Application Clip

SN74CBT34X245 Bus Switch Specially Designed for Hot Plugging ATA RAID Hard Disk

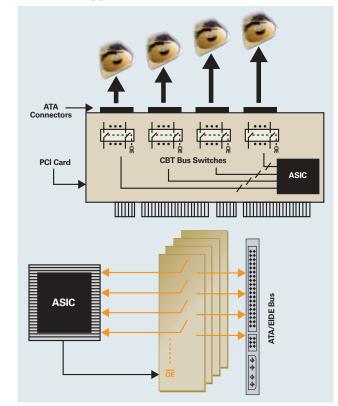
Overview of ATA/EIDE

By far, the most popular interface used in modern hard disks is the one most commonly known as IDE. This interface is also known by a truly staggering variety of other names such as ATA, ATA/ATAPI, EIDE, ATA-2, Fast ATA, ATA-3, Ultra ATA, Ultra DMA and many more.

With a data bus width of 16 bits, the ATA/EIDE bus speeds are grouped into three operating frequencies: 66 MBps, 100 MBps and 133 MBps.

ATA/EIDE Pin Configuration

Drive Reset	1	2	Ground
Data Bit 7	3	4	Data Bit 8
Data Bit 6	5	6	Data Bit 9
Data Bit 5	7	8	Data Bit 10
Data Bit 4	9	10	Data Bit 11
Data Bit 3	11	12	Data Bit 12
Data Bit 2	13	14	Data Bit 13
Data Bit 1	15	16	Data Bit 14
Data Bit 0	17	18	Data Bit 15
Ground	19	20	Key (Pin Removed)
DMA Request	21	22	Ground
I/O Write	23	24	Ground
I/O Read	25	26	Ground
I/O Channel Ready	27	28	Spindle Sync/Cable Select
DMA Acknowledge	29	30	Ground
Interrupt Request	31	32	16 bit I/O
Drive Address Bus 1	33	34	Passed Diagnostic
Drive Address Bus 0	35	36	Drive Address Bus 2
Drive Chip Select 0	37	38	Drive Chip Select 1
Drive Active/Slave Present	39	40	Ground


The switching level of the ATA/EIDE bus is based on a 5-V supply and is compatible with 5V TTL.

Because the IDE bus standard does not include hot plugging features (the capability to insert or remove cards without causing damage to the system and without having to disable the power), most designers use external bus switches to isolate the controller from the hard disk.

To eliminate additional delays that will impact system performance using standard logic buffers, near-zero delay bus switches are used to transmit data along the cable. For hot plug capability, all 32 bits used for data and control signaling need to be isolated before withdrawal or insertion of the hard disk.

The requirements of an ATA RAID system are such that the hard disk can be inserted or withdrawn from the bus or connector. To meet these needs, the CBT Bus Switch can provide the isolation by switching off during hot plugging through the use of the Output Enable (OE) pin.

CBT in ATA Raid Application

For More Information

Product Folder: www.ti.com/sc/device/SN74CBT34X245 www.ti.com/sc/device/SN74CBT16245

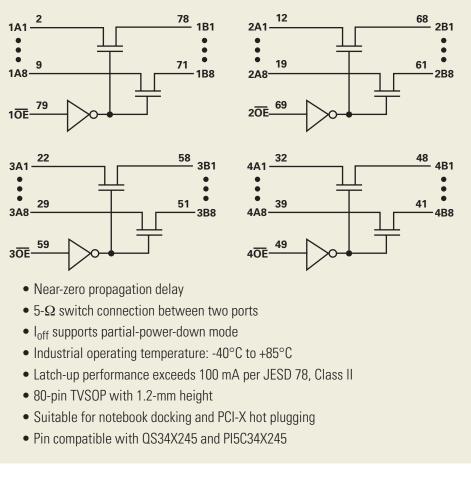
Data Sheet: www-s.ti.com/sc/techlit/scds089c www-s.ti.com/sc/techlit/scds070c

CBT Bus Switch Home Page: www.ti.com/signalswitches

For up-to-date information to support your design and development needs, visit: **support.ti.com**

SN74CBT34X245 Bus Switch

CBT Bus Switch


TI CBT Bus Switch family is very fast and designed for hot plug and live insertion applications. The CBT product family provides many product options available in varying bit configurations.

Product Pin Configuration

NC*	1	U	80] v _{cc}
1A1	2		79	
1A2	3		78	1B1
1A3	4		77	1B2
1A4 [5		76	1B3
1A5	6		75	1B4
1A6 🛛	7		74	1B5
1A7 🛛	8		73	1B6
1A8 🛛	9		72	[1B7
GND [10		71] 1B8
NC*[11		70	V _{cc}
2A1 [12		69] 2 <u>0</u> E
2A2 [13		68] 2B1
2A3 [14		67] 2B2
2A4 [15		66] 2B3
2A5 [16		65	2B4
2A6 [17		64	2B5
2A7 [18		63	2B6
2A8 [19		62	2B7
GND [20		61	2B8
NC*	21		60	V _{CC}
3A1 [22		59	3OE
3A2 [23		58] 3B1
3A3 [24		57	3B2
3A4 [25		56] 3B3
3A5 [26		55] 3B4
3A6 [27		54	3B5
3A7 [3A8 [28		53	3B6
GND	29		52] 3B7] 3B8
	30		51	2
4A1	31 32		50 49	V _{CC} 4OE
4A2	32 33		49 48	4B1
4A3 [34		47	4B2
4A4 [35		46	4B3
4A5 [36		45	4B4
4A6	37		44	4B5
4A7 [38		43	4B6
4A8 [39		42	4B7
GND	40		41	4B8

Function Table (Each 8-Bit Bus Switch)					
Input OE	Function				
L	A port = B port				
Н	Disconnect				

Logic Diagram (Positive Logic)

Ordering Information							
T _A Package [†]		Orderable Part Number	Top-Side Marking				
-40°C to 85°C	TVSOP (DBB)	Tape and reel	SN74CBT34X245DBBR	CBT34X245			
[†] Note: Package drawings, standard packing quantities, thermal data, symbolization and PCB design guidelines are available at							

[†]Note: Package drawings, standard packing quantities, thermal data, symbolization and PCB design guidelines are available at www.ti.com/sc/package

Safe Harbor Statement

This publication contains forward-looking statements that involve a number of risks and uncertainties. These "forwardlooking statements" are intended to qualify for the safe harbor from liability established by the Private Scentrities Litigation Reform Act of 195. These forward-looking statements generally can be identified by phrases such as TI or its management "believes," "expects," "anticipates," "foresees," "forecasts," "estimates" or other words or phrases of similar import. Similarly, such statements herein that describe the company's products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI's most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

*NC = No internal connection.

