

TPD12S520RMN EVM


This user's guide describes the characteristics, operation, and use of the TPD12S520RMNEVM Evaluation Module (EVM). This EVM includes 5 TPD12S520RMN's in various configurations for testing. Three TPD12S520 RMN's are configured for IEC61000-4-2 compliance testing, one TPD12S520RMN is configured for throughput on HDMI 1.4a Type A connectors for throughput analysis, and one is configured to allow 4-port analysis using a vector network analyzer. This user's guide includes setup instructions, schematic diagrams, a bill of materials, and printed-circuit board layout drawings for the EVM.

Contents

1	Introduction	
2	Definitions	2
3	Board Setup	3
	3.1 UA1—UC1	3
	3.2 UD1	5
	3.3 UE1	
4	Board Layout	5
5	Schematics	8
6	Bill of Materials	9
	List of Figure 2	
	List of Figures	
1	Ideal Contact Discharge Waveform of the Output Current of the ESD Simulator at 4 kV	3
2	1 of 3 TPD12S520RMN for IEC-61000-4-2 Tests	4
3	System Level ESD Test Setup	4
4	Top Layer	5
5	Layer 2	
6	Layer 3	6
7	Bottom layer	
8	TPD12S520RMNEVM Schematics	8
	List of Tables	
1	EVM Configuration	2
2	IEC61000-4-2 Test Levels	3
3	Waveform Parameters in Contact Discharge Mode	3
4	Bill of Materials	9

Introduction www.ti.com

1 Introduction

Texas Instrument's TPD12S520RMNEVM evaluation module helps designers evaluate the operation and performance of the TPD12S520RMNEVM device. TheTPD12S520 is a single-chip electrostatic discharge (ESD) solution for the high-definition multi-media interface (HDMI) receiver port. The low-speed control lines offer voltage level-shifting to eliminate the need for an external voltage-level shifter IC. Control-line ESD clamps add 3.5-pF capacitance to the control lines.

Table 1. EVM Configuration

Reference Designator	TI Part Number	Configuration
UA1 – UC1	TPD12S520RMN	IEC61000-4-2 ESD Tests
UD1	TPD12S520RMN	HDMI 1.4 Eye Diagrams
UE1	TPD12S520RMN	S-parameters

2 Definitions

1. Contact Discharge – a method of testing in which the electrode of the ESD simulator is held in contact with the device-under-test (DUT).

www.ti.com Board Setup

2. Air Discharge – a method of testing in which the charged electrode of the ESD simulator approaches the DUT, and a spark to the DUT actuates the discharge.

3. ESD simulator – a device that outputs IEC61000-4-2 compliance ESD waveforms shown in Figure 1 with adjustable ranges shown in Table 2 and Table 3.

IEC61000-4-2 has 4 classes of protection levels. Classes 1 – 4 are shown in Table 2. Stress tests should be incrementally tested to level 4 as shown in Table 3 until the point of failure. If the DUT does not fail at 8kV, testing can continue in 2 kV increments until failure.

Contact Discharge Class	Test Voltage [± kV]	Air Discharge Class	Test Voltage [± kV]
1	2	1	2
2	4	2	4
3	6	3	8
4	8	4	15

Table 2. IEC61000-4-2 Test Levels

Table 3. Waveform Parameters in Contact Discharge Mode

Stress Level Step	Simulator Voltage [kV]	lpeak ±15% [A]	Rise Time ±25% [nS]	Current at 30ns ±30% [A]	Current at 60ns ±30% [A]
1	2	7.5	0.8	4	2
2	4	15	0.8	8	4
3	6	22.5	0.8	12	6
4	8	30	0.8	16	8

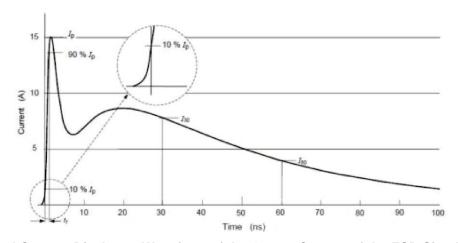


Figure 1. Ideal Contact Discharge Waveform of the Output Current of the ESD Simulator at 4 kV

3 Board Setup

This section describes the intended use of the TPD12S520RMNEVM. A generalized outline of the procedure given in IEC-61000-4-2 is described here. IEC-61000-4-2 should be referred to for a more specific testing outline.

3.1 UA1—UC1

Three separate and identical test setups for TPD12S520RMN (UA1–UC1) are pinned out to allow evaluating device performance during ESD events. The devices can be powered up (or not) so that all operating conditions can be evaluated.

Board Setup www.ti.com

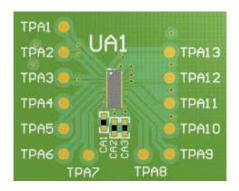


Figure 2. 1 of 3 TPD12S520RMN for IEC-61000-4-2 Tests

To test powered up: Connect 5V to 5V (J1), 3.3V to VLV (J2), and connect ground to GND (J3).

To test un-powered: Connect ground to 5V (J1), VLV (J2), and GND (J3).

3.1.1 Test Method and Set-Up

An example test setup is shown in Figure 3. Details of the testing table and ground planes can be found in the IEC 61000-4-2 test procedure. Ground the EVM using the banana connector labeled GND (J9). Discharge the ESD simulator on any of the Test Points TPA1–TPA13. Contact and air-gap discharge are tested using the same simulator with the same discharge waveform. While the simulator is in direct contact with the test point during contact, it is not during air-gap.

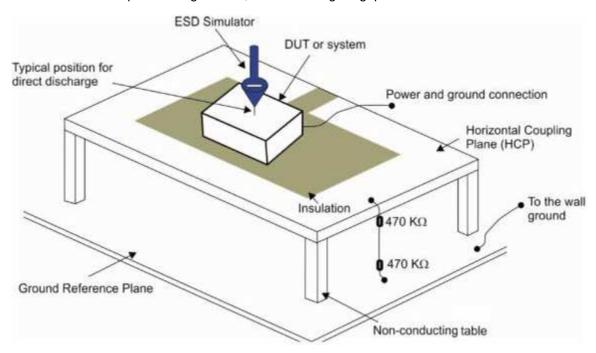


Figure 3. System Level ESD Test Setup

3.1.2 Evaluation of Test Results

Connect the tested device on the EVM to a curve tracer both before and after ESD testing. After each incremental level, if the IV curve of the ESD protection diode shifts ± 0.1 V, or leakage current increases by a factor of ten, then the device is permanently damaged by ESD.

www.ti.com Board Layout

3.2 UD1

A single TPD12S520RMN (UD1) is configured with two HDMI 1.4 \boldsymbol{a} Type A female connectors (J4 and J5) for capturing Eye Diagrams. Connect 5V to 5V (J1), 3.3V to V_{LV} (J2), and connect ground to GND (J3). Using either J4 or J5 as input or output attach to an HDMI compliant Eye Diagram test setup and follow the manufacturer's instructions for performing signal integrity tests.

3.3 UE1

A single TPD12S520RMN (UE1) is configured with 4 SMA (J1–J4) connectors to allow 4-port analysis with a vector network analyzer. Connect Port 1 to J6, Port 2 to J7, Port 3 to J8, and Port 4 to J9. Connect 5V to 5V (J1), 3.3V to VLV (J2), and connect ground to GND (J3). Follow the vector analyzer's manufacturer's instructions to obtain signal integrity parameters. This configuration allows for the following terminology in 4 port analysis:

- S₁₁: Return loss
- S₂₁: Insertion loss
- S₃₁: Near end cross talk
- S₄₁: Far end cross talk

4 Board Layout

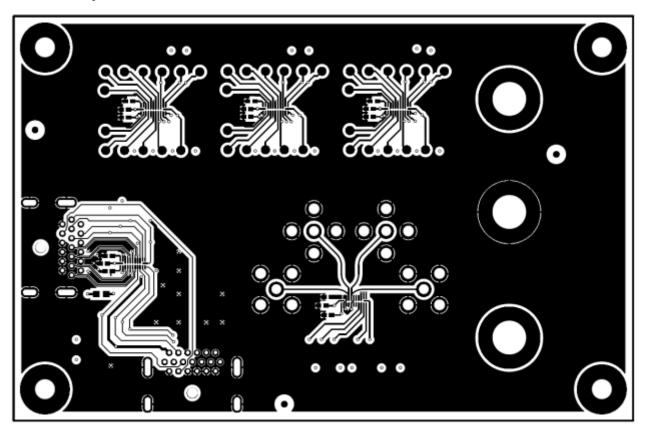


Figure 4. Top Layer

Board Layout www.ti.com

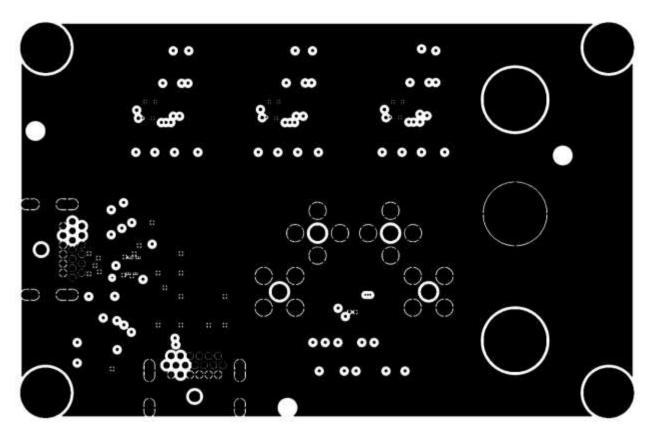


Figure 5. Layer 2

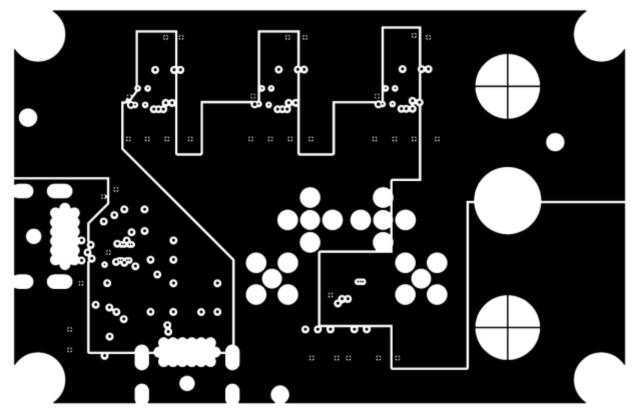


Figure 6. Layer 3

www.ti.com Board Layout

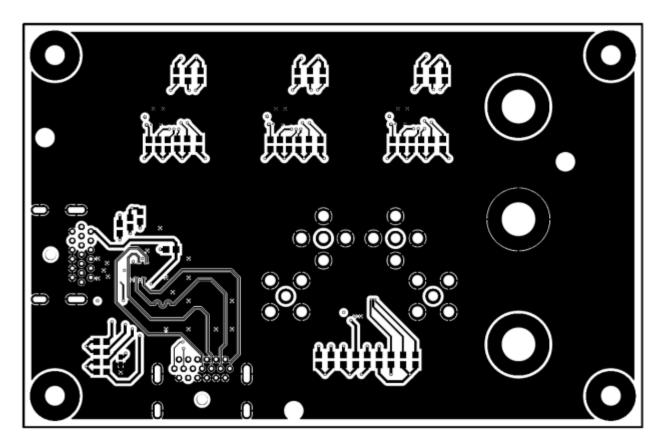


Figure 7. Bottom layer

Schematics www.ti.com

5 Schematics

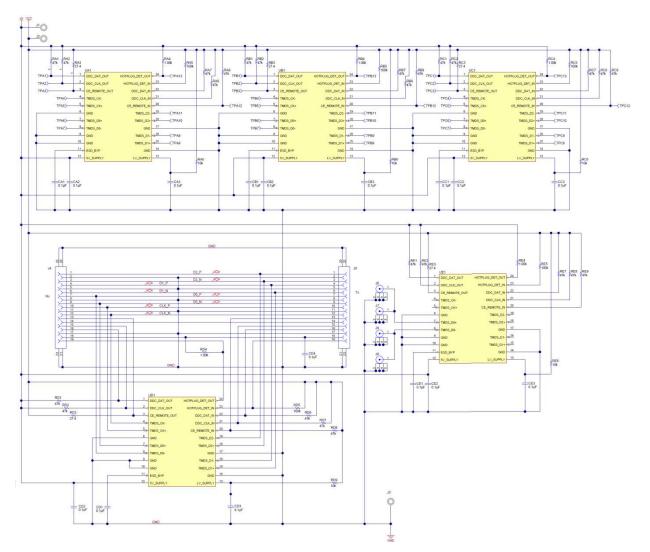


Figure 8. TPD12S520RMNEVM Schematics

www.ti.com Bill of Materials

6 Bill of Materials

Table 4. Bill of Materials

Qty.	Designator	Description	Part Number	Manufacturer
16	CA1, CA2, CA3, CB1, CB2, CB3, CC1, CC2, CC3, CD1, CD2, CD3, CD4, CE1, CE2, CE3	CAP, CERM, 0.1uF, 50V, +/-10%, C0G/NP0, 0402	C1005X7R1H104K	TDK
3	J1, J2, J3	Standard Banana Jack, Un-insulated, 5.5mm	575-4	Keystone
2	J4, J5	Connector, HDMI, 19-Pos Receptacle, SMT	1746679-1	TE Connectivity
4	J6, J7, J8, J9	Connector, TH, SMA	142-0701-201	Emerson Network Power
25	RA1, RA2, RA7, RA8, RA9, RB1, RB2, RB7, RB8, RB9, RC1, RC2, RC7, RC8, RC9, RD1, RD2, RD6, RD7, RD8, RE1, RE2, RE7, RE8, RE9	RES, 47k ohm, 5%, 0.1W, 0603	CRCW060347K0JNEA	Vishay-Dale
5	RA3, RB3, RC3, RD3, RE3	RES, 27.4 ohm, 1%, 0.1W, 0603	CRCW060327R4FKEA	Vishay-Dale
5	RA4, RB4, RC4, RD4, RE4	RES, 1.00k ohm, 1%, 0.1W, 0603	CRCW06031K00FKEA	Vishay-Dale
5	RA5, RB5, RC5, RD5, RE5	RES, 100k ohm, 5%, 0.1W, 0603	CRCW0603100KJNEA	Vishay-Dale
5	RA6, RB6, RC6, RD9, RE6	RES, 10k ohm, 5%, 0.1W, 0604	CRCW060310K0JNEA	Vishay-Dale
5	UA1, UB1, UC1, UD1, UE1	SINGLE-CHIP HDMI RECEIVER PORT PROTECTION AND INTERFACE DEVICE, RMN0024A	TPD12S520RMN	Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>