

10-Ω SPST ANALOG SWITCH

Check for Samples: TS5A1066

FEATURES

- Low ON-State Resistance (10 Ω)
- Control Inputs Are 5.5-V Tolerant
- Low Charge Injection
- Low Total Harmonic Distortion (THD)
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

The TS5A1066 is a single-pole single-throw (SPST) analog switch that is designed to operate from 1.65 V to 5.5 V. This device can handle both digital and analog signals, and signals up to V_+ (peak) can be transmitted in either direction.

Table 1. SUMMARY OF CHARACTERISTICS

Configuration	Single-Pole, Single-Throw Demultiplexer (1 x SPST)
Number of channels	1
ON-state resistance (ron)	7.5 Ω
ON-state resistance flatness (ron(flat))	2.5 Ω
Turn-on/turn-off time (t _{ON} /t _{OFF})	9.5 ns/2 ns
Charge injection (Q _C)	1 pC
Bandwidth (BW)	400 MHz
OFF isolation (O _{ISO})	-68 dB at 10 MHz
Total harmonic distortion (THD)	0.14%
Leakage current (I _{COM(OFF)}	±0.1 μA
Power-supply current (I+)	0.05 μΑ
Package options	5-pin DSBGA, SOT-23, or SC-70

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Table 2. ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING (2)
-40°C to 85°C	NanoFree [™] – WCSP (DSBGA) 0.23-mm Large Bump – YZP (Pb- free)	Tape and reel	TS5A1066YZPR	JD_
	SOT (SOT-23) – DBV	Tape and reel	TS5A1066DBVR	JAD_
	SOT (SC-70) - DCK	Tape and reel	TS5A1066DCKR	JD_

- (1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
- (2) DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site. YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, = Pb-free).

FUNCTION TABLE

IN	NO TO COM, COM TO NO
L	OFF
Н	ON

Absolute Minimum and Maximum Rating(1) (2)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V ₊	Supply voltage range ⁽³⁾		-0.5	6.5	V
$V_{NO} \ V_{COM}$	Analog voltage range ⁽³⁾ (4) (5)		-0.5	V ₊ + 0.5	V
I _K	Analog port diode current	V_{NO} , $V_{COM} < 0$ or V_{NO} , $V_{COM} > V_{+}$	-50	50	mA
I_{NO} I_{COM}	On-state switch current	V_{NO} , $V_{COM} = 0$ to V_{+}	-50	50	mA
VI	Digital input voltage range (3) (4)		-0.5	6.5	V
I_{IK}	Digital input clamp current	V _I < 0	-50		mA
I ₊ I _{GND}	Continuous current through each V ₊ or GNE	0	-100	100	mA
		DBV package		206	
θ_{JA}	Package thermal impedance (6)	DCK package		252	°C/W
		YZP package		132	
T _{stg}	Storage temperature range		-65	150	°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 5) This value is limited to 5.5 V maximum.
- (6) The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Characteristics for 5-V Supply⁽¹⁾

 V_{+} = 4.5 V to 5.5 V, T_{A} = -40°C to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST (CONDITIONS	T _A	V ₊	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V _{COM} , V _{NO}					0		V ₊	V
ON-state	-	0 ≤ V _{NO} ≤ V ₊ ,	Switch ON,	25°C	4.5 V		7.5	10	Ω
resistance	r _{on}	$I_{COM} = -30 \text{ mA},$	See Figure 13	Full	4.5 V			12	12
ON-state		$0 \le V_{NO} \le V_+,$	Switch ON,	25°C	45.7		2.5	5	0
resistance flatness	r _{on(flat)}	$I_{COM} = -30 \text{ mA},$	See Figure 13	Full	4.5 V			6	Ω
		$V_{NO} = 1 V$,		25°C		-0.2	0.1	0.2	
NO OFF leakage current	I _{NO(OFF)}	$V_{COM} = 4.5 \text{ V},$ or $V_{NO} = 4.5 \text{ V},$ $V_{COM} = 1 \text{ V},$	Switch OFF, See Figure 14	Full	5.5 V	-2		2	μΑ
		$V_{COM} = 1 V$,		25°C		-0.1	0.05	0.1	
COM OFF leakage current	I _{COM(OFF)}	$V_{NO} = 4.5 \text{ V},$ or $V_{COM} = 4.5 \text{ V},$ $V_{NO} = 1 \text{ V},$	Switch OFF, See Figure 14	Full	5.5 V	-0.2		0.2	μΑ
		V _{NO} = 1 V,		25°C		-0.2	0.1	0.2	
NO ON leakage current	I _{NO(ON)}	V_{COM} = Open, or V_{NO} = 4.5 V, V_{COM} = Open,	Switch ON, See Figure 15	Full	5.5 V	-2		2	μΑ
		$V_{COM} = 1 V$,		25°C		-0.1	0.05	0.1	
COM ON leakage current	I _{COM(ON)}	V_{NO} = Open, or V_{COM} = 4.5 V, V_{NO} = Open,	Switch ON, See Figure 15	Full	5.5 V	-0.2		0.2	μΑ
Digital Control	Input (IN)								
Input logic high	V _{IH}			Full		V ₊ × 0.7		5.5	V
Input logic low	V_{IL}			Full		0		$V_+ \times 0.3$	V
Input leakage	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C	5.5 V	-0.1	0.05	0.1	μA
current	'IH, 'IL	V ₁ = 0.5 V OI U		Full	J.J v	-1		1	μΛ

⁽¹⁾ The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

Electrical Characteristics for 5-V Supply⁽¹⁾ (continued)

 $V_{+} = 4.5 \text{ V}$ to 5.5 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CO	ONDITIONS	TA	V ₊	MIN	TYP	MAX	UNIT
Dynamic								,	
Turn-on time		V _{COM} = 3 V,	$C_{L} = 35 \text{ pF},$	25°C	5 V	3.5	4.8	5.5	20
rum-on time	t _{ON}	$R_L = 300 \Omega$,	See Figure 17	Full	4.5 V to 5.5 V	3.5		7.5	ns
Turn-off time	+	$V_{COM} = 3 V$,	$C_L = 35 \text{ pF},$	25°C	5 V	2	3	4.5	ns
rum-on time	t _{OFF}	$R_L = 300 \Omega$,	See Figure 17	Full	4.5 V to 5.5 V	2		5.5	115
Charge injection	$Q_{\mathbb{C}}$	$V_{GEN} = 0,$ $C_L = 0.1 \text{ nF},$	See Figure 20	25°C	5 V		1		рС
NO OFF capacitance	C _{NO(OFF)}	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	5 V		6.8		pF
COM OFF capacitance	C _{COM(OFF)}	V _{COM} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	5 V		6.8		pF
NO ON capacitance	C _{NO(ON)}	V _{NO} = V ₊ or GND, Switch ON,	See Figure 16	25°C	5 V		14		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	5 V		14		pF
Digital input capacitance	Cı	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	5 V		2.2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	5 V		400		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 19	25°C	5 V		-68		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 21	25°C	5 V		0.14		%
Supply									
Positive supply		$V_1 = V_+$ or GND,	Switch ON or OFF	25°C	5.5 V		0.05	1	
current	I ₊	$v_{\parallel} = v_{+} \cup i \cup i \cup i \cup j$	SWILCH ON OF OFF	Full	5.5 V			5	μA

Submit Documentation Feedback

Electrical Characteristics for 3.3-V Supply⁽¹⁾

 $V_{+} = 3 \text{ V}$ to 3.6 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST C	CONDITIONS	TA	V ₊	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V _{COM} , V _{NO}					0		V ₊	V
ON-state		0 ≤ V _{NO} ≤ V ₊ ,	Switch ON,	25°C	3 V		11.5	14	Ω
resistance	r _{on}	$I_{COM} = -24 \text{ mA},$	See Figure 13	Full	3 V			17	22
ON-state		$0 \le V_{NO} \le V_+$	Switch ON,	25°C	0.17		5	10	0
resistance flatness	r _{on(flat)}	$I_{COM} = -24 \text{ mA},$	See Figure 13	Full	3 V			12	Ω
		V _{NO} = 1 V,		25°C		-0.2	0.1	0.2	
NO OFF leakage current	I _{NO(OFF)}	$V_{COM} = 3 \text{ V},$ or $V_{NO} = 3 \text{ V},$ $V_{COM} = 1 \text{ V},$	Switch OFF, See Figure 14	Full	3.6 V	-2		2	μΑ
		V _{COM} = 1 V,		25°C		-0.1	0.05	0.1	
COM OFF leakage current	I _{COM(OFF)}	$V_{NO} = 3 V$, or $V_{COM} = 3 V$, $V_{NO} = 1 V$,	Switch OFF, See Figure 14	Full	3.6 V	-0.2		0.2	μΑ
		V _{NO} = 1 V,		25°C		-0.2	0.1	0.2	
NO ON leakage current	I _{NO(ON)}	$V_{COM} = Open,$ or $V_{NO} = 3 V,$ $V_{COM} = Open,$	Switch ON, See Figure 15	Full	3.6 V	-2		2	μΑ
		$V_{COM} = 1 V$,		25°C		-0.1	0.05	0.1	
COM ON leakage current	I _{COM(ON)}	V_{NO} = Open, or V_{COM} = 3 V, V_{NO} = Open,	Switch ON, See Figure 15	Full	3.6 V	-0.2		0.2	μΑ
Digital Control I	nput (IN)								
Input logic high	V _{IH}			Full		V ₊ × 0.7		5.5	V
Input logic low	V_{IL}			Full		0		$V_+ \times 0.3$	V
Input leakage	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C	3.6 V	-0.1	0.05	0.1	μA
current	'IH, 'IL	V ₁ = 0.0 V 01 0		Full	J.U V	-1		1	μΛ

⁽¹⁾ The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

Electrical Characteristics for 3.3-V Supply⁽¹⁾ (continued)

 $V_{+} = 3 \text{ V to } 3.6 \text{ V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C} \text{ (unless otherwise noted)}$

PARAMETER	SYMBOL	TEST CO	ONDITIONS	T _A	٧,	MIN	TYP	MAX	UNIT
Dynamic								·	
		V - 2 V	C = 25 pE	25°C	3.3 V	4.5	5.5	8	
Turn-on time	t _{ON}	$V_{COM} = 2 V,$ $R_L = 300 \Omega,$	C _L = 35 pF, See Figure 17	Full	3 V to 3.6 V	4.5		8.5	ns
		V 2.V	C 25 pF	25°C	3.3 V	2	3	4.5	
Turn-off time	t _{OFF}	$V_{COM} = 2 \text{ V},$ $R_L = 300 \Omega,$	C _L = 35 pF, See Figure 17	Full	3 V to 3.6 V	2		5.5	ns
Charge injection	Q _C	$V_{GEN} = 0,$ $C_L = 0.1 \text{ nF},$	See Figure 20	25°C	3.3 V		1		рС
NO OFF capacitance	C _{NO(OFF)}	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	3.3 V		6.8		pF
COM OFF capacitance	C _{COM(OFF)}	V _{COM} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	3.3 V		6.8		pF
NO ON capacitance	C _{NO(ON)}	V _{NO} = V ₊ or GND, Switch ON,	See Figure 16	25°C	3.3 V		14		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	3.3 V		14		pF
Digital input capacitance	Cı	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	3.3 V		2.2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	3.3 V		400		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 19	25°C	3.3 V		-68		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 21	25°C	3.3 V		0.2		%
Supply	•				'				
Positive supply current	I ₊	$V_I = V_+ \text{ or GND},$	Switch ON or OFF	25°C Full	3.6 V		0.05	1 5	μΑ

Submit Documentation Feedback

Electrical Characteristics for 2.5-V Supply⁽¹⁾

 $V_{+} = 2.3 \text{ V}$ to 2.7 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST	CONDITIONS	TA	V ₊	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	V_{COM}, V_{NO}					0		V ₊	V
ON-state		$0 \le V_{NO} \le V_+$	Switch ON,	25°C	2.3 V		20	24	Ω
resistance	r _{on}	$I_{COM} = -8 \text{ mA},$	See Figure 13	Full	2.3 V			27	12
ON-state		$0 \le V_{NO} \le V_+$	Switch ON,	25°C			7.5	15	
resistance flatness	r _{on(flat)}	$I_{\text{COM}} = -8 \text{ mA},$	See Figure 13	Full	2.3 V			20	Ω
		$V_{NO} = 0.5 V,$		25°C		-0.2	0.1	0.2	
NO OFF leakage current	I _{NO(OFF)}	$V_{COM} = 2.2 \text{ V},$ or $V_{NO} = 2.2 \text{ V},$ $V_{COM} = 0.5 \text{ V},$	Switch OFF, See Figure 14	Full	2.7 V	-2		2	μΑ
		$V_{COM} = 0.5 V,$		25°C		-0.1	0.05	0.1	
COM OFF leakage current	I _{COM(OFF)}	$V_{NO} = 2.2 \text{ V},$ or $V_{COM} = 2.2 \text{ V},$ $V_{NO} = 0.5 \text{ V},$	Switch OFF, See Figure 14	Full 2.7 V	2.7 V	-0.2		0.2	μΑ
		$V_{NO} = 0.5 V,$,	25°C		-0.2	0.1	0.2	
NO ON leakage current	I _{NO(ON)}	$V_{COM} = Open,$ or $V_{NO} = 2.2 \text{ V},$ $V_{COM} = Open,$	Switch ON, See Figure 15	Full	2.7 V	-2		2	μΑ
		$V_{COM} = 0.5 V,$		25°C		-0.1	0.05	0.1	
COM ON leakage current	I _{COM(ON)}	V_{NO} = Open, or V_{COM} = 2.2 V, V_{NO} = Open,	Switch ON, See Figure 15	Full	2.7 V	-0.2		0.2	μA
Digital Control	Input (IN)								
Input logic high	V _{IH}			Full		V ₊ × 0.7		5.5	V
Input logic low	V_{IL}			Full		0		$V_{+} \times 0.3$	V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	2.7 V	-0.1 -1	0.05	0.1	μA

⁽¹⁾ The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

Electrical Characteristics for 2.5-V Supply⁽¹⁾ (continued)

 $\mbox{V}_{\mbox{\tiny +}} = 2.3 \mbox{ V}$ to 2.7 V, $\mbox{T}_{\mbox{\tiny A}} = -40\mbox{\,^{\circ}C}$ to 85 $\mbox{^{\circ}C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST C	ONDITIONS	TA	V ₊	MIN	TYP	MAX	UNIT
Dynamic									
		\/ 4.5.\/	C 25 pF	25°C	2.5 V	4.5	5.5	8	
Turn-on time	t _{ON}	$V_{COM} = 1.5 \text{ V},$ $R_L = 300 \Omega,$	C _L = 35 pF, See Figure 17	Full	2.3 V to 2.7 V	4.5		8.5	ns
		\/ 4.5.\/	C 25 pF	25°C	2.5 V	1.5	2.5	4	
Turn-off time	t _{OFF}	$V_{COM} = 1.5 \text{ V},$ $R_L = 300 \Omega,$	C _L = 35 pF, See Figure 17	Full	2.3 V to 2.7 V	1.5		5.5	ns
Charge injection	Q _C	$\begin{aligned} &V_{GEN}=0,\\ &C_{L}=0.1 \text{ nF}, \end{aligned}$	See Figure 20	25°C	2.5 V		1		рС
NO OFF capacitance	C _{NO(OFF)}	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	2.5 V		6.8		pF
COM OFF capacitance	C _{COM(OFF)}	V _{COM} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	2.5 V		6.8		pF
NO ON capacitance	C _{NO(ON)}	V _{NO} = V ₊ or GND, Switch ON,	See Figure 16	25°C	2.5 V		14		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	2.5 V		14		pF
Digital input capacitance	Cı	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	2.5 V		2.2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	2.5 V		400		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 19	25°C	2.5 V		-68		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 21	25°C	2.5 V		0.32		%
Supply					<u> </u>				
Positive supply	1	$V_1 = V_+ \text{ or GND},$	Switch ON or OFF	25°C	2.7 V		0.05	1	^
current	I ₊	$v_1 = v_+ \text{ or } GND,$	SWILCH ON OF OFF	Full	2.1 V			5	μΑ

Submit Documentation Feedback

Electrical Characteristics for 1.8-V Supply⁽¹⁾

 $V_{+} = 1.65 \text{ V}$ to 1.95 V, $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST	CONDITIONS	TA	V ₊	MIN	TYP	MAX	UNIT
Analog Switch								,	
Analog signal range	V _{COM} , V _{NO}					0		V ₊	V
ON-state	_	$0 \le V_{NO} \le V_+,$	Switch ON,	25°C	1.65 V		74.5	80	Ω
resistance	r _{on}	$I_{COM} = -4 \text{ mA},$	See Figure 13	Full	1.00 V			100	12
ON-state	_	0 ≤ V _{NO} ≤ V ₊ ,	Switch ON,	25°C	4.05.1/		64.5	70	0
resistance flatness	r _{on(flat)}	$I_{COM} = -4 \text{ mÅ},$	See Figure 13	Full	1.65 V			90	Ω
		$V_{NO} = 0.3 V$,		25°C		-0.2	0.1	0.2	
NO OFF leakage current	I _{NO(OFF)}	$V_{COM} = 1.65 \text{ V},$ or $V_{NO} = 1.65 \text{ V},$ $V_{COM} = 0.3 \text{ V},$	Switch OFF, See Figure 14	Full	1.95 V	-2		2	μΑ
		$V_{COM} = 0.3 V,$		25°C		-0.1	0.05	0.1	
COM OFF leakage current	I _{COM(OFF)}	$V_{NO} = 1.65 \text{ V},$ or $V_{COM} = 1.65 \text{ V},$ $V_{NO} = 0.3 \text{ V},$	Switch OFF, See Figure 14	Full	1.95 V	-0.2		0.2	μΑ
		$V_{NO} = 0.3 V,$		25°C		-0.2	0.1	0.2	
NO ON leakage current	I _{NO(ON)}	$V_{COM} = Open,$ or $V_{NO} = 1.65 V,$ $V_{COM} = Open,$	Switch ON, See Figure 15	Full	1.95 V	-2		2	μΑ
		$V_{COM} = 0.3 \text{ V},$		25°C		-0.1	0.05	0.1	
COM ON leakage current	I _{COM(ON)}	V_{NO} = Open, or V_{COM} = 1.65 V, V_{NO} = Open,	Switch ON, See Figure 15	Full	1.95 V	-0.2		0.2	μA
Digital Control I	nput (IN)							· · · · · · · · · · · · · · · · · · ·	
Input logic high	V _{IH}			Full		V ₊ × 0.65		5.5	V
Input logic low	V _{IL}			Full		0		$V_{+} \times 0.35$	V
Input leakage	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C	1.95 V	-0.1	0.05	0.1	μΑ
current	'IH, 'IL	V = 3.5 V OI 0		Full	1.33 v	-1		1	μΛ

⁽¹⁾ The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

Electrical Characteristics for 1.8-V Supply⁽¹⁾ (continued)

 $V_{+} = 1.65 \text{ V}$ to 1.95 V, $T_{A} = -40 ^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CO	NDITIONS	T _A	V ₊	MIN	TYP	MAX	UNIT
Dynamic									
		V 42V	C 25 n C	25°C	1.8 V	9.5	10	12	
Turn-on time	t _{ON}	$V_{COM} = 1.3 \text{ V},$ $R_L = 300 \Omega,$	C _L = 35 pF, See Figure 17	Full	1.65 V to 1.95 V	8.5		13	ns
		121	C 25 pF	25°C	1.8 V	1.5	2	4	
Turn-off time	t _{OFF}	$V_{COM} = 1.3 \text{ V},$ $R_L = 300 \Omega,$	C _L = 35 pF, See Figure 17	Full	1.65 V to 1.95 V	1.5		5.5	ns
Charge injection	$Q_{\mathbb{C}}$	$\begin{aligned} V_{GEN} &= 0, \\ C_L &= 0.1 \text{ nF}, \end{aligned}$	See Figure 20	25°C	1.8 V		1		pC
NO OFF capacitance	C _{NO(OFF)}	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	1.8 V		6.8		pF
COM OFF capacitance	C _{COM(OFF)}	V _{COM} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	1.8 V		6.8		pF
NO ON capacitance	C _{NO(ON)}	V _{NO} = V ₊ or GND, Switch ON,	See Figure 16	25°C	1.8 V		14		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	1.8 V		14		pF
Digital input capacitance	Cı	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	1.8 V		2.2		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	1.8 V		400		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 19	25°C	1.8 V		-68		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 21	25°C	1.8 V		0.32		%
Supply									
Positive supply current	I ₊	$V_I = V_+ \text{ or GND},$	Switch ON or OFF	25°C Full	1.95 V		0.05	1 5	μΑ

Submit Documentation Feedback

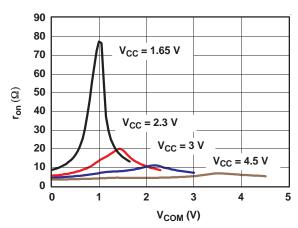


Figure 1. r_{on} vs V_{COM}

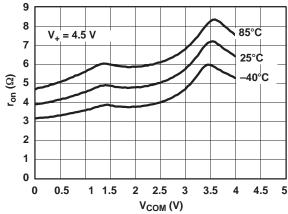


Figure 2. r_{on} vs V_{COM} ($V_{+} = 3 V$)

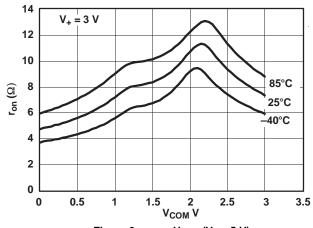


Figure 3. r_{on} vs V_{COM} ($V_{+} = 5 V$)

Copyright © 2005–2012, Texas Instruments Incorporated Product Folder Links: *TS5A1066*

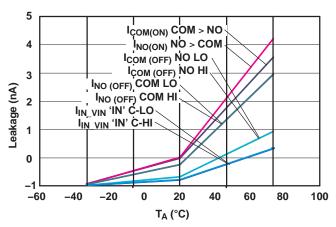


Figure 4. Leakage Current vs Temperature (V₊ = 5.5 V)

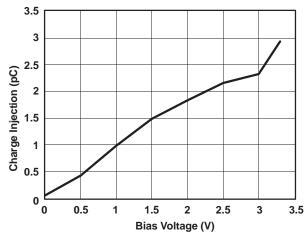


Figure 5. Charge Injection (Q_C) vs Bias Voltage

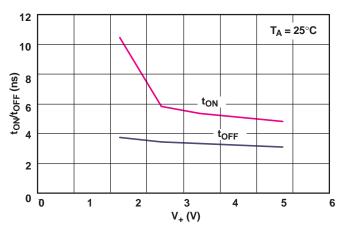


Figure 6. t_{ON} and t_{OFF} vs Supply Voltage

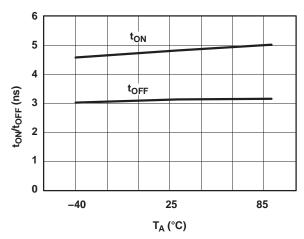


Figure 7. t_{ON} and t_{OFF} vs Temperature (V₊ = 5 V)

Figure 8. Logic-Level Threshold vs V₊

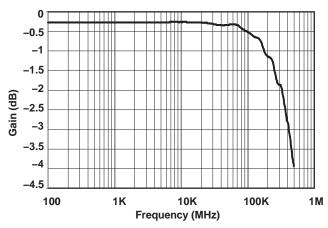


Figure 9. Bandwidth $(V_+ = 5 V)$

Copyright © 2005–2012, Texas Instruments Incorporated Product Folder Links: TS5A1066

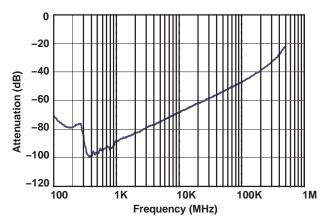


Figure 10. OFF Isolation $(V_+ = 5 V)$

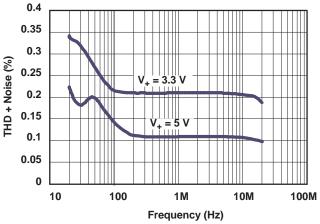


Figure 11. Total Harmonic Distortion vs Frequency

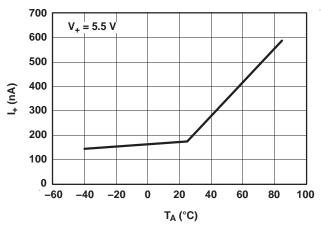


Figure 12. Power-Supply Current vs Temperature ($V_{+} = 5 \text{ V}$)

Submit Documentation Feedback

Table 3. PIN DESCRIPTION

PIN	NAME	DESCRIPTION					
1	NO	Normally open					
2	COM	Common					
3	GND	Digital ground					
4	IN	Digital control to connect COM to NO					
5	V ₊	Power supply					

Table 4. PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NO}	Voltage at NO
r _{on}	Resistance between COM and NO ports when the channel is ON
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
I _{COM(OFF)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the OFF state
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the ON state and the output (NO) open
V_{IH}	Minimum input voltage for logic high for the control input (IN)
V_{IL}	Maximum input voltage for logic low for the control input (IN)
V _I	Voltage at the control input (IN)
$I_{\text{IH}},I_{\text{IL}}$	Leakage current measured at the control input (IN)
t _{ON}	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.
t _{OFF}	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance and ΔV_{COM} is the change in analog output voltage.
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM(OFF)}	Capacitance at the COM port when the corresponding channel (COM to NO) is OFF
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NO) is ON
C _I	Capacitance of IN
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NO to COM) in the OFF state.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD	Total harmonic distortion is defined as the ratio of the root mean square (RMS) value of the second, third, and higher harmonics to the magnitude of fundamental harmonic.
l ₊	Static power-supply current with the control (IN) pin at V ₊ or GND
ΔI_{+}	This is the increase in I ₊ for each control (IN) input that is at the specified voltage, rather than at V ₊ or GND.

PARAMETER MEASUREMENT INFORMATION

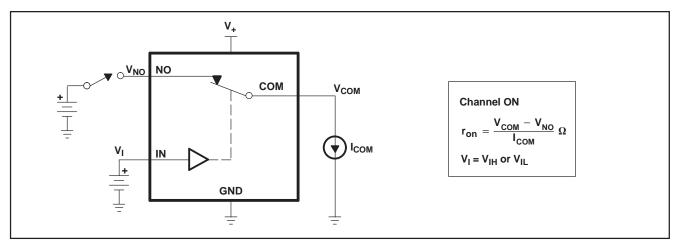


Figure 13. ON-State Resistance (ron)

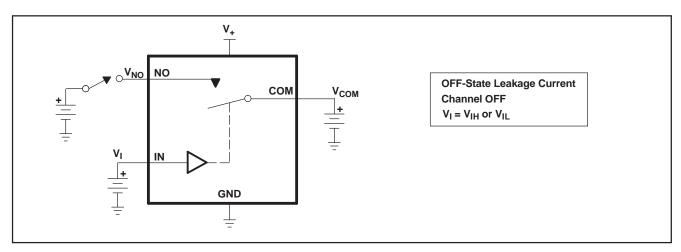


Figure 14. OFF-State Leakage Current (I_{COM(OFF)}, I_{NO(OFF)})

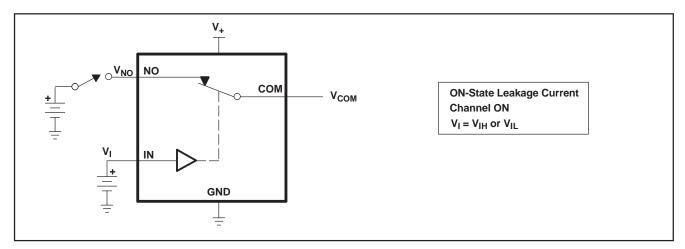


Figure 15. ON-State Leakage Current (I_{COM(ON)}, I_{NO(ON)})

PARAMETER MEASUREMENT INFORMATION (continued)

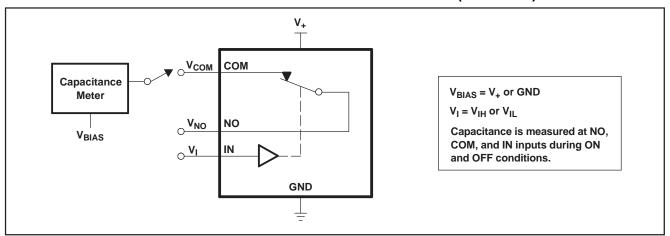
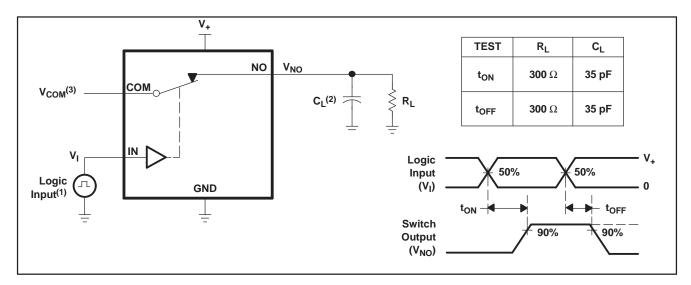



Figure 16. Capacitance (C_I, C_{COM(OFF)}, C_{COM(ON)}, C_{NO(OFF)}, C_{NO(ON)})

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f < 5 ns. t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.
- (3) See Electrical Characteristics for V_{COM}.

Figure 17. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

PARAMETER MEASUREMENT INFORMATION (continued)

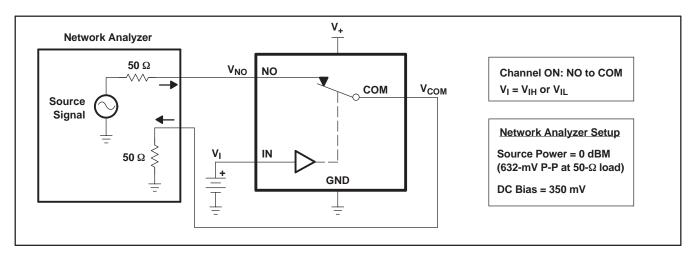
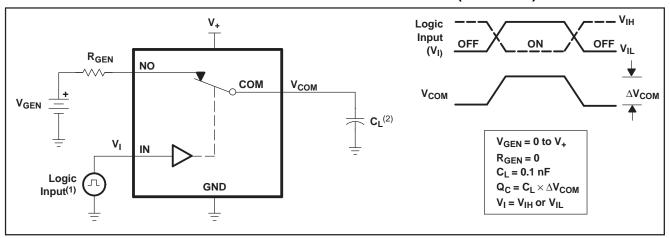


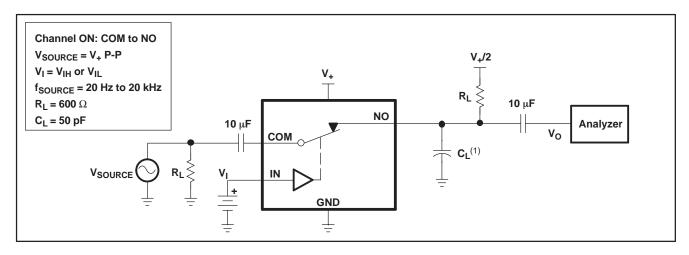
Figure 18. Bandwidth (BW)

Figure 19. OFF Isolation (O_{ISO})


eritation reedback Cop

Product Folder Links: TS5A1066

18



PARAMETER MEASUREMENT INFORMATION (continued)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f < 5 ns. t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.

Figure 20. Charge Injection (Q_C)

(1) C_L includes probe and jig capacitance.

Figure 21. Total Harmonic Distortion (THD)

SCDS185C - JANUARY 2005-REVISED SEPTEMBER 2012

REVISION HISTORY

Ch	anges from Revision B (April 2006) to Revision C	Page
•	Updated package options information.	2

Product Folder Links: TS5A1066

20

www.ti.com 12-Jan-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing		Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TS5A1066DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(JADF, JADJ, JADR)	Samples
TS5A1066DBVRG4	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	JADF	Samples
TS5A1066DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(JD5, JDF, JDJ, JD R)	Samples
TS5A1066DCKRG4	LIFEBUY	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(JD5, JDF, JDJ, JD R)	
TS5A1066YZPR	ACTIVE	DSBGA	YZP	5	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	JDN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

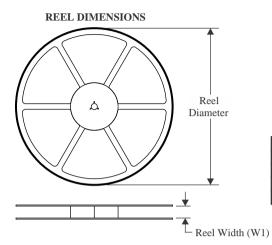
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

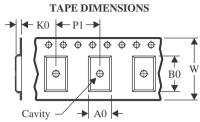
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

www.ti.com 12-Jan-2024


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

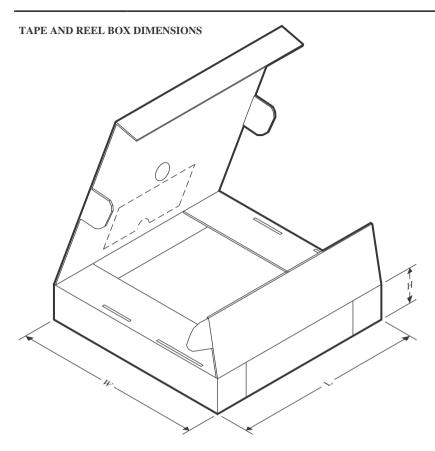

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 23-Mar-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A1066DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TS5A1066DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TS5A1066DBVRG4	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TS5A1066DCKR	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
TS5A1066DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TS5A1066DCKR	SC70	DCK	5	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
TS5A1066YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

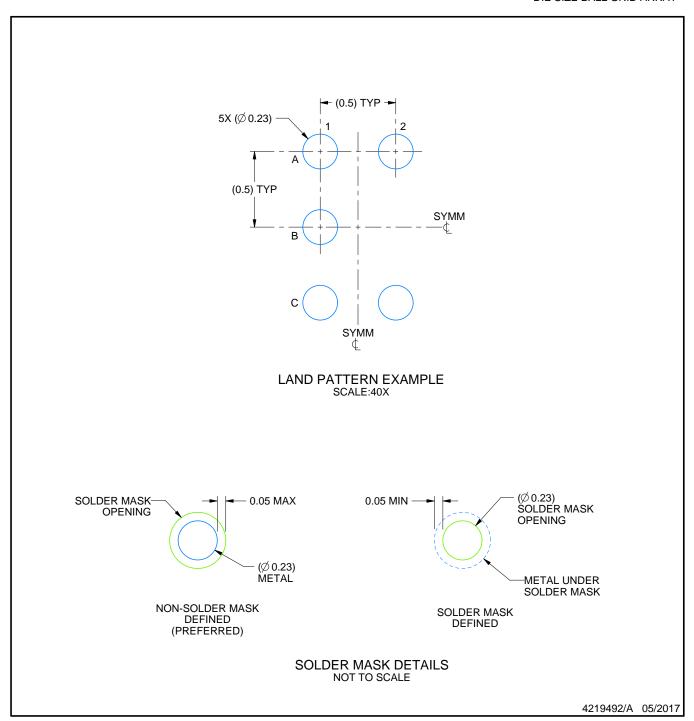
www.ti.com 23-Mar-2024



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A1066DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TS5A1066DBVR	SOT-23	DBV	5	3000	202.0	201.0	28.0
TS5A1066DBVRG4	SOT-23	DBV	5	3000	180.0	180.0	18.0
TS5A1066DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TS5A1066DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TS5A1066DCKR	SC70	DCK	5	3000	202.0	201.0	28.0
TS5A1066YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0

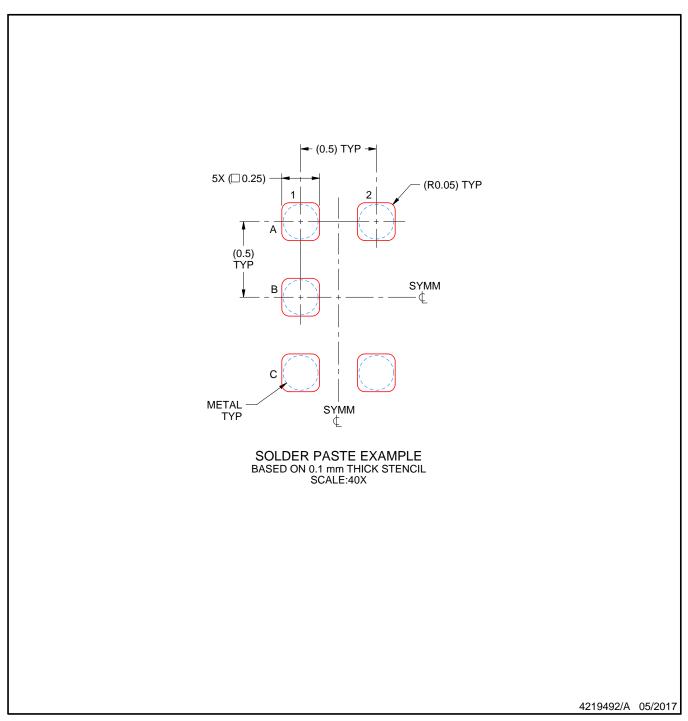
DIE SIZE BALL GRID ARRAY



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

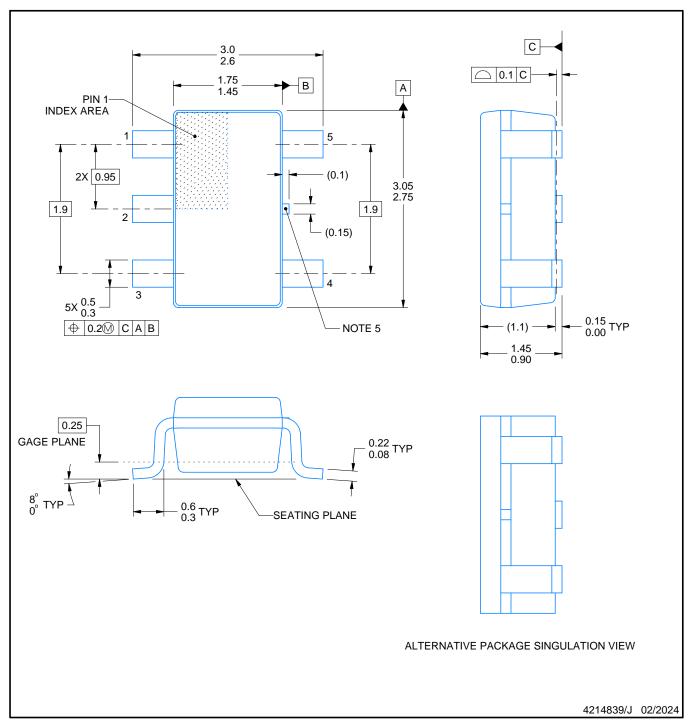
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

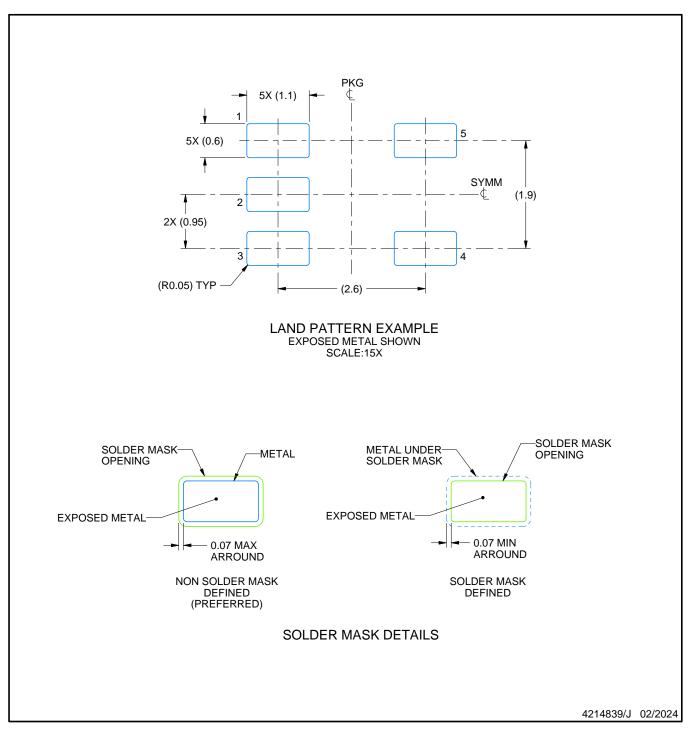
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

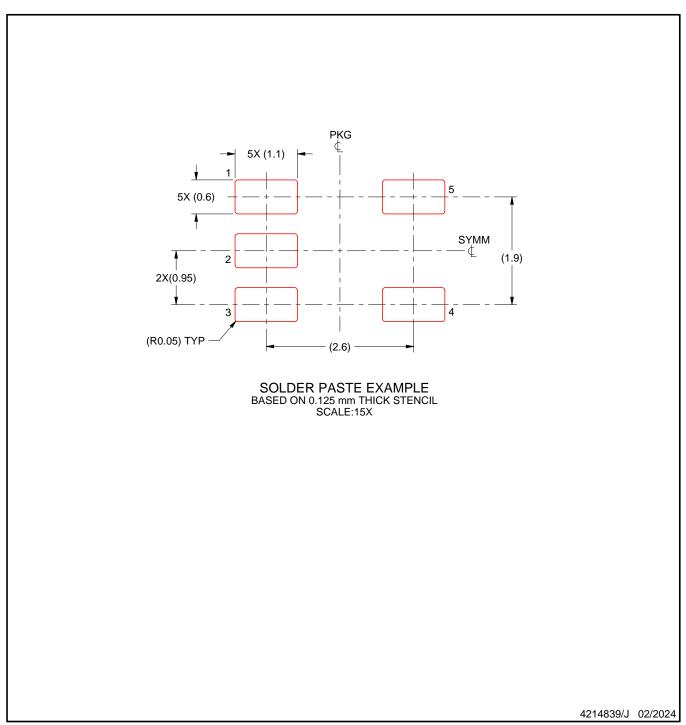
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.



NOTES: (continued)

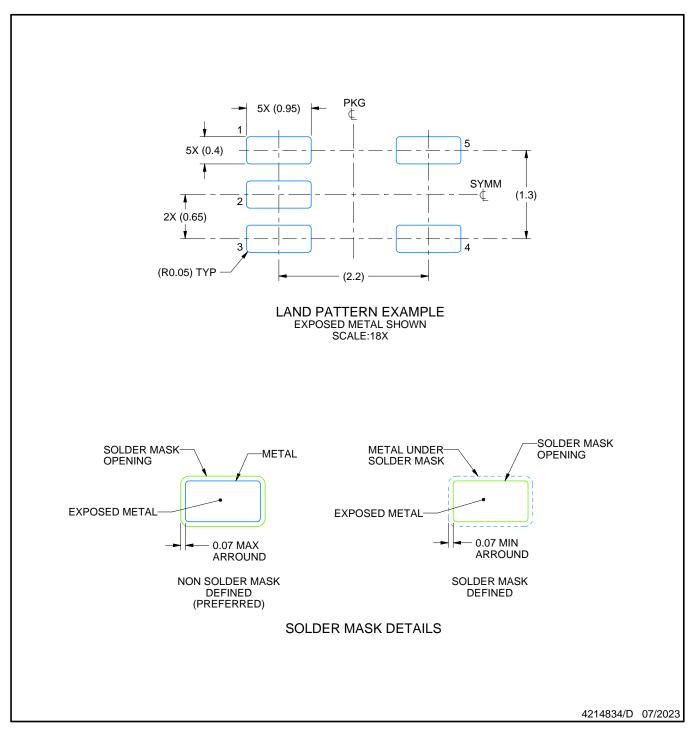
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

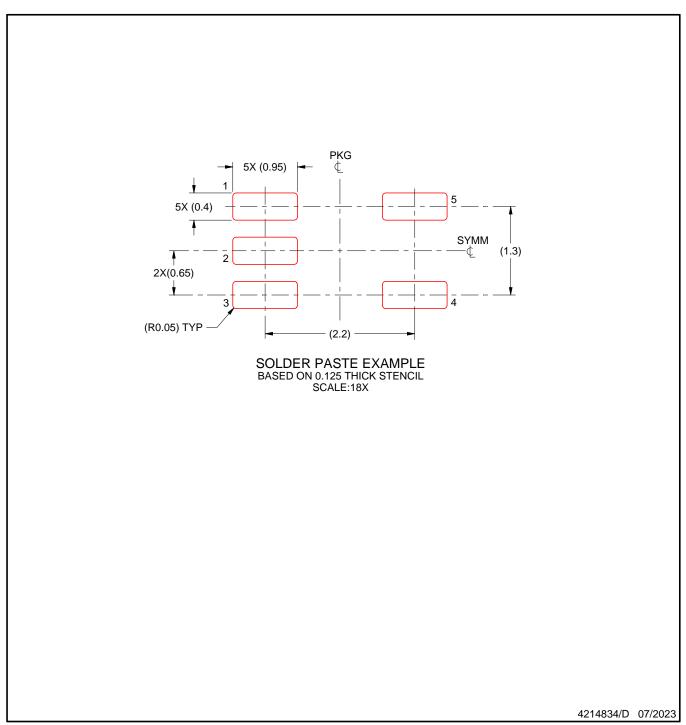
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated