TI Developer Conference

February 28-March 2, 2006 • Dallas, TX

010010001000011000001000001000

SPRP497

SEE THE FUTURE

Low-Power Audio Classification For Hearing-Aids

David V. Anderson

Assistant Professor Georgia Institute of Technology dva@ece.gatech.edu

Technology for Innovators[™]

🜵 Texas Instruments

Project Objective

- Automatic tuning of electro-acoustic response of hearing-aids to suit the audio environment
 - We perform classification of the auditory environment to enable tuning of the hearing-aid

Requirements

- Small Size
- Low-power
- High accuracy
- Low false alarms

🖑 Texas Instruments

TI Developer Conference

Desirable Qualities

 Inter-class variability
Features should provide good inter-class discrimination but still maintain intra-class cohesion

Features must be robust to noise

Complexity

🖑 Texas Instruments

Granularity Issue

Trade-off between complexity of system and granularity of classes

Real-time response

Computationally efficient classification structures and feature extraction algorithms

Some Current Classification Approaches

Methods	Accuracy	Complexity	Comments
GMM	Good	Moderate	Does not handle high dimensional data well
НММ	Good	High	Computationally expensive. Usually use GMMs for probability estimates.
SVM	Very Good	High	Computationally expensive. Is essentially a binary classifier.
Heuristics	Fair	Low	Easy to implement but accuracy in adverse conditions may not be very good.

Proposed Approach

Robust feature extraction

- Based on an advanced model of the human auditory system.
- Very efficient algorithm for classification based on AdaBoost
 - Final classifier can be implemented using MAC and a comparator.

😼 Texas Instruments

Problems with Conventional Features

TI Developer

Conference

- Work well in noise free case but performance degrades in presence of noise
- Accuracy is reduced greatly when different classes are presented simultaneously

Why auditory modeling?

- Humans do an extremely good job of classifying sounds
- Physiologically inspired perceptual features are
 - Highly discriminative
 - Robust to noise

😼 Texas Instruments

Technology for Innovators[™]

🖑 Texas Instruments

*Shamma et al.

8

Technology for Innovators[™]

📲 Texas In<u>struments</u>

Hardware Implementation

TI Developer

Conference

AdaBoost Classifier

- Given examples $(x_1, y_1), \dots, (x_2, y_2)$ where $y_i = 0,1$ for negative and positive examples respectively.
- Initialize weights $w_{1i} = 1/(2m)$, 1/(2l) for $y_i = 0,1$ respectively, where m and I are the number of negatives and positives respectively.
- For t = 1 to T

TI Developer

Conference

1. Normalize weights,

$$W = W_{t,i} / (\Sigma_j W_{t,j})$$

- 2. Train h_j ; error, $\mathcal{E}_t = \sum i |h_j(x_i) y_i|$ 3. Choose classifier h_t , with the least \mathcal{E}_t

4. Update weights:

$$W_{t+1,i} = W_{t,i} (\beta_t)^{(1-e_i)}$$

 $e_i = 0$ if x_i if classified correctly, 1 otherwise $\beta_t = \varepsilon_t / (1 - \varepsilon_t)$

🖑 Texas Instruments

During offline training, the weights (alpha's) needed to combine the features to form the decision function are learned. The multi-class problem is structured as a combination of binary classification problems and the results are combined by majority voting.

TI Developer Conference

Results - Matlab

Phonak Database (Music, Speech, Noise, Speech in Noise)

	Phonak	Version 1	Version 2
	(30 sec	(1 sec	(30 sec
	data)	data)	data)
Overall	78.85 %	87.7 %	95.8 %

Tel-03 Database (Animal Vocalizations, Speech, Music, Noise)

	GMM	AdaBoost
Overall	92.7 %	95.5 %

Hardware Implementation

- In order to reduce the complexity of the feature extraction and to enable ease of implementation, some modifications were incorporated
 - The frontend bandpass filters were replaced by an FFT and a mel-cepstra like processing was implemented to extract the auditory spectrum.

15

W Texas Instruments

 Simulation results with the new feature set showed no overall degradation in classification accuracy compared to the original feature set.

Category	Original features	New Features
		(after modification for hardware implementation)
Music	97.84 %	99.71 %
Noise	77.03 %	79.02 %
Speech	79.74 %	90.52 %
Noisy Speech	88.51 %	78.02 %
Overall	85.96 %	86.82 %

Note: Drop in noisy speech performance is due to the use of FFT and mel-scale grouping.

W Texas Instruments

C5510 Specifications

Sampling rate: 8 kHz

For feature extraction (for 1 second segment):

- Size of data: 13 k words
- Size of our code: 4 k words
- Size of entire code: 16 k words
- MIPS ?

For Classification

- 85 coefficients
- 85 MACs, 85 additions and 1 compare

Low-Power Audio Classification For Hearing-Aids

David V. Anderson

Assistant Professor Georgia Tech dva@ece.gatech.edu

SEE THE FUTURE

CREATE YOUR OWN

Technology for Innovators[™]

AP TEXAS INSTRUMENTS

18