAT} , or when V_{DD} rises above the reset threshold V_{IT} . V_{OUT} connects to V_{DD} through a 1- Ω (max) PMOS switch when V_{DD} crosses the reset threshold.

V _{DD} >V _{BAT}	V _{DD} >V _{IT}	Vout
1	1	V_{DD}
1	0	V_{DD}
0	1	V _{DD}
0	0	V _{BAT}

VBAT - Backup-Battery Supply Voltage

Figure 1. V_{DD} – V_{BAT} Switchover

detailed description (continued)

chip-enable signal gating

The internal gating of chip-enable (\$\overline{CE}\$) signals prevents erroneous data from corrupting CMOS RAM during an under-voltage condition. The TPS3613 uses a series transmission gate from \$\overline{CEIN}\$ to \$\overline{CEOUT}\$. During normal operation (reset not asserted), the \$CE\$ transmission gate is enabled and passes all \$CE\$ transitions. When reset is asserted, this path becomes disabled, preventing erroneous data from corrupting the \$CMOS_RAM\$. The short \$CE\$ propagation delay from \$\overline{CEIN}\$ to \$\overline{CEOUT}\$ enables the \$TPS3613\$ device to be used with most processors.

The CE transmission gate is disabled and $\overline{\text{CEIN}}$ is in high impedance (disable mode) while reset is asserted. During a power-down sequence when V_{DD} crosses the reset threshold, the $\overline{\text{CE}}$ transmission gate is disabled and $\overline{\text{CEIN}}$ immediately becomes high impedance if the voltage at $\overline{\text{CEIN}}$ is high. If $\overline{\text{CEIN}}$ is low when reset

is asserted, the CE transmission gate is disabled when $\overline{\text{CEIN}}$ goes high, or 15 μs after reset asserts, whichever occurs first. This allows the current write cycle to complete during power down. When the CE transmission gate is enabled, the impedance of $\overline{\text{CEIN}}$ appears as a resistor in series with the load at $\overline{\text{CEOUT}}$. The overall device propagation delay through the CE transmission gate depends on V_{OUT} , the source impedance of the drive connected to $\overline{\text{CEIN}}$, and the load at $\overline{\text{CEOUT}}$. To achieve minimum propagation delay, the capacitive load at $\overline{\text{CEOUT}}$ should be minimized, and a low-output-impedance driver is used.

In the disabled mode, the transmission gate is off and an active pullup connects $\overline{\text{CEOUT}}$ to V_{OUT} . This pullup turns off when the transmission gate is enabled.

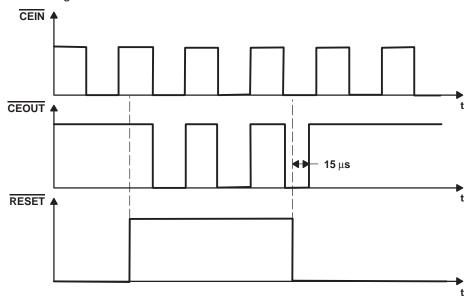


Figure 2. Chip-Enable Timing

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE (unless otherwise noted)(1)

Supply voltage: V _{DD} ⁽²⁾	7 V
MR and SENSE pins(2)	$-0.3 \text{ V to } (V_{DD} + 0.3 \text{ V})$
Continuous output current at V _{OUT} : I _O	400 mA
All other pins, IO	±10 mA
Continuous total power dissipation	. See Dissipation Rating Table
Operating free-air temperature range, T _A	40°C to +85°C
Storage temperature range, T _{stq}	65°C to +150°C
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	+260°C
traceas boyand those listed under absolute maximum ratings may cause permanent damage to the de	wice Those are stress ratings only and

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le +25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = +25°C	T _A = +70°C POWER RATING	T _A = +85°C POWER RATING
DGS	424 mW	3.4 mW/°C	271 mW	220 mW

RECOMMENDED OPERATING CONDITIONS

	MIN	MAX	UNIT
Supply voltage, V _{DD}	1.65	5.5	V
Battery supply voltage, V _{BAT}	1.5	5.5	V
Input voltage, V _I	0	V _{DD} + 0.3	V
High-level input voltage, VIH	0.7 x V _{DD}		V
Low-level input voltage, V _{IL}		0.3 x V _{DD}	V
Continuous output current at V _{OUT} , I _O		300	mA
Input transition rise and fall rate at \overline{MR} , $\Delta t/\Delta V$		100	ns/V
Slew rate at V _{DD} or V _{bat}		1	V/μs
Operating free-air temperature range, T _A	-40	+85	°C

⁽²⁾ All voltage values are with respect to GND. For reliable operation the device must not operate at 7 V for more than t = 1000h continuously.

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING CONDITIONS (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
			$V_{DD} = 1.8 \text{ V}$ $I_{OH} = -400 \mu\text{M}$	V _{DD} – 0.2 V				
		RESET	$V_{DD} = 3.3 \text{ V}, I_{OH} = -2 \text{ mA}$ $V_{DD} = 5 \text{ V}, I_{OH} = -3 \text{ mA}$	V _{DD} – 0.4 V				
			$V_{DD} = 1.8 \text{ V}, I_{OH} = -20 \mu\text{A}$	V _{DD} – 0.3 V				
Vон	High-level output voltage	RESET	$V_{DD} = 3.3 \text{ V}, I_{OH} = -80 \mu\text{A}$ $V_{DD} = 5 \text{ V}, I_{OH} = -120 \mu\text{A}$	V _{DD} – 0.4 V			V	
		CEOUT	V _{OUT} = 1.8 V, I _{OH} = -1 mA	V _{OUT} – 0.2 V				
		Enable mode CEIN = VOUT	$V_{OUT} = 3.3 \text{ V}, I_{OH} = -2 \text{ mA}$ $V_{OUT} = 5 \text{ V}, I_{OH} = -5 \text{ mA}$	V _{OUT} - 0.3 V				
		CEOUT Disable mode	V _{OUT} = 3.3 V, I _{OH} = -0.5 m/	V _{OUT} – 0.4 V				
		RESET	$V_{DD} = 1.8 \text{ V}, I_{OL} = 400 \mu\text{A}$			0.2		
		RESET	V _{DD} = 3.3 V, I _{OL} = 2 mA V _{DD} = 5 V, I _{OL} = 3 mA			0.4		
		CEOUT	V _{OUT} = 1.8 V, I _{OL} = 1.0 mA			0.2	V	
VOL	Low-level output voltage	Enable mode CEIN = 0 V	V _{OUT} = 3.3 V, I _{OL} = 2 mA V _{OUT} = 5 V, I _{OL} = 5 mA			0.3		
		Power-up reset voltage (see Note 1)	$V_{DD} > 1.1 \text{ V or } V_{BAT} > 1.1 \text{ V}$ $I_{OL} = 20 \mu\text{A}$			0.4	V	
	Normal mode		$I_{O} = 8.5 \text{ mA},$ $V_{DD} = 1.8 \text{ V}, V_{BAT} = 0 \text{ V}$	V _{DD} – 50 mV				
			$I_{O} = 125 \text{ mA},$ $V_{DD} = 3.3 \text{ V}, V_{BAT} = 0 \text{ V}$	V _{DD} – 150 mV				
VOUT			$I_O = 200 \text{ mA},$ $V_{DD} = 5 \text{ V}, \qquad V_{BAT} = 0 \text{ V}$	V _{DD} – 200 mV			V	
	Battery-backup mode		$I_O = 0.5 \text{ mA},$ $V_{BAT} = 1.5 \text{ V}, V_{DD} = 0 \text{ V}$	V _{BAT} – 20 mV				
			$I_O = 7.5 \text{ mA},$ $V_{BAT} = 3.3 \text{ V}, V_{DD} = 0 \text{ V}$	V _{BAT} – 113 mV				
R _{DS(on)}	V _{DD} to V _{OUT} on-resistance		$V_{DD} = 5 V$		0.6	1	Ω	
(III)	VBAT to VOUT on resistant		V _{BAT} = 3.3 V		8	15		
VIT	Negative-going input thresh (see Note 2)	nold voltage		1.13	1.15	1.17	V	
V _{hys}	Hysteresis	Sense	1.1 V < V _{IT} < 1.65 V		12		mV	
nys	11,31010010	V _{BSW} (see Note 3)	V _{DD} = 1.8 V		55		111 V	
lН	High-level input current	- MR	$\overline{MR} = 0.7 \times V_{DD}, V_{DD} = 5 V$	-33		-76	μΑ	
IIL	Low-level input current		$\overline{MR} = 0 \text{ V}, \qquad V_{DD} = 5 \text{ V}$	-110		-255		
lı	Input current	SENSE	V _{DD} = 1.15 V	-25		25	nA	
I _{DD}	V _{DD} supply current		$V_{OUT} = V_{DD}$ $V_{OUT} = V_{BAT}$			40	μΑ	
IBAT VBAT supply current		VOUT = VDD VOUT = VBAT	-0.1		0.1	μΑ		
٥, ١,								
I _{lkg}	CEIN leakage current		Disable mode, V _I < V _{DD}			±1	μΑ	

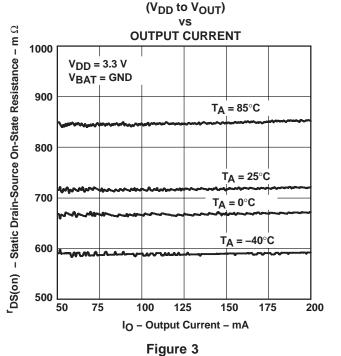
 ⁽¹⁾ The lowest voltage at which RESET becomes active. t_{Γ,(VDD)} ≥ 15 μs/V.
 (2) To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 μF) should be placed near to the supply terminals.
 (3) For V_{DD} < 1.6 V, V_{OUT} switches to V_{BAT} regardless of V_{BAT}

TIMING REQUIREMENTS AT R $_L$ = 1 M $\Omega,\, C_L$ = 50 PF, T_A = -40°C TO +85°C

PARAMETER			TEST CONDITIONS			TYP	MAX	UNIT
t _W	Pulse width	SENSE	$V_{IH} = V_{IT} + 0.2 V,$	$V_{IL} = V_{IT} - 0.2 V$	6			μs

SWITCHING CHARACTERISTICS AT R $_L$ = 1 M Ω , C $_L$ = 50 PF, T $_A$ = $-40^{\circ} C$ TO +85°C

	PARAM	ETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t d	Delay time		$\frac{\text{VSENSE} \ge \text{V}_{\text{IT}} + 0.2 \text{ V},}{\text{MR} \ge 0.7 \text{ x V}_{\text{DD}},}$ See timing diagram	60	100	140	ms
^t PLH	Propagation (delay) time, low-to-high-level output	50% RESET to 50% CEOUT	V _{OUT} = V _{IT}		15		μs
	Propagation (delay) time, high-to-low-level output CL = 50 pF SENSE to i		V _{DD} = 1.8 V		5	15	
		50% CEIN to 50% CEOUT, C _L = 50 pF only (see Note 5)	V _{DD} = 3.3 V		1.6	5	ns
			V _{DD} = 5 V		1	3	
^t PHL		SENSE to RESET	V _{IL} = V _{IT} - 0.2 V, V _{IH} = V _{IT} + 0.2 V		2	5	μs
		MR to RESET	$\begin{split} & \forall \text{SENSE} \geq \forall \text{IT} + 0.2 \ \forall, \\ & \forall \text{IL} = 0.3 \ \text{x} \ \forall \text{DD}, \\ & \forall \text{IH} = 0.7 \ \text{x} \ \forall \text{DD} \end{split}$		0.1	1	μs
(1)	Transition time	V _{DD} to V _{BAT}	V _{IH} = V _{BAT} + 0.2 V, V _{IL} = V _{BAT} - 0.2 V, V _{BAT} < V _{IT}			3	μs


⁽¹⁾ Assured by design

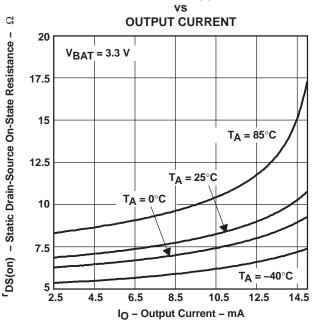
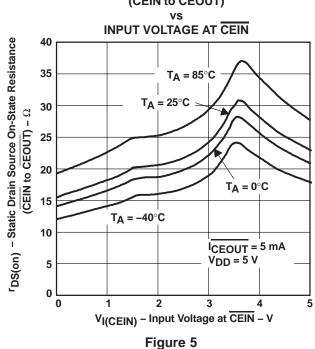

Table of Graphs

			FIGURE
	Static drain-source on-state resistance (V _{DD} to V _{OUT})	vs Output current	3
rDS(on)	Static drain-source on-state resistance (VBAT to VOUT)	vs Output current	4
` ,	Static drain-source on-state resistance (CEIN to CEOUT)	vs Input voltage at CEIN	5
lDD	Supply current	vs Supply voltage	6
VIT	Input threshold voltage at RESET	vs Free-air temperature	7
	High-level output voltage at RESET		8, 9
VOH	High-level output voltage at CEOUT	vs High-level output current	10, 11, 12, 13
.,	Low-level output voltage at RESET	vs Low-level output current	14, 15
VOL	Low-level output voltage at CEOUT	vs Low-level output current	16, 17

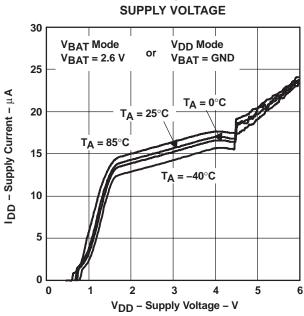
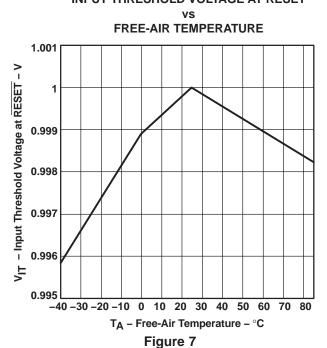
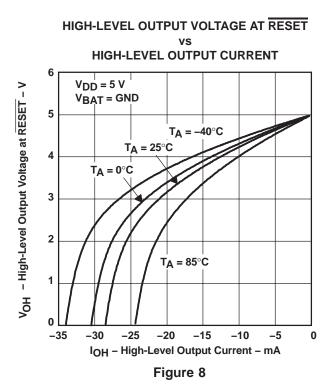
STATIC DRAIN-SOURCE ON-STATE RESISTANCE

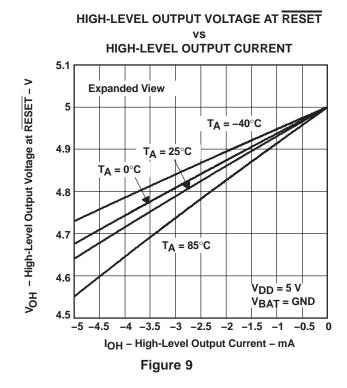


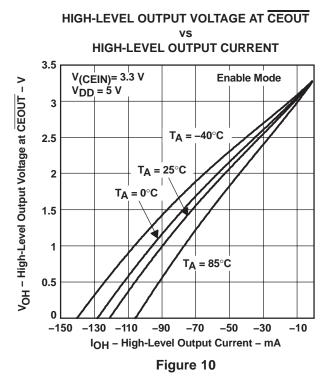
STATIC DRAIN-SOURCE ON-STATE RESISTANCE $(V_{BAT} \text{ to } V_{OUT})$

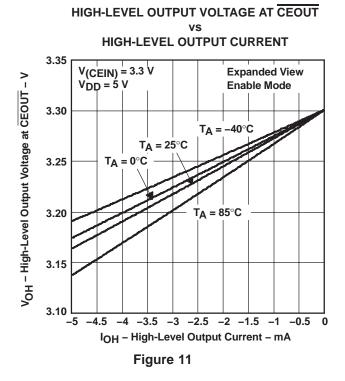
STATIC DRAIN-SOURCE ON-STATE RESISTANCE (CEIN to CEOUT)

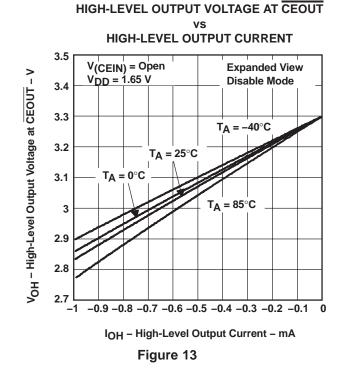
SUPPLY CURRENT vs SUPPLY VOLTAGE

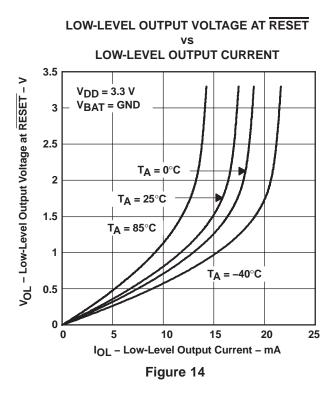




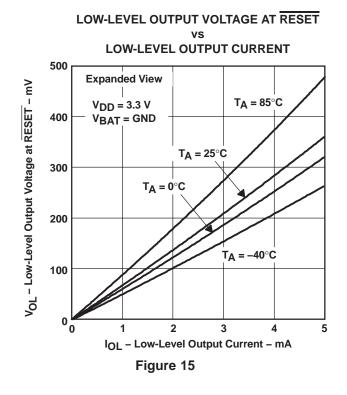

Figure 6


INPUT THRESHOLD VOLTAGE AT RESET



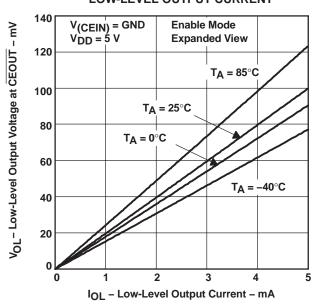






HIGH-LEVEL OUTPUT VOLTAGE AT CEOUT **HIGH-LEVEL OUTPUT CURRENT** 3.5 V_{OH} - High-Level Output Voltage at CEOUT - V 3 T_A = −40°C T_A = 25°C 2.5 $T_A = 0^{\circ}C$ 2 1.5 T_A = 85°C 1 **Disable Mode** V(CEIN) = Open V_{DD} = 1.65 V 0.5 O -3 -2.5 -2 -1.5 -1 -0.5 IOH - High-Level Output Current - mA

Figure 12



LOW-LEVEL OUTPUT VOLTAGE AT CEOUT **LOW-LEVEL OUTPUT CURRENT** 3.5 **Enable Mode** V_{OL} - Low-Level Output Voltage at CEOUT - V $V_{(CEIN)} = GND$ $V_{DD} = 5 V$ 3 2.5 T_A = 85°C T_A = 25°C $T_A = 0^{\circ}C$ 1.5 $T_A = -40^{\circ}C$ 0.5 60 70 90 10 40 50 80 100 0 IOL - Low-Level Output Current - mA

Figure 16

LOW-LEVEL OUTPUT VOLTAGE AT CEOUT vs LOW-LEVEL OUTPUT CURRENT

www.ti.com 13-Jan-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS3613-01DGS	ACTIVE	VSSOP	DGS	10	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AFK	Samples
TPS3613-01DGSR	ACTIVE	VSSOP	DGS	10	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AFK	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

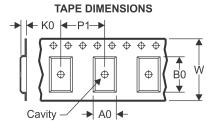
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


www.ti.com 13-Jan-2024

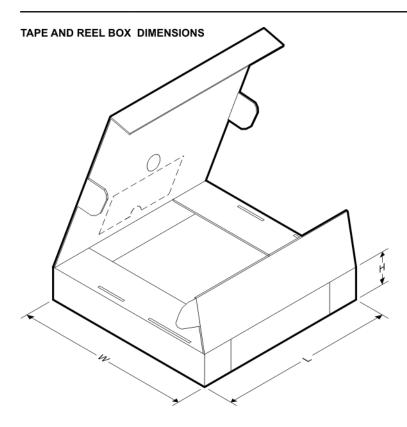
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

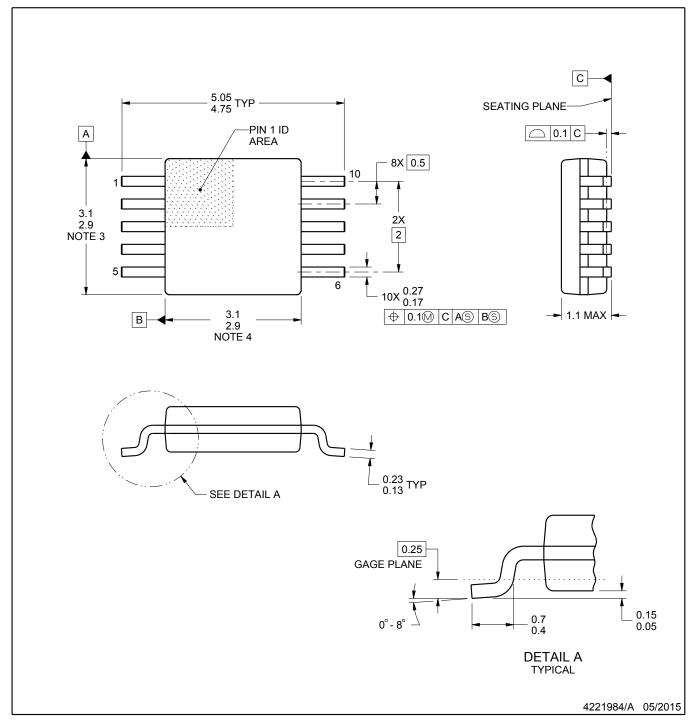


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3613-01DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

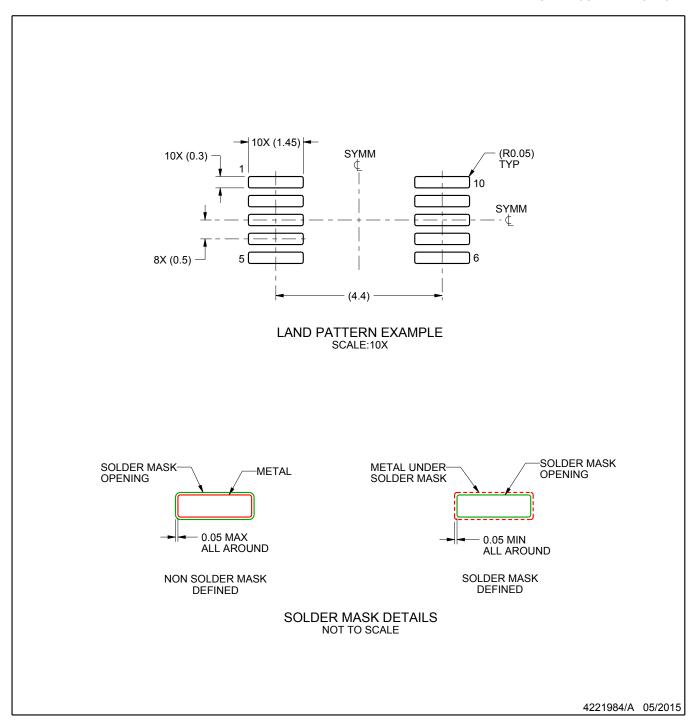


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3613-01DGSR	VSSOP	DGS	10	2500	358.0	335.0	35.0

SMALL OUTLINE PACKAGE

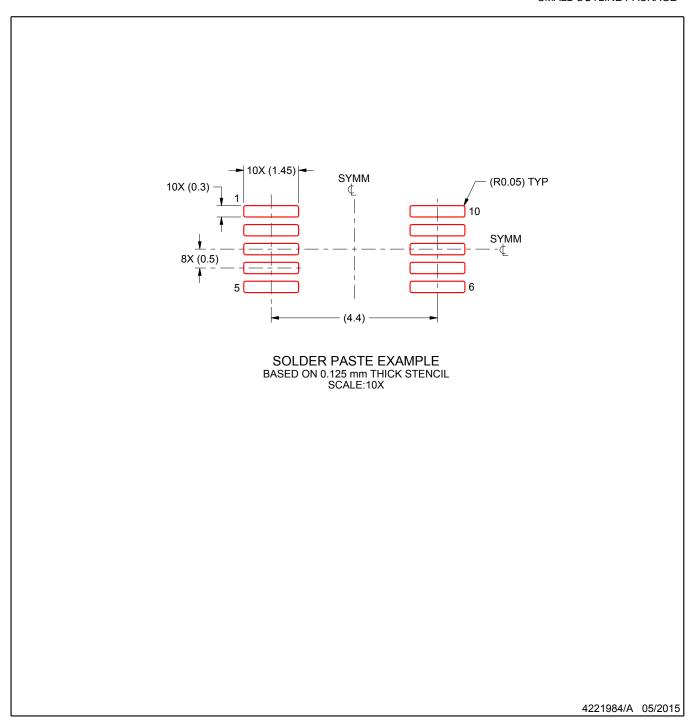
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated