Application Note Clock Error Configuration, Detection, and Modes Supported in TAx5x1x Family

Sanjay Dixit, Saikiran Kurba

ABSTRACT

This application note applies to the following devices:

TAC5212, TAC5112, TAC5211, TAC5111, TAA5212, TAD5212, TAD5112, TAC5412-Q1, TAC5411-Q1, TAC5312-Q1, TAC5311-Q1, TAC5212-Q1, TAC5211-Q1, TAC5112-Q1, TAC5111-Q1, TAA5412-Q1, TAD5212-Q1, TAD5112-Q1

The Clock Detection Module in the TAX5X Family comprises of the following functionality:

- Detecting Sampling Rate (Fs Rate).
- Detecting Ratio between supplied source Clock and supplied Fsync.
- Monitoring Fs Rate and Source Clock to Fs Ratio and flag corresponding indications if any change in the value is detected.
- Registers that record the incoming Fs Rate ans clk to Fs ratio for both.

Table of Contents

1 Introduction	2
2 Semi-Automatic Mode	3
3 Detection of Clock Errors	
4 Determination of Incoming Timing in Auto-Detected Mode	
5 Summary	6

Trademarks

All trademarks are the property of their respective owners.

1

1 Introduction

The TAX5X family permits a wide variety of timings to input to the chip. These timings include standard audio rates as well as non standard rates. The devices detect if the timings are valid and if so, the internal PLL, as well as, dividers are configured automatically. The device also can also return a clock error in case of a change in timing. It is also possible to read the actual input timings through a register

In Automatic configuration the below Fs buckets are recognized as shown in Table 1-1.

		I S Buckets
Fs Min (KHz)	Fs Typ (KHz)	Fs Max (KHz)
698.54	768	775.68
349.27	384	387.84
174.64	192	193.92
87.32	96	96.96
43.66	48	48.48
29.11	32	32.32
21.83	24	24.24
14.55	16	16.16
10.91	12	12.12
7.28	8	8.08
4.37	4.8	4.85
2.73	3	3.03
	1	1

Table 1-1. 1% Tolerance - Detectable Fs Buckets

By default, only 1% tolerance frequency range is supported in SW pin configuration mode (Table 1-1) which can be extended to support 5% tolerance range (Table 1-2) using **B0_P0_R50[1]** for **PASI** and **B0_P0_R51[1]** for **SASI**.

Table 1-2. 2 5% Tolerance - Detectable Fs Buckets

PASI/SASI SAMP_RATE	Fs Min (KHz)	Fs Typ (KHz)	Fs Max (KHz)
1	670.32	768	806.40
5	335.16	384	403.20
10	167.58	192	201.60
15	83.79	96	100.80
20	41.90	48	50.40
23	27.93	32	33.60
25	20.95	24	25.20
28	13.97	16	16.80
30	10.47	12	12.60
33	6.98	8	8.40
37	4.19	4.8	5.04

Clock Error Configuration, Detection, and Modes Supported in TAx5x1x Family

2 Semi-Automatic Mode

Sometimes, it is necessary to work with Non-Standard Clock Rates. Please refer to Table 2-1. To enable detection of a non-standard clock rate, the Frequency range needs to be specified. This frequency range can be done by setting the following registers.

- PASI_SAMP_RATE(5..O) in Register 0x32
- SASI_SAMP_RATE(5..O) in Register 0x33

After do so, the automatic configuration functions if the incoming FSYNC frequency is matching with the sample rate setup in 0x32 and 0x33.

S.No	Fs Bin (Hz)		Oscillator Count Range		
	Min	Typical	Мах	Min	Max
1	670320	768000	806400	12	21
2	536256	614400	645120	15	26
3	446880	512000	537600	18	30
4	383040	438857.14	460800	22	35
5	335160	384000	403200	25	40
6	297920	341333.33	358400	28	45
7	268128	307200	322560	32	50
8	223440	256000	268800	38	59
9	191520	219428.57	230400	45	69
10	167580	192000	201600	52	78
11	148960	170666.67	179200	58	88
12	134064	153600	161280	65	98
13	111720	128000	134400	78	117
14	95760	109714.29	115200	92	136
15	83790	96000	100800	105	155
16	74480	85333.33	89600	118	175
17	67032	76800	80640	132	194
18	55860	64000	67200	158	232
19	47880	54857.14	57600	185	271
20	41895	48000	50400	211	309
21	37240	42666.67	44800	238	348
22	33516	38400	40320	265	386
23	27930	32000	33600	318	463
24	23940	27428.57	28800	371	540
25	20947.50	24000	25200	424	617
26	18620	21333.33	22400	478	694
27	16758	19200	20160	531	771
28	13965	16000	16800	637	925
29	11970	13714.29	14400	744	1079
30	10473.75	12000	12600	850	1233
31	9310	10666.67	11200	957	1387
32	8379	9600	10080	1063	1541
33	6982.50	8000	8400	1276	1849
34	5985	6857.14	7200	1489	2157
35	5236.88	6000	6300	1702	2465
36	4655	5333.33	5600	1915	2773
37	4189.50	4800	5040	2127	3081
38	3491.25	4000	4200	2553	3696
39	2992.50	3428.57	3600	2979	4312
40	2618.44	3000	3150	3405	4928

Table 2-1. All Sampling Bins

3

3 Detection of Clock Errors

When FSYNC Rate changes or the Ratio between Clock and FSYNC changes a clock error is generated. A corresponding active low reset to the Clock Detect Core Block are generated which are mapped to respective Fs Rate detection and Ratio Detection logics.

- 1. DSP_CLK_ERR (B0_P0_R60_D7)
 - 1 when DSP fails to derive the clock tree settings w.r.t the provided configurations (Only can occur when PLL fractional mode is not supported)
- 2. MIPS_INSUFF_ERR (B0_P0_R60_D6)
 - 1 when DSP is able to derive the clock tree settings but the MIPS are insufficient for the requested processing (Only can occur when PLL fractional mode is not supported)
- 3. DEM_RATE_ERR (B0_P0_R60_D3)
 - 1 when Requested DEM configurations are not possible to support
- 4. PDM_CLK_ERR (B0_P0_R60_D2)
 - 1 when Requested PDM clock is not possible to support
- 5. PASI_BCLK_FS_RATIO_ERR (B0_P0_R61_D7)
- 1 when a change in Primary BCLK to FSYNC Ratio is detected
- 6. SASI_BCLK_FS_RATIO_ERR (B0_P0_R61_D6)
 - 1 when a change in Secondary BCLK to FSYNC Ratio is detected
- 7. CCLK_FS_RATIO_ERR (B0_P0_R61_D5)
- 1 when a change in CCLK to FSYNC Ratio is detected
- 8. PASI_FS_ERR (B0_P0_R61_D4)
 - 1 when a change in Primary FSYNC Rate is detected
- 9. SASI_FS_ERR (B0_P0_R61_D3)
 - 1 when a change in Secondary FSYNC Rate is detected

4 Determination of Incoming Timing in Auto-Detected Mode

It is also possible to detect the incoming timings by reading certain status registers. The FSYNC Rate and the BCLK to FSYNC ratio of the Primary and Secondary ASI can be monitored with the registers.

- 1. PASI_SAMP_RATE_STS (B0_P0_R62_D[7:2])
 - Detected Primary FSYNC Rate
- 2. PLL_MODE_STS (B0_P0_R62_D[1:0])
 - Derived PLL mode of operation

PLL usage status.
0d = PLL used in integer mode
1d = PLL used in fractional mode
2d = PLL not used
3d = Reserved

- 3. SASI_SAMP_RATE_STS (B0_P0_R63_D[7:2])
 - Detected Secondary FSYNC Rate
- 4. DEM_RATE_STS (B0_P0_R64_D[7:6])
 - Derived DEM configurations

DEM rate usage status.
0d = 1x DEM used for ADC and DAC modulators
1d = 2x DEM used for ADC and DAC modulators
2d = 4x DEM used for ADC and DAC modulators
3d = programmed value of DEM rate used for ADC and DAC modulators

- 5. FS_CLKSRC_RATIO_DET_MSB_STS (B0_P0_R64_D[5:0])
 Audio clock source clock to FSYNC ratio detected
- 6. FS_CLKSRC_RATIO_DET_LSB_STS (B0_P0_R65_D[7:0])
 - Audio clock source clock to FSYNC ratio detected

5

5 Summary

The clock detection module in the TAX5X family is capable of Detecting Sampling Rate, Detecting Ratio between supplied source Clock and supplied Fsync, Monitoring Fs Rate, and Source Clock to Fs Ratio. The module is also capable of flagging corresponding indications if any change in the value is detected.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated