
Application Report
SPRA974 − November 2003

1

TMS320C6416 Coprocessors and Bit Error Rates
Sebastien Tomas, Mattias Ahnoff,
Patrick Geremia, Pierre Bertrand

Wireless Infrastructure

ABSTRACT

The turbo and viterbi coprocessors (TCP/VCP) are programmable peripherals used to
decode IS2000/3GPP turbo/viterbi codes. They are integrated into Texas Instruments
TMS320C6416 digital signal processor (DSP). Turbo and viterbi decoders lie at the heart of
all of the third-generation (3G) wireless standards. Their usage in 3G systems, meets the
tough bit-error-rate requirements and low signal-to-noise ratios (SNRs).

This application report describes the methodology and assumptions used to generate
TMS320C6416 TCP/VCP bit error rate curves. It also gives details on the channel model, the
resolution and the normalization of the soft decisions, and examples about their efficient
implementation on the TMS320C6416 DSP. The resulting TCP/VCP bit error rate curves on
some 3GPP frames are provided.

Contents

1 Introduction 2.

2 BER Curve Methodology and Assumptions 3.
2.1 Simulation of a Communication Channel Using a Viterbi Decoder 3.
2.2 Simulation of a Communication Channel Using a Turbo Decoder 4.
2.3 Symbol Mapping at Transmission 4.
2.4 Signal-to-Noise Ratio (SNR) 5.
2.5 Bit Error Rates Measurements and Stopping Criteria 6.
2.6 BER Software Framework 6.

3 White Gaussian Noise Channel 7.
3.1 Noise Generation 7.
3.2 Implementation 7.
3.3 Accuracy 9.
3.4 Further Optimizations 10.

4 TMS320C6416 Coprocessors Soft-Decision Inputs and Configurations 11.
4.1 TMS320C6416 Viterbi Coprocessor 11.

4.1.1 Input Requirements 11.
4.1.2 Implementation 12.
4.1.3 VCP Configuration 12.

4.2 TMS320C6416 Turbo Coprocessor 13.
4.2.1 Input Requirements 13.
4.2.2 Implementation 13.
4.2.3 TCP Configuration 15.

Trademarks are the property of their respective owners.

SPRA974

2 TMS320C6416 Coprocessors and Bit Error Rates

5 BER Results 16.
5.1 VCP: 3GPP Frames 16.
5.2 TCP: 3GPP Frames 18.

6 References 19.

List of Figures

Figure 1 Communication Channel and TCP/VCP BER Computation 3.
Figure 2 The Different Periods in the Transmission Chain 5.
Figure 3 Probability Distribution of the Noise Generator for sigma = 32 9.
Figure 4 Deviation of H(n) Compared With Q(n) for sigma = 32 10.

List of Tables

Table 1 VCP Soft Input Resolution 11.
Table 2 VCP Configuration Example 13.
Table 3 TCP Configuration Example 15.

1 Introduction

Forward-error correction (FEC), also known as channel codeing, is used to improve the capacity
of a channel by adding redundant information to the data being transmitted. Viterbi and turbo
coding are FEC techniques that are used in all of the third-generation (3G) wireless standards.

This application report describes the methodology and assumptions used to generate
TMS320C6416 TCP/VCP bit error rate (BER) curves. The transmitted signal is corrupted by
additive white Gaussian noise (AWGN). Details are given on the channel model, the resolution
and the normalization of the soft decisions, and examples about their efficient implementation on
the TMS320C6416 DSP. The resulting TCP/VCP bit error rate curves on some 3GPP frames are
provided.

For details on the TMS320C6416 Viterbi and Turbo coprocessors, please refer to the application
notes listed in the references section.

Note that the TMS320C6416 TCP Coprocessor processing unit implements the
MAX*−LOG−MAP approximation of the BCJR algorithm(6). This MAP decoder with a small
lookup table gives better BER results.

SPRA974

3 TMS320C6416 Coprocessors and Bit Error Rates

2 BER Curve Methodology and Assumptions

Information source
random generator

Turbo or
convolutional

encoder
Map onto
baseband

Compute BER
measurements

BER curves
and statistics

Transmit

Receive
Perform Viterbi

decoding
Calculate

branch metrics

Normalize channel
soft decisions

Perform Turbo
decoding

AWG noise �2

Figure 1. Communication Channel and TCP/VCP BER Computation

2.1 Simulation of a Communication Channel Using a Viterbi Decoder

The steps involved in simulating a communication channel using convolutional encoding and
Viterbi decoding are as follows:

• Generate the binary data bits (information sequence) to be transmitted through the channel.

• Convolutional encode the information sequence in channel symbols.

• Map the one/zero channel symbols onto an antipodal baseband signal (0 −> a and 1 −> −a,
a is the carrier amplitude), producing transmitted channel symbols.

• Add AWG noise to the transmitted channel symbols to generate received channel symbols
(soft decisions).

• Normalize channel soft decisions to the resolution required by the VCP.

• Combine normalized channel soft decisions to generate branch metrics inputs and perform
Viterbi decoding using the TMS320C6416 VCP coprocessor.

SPRA974

4 TMS320C6416 Coprocessors and Bit Error Rates

2.2 Simulation of a Communication Channel Using a Turbo Decoder

The steps involved in simulating a communication channel using turbo encoding and turbo
decoding are as follows:

• Generate the binary data bits (information sequence) to be transmitted through the channel.

• Generate the turbo interleaver table; turbo interleave and turbo encode the information
sequence in channel symbols.

• Map the one/zero channel symbols onto an antipodal baseband signal (0 −> a and 1 −> −a,
a is the carrier amplitude), producing transmitted channel symbols.

• Add AWG Noise to the transmitted channel symbols to generate received channel symbols
(soft decisions).

• Normalize channel soft decisions (systems and parities) to generate input buffers to the TCP
coprocessor.

• Generate the turbo interleaver table and perform turbo decoding using the TMS320C6416
TCP coprocessor.

The minimum set of functions has been chosen to simulate a communication channel. In a 3G
system, you may want to add more symbol rate functionalities such as interleaving or puncturing
algorithms in the simulation. Such algorithms may have an influence on the bit error rate
measurements as they may add extra bit errors.

2.3 Symbol Mapping at Transmission

The output of the encoder is a binary sequence …010011001b….

Assuming a binary phase shift keying (BPSK) modulation, a ‘1’ channel bit is transmitted at a
level of –1V, and a ‘0’ channel bit is transmitted at a level of 1V.

The 1/−1V levels can be represented on 2nd complement signed 8 bits word with the following
resolution: SIII.FFFF (1 −> 0x10 and –1 −> 0xF0) (S = sign bit, I = integer, F = fractional bit).

An efficient implementation based on the TMS320C6416 instruction set:
unsigned int words,i,xbits;
unsigned int inputWord;

 words = length>>5;
 xbits = length & 0x1F;

 for(i=0;i<words;i++) {
 inputWord=~*in++;
 *out++=_sub4(_xpnd4(inputWord>>0) & 0x20202020 , 0x10101010);
 *out++=_sub4(_xpnd4(inputWord>>4) & 0x20202020 , 0x10101010);
 *out++=_sub4(_xpnd4(inputWord>>8) & 0x20202020 , 0x10101010);
 *out++=_sub4(_xpnd4(inputWord>>12) & 0x20202020 , 0x10101010);
 *out++=_sub4(_xpnd4(inputWord>>16) & 0x20202020 , 0x10101010);
 *out++=_sub4(_xpnd4(inputWord>>20) & 0x20202020 , 0x10101010);
 *out++=_sub4(_xpnd4(inputWord>>24) & 0x20202020 , 0x10101010);
 *out++=_sub4(_xpnd4(inputWord>>28) & 0x20202020 , 0x10101010);
 }

 {
 unsigned char *outc = (unsigned char *)out;
 inputWord=~*in++;
 for(i=0;i<xbits;i++) *outc++ = ((_extu(inputWord,31−i,31)<<5) − 0x10);
 }

SPRA974

5 TMS320C6416 Coprocessors and Bit Error Rates

2.4 Signal-to-Noise Ratio (SNR)

In a AWGN channel, the signal is corrupted by additive noise, n(t), which has a variance �2 and
a noise density ratio N0.

Information source
Turbo or

convolutional
encoder

Map onto
baseband

Tbit Tcoded_bit Tsymbol

Figure 2. The Different Periods in the Transmission Chain

The information source consists of a bit sequence assumed randomly distributed amongst (0,1).

That source is coded with rate kn and the resulting symbol sequence is mapped onto a BPSK
modulation:

0 is transmitted as a and 1 as –a, a being the carrier amplitude. The resulting root-mean-square
(rms) power of the transmitted signal is:

Prms � Power(0) � Pr ob(0) � Power(1) � Pr ob(1) � a2
�

1
2
� (� a)2

�
1
2

Prms � a2

If 1
Tbit

 is the bit rate of the useful information sequence before coding, then the energy per

coded symbol, Esymbol , is:

Esymbol � a2
�

k
n � Tbit

The energy per useful bit, Eb, can be written as: Eb � a2
� Tbit

The noise samples (noise density ratio N0) are added to the transmitted symbol stream, at a rate

of n
k
�

1
Tbit

, and a variance:

�
2
�

1
2
� N0 � BandwidthOfUse �

1
2
� N0 �

1
Tsymbol

�
2
�

1
2
� N0 �

n
k
�

1
Tbit

SPRA974

6 TMS320C6416 Coprocessors and Bit Error Rates

As a result, the signal-to-noise ratio SNRbit (dB), is expressed as a function of the signal over

noise power, a
2

�
2

, assuming a is set to 1 in the scope of the study:

SNRbit (dB) � 10 � log10

Eb

N0

or

SNRbit (dB) � 10 � log10�
n

2 � k � �
2
�

Examples: �2 = 0.64 Watts/Hz

• AMR 12.2 kbps Class A (frame length:51 coding rate:1/3 constraint length:9)

• SNR = 3.73 dB

• AMR 12.2 kbps Class C (frame length:60 coding rate:1/2 constraint length:9)

• SNR = 1.94 dB

2.5 Bit Error Rates Measurements and Stopping Criteria

The bit error measurements consist of:

• Comparing the decoded data bits to the transmitted data bits

• Counting the number of bit errors

• Generating enough frames and bits to assume a point on a BER curve is a valid statistical
value

This is the reason a stopping criteria is needed. The number of generated bits/frames has an
obvious influence on a BER curve validity.

A value is considered valid if:

• The number of corrupted frames is greater than the empirical value of 1000

• The number of corrupted bits is greater than 1000 * frame length

• The number of generated bits is great enough to have 10 corrupted frames

2.6 BER Software Framework

A BER software framework needs to:

• Implement a communication channel for the different types of frames

• Implement the BER measurements and stopping criteria

• Fix a given noise variance (�2) and calculate the SNR for a given type of frame

SPRA974

7 TMS320C6416 Coprocessors and Bit Error Rates

3 White Gaussian Noise Channel

3.1 Noise Generation

As just mentioned, to simulate a transmission channel, we need to distort the transmitted
channel symbols that were generated through the viterbi/turbo encode process and through
mapping into the antipodal base band. For the BER measurements outlined here, we assume
that transmission takes place over an AWGN channel, i.e., Gaussian distributed random values
are added to the original signal that was transmitted. To implement such a channel model on the
DSP, we need a source of such random numbers. Because of the required formatting, we seek
to implement a 8-bit, fixed-point random generator, which can be done in several ways. We must
ensure that implementation is robust with regards to the limited dynamic range, and that values
that fall outside the range that can be represented in 8-bit format are saturated to the most
positive or negative value.

3.2 Implementation

For the BER measurements, we chose to implement a fairly straightforward, but because of
many calls to library functions, a somewhat resource-consuming, method. First, we approximate
the Gaussian distribution with zero mean and standard deviation sigma

P(x) � 1
� 2��

exp�� x2
�(2�2)� (3.1)

by a binomial distribution given by

P(n) � �Nn
�pnqN�n (3.2)

This approximation is valid, provided that N is sufficiently large since

�Nn�pnqN�n
	

1
2�Npq�

exp�� (n � Np)2

2Npq
� (3.3)

as N 	
. We set p � q � 1� 2 in (3.2) and choseN � �
2
�(pq) � 4�2 to obtain a binomial

distribution with standard deviation �. Then setting n� � n � Np, we obtain a distribution with
zero mean that approximates P(x) of (3.1).

As far as the software implementation goes, we make use of the run-time support library
function, rand(), to generate random bits that are simply interpreted as steps of a “random walk,”
in the positive and negative direction depending on whether bits are 0 or 1. The standard
deviation of the resulting distribution will then be the square root of the number of random bits
that were generated. The code is outlined below. Since the result will always be even (or odd)
given an even (or odd) number of steps, we may add or remove one step based on another
randomly generated bit pattern.

It should be pointed out that such an 8-bit random generator will not be accurate for all
conceivable values of the standard deviation �. This is not related to the actual implementation
itself, but is rather a consequence of the 8-bit format used. If sigma grows towards 0x7F
(maximum number that can be represented), output will differ from the pure Gaussian
distribution because of the many values being saturated. On the other hand, if � is close to zero,
output will be degenerated because of quantization. For the BER measurements performed
here, this function was always called with � � 0x20, and the results were then scaled
afterwards to obtain the desired noise power.

SPRA974

8 TMS320C6416 Coprocessors and Bit Error Rates

/*
This function generates gaussian distributed random values in the
range [−128, 127] with standard deviation equal to sigma. The gaussian
distribution is approximated with a binomial distribution.
*/

char wgn_fixpt(unsigned char sigma)
{
 short value = 0;
 unsigned int number_of_steps;
 unsigned int number_of_iter;
 int i;
 unsigned int mask, remaining_steps;
 unsigned int positive_steps;

 number_of_steps = (short) sigma * (short) sigma;

 /* if sigma is even (odd) we always get an even (odd) number
 of steps and hence even (odd) output value. To correct that
 we make one more step (with probability=25%) or one less
 step (p=25%) or leave it as is (p=50%). */

 mask = rand()&0x3;
 number_of_steps += (mask>>1)−(mask&1);

 /* in the loop below, 30 steps are calculated at once.
 Get # of iteration in the loop */

 number_of_iter = number_of_steps/30;
 remaining_steps = number_of_steps−number_of_iter*30;

 /* rand() in rts lib is returning a value in [0, 32767],
 i.e. the rightmost bit is always zero. Hence we get
 15 random bits from each call to rand() */

 for(i=0; i<number_of_iter; i++)
 {

 mask = ((rand() & 0x7FFF)<<15) | (rand() & 0x7FFF);
 positive_steps = _dotpu4(_bitc4(mask), 0x01010101);
 value += (positive_steps<<1)−30; //i.e. bitc(mask) − (30 − bitc(mask))
 }

 /* do the remaining steps (if sigma^2 was not divisible by 30) */
 mask = ((rand() & 0x7FFF)<<15) | (rand() & 0x7FFF);;
 mask >>= (30−remaining_steps);
 positive_steps = _dotpu4(_bitc4(mask), 0x01010101);
 value += (positive_steps<<1)−remaining_steps;

 /* saturate and cast to char */
 if (value>127) value = 127;
 if (value<−128) value =−128;
 return ((char) value);
}

SPRA974

9 TMS320C6416 Coprocessors and Bit Error Rates

3.3 Accuracy

Let us assume the probability distribution of code outlined above is H(n). We need to compare
H(n), our generated noise function, to the Gaussian distribution P(x) given by equation (3.1).
Rather than comparing directly to P(x), we will compare it against its discrete version, called
Q(n), given by

Q(n) � �

n�1�2

n�1�2

P(x)dx �

�

�

�

erf� 2�

4�
�, n � 0

1
2

�

�
erf�|n| � 1

2

� 2�
�� erf�|n| � 1

2

� 2�
�

�

�
, n � 0

In other words, the result would be Q(n), that is, if we had a perfect Gaussian random generator,
and quantized its output to integer format. Plots of H(n) as well as the absolute difference |(H(n)
− Q(n)| are given below for � � 32. We see that the latter curve shows a good conformity
between H(n) and Q(n), thus justifying the approximations that were made.

Figure 3. Probability Distribution of the Noise Generator for sigma = 32

SPRA974

10 TMS320C6416 Coprocessors and Bit Error Rates

Figure 4. Deviation of H(n) Compared With Q(n) for sigma = 32

3.4 Further Optimizations

Given a source for uniformly distributed random values, there are several possibilities to
generate Gaussian random numbers. One is the so-called Box-Muller transformation given by
the following pseudo code:

 do {
 x1 = 2.0 * ranf() − 1.0;
 x2 = 2.0 * ranf() − 1.0;
 w = x1 * x1 + x2 * x2;
 } while (w >= 1.0);
 w = sqrt((−2.0 * ln(w)) / w);
 y1 = x1 * w;
 y2 = x2 * w;

where ranf() gives a random number uniformly distributed in [0,1], and y1, y2 are two
independent Gaussian random numbers. A fixed-point implementation of the Box-Muller
transformation has the potential to be faster than the implementation outlined here, due to far
fewer calls to library functions. A prerequisite, however, is that the fixed-point (custom)

implementation of the mapping w � � 2ln(w)�w� is carried out carefully with regards to its
singularity at w � 0.

SPRA974

11 TMS320C6416 Coprocessors and Bit Error Rates

4 TMS320C6416 Coprocessors Soft-Decision Inputs and Configurations

The TMS320C6416 coprocessors produce the most likely transmitted sequence, given received
noisy sequence. An ideal decoder would work with infinite precision, or at least with
floating-point numbers. In practical systems, we quantize the received channel symbols with one
or a few bits of precision, referred to as soft-decision input. The VCP and TCP have different
soft-decision input requirements, so to decode the soft-decision inputs and create realistic BER
curves, you must configure the coprocessors as they would be in a typical 3G application.

4.1 TMS320C6416 Viterbi Coprocessor

4.1.1 Input Requirements

The inputs to the VCP coprocessor (channel soft decisions/systems and parities) have to be:

• quantized with the following resolution (Table 1) depending on the rate r and constraint
length K.

The VCP implementation on TMS320C6416 implies that the soft inputs should be quantized
so that the branch metrics satisfy the following bound B1 (branch metrics upper bound –
absolute value):

2(C�1)
� 1 � (2 � (K � 1) � 2) � B1

K is the constraint length and C determines the truncation of state metrics that can be
performed without loss of decoding performance.

The VCP is designed with C = 12 and the branch metrics can have a maximum dynamic
range of 6+1 sign bits do [−64;+63]. This give another branch metrics upper bound

B2 � 64

So for a given constraint length, min(B1,B2) will give the final branch metrics maximum
bound B.

To satisfy B in the branch metrics calculation, the soft input resolution D is calculated with the
following formula where 1/n is the rate.

B � n � 2D

Example:

K=9 then B1 � 113.72 and the branch metrics range B2 is [−64;+63]. So the branch
metrics need to be in [−64;+63] range.

If rate 1/3, log2�
64
3
� � 4.41, so the soft inputs need to be quantized on 4+1sign = 5 bits.

Calculation for the different constraint length and rate are summarized in Table 1.

Table 1. VCP Soft Input Resolution

1/Rate K Resolution

2
3
4

5, 6, 7, 8, 9
5, 6, 7, 8,9
5, 6, 7, 8,9

6
5
5

SPRA974

12 TMS320C6416 Coprocessors and Bit Error Rates

• sign-extended to 8 bits according to the resolution.
Example: rate 1/3 and K=9

The VCP input will have then to be provided with the following format:
SSSSI.FFF (S = sign bit, I = integer, F = fractional bit).

4.1.2 Implementation

The code below shows an efficient implementation based on the TMS320C6416 instruction set.

The in[] buffer contains 2nd complement, signed 8-bit words with the following resolution:
SIII.FFFF and is aligned on a 4-bytes boundary.
unsigned int i, j = 0;
char maxpos, maxneg;
unsigned int maxpos4, maxneg4;
unsigned int rangemax4 = 0x1f1f1f1f; // +31, max positive that won’t be saturated
unsigned int rangemin4 = 0xE0E0E0E0; //−32, most negative that won’t be saturated
double temp;
unsigned int outtemp, temp1, temp2, shr_amnt;
unsigned int mask_repl_pos, mask_repl_neg, mask_not_repl, mask_neg_or_pos;
unsigned int repl_neg, repl_pos, repl;

 maxpos = _set(0x00000000,0,8−softInputResolution);
 maxneg = _sshvr((−128), (softInputResolution−2));
 maxpos4 = _packl4(_pack2(maxpos,maxpos),_pack2(maxpos,maxpos));
 maxneg4 = _packl4(_pack2(maxneg,maxneg),_pack2(maxneg,maxneg));
 shr_amnt = softInputResolution−4;

for (i=0; i<length; i+=4, j++)
{
 // pack outtemp with ”normal” output, some may be saturated later
 temp = _mpysu4(in[j], 0x01010101);
 temp1 = _shr2(_hi(temp), shr_amnt);
 temp2 = _shr2(_lo(temp), shr_amnt);
 outtemp = _packl4(temp1, temp2);

 // determine which bytes to saturate and which to keep
 mask_neg_or_pos = _cmpgtu4(in[j], 0x7F7F7F7F);
 mask_repl_neg = _xpnd4(_cmpgtu4(rangemin4, in[j]) & mask_neg_or_pos);
 mask_repl_pos = _xpnd4(_cmpgtu4(in[j], rangemax4) & ~mask_neg_or_pos);
 mask_not_repl = ~(mask_repl_pos | mask_repl_neg);

 // clear outtemp from the bytes that are going to be saturated
 outtemp = outtemp & mask_not_repl;
 repl_neg = mask_repl_neg & maxneg4;
 repl_pos = mask_repl_pos & maxpos4;

 // repl holds saturated bytes (saturated to positive and negative)
 repl = repl_neg | repl_pos;

 // merge ”normal” and saturated bytes
 out[j] = outtemp | repl;
}

4.1.3 VCP Configuration

The VCP should be serviced using the TMS320C6416 enhanced direct memory access (EDMA)
module for most accesses, but you must first configure the VCP control values. The VCP control
values, or input configuration (IC) values will be sent via the EDMA to program its operation. To
generate the VCP BER curves, the coprocessor was configured as it would be in a typical 3G
application.

SPRA974

13 TMS320C6416 Coprocessors and Bit Error Rates

Here is a description of VCP IC words in a typical case (AMR 12.2 kbps − class A in 3GPP
standard):

Table 2. VCP Configuration Example

Input Configuration

POLY0 = 0x6F
POLY1 = 0xB3
POLY2 = 0xC9
POLY3 = 0x00
YAMEN = 1
YAMT = 100

F = 93
R = C = 0
IMAXS = 0x400
IMINS = 0x0
IMAXI = 0x0
RATE = 1/3

SDHD = hard decisions
OUTF = 1
TB = tailed
SYMR = 0x1
SYMX = 0x6

4.2 TMS320C6416 Turbo Coprocessor

4.2.1 Input Requirements

The inputs to the TCP coprocessor (channel soft decisions / systems and parities) have to be:

• scaled by a factor

�

2 Esymbol�

�
2

In the channel simulation, the received symbols r with an energy Esymbol can be written as

r �� Esymbol� � 1,� 1 � noise,

assuming BPSK modulation. Both Esymbol and the variance �2 of the received frame need to
be estimated.

• quantized on 8 bits as SIIII.FFF (S = sign bit, I = integer, F = fractional bit).

4.2.2 Implementation

4.2.2.1 Estimating the Scaling Factor

Consider a high speed data rate frame of N soft symbols xi .

X
^
�

1
N
��

N

i�1

|xi | and X2
^
�

1
N
��

N

i�1

x2
i on the frame.

First, estimate the variance.

�
2
�

1
N � 1

�
N

i�1

(|xi |� X
^
)2

�
2
�

1
N � 1

���
N

i�1

x2
i �

�
N

i�1

(2 � |xi |� X
^
) ��

N

i�1

(X
^

)2�

SPRA974

14 TMS320C6416 Coprocessors and Bit Error Rates

�
2
�

N
N � 1

� (X2
^
� (X

^
)2)

The high speed data rate frame length are generally big enough to consider N
N � 1

� 1

Then the variance will be computed as: �
2
� X2

^
� (X

^
)2

Now estimate the energy per symbol of the received frame. The mean of the square received

symbols X2
^

 can be used to calculate the energy per symbol Esymbol . A received symbol can be
written as:

xi � Esymbol� � ui � ni

where ui is a BPSK symbol with value +1 or −1 and ni comes from AWG noise with zero

mean and variance �2.

X2
^
��

N

i�1

� Esymbol� � ui � ni�
2

Considering a zero mean noise, �
N

i�1

ni � 0 and �2
��

N

i�1

n2
i

X2
^
� Esymbol � �

2 or Esymbol � X2
^
� �

2

and assuming N
N � 1

� 1 , then: E � (X
^

)2

the scaling factor can then be estimated as:

scalingFactor � � 2 �

Esymbol�

�
2

or

scalingFactor � � 2 �
X
^

X2
^
� (X

^
)2

The implementation on a fixed point DSP may require a lookup table such as

scalingFactor � � f(sigma2) � Esymbol� .

4.2.2.2 Quantization

Below is an efficient implementation based on the TMS320C6416 instruction set.

The in[] buffer contains a 2nd complement signed 8-bit word with the following resolution:
SIII.FFFF and is aligned on a 4 bytes boundary.

double temp,temp1,temp2;
S32 hi_temp1,lo_temp1,hi_temp2,lo_temp2;
U32 scale, i, j=0;

SPRA974

15 TMS320C6416 Coprocessors and Bit Error Rates

/* duplicate scale in 4 bytes */
scale = _packl4(_pack2(scale_fixpt,scale_fixpt),_pack2(scale_fixpt,scale_fixpt));

for(i=0; i < length; i+=4, j++)
{

 /* scale 4 input values by scaling factor */
 // in[j] is in signed Q4, and scale holds unsigned Q5
 // then temp is in signed Q9
 temp=_mpysu4(in[j],scale);

 /* saturate into upper byte and negate */
 temp1=_smpy2(_hi(temp),0xC000C000);
 temp2=_smpy2(_lo(temp),0xC000C000);

 // here, upper 16 bits of temp1 and temp2 will be in signed Q8, i.e.
 // upper 8 bits are in Q0. We need Q3, hence scale 3 positions left.

 hi_temp1=_sshl(_hi(temp1),3);
 lo_temp1=_sshl(_lo(temp1),3);
 hi_temp2=_sshl(_hi(temp2),3);
 lo_temp2=_sshl(_lo(temp2),3);

 /* pack 4 upper bytes of sshl’s */
 out[j]=_packh4(_packh2(hi_temp1,lo_temp1), _packh2(hi_temp2,lo_temp2));
}

4.2.3 TCP Configuration

The TCP should be serviced using the TMS320C6416 EDMA module for most accesses, but
you must first configure the TCP control values. The TCP control values, or input configuration
(IC) values will be sent via the EDMA to program its operation. To generate the TCP BER
curves, the coprocessor was configured as it would be in a typical 3G application.

Here is a description of TCP IC words in a typical case (144 kbps data in 3GPP standard) :

Table 3. TCP Configuration Example

Input Configuration

FL = 3168
OUTF = 1
INTER = 1
RATE = 1/3
OPMOD = SA

R = 0x71

SFL = 0x0

SNR Threshold disabled

MAXIT = 8

LASTNSB = 0

NSB = 7

P = 32
NWORDDSP = 0x252
NWORDINTER = 0x630

NWORDHD = 0x63

TAIL1 = 0x00F5FDD3
TAIL2 = 0x00F70104
TAIL3 = 0x00000000
TAIL4 = 0x00EFFE02
TAIL5 = 0x00FDFB23
TAIL6 = 0x00000000

SPRA974

16 TMS320C6416 Coprocessors and Bit Error Rates

5 BER Results

Here are some bit error rate curves performed on a TMS320C6416 PG1.1 device. The most
common 3GPP rates have been chosen.

5.1 VCP: 3GPP Frames

DCCH
f:164 r:1/3 k:9

 Mixed TB Mode c=24

1.00E−05

1.00E−04

1.00E−03

1.00E−02

1.00E−01

1.00E+00

0.15 0.56 0.92 1.36 1.76 2.18 2.69 3.16

SNR(dB)

B
it

 E
rr

o
r

P
ro

b
ab

ili
ty

PG1.1 Silicon

AMR 12.2 kbps Class A
 f:93 r:1/3 k:9

 Tailed TB Mode

1.00E−05

1.00E−04

1.00E−03

1.00E−02

1.00E−01

1.00E+00

0.15 0.56 0.92 1.36 1.76 2.18 2.69 3.16

SNR(dB)

B
it

 E
rr

o
r

P
ro

b
ab

ili
ty

PG1.1 Silicon

SPRA974

17 TMS320C6416 Coprocessors and Bit Error Rates

AMR 12.2 kbps Class B
 f:103 r:1/3 k:9

 Tailed TB Mode

1.00E−05

1.00E−04

1.00E−03

1.00E−02

1.00E−01

1.00E+00

0.15 0.56 0.92 1.36 1.76 2.18 2.69 3.16

SNR(dB)

B
it

 E
rr

o
r

P
ro

b
ab

ili
ty

PG1.1 Silicon

AMR 12.2 kbps Class C
 f:60 r:1/2 k:9

 Tailed TB Mode

1.00E−05

1.00E−04

1.00E−03

1.00E−02

1.00E−01

1.00E+00

0.00 0.42 0.93 1.40 1.97 2.50 3.06

SNR(dB)

B
it

 E
rr

o
r

P
ro

b
ab

ili
ty

PG1.1 Silicon

RACH

 f:184 r:1/2 k:9
 Mixed TB Mode c=24

1.00E−04

1.00E−03

1.00E−02

1.00E−01

1.00E+00

0.00 0.42 0.93 1.40 1.97 2.50 3.06

SNR(dB)

B
it

 E
rr

o
r

P
ro

b
ab

ili
ty

PG1.1 Silicon

SPRA974

18 TMS320C6416 Coprocessors and Bit Error Rates

32kbps conv. Data
 f:328 r:1/3 k:9

 Mixed TB Mode c=24

1.00E−05

1.00E−04

1.00E−03

1.00E−02

1.00E−01

1.00E+00

0.15 0.56 0.92 1.36 1.76 2.18 2.69 3.16

SNR(dB)

B
it

 E
rr

o
r

P
ro

b
ab

ili
ty

PG1.1 Silicon

5.2 TCP: 3GPP Frames

64kbps data
 f:1408 r:1/3

1.00E−08
1.00E−07
1.00E−06
1.00E−05
1.00E−04
1.00E−03
1.00E−02
1.00E−01
1.00E+00

0.150.33 0.500.62 0.80 0.921.11 1.231.43 1.561.76

SNR(dB)

B
it

 E
rr

o
r

P
ro

b
ab

ili
ty

PG1.1 Silicon

64kbps data

 f:1408 r:1/3

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0

10
00

0
10

00
0

10
00

0

64
89

28
07

15
68

75
7

31
5

20
3

14
5

10
1

69 60 52 32 300
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0.15 0.33 0.50 0.62 0.80 0.92 1.11 1.23 1.43 1.56 1.76

SNR(dB)

E
rr

. F
ra

m
es

PG1.1 Silicon

SPRA974

19 TMS320C6416 Coprocessors and Bit Error Rates

384kbps data
 f:4224 r:1/3

1.00E−08
1.00E−07
1.00E−06
1.00E−05
1.00E−04
1.00E−03
1.00E−02
1.00E−01
1.00E+00

0.15 0.33 0.50 0.62 0.80 0.92 1.11 1.23

SNR(dB)

B
it

 E
rr

o
r

P
ro

b
ab

ili
ty

PG1.1 Silicon

384kbps data

 f:4224 r:1/3

10
00

0

10
00

0

10
00

0

10
00

0

69
93

18
29

70
8

39
7

22
7

17
4

18
1

11
7

73 77 460
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0.15 0.27 0.33 0.38 0.50 0.56 0.62 0.68 0.80 0.86 0.92 0.98 1.11 1.17 1.23

SNR(dB)

E
rr

. F
ra

m
es

PG1.1 Silicon

6 References
1. Viterbi Decoder Coprocessor User’s Guide (SPRU533)

2. Turbo Decoder Coprocessor User’s Guide (SPRU534)

3. TMS320C6000 Peripherals Reference Guide (SPRU190)

4. Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP) (SPRA750)

5. Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP) (SPRA749)

6. L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT–20, pp. 284–287, Mar.
1974.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2003, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

