

www.ti.com SLOS647-AUGUST 2009

LOW-POWER SINGLE OPERATIONAL AMPLIFIER

FEATURES

- Qualified for Automotive Applications
- Wide Power-Supply Range
 - Single Supply: 3 V to 30 V
 - Dual Supply: ±1.5 V to ±15 V
- Large Output Voltage Swing:
 0 V to 3.5 V (Min) (V_{CC} = 5 V)
- Low Supply Current: 500 μA (Typ)
 Low Input Bias Current: 20 nA (Typ)
- Stable With High Capacitive Loads

OUT 1 5 V_{cc-} 2 IN+3 IN-

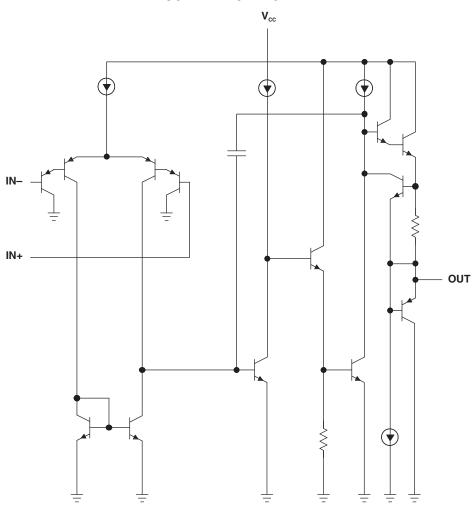
DESCRIPTION/ORDERING INFORMATION

The TS321 is a bipolar operational amplifier for cost-sensitive applications in which space savings are important.

ORDERING INFORMATION(1)

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-40°C to 125°C	SOT-23-5 - DBV	Reel of 3000	TS321QDBVRQ1	9CNS	

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.


(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCHEMATIC DIAGRAM

www.ti.com SLOS647-AUGUST 2009

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
.,	Supply voltage ⁽²⁾	Single		32	V	
V _{CC}	Supply voltage (Dual		±16	V	
V_{ID}	Differential input voltage (3)		32	V		
VI	Input voltage range (2)(4)	-0.3	32	V		
I	Input current ⁽⁴⁾		50	mA		
t _{short}	Duration of output short circuit to ground		U	Inlimited		
θ_{JA}	Package thermal impedance, junction to free air ⁽⁵⁾⁽⁶⁾	DBV package		206	°C/W	
TJ	Operating virtual junction temperature			150	°C	
T _{stg}	Storage temperature range		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-}.
- Differential voltages are at IN+ with respect to IN-.
- (4)
- Neither input must ever be more positive than V_{CC+} or more negative than V_{CC-} . Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Selecting the maximum of 150°C can affect reliability.
- The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
V _{CC}	Cumply voltage	Single supply	3	30	\/
	Supply voltage	Dual supply	±1.5	±15	V
T _A	Operating free-air temperature		-40	125	°C

Product Folder Link(s): TS321-Q1

SLOS647-AUGUST 2009 www.ti.com

ELECTRICAL CHARACTERISTICS

 $V_{CC+} = 5 \text{ V}, V_{CC-} = \text{GND}, V_{O} = 1.4 \text{ V} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDIT	TONS	T _A	MIN	TYP	MAX	UNIT	
V	long to effect yelto go	$R_S = 0, 5 \text{ V} < V_{CC+} < 3$	0 V,	25°C		0.5	4	\/	
V _{IO}	Input offset voltage	$0 < V_{IC} < (V_{CC+} - 1.5 V_{CC+})$	")	Full range			5	mV	
	land offers comment		25°C		2	30	^		
I _{IO}	Input offset current			Full range			50	nA	
	land him summet(1)			25°C		20	150	^	
I _{IB}	Input bias current ⁽¹⁾			Full range			200	nA	
^	Large-signal differential voltage	$V_{CC} = 15 \text{ V}, R_L = 2 \text{ k}\Omega$		25°C	50	100		\//m\/	
A _{VD}	amplification	$V_0 = 1.4 \text{ V to } 11.4 \text{ V}$		Full range	25			V/mV	
	Common-mode input voltage ⁽²⁾	V 20 V		25°C	0		V _{CC+} – 1.5	V	
V _{ICR}	Common-mode input voltage	V _{CC} = 30 V		Full range	0		V _{CC+} – 2	V	
			5 313	25°C	26	27			
	High-level output voltage	V 20 V	$R_L = 2 k\Omega$	Full range	25.5				
.,		V _{CC} = 30 V	$R_L = 10 \text{ k}\Omega$	25°C	27	28		V	
V _{OH}				Full range	26.5				
		V 5 V	D 01-0	25°C	3.5				
		$V_{CC} = 5 V$	$R_L = 2 k\Omega$	Full range	3				
	Low lovel output voltogo	B 10 k0		25°C		5	15	mV	
V _{OL}	Low-level output voltage	$R_L = 10 \text{ k}\Omega$	Full range			20	1117		
GBP	Gain bandwidth product	$V_{CC} = 30 \text{ V}, V_I = 10 \text{ m}$ f = 100 kHz, $C_L = 100 \text{ p}$		25°C		0.8		MHz	
SR	Slew rate	$V_{CC} = 15 \text{ V}, V_{I} = 0.5 \text{ V}$ $R_{L} = 2 \text{ k}\Omega, C_{L} = 100 \text{ pF}$		25°C		0.4		V/μs	
φ _m	Phase margin			25°C		60		0	
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ		25°C	65	85		dB	
I _{SOURCE}	Output source current	$V_{CC} = 15 \text{ V}, V_{O} = 2 \text{ V},$	V _{ID} = 1 V	25°C	20	40		mA	
	Output sink ourront	V _{CC} = 15 V, V _{ID} = 1 V	V _O = 2 V	25°C	10	20		mA	
I _{SINK}	Output sink current	v _{CC} = 15 v, v _{ID} = 1 v	$V_0 = 0.2 \text{ V}$	25°C	12	50		μΑ	
Io	Short-circuit to GND	V _{CC} = 15 V		25°C		40	60	mA	
SVR	Supply-voltage rejection ratio	$V_{CC} = 5 \text{ V to } 30 \text{ V}$		25°C	65	110		dB	
			$V_{CC} = 5 V$	25°C		500	800		
	Total supply current	No load	$V_{CC} = 30 \text{ V}$	25 C		600	900	μΑ	
I _{CC}	Total supply current	$V_{CC} = 5 \text{ V}$		Full range		600	900	μΛ	
		V _{CC} = 30 V		i un range			1000		
THD	Total harmonic distortion	$V_{CC} = 30 \text{ V}, V_{O} = 2 \text{ V}_{pp}$ $R_{L} = 2 \text{ k}\Omega, f = 1 \text{ kHz}, C$	$A_{V} = 20 \text{ dB},$ $A_{L} = 100 \text{ pF}$	25°C		0.015		%	
e _N	Equivalent input noise voltage	$V_{CC} = 30 \text{ V, f} = 1 \text{ kHz,}$	$R_S = 100 \Omega$	25°C		50		nV/√ Hz	

⁽¹⁾ The direction of the input current is out of the device. This current essentially is constant, independent of the state of the output, so no loading change exists on the input lines.

⁽²⁾ The input common-mode voltage of either input signal should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC+} – 1.5 V, but either or both inputs can go to 32 V without damage.

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TS321QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	9CNS	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

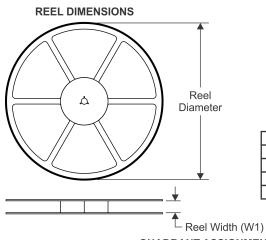
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

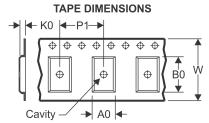
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TS321-Q1:

PACKAGE OPTION ADDENDUM

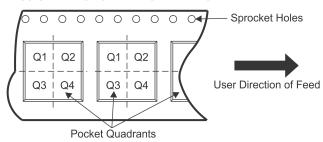
10-Dec-2020


NOTE: Qualified Version Definitions:

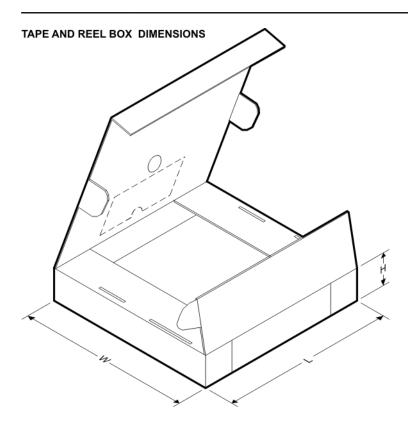

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


TAPE AND REEL INFORMATION

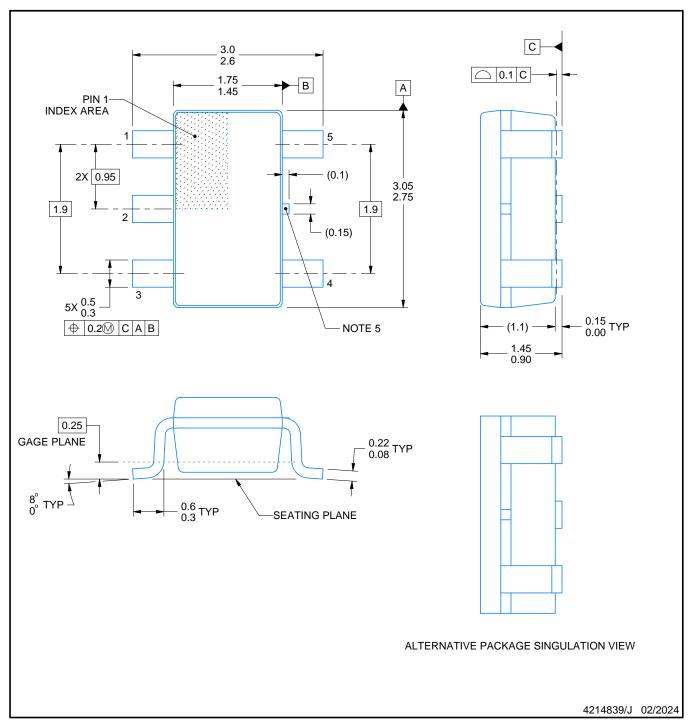
A0	
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS321QDBVRQ1	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3

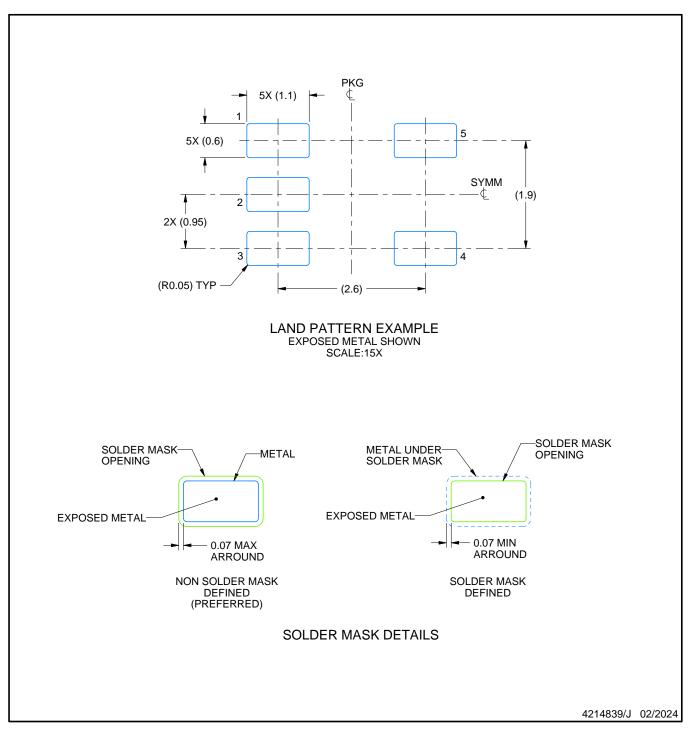
www.ti.com 3-Aug-2017



*All dimensions are nominal

I	Device Package Type		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
I	TS321QDBVRQ1	SOT-23	DBV	5	3000	202.0	201.0	28.0	

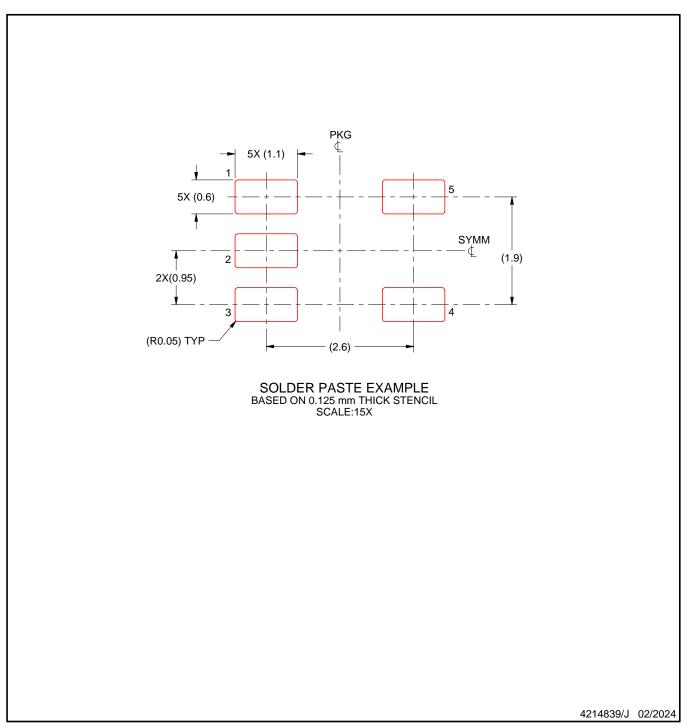
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated