

TVP5146 VBI Quick Start

HPA Digital Audio Video

ABSTRACT

The TVP5146 video decoder has an internal vertical data processor (VDP) that can be used to slice various VBI data services such as V-Chip, teletext (WST, NABTS), closed caption (CC), wide screen signaling (WSS), program delivery control (PDC), vertical interval time code (VITC), video program system (VPS), copy generation management system (CGMS), and electronic program guide (EPG or Gemstar). This application report provides an introduction to the VBI data slicing capabilities of the TVP5146 and focuses on configuring the TVP5146 for the more commonly used VBI data services.

Contents

Introduction	2
VBUS Access	3
General Line Mode and Line Registers	4
I ² C Sliced Data Retrieval	5
Managing Data Retrieval	6
FIFO Access	7
Ancillary Data	7
Full-Field Mode	
Appendix A. Subset of the TVP5146 VDP I ² C Registers	10
VDP General Line-Mode and Line-Address	10
VDP Closed Caption Data	11
VDP WSS Data	12
VDP VITC Data	13
VDP V-Chip TV Rating Block 1	13
VDP V-Chip TV Rating Block 2	13
VDP V-CHIP TV Rating Block 3	14
VDP V-CHIP MPAA Rating Data	14
VDP VPS/Gemstar Data	15
VDP FIFO Output Control	16
VDP Full-Field Enable	16
VBUS Data Access With No VBUS Address Increment	16
VBUS Data Access With VBUS Address Increment	17
FIFO Read Data	17
VBUS Address Access	17
Interrupt Raw Status 0	18
Interrupt Clear 0	19
Appendix B. Sample WinVCC CMD File for VBI Setup	20

Figures

Figure 1.	TVP5146 VBUS Write Example	4
	I ² C Read of WSS Data Registers at VBUS Address 80 0520h	
Figure 3.	Example WSS Data Retrieval	7

Tables

Table 1.	Supported Data Services	2
Table 2.	Typical Line-Mode and Line-Address Setup	5
Table 3.	Dedicated VDP VBUS Data Registers	
Table 4.	Ancillary Data Header	8

Introduction

The TVP5146 video decoder has an internal vertical data processor (VDP) that can be used to slice various VBI data services such as V-Chip, teletext (WST, NABTS), closed caption (CC), wide screen signaling (WSS), program delivery control (PDC), vertical interval time code (VITC), video program system (VPS), copy generation management system (CGMS), and electronic program guide (EPG or Gemstar). These data services are typically transmitted during the vertical blanking interval of the video frame. Table 1 provides a summary of the supported data services including the line numbers on which they are typically transmitted.

VBI System	Standard	Line Number	Number of Bytes	Specification
Teletext WST A	SECAM	6-23 (field 1, field 2)	38	ITU-R BT 653-2
Teletext WST B	PAL	6-22 (field 1, field 2)	43	ITU-R BT 653-2
Teletext NABTS C	NTSC	10-21 (field 1, field 2)	34	ITU-R BT 653-2
Teletext NABTS D	NTSC-J	10-21 (field 1, field 2)	35	ITU-R BT 653-2
Closed caption	PAL	22 (field 1, field 2)	2	EIA-608
Closed caption	NTSC	21 (field 1, field 2)	2	EIA-608
WSS	PAL	23 (field 1, field 2)	14 bits	ITU-R BT 1119-1
WSS-CGMS	NTSC	20 (field 1, field 2)	20 bits	IEC 61880
VITC	PAL	6-22	9	SMPTE 12M
VITC	NTSC	10-20	9	SMPTE 12M
VPS (PDC)	PAL	16	13	ETS 300 231
V-Chip (decoded)	NTSC	21 (field 2)	2	EIA-744
Gemstar 1x	NTSC		2	
Gemstar 2x	NTSC		5 with frame byte	
User	Any	Programmable	Programmable	

Table 1.	Supported Data Services	5
----------	-------------------------	---

A host or back-end receiver can retrieve the sliced data using one of three methods:

- I²C access of dedicated closed-caption, WSS, VITC, VPS, Gemstar, and V-Chip data registers.
- I²C access of an internal 512-byte FIFO used primarily for high-bandwidth data services such as full-field teletext.
- As ITU-R BT.656 ancillary data, inserted by the TVP5146 into the data stream during the horizontal blanking interval.

Note: This document focuses primarily on the more commonly used dedicated I²C data registers.

The TVP5146 provides automatic decode of V-Chip TV rating data used for parental control. In all other cases, host software must be used to decode the sliced VBI data. Prior to accessing the sliced data, the TVP5146 must be configured for the desired VBI data service. This includes I²C setup for the desired data service and the line numbers where they occur within the video frame. This process is fully programmable through use of the VDP general line-mode registers (I²C subaddress 80 0600h-80 0611h). As seen in the following sections, some of the I²C registers related to the VDP setup and data retrieval can be accessed directly with I²C, while others must be accessed indirectly though use of the internal VBUS. Detailed descriptions of the VBI-related I²C registers are shown in Appendix A.

VBUS Access

Many of the VBI related I²C registers, including the general line-mode registers and sliced-data registers, must be accessed over the VBUS interface using the VBUS address access registers (E8h-EAh) and one of the VBUS data access registers (E0h-E1h). The VBUS address access register contains three bytes to accommodate the 24-bit VBUS address bus of the TVP5146. After the 24-bit address is loaded, data reads and writes are performed through one of the data access registers, depending on whether address auto-increment is desired. The example in Figure 1 writes 2 bytes of data to VBUS address 80 0600h using the automatic VBUS address-increment register E1h.

Example (Write 2 data bytes to VBUS address 80 0600h and 80 0601h.)

- 1) Set the VBUS address to 80 0600h.
 - a. Write 0x80 to I²C address EAh.
 - b. Write 0x06 to I²C address E9h.
 - c. Write 0x00 to I²C address E8h.
- 2) Write the 2 data bytes
 - a. Write 14h to I²C address E1h. (Note that register E1 is the autoincrementing VBUS register. After writing 15h to this register, the internal VBUS address automatically increments to 80 0601h).
 - b. Write 0x02 to I²C address E1h.

```
// TVP5146 VBUS Write Example
#define TVP5146 0xB8;
                                           // TVP5146 main I2C address
byte I2C_RegAddress;
int count:
byte I2CData[] = \{0x14, 0x02\};
//VBUS 24bitAddress= 0x800600;
// write 800605h to VBUS 24bit address registers
I2C_RegAddress = 0xE8;
I2CWriteByte(TVP5146, I2C RegAddress, 0x00); // write VBUS address [7:0} to E8h
I2C ReqAddress++;
I2CWriteByte(TVP5146, I2C RegAddress, 0x06);
                                              // write VBUS address [15:8] to E9h
I2C RegAddress++;
I2CWriteByte(TVP5146, I2C ReqAddress, 0x80); // write VBUS address [23:16} to EAh
// write 2 data bytes to the VBUS using address auto-increment with register Elh
For (count = 0; count < 2; count ++)
I2CWriteByte(TVP5150A, 0xE1, I2C_Data[count]); // write data bytes to E1h
```

Figure 1. TVP5146 VBUS Write Example

General Line Mode and Line Registers

Prior to accessing sliced VBI data, the general line-mode and line-address registers (80 0600h-80 0611h) must be configured properly for the desired VBI data service. This bank of 18 registers is grouped in pairs (line-address and line-mode), providing a total of nine possible entries. The register pairs set up the video line number, video field, and the VBI data service for that particular line number. Additional data slicing options such as filtering, error correction, and FIFO routing are also available in the line-mode registers. A detailed description of these registers is shown in Appendix A. Table 2 shows a typical setup for several of the supported data services. Following setup of these registers, sliced VBI data should be available for retrieval, if present. Unused line-mode and line-address registers must be programmed with FFh.

Note: With other TI video decoders, such as the TVP5150A, additional VDP configuration RAM must programmed prior to setup of the line-mode registers.

Subaddress	Data	Register	Description
80 0600h	15h	Line-address 1	Line 21
80 0601h	01h	Line-mode 1	Closed caption (field 1)
80 0602h	15h	Line-address 2	Line 21
80 0603h	09h	Line mode 2	Closed caption (field2)
80 0604h	14h	Line-address 3	Line 20
80 0605h	02h	Line-mode 3	WSS (field 1)
80 0606h	0Ah	Line-address 4	Line 10
80 0607h	40h	Line-mode 4	Teletext (field 1)
80 0608h	0Ah	Line-address 5	Line 10
80 0609h	48h	Line-mode 5	Teletext (field 2)
80 060Ah	FFh	Line-address 6	Not used
80 060Bh	FFh	Line-mode 6	Not used
80 060Ch	FFh	Line-address 7	Not used
80 060Dh	FFh	Line-mode 7	Not used
80 060Eh	FFh	Line-address 8	Not used
80 060Fh	FFh	Line-mode 8	Not used
80 0610h	FFh	Line-address 9	Not used
80 0611h	FFh	Line-mode 9	Not used

Table 2. Typical Line-Mode and Line-Address Setup

I²C Sliced Data Retrieval

The TVP5146 provides dedicated VBUS VDP data registers (Table 3) for storage of the sliced data. Due to higher bandwidth requirements, teletext data is stored in a 512-byte FIFO. With all other data services, sliced data can be automatically sent to the dedicated registers or to the FIFO depending on the line-mode setup. The line-mode setup in Table 2 results in teletext data being routed to the FIFO and all other sliced data being routed to their dedicated registers. The host access enable bit in I²C register C0h must also be set to logic 1 to enable I²C FIFO access.

Register Name	VBUS Address
VDP closed caption (field 1)	80 051Ch-80 051Dh
VDP closed caption (field 2)	80 051Eh-80 051Fh
VDP WSS data (field 1)	80 0520h-80 0522h
VDP WSS data (field 2)	80 0524h-80 0526h
VDP VITC data	80 052Ch-80 0534h
VDP VPS (PAL) or Gemstar (NTSC)	80 0700h-80 070Ch

Reading the VBUS VDP data registers is very similar to a VBUS write operation, with the only difference being that data is read from the VBUS data access register. Figure 2 shows a typical read of sliced WSS data using the address auto-increment method (data access register E1h).

```
// TVP5146 VBUS Read of VDP WSS Data Registers
#define TVP5146 0xB8;
                                          // TVP5146 main I2C address
int count;
byte WSSData[3];
//VDP WSS Data Registers VBUS 24bitAddress= 0x800520;
// write 800520h to VBUS 24bit address registers
I2CWriteByte(TVP5146, 0xC0, 0x01); // Set host Enable to 1 to enable FIFO Access
                                    // Set to 0 for video port ancillary data
byte I2C RegAddress = 0xE8;
                                             // write VBUS address [7:0} to E8h
I2CWriteByte(TVP5146, I2C RegAddress, 0x20);
I2C RegAddress++;
I2CWriteByte(TVP5146, I2C RegAddress, 0x05);
                                              // write VBUS address [15:8} to E9h
I2C RegAddress++;
I2CWriteByte(TVP5146, I2C_RegAddress, 0x80);
                                              // write VBUS address [23:16} to E9h
// read 3 data bytes from WSS Data Register
For (count = 0; count < 3; count ++)
ł
WSSData[count]=I2CReadByte(TVP5146, 0xE1); // read 3 bytes from E1h
}
```

Figure 2. I²C Read of WSS Data Registers at VBUS Address 80 0520h

Managing Data Retrieval

The interrupt raw status registers (F0h-F1h) can be used to determine when sliced data is available. Unmasked data-available bits for the supported data services are provided in the interrupt raw status 0 register, which is directly accessible at I²C register F0h.

Interrupt Raw Status 0

F0h

Subaddress

		•					
7	6	5	4	3	2	1	0
FIFO THRS	TTX	WSS	VPS	VITC	CC F2	CC F1	Line

A logic 1 indicates that sliced data is available. Once set, these bits need to be reset by writing a logic 1 to the appropriate bits in the interrupt clear registers (F6h). Figure 3 shows a typical procedure for retrieving WSS data.

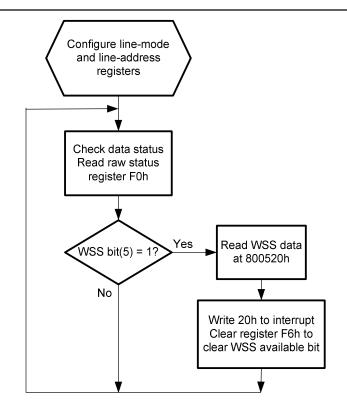


Figure 3. Example WSS Data Retrieval

FIFO Access

The internal 512-byte FIFO is used primarily for high-bandwidth teletext acquisition, but can also be used for capture of the other data services. The FIFO can be directly accessed by the host at I^2C address E2h. Bit 0 of the VDP FIFO output control register (C0h) must be set to logic 1 to enable host access to the FIFO. A header containing information about the sliced data precedes all sliced data that is routed to the FIFO. A VDP FIFO interrupt threshold register (BDh), FIFO threshold bit, and FIFO full interrupt/status bits (see F0h-F7h) are available for managing data flow.

Ancillary Data

An option is available to enable transmission of sliced VBI data as ancillary data in the ITU-R BT.656 video data stream. In this mode, the sliced data is inserted on the Y[9:2] output terminals during the horizontal blanking interval. Due to device latency, the ancillary data is inserted one line prior to the digital line where it occurred. An 8-byte header containing information about the sliced data is also inserted in the data stream prior to the sliced data. The header includes a 00h, FFh, FFh preamble that identifies the data as VBI ancillary data, so the host or back end must be able to distinguish between this preamble and the ITU-R BT.656 embedded sync codes (FFh, 00h, 00h, E/SAV). The first header byte is inserted immediately following the EAV code. The ancillary data header is summarized in Table 4.

The ancillary data mode is enabled by setting bit 6 in the appropriate line-mode register to a logic 1 and the host-access enable bit (bit 0) in register C0h to a logic 0. To enable ancillary data output for line-7 teletext, for example, 40h is written to the line-7 line-mode register, and 00h is written to register C0h. When the ancillary data mode is enabled in register C0h, sliced data is not routed to the internal 512-byte FIFO.

Byte No.	D7 (MSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)	Description	
0	0	0	0	0	0	0	0	0	Ancillary data p	reamble
1	1	1	1	1	1	1	1	1		
2	1	1	1	1	1	1	1	1		
3	NEP	EP	0	1	0	DID2	DID1	DID0	Data ID (DID)	
4	NEP	EP	F5	F4	F3	F2	F1	F0	Secondary data	ID (SDID)
5	NEP	EP	N5	N4	N3	N2	N1	NO	Number of 32 b	it data (NN)
6	Video line # [7:0] Internal data ID0						0 (IDID0)			
7		0	0	Data error	Match #1	Match #2		o line 9:8]	Internal data ID1 (IDID1)	
8		1.Data								1 st word
9				2.Da	ta				Data byte	
10	3.Data								Data byte	
11	4.Data							Data byte		
:				:					:	
							Data byte	N th word		
				Data byte						
				CS[7	:0]				Checksum	
4N+7	0	0	0	0	0	0	0	0	Fill byte	

 Table 4.
 Ancillary Data Header

EP:	Even parity for D0-D5
NEP:	Negate even parity
DID:	91h: Sliced data from the vertical blanking interval of the first field
53h:	Sliced data from outside of the vertical blanking interval of the first field
55h:	Sliced data from the vertical blanking interval of the second field
97h:	Sliced data from outside of the vertical blanking interval of the second field
SDID:	This field holds the data format taken from the line-mode register of the corresponding line.
NN:	Number of Dwords beginning with byte 8 through 4N+7. Note that each Dword is 4 bytes.
IDID0:	Transaction video line number [7:0]
IDID1:	Bits 0/1 - Transaction video line number [9:8]
	Bit 2 - Match 2 flag
	Bit 3 - Match 1 flag
	Bit 4 - Value = 1 if a single error was detected in the EDC block. Value = 0 if no error was detected.
CS:	Sum of D0-7 of 1.Data through last data byte

Fill byte: Fill byte makes a multiple of 4 bytes from byte zero to last fill byte.

Note: The number of bytes (m) varies depending on the VBI data service.

Full-Field Mode

Some teletext services transmit data on multiple video lines occurring anywhere in the video field. The TVP5146 provides a full-field mode which arms VDP slicing for all lines in the video field. When full-field mode is enabled, all video lines excluding those defined in the general line-mode registers are sliced as specified in the VDP full-field mode register (DAh). The full-field mode register uses the same mode configuration format as the general line-mode registers. Full-field mode is enabled by setting the full-field enable bit in register D9h to a logic 1. Sliced data is then retrieved by I²C FIFO access or as ancillary data in the ITU-R BT.656 data stream.

Appendix A. Subset of the TVP5146 VDP I²C Registers

VDP General Line-Mode and Line-Address

Subaddress 80 0600h-80 0611h

(default line mode = FFh, address = 00							dress = 00h)	
Subaddress	7	6	5	4	3	2	1	0
80 0600h							Line	Address 1
80 0601h							Lin	e Mode 1
80 0602h							Line	Address 2
80 0603h							Lin	e Mode 2
80 0604h							Line	Address 3
80 0605h							Lin	e Mode 3
80 0606h							Line	Address 4
80 0607h							Lin	e Mode 4
80 0608h							Line	Address 5
80 0609h							Lin	e Mode 5
80 060Ah							Line	Address 6
80 060Bh							Lin	e Mode 6
80 060Ch							Line	Address 7
80 060Dh							Lin	e Mode 7
80 060Eh							Line	Address 8
80 060Fh	Line Mode 8						e Mode 8	
80 0610h	Line Address 9							
80 0611h							Lin	e Mode 9

Line address [7:0]: Line number to be processed by a VDP set by a line mode register (default 00h)

Line-mode	e registe	er x [7:0]:
Bit 7	0 =	Disable filters
	1 =	Enable filters for teletext and CC (null byte filter) (default)
Bit 6	0 =	Send sliced VBI data to registers only (default)
	1 =	Send sliced VBI data to FIFO and registers, teletext data only goes to FIFO (default)
Bit 5	0 =	Allow VBI data with errors in the FIFO
	1 =	Do not allow VBI data with errors in the FIFO (default)
Bit 4	0 =	Disable error detection and correction
	1 =	Enable error detection and correction (teletext only) (default)
Bit 3	0 =	Field 1
	1 =	Field 2 (default)
Bits[2:0]	000 =	Teletext (WST625, Chinese teletext, NABTS 525)
	001 =	CC (US, European, Japan, China)
	010 =	WSS (525, 625)
	011 =	VITC
	100 =	VPS (PAL only), EPG (NTSC only)
	101 =	USER 1
	110 =	USER 2
	111 =	Reserved (active video) (default)

VDP Closed Caption Data

Subaddress 80 051Ch - 80 051Fh

								Read only		
Subaddress	7	6	5	4	3	2	1	0		
80 051Ch	Closed cap	losed caption field 1 byte 1								
80 051Dh	Closed cap	Closed caption field 1 byte 2								
80 051Eh	Closed cap	Closed caption field 2 byte 1								
80 051Fh	Closed cap	Closed caption field 2 byte 2								

These registers contain the closed caption data arranged in bytes per field.

Read only

VDP WSS Data

Subaddress 80 0520h-80 0526h

WSS NTSC (CGMS):

Subaddress	7	6	5	4	3	2	1	0	Byte	
80 0520h	-	-	b5	b4	b3	b2	b1	b0	WSS field 1 byte 1	
80 0521h	b13	b12	b11	b10	b9	b8	b7	b6	WSS field 1 byte 2	
80 0522h	-	-	b19	b18	b17	b16	b15	b14	WSS field 1 byte 3	
80 0523h					Res	erved				
80 0524h	-	-	b5	b4	b3	b2	b1	b0	WSS field 2 byte 1	
80 0525h	b13	b12	b11	b10	b9	b8	b7	b6	WSS field 2 byte 2	
80 0526h	-	-	b19	b18	b17	b16	b15	b14	WSS field 2 byte 3	

These registers contain the wide screen signaling data for NTSC.

Bit 0 1 represents word 0, aspect ratio

Bit 2 5 represents word 1, header code for word 2

Bit 6 13 represents word 2, copy control

Bit 14 19 represents word 3, CRC

DAL/SECAM.

PAL/SECAM:	PAL/SECAM: Read only											
Subaddress	7	6	5	4	3	2	1	0	Byte			
80 0520h	b7	b6	b5	b4	b3	b2	b1	b0	WSS Field 1 Byte 1			
80 0521h	-	-	b13	b12	b11	b10	b9	b8	WSS Field 1 Byte 2			
80 0522h	Reserved											
80 0523h					Res	erved						
80 0524h	b7	b6	b5	b4	b3	b2	b1	b0	WSS Field 2 Byte 1			
80 0525h	-	-	b13	b12	b11	b10	b9	b8	WSS Field 2 Byte 2			
80 0526h		Reserved										

PAL/SECAM:

Bits 0-3 Represent group 1, aspect ratio

Bits 4-7 Represent group 2, enhanced services

Bits 8-10 Represent group 3, subtitles

Bits 11-13 Represent group 3, subtitles

VDP VITC Data

Subaddress	80 052Ch-	80 0534h							
							Read onl	у	
Subaddress	7	6	5	4	3	2	1	0	
80 052Ch				VITC Fra	me byte 1				
80 052Dh		VITC Frame byte 2							
80 052Eh		VITC Seconds byte 1							
80 052Fh		VITC Seconds byte 2							
80 0530h				VITC Minu	utes byte 1				
80 0531h				VITC Minu	utes byte 2				
80 0532h				VITC Hou	urs byte 1				
80 0533h		VITC Hours byte 2							
80 0534h				VITC C	RC byte				

These registers contain the VITC data.

VDP V-Chip TV Rating Block 1

Subaddress 80 0540h

Read Only									
7	6	5	4	3	2	1	0		
Reserved	14-D	PG-D	Reserved	MA-L	14-L	PG-L	Reserved		

TV Parental Guidelines Rating Block 1

14-D: When incoming video program is TV-14-D rated and this bit is set high.

PG-D: When incoming video program is TV-PG-D rated and this bit is set high.

MA-L: When incoming video program is TV-MA-L rated and this bit is set high.

14-L: When incoming video program is TV-14-L rated and this bit is set high.

PG-L: When incoming video program is TV-PG-L rated and this bit is set high.

VDP V-Chip TV Rating Block 2

Subaddress 80 0541h

							Read only
7	6	5	4	3	2	1	0
MA-S	14-S	PG-S	Reserved	MA-V	14-V	PG-V	Y7-FV

TV parental guidelines rating block 2

MA-S:	When incoming video program is TV-MA-S rated and this bit is set high.
14-S:	When incoming video program is TV-14-S rated and this bit is set high.
PG-S:	When incoming video program is TV-PG-S rated and this bit is set high.
MA-V:	When incoming video program is TV-MA-V rated and this bit is set high.
14-V:	When incoming video program is TV-14-V rated and this bit is set high.
PG-V:	When incoming video program is TV-PG-S rated and this bit is set high.
Y7-FV:	When incoming video program is TV-Y7-FV rated and this bit is set high.

VDP V-CHIP TV Rating Block 3

Subaddress	80 0542h						
							Read only
7	6	5	4	3	2	1	0
None	TV-MA	TV-14	TV-PG	TV-G	TV-Y7	TV-Y	None
TV parental gu	uidelines ratir	ng block 3					

I V parental guidelines rating bloc

None:	No block intended
TV-MA:	When incoming video program is TV-MA rated in TV parental guidelines rating and this bit is set high.
TV-14:	When incoming video program is TV-14 rated in TV parental guidelines rating and this bit is set high.
TV-PG:	When incoming video program is TV-PG rated in TV parental guidelines rating and this bit is set high.
TV-G:	When incoming video program is TV-G rated in TV parental guidelines rating and this bit is set high.
TV-Y7:	When incoming video program is TV-Y7 rated in TV parental guidelines rating and this bit is set high.
TV-Y:	When incoming video program is TV-G rated in TV parental guidelines rating and this bit is set high.
None:	No block intended

VDP V-CHIP MPAA Rating Data

n		
---	--	--

							Read only
7	6	5	4	3	2	1	0
Not Rated	Х	NC-17	R	PG-13	PG	G	N/A

MPAA rating block (E5h):

Not Rated:	When incoming video program is Not Rated in MPAA rating and this bit is set high.						
X:	When incoming video program is X rated in MPAA rating and this bit is set high.						
NC-17:	When incoming video program is NC-17 rated in MPAA rating and this bit is set high.						
R:	When incoming video program is R rated in MPAA rating and this bit is set high.						
PG-13:	When incoming video program is PG-13 rated in MPAA rating and this bit is set high.						
PG:	When incoming video program is PG rated in MPAA rating and this bit is set high.						
G:	When incoming video program is G rated in MPAA rating and this bit is set high.						
N/A:	When incoming video program is N/A rated in MPAA rating and this bit is set high.						

VDP VPS/Gemstar Data

PS:							F	Read only	
Subaddress	7	6	5	4	3	2	1	0	
80 0700h				VPS B	yte 1				
80 0701h		VPS Byte 2							
80 0702h		VPS Byte 3							
80 0703h	VPS Byte 4								
80 0704h	VPS Byte 5								
80 0705h	VPS Byte 6								
80 0706h		VPS Byte 7							
80 0707h		VPS Byte 8							
80 0708h		VPS Byte 9							
80 0709h		VPS Byte 10							
80 070Ah		VPS Byte 11							
80 070Bh		VPS Byte 12							
80 070Ch	VPS Byte 13								

These registers contain the entire VPS data line except the clock run-in code or the start code.

Gemstar:								Read only
Subaddress	7	6	5	4	3	2	1	0
80 0700h				Gemstar F	rame Code			
80 0701h				Gemsta	r byte 1			
80 0702h		Gemstar byte 2						
80 0703h		Gemstar byte 3						
80 0704h		Gemstar byte 4						
80 0705h	Reserved							
80 0706h	Reserved							
80 0707h	Reserved							
80 0708h		Reserved						
80 0709h		Reserved						
80 070Ah		Reserved						
80 070Bh		Reserved						
80 070Ch				Rese	erved			

VDP FIFO Output Control

Subaddress	C0h							
							Default (00h)	
7	6	5 4 3 2 1 0						
	Reserved Host access enable							

Host access enable: This register is programmed to allow the host port access to the FIFO or allowing all VDP data to go out the video output.

- 0 = Output FIFO data to the video output Y[9:2] (default)
- 1 = Allow host port access to the FIFO data

VDP Full-Field Enable

Subaddress	D9h
------------	-----

							Default (00h)	
7	6	5	4	3	2	1	0	l
	Full field enable	l						

Full field enable

- 0 = Disable full field mode (default)
- 1 = Enable full field mode

This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in the line-mode register programmed with FFh are sliced with the definition of register DAh. Values other than FFh in the line-mode registers allow a different slice mode for that particular line.

VDP Full-Field Mode

Subaddress DAh

							Default (FFh)	
7	6	5	4	3	2	1	0	
Full field mode [7:0]								

Full field mode [7:0]: This register programs the specific VBI standard for full-field mode. It can be any VBI standard. Individual line settings take priority over the full-field register. This allows each VBI line to be programmed independently but have the remaining lines in full-field mode. The full-field mode register has the same bit definitions as the line-mode registers (default FFh).

The global line mode has priority over the full-field mode.

VBUS Data Access With No VBUS Address Increment

[Subaddress	E0h							
	Default (00h)								
	7 6 5 4 3 2 1 0								
	VBUS data [7:0]								

VBUS data [7:0]: VBUS data register for VBUS single byte read/write transaction

VBUS Data Access With VBUS Address Increment

Subaddress	E1h						
							Default (00h)
7	6	5	4	3	2	1	0
VBUS data [7:0]							

VBUS data [7:0]: VBUS data register for VBUS multi-byte read/write transaction. VBUS address is auto-incremented after each data byte read/write.

FIFO Read Data

Subaddress E2h

							Read only	
7	6	5	4	3	2	1	0	
FIFO Read Data [7:0]								

FIFO read data [7:0] : This register is provided to access VBI FIFO data through the host port. All forms of teletext data come directly from the FIFO, while all other forms of VBI data can be programmed to come from registers or from the FIFO. If the host port is to be used to read data from the FIFO, the FIFO output control register C0h bit 0 must be set to 1.

VBUS Address Access

Subaddress E8h-EAh

Default (00 0000h)

Subaddress	7	6	5	4	3	2	1	0
E8h		VBUS address [7:0]						
E9h	VBUS address [15:8]							
EAh	VBUS address [23:16]							

VBUS access address [23:0]: VBUS is a 24-bit wide internal bus. The user needs to program here the 24-bit address of the internal register to be accessed via host port indirect access mode.

Interrupt Raw Status 0

Subaddress F0h

Read	only

_		_	_	_	_		
7	6	5	4	3	2	1	0
FIFO THRS	TTX	WSS	VPS	VITC	CC F2	CC F1	LINE

FIFO THRS: FIFO threshold passed, unmasked

- 0 = Not passed
- 1 = Passed
- TTX: Teletext data available unmasked
 - 0 = Not available
 - 1 = Available
- WW: WSS data available unmasked
 - 0 = Not available
 - 1 = Available
- VPS: VPS data available unmasked
 - 0 = Not available
 - 1 = available
- VITC: VITC data available unmasked
 - 0 = Not available
 - 1 = Available
- CC F2: CC field 2 data available unmasked
 - 0 = Not available
 - 1 = Available
- CC F1: CC field 1 data available unmasked
 - 0 = Not available
 - 1 = Available
- LINE: Line number interrupt unmasked
 - 0 = Not available
 - 1 = Available

The host interrupt raw status 0 and 1 registers represent the interrupt status without applying mask bits.

Interrupt Clear 0

Subaddress F6h

							Delault (0011)
7	6	5	4	3	2	1	0
FIFO THRS	TTX	WSS	VPS	VITC	CC F2	CC F1	Line

FIFO THRS: FIFO threshold passed clear

- 0 = No effect (default)
- 1 = Clear FIFO THRES bit in status register 0 bit 7
- TTX: Teletext data available clear
 - 0 = No effect (default)
 - 1 = Clear TTX available bit in status register 0 bit 6
- WSS: WSS data available clear
 - 0 = No effect (default)
 - 1 = Clear WSS available bit in status register 0 bit 5
- VPS: VPS data available clear
 - 0 = No effect (default)
 - 1 = Clear VPS available bit in status register 0 bit 4
- VITC: VITC data available clear
- 0 = Disabled (default)
- 1 = Clear VITC available bit in status register 0 bit 3
- CC F2: CC field 2 data available clear
- 0 = Disabled (default)
- 1 = Clear CC field 2 available bit in status register 0 bit 2
- CC F1: CC field 1 data available clear
 - 0 = Disabled (default)
 - 1 = Clear CC field 1 available bit in status register 0 bit 1
- LINE: Line number interrupt clear
 - 0 = Disabled (default)
 - 1 = Clear line interrupt available bit in status register 0 bit 0

The host interrupt clear 0 and 1 registers are used by the external processor to clear the interrupt status bits in the host interrupt status 0 and 1 registers. When no non-masked interrupts remain set in the registers, the external interrupt pin also becomes inactive.

Appendix B. Sample WinVCC CMD File for VBI Setup

// These commands can be used with the WinVCC4 EVM software to configure the Line Mode
// registers for a typical VBI setup.
// The WR_IND commands are VBUS indirect writes using the VBUS Address Access and // VBUS Data Access registers. Each WR_IND command shown writes 1 byte to the VBUS // address specified in the command line. BEGIN DATASET DATASET NAME, "TVP5146 NTSC VDP/VBI SETUP" // Use Indirect Registers to setup Line numbers and line mode WR IND, VID DEC, 0x01, 0x800600h, 0x0A // Select Line 10 WR IND, VID DEC, 0x01, 0x800601h, 0x40 // Select teletext for Line 10 Field 1 // Select Line 10 WR IND, VID DEC, 0x01, 0x800602h, 0x0A WR_IND,VID_DEC,0x01,0x800603h,0x48 // Select teletext for Line 10 Field 2 // Select Line 21 WR_IND,VID_DEC,0x01,0x800604h,0x15 WR_IND,VID_DEC,0x01,0x800605h,0x01 // Select Closed Caption for Line 21 Field1 // Select Line 21 WR IND, VID DEC, 0x01, 0x800606h, 0x15 WR IND, VID DEC, 0x01, 0x800607h, 0x09 // Select Closed Caption for Line 21 Field2 WR IND, VID DEC, 0x01, 0x800608h, 0x0E // Select Line 14 WR IND, VID DEC, 0x01, 0x800609h, 0x03 // Select VITC for Line 14 Field 1 // Select Line 20 WR IND, VID DEC, 0x01, 0x80060ch, 0x14 WR IND, VID DEC, 0x01, 0x80060dh, 0x02 // Select WSS for Line 20 Field1 // Direct writes to I2C registers // Set host enable bit in register COh to 1 $\,$ WR REG, VID DEC, 0x01, 0xC0, 0x01 // to enable FIFO access. END DATASET

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated