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ABSTRACT

The turbo and viterbi coprocessors (TCP/VCP) are programmable peripherals used to
decode IS2000/3GPP turbo/viterbi codes. They are integrated into Texas Instruments
TMS320C6416 digital signal processor (DSP). Turbo and viterbi decoders lie at the heart of
all of the third-generation (3G) wireless standards. Their usage in 3G systems, meets the
tough bit-error-rate requirements and low signal-to-noise ratios (SNRs).

This application report describes the methodology and assumptions used to generate
TMS320C6416 TCP/VCP bit error rate curves. It also gives details on the channel model, the
resolution and the normalization of the soft decisions, and examples about their efficient
implementation on the TMS320C6416 DSP. The resulting TCP/VCP bit error rate curves on
some 3GPP frames are provided.
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1 Introduction

Forward-error correction (FEC), also known as channel codeing, is used to improve the capacity
of a channel by adding redundant information to the data being transmitted. Viterbi and turbo
coding are FEC techniques that are used in all of the third-generation (3G) wireless standards.

This application report describes the methodology and assumptions used to generate
TMS320C6416 TCP/VCP bit error rate (BER) curves. The transmitted signal is corrupted by
additive white Gaussian noise (AWGN). Details are given on the channel model, the resolution
and the normalization of the soft decisions, and examples about their efficient implementation on
the TMS320C6416 DSP. The resulting TCP/VCP bit error rate curves on some 3GPP frames are
provided.

For details on the TMS320C6416 Viterbi and Turbo coprocessors, please refer to the application
notes listed in the references section.

Note that the TMS320C6416 TCP Coprocessor processing unit implements the
MAX*−LOG−MAP approximation of the BCJR algorithm(6). This MAP decoder with a small
lookup table gives better BER results.
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2 BER Curve Methodology and Assumptions
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Figure 1. Communication Channel and TCP/VCP BER Computation

2.1 Simulation of a Communication Channel Using a Viterbi Decoder

The steps involved in simulating a communication channel using convolutional encoding and
Viterbi decoding are as follows:

• Generate the binary data bits (information sequence) to be transmitted through the channel.

• Convolutional encode the information sequence in channel symbols.

• Map the one/zero channel symbols onto an antipodal baseband signal (0 −> a and 1 −> −a,
a is the carrier amplitude), producing transmitted channel symbols.

• Add AWG noise to the transmitted channel symbols to generate received channel symbols
(soft decisions).

• Normalize channel soft decisions to the resolution required by the VCP.

• Combine normalized channel soft decisions to generate branch metrics inputs and perform
Viterbi decoding using the TMS320C6416 VCP coprocessor.
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2.2 Simulation of a Communication Channel Using a Turbo Decoder

The steps involved in simulating a communication channel using turbo encoding and turbo
decoding are as follows:

• Generate the binary data bits (information sequence) to be transmitted through the channel.

• Generate the turbo interleaver table; turbo interleave and turbo encode the information
sequence in channel symbols.

• Map the one/zero channel symbols onto an antipodal baseband signal (0 −> a and 1 −> −a,
a is the carrier amplitude), producing transmitted channel symbols.

• Add AWG Noise to the transmitted channel symbols to generate received channel symbols
(soft decisions).

• Normalize channel soft decisions (systems and parities) to generate input buffers to the TCP
coprocessor.

• Generate the turbo interleaver table and perform turbo decoding using the TMS320C6416
TCP coprocessor.

The minimum set of functions has been chosen to simulate a communication channel. In a 3G
system, you may want to add more symbol rate functionalities such as interleaving or puncturing
algorithms in the simulation. Such algorithms may have an influence on the bit error rate
measurements as they may add extra bit errors.

2.3 Symbol Mapping at Transmission

The output of the encoder is a binary sequence …010011001b….

Assuming a binary phase shift keying (BPSK) modulation, a ‘1’ channel bit is transmitted at a
level of –1V, and a ‘0’ channel bit is transmitted at a level of 1V.

The 1/−1V levels can be represented on 2nd complement signed 8 bits word with the following
resolution: SIII.FFFF ( 1 −> 0x10 and –1 −> 0xF0 ) (S = sign bit, I = integer, F = fractional bit).

An efficient implementation based on the TMS320C6416 instruction set:
unsigned int words,i,xbits;
unsigned int inputWord;

    words = length>>5;
    xbits = length & 0x1F;

    for(i=0;i<words;i++)  {
        inputWord=~*in++;
        *out++=_sub4(_xpnd4(inputWord>>0 ) & 0x20202020 , 0x10101010);    
        *out++=_sub4(_xpnd4(inputWord>>4 ) & 0x20202020 , 0x10101010);    
        *out++=_sub4(_xpnd4(inputWord>>8 ) & 0x20202020 , 0x10101010);    
        *out++=_sub4(_xpnd4(inputWord>>12) & 0x20202020 , 0x10101010);    
        *out++=_sub4(_xpnd4(inputWord>>16) & 0x20202020 , 0x10101010);    
        *out++=_sub4(_xpnd4(inputWord>>20) & 0x20202020 , 0x10101010);    
        *out++=_sub4(_xpnd4(inputWord>>24) & 0x20202020 , 0x10101010);    
        *out++=_sub4(_xpnd4(inputWord>>28) & 0x20202020 , 0x10101010);    
    }

    {
    unsigned char *outc = (unsigned char *)out;
    inputWord=~*in++;
    for(i=0;i<xbits;i++) *outc++ = ( (_extu(inputWord,31−i,31)<<5) − 0x10);
    }
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2.4 Signal-to-Noise Ratio (SNR)

In a AWGN channel, the signal is corrupted by additive noise, n(t), which has a variance �2 and
a noise density ratio N0.

Information source
Turbo or

convolutional
encoder

Map onto
baseband

Tbit Tcoded_bit Tsymbol

Figure 2. The Different Periods in the Transmission Chain

The information source consists of a bit sequence assumed randomly distributed amongst (0,1).

That source is coded with rate kn and the resulting symbol sequence is mapped onto a BPSK
modulation:

0 is transmitted as a and 1 as –a, a being the carrier amplitude. The resulting root-mean-square
(rms) power of the transmitted signal is:

Prms � Power(0) � Pr ob(0) � Power(1) � Pr ob(1) � a2
�

1
2
� (� a)2

�
1
2

Prms � a2

If 1
Tbit

 is the bit rate of the useful information sequence before coding, then the energy per

coded symbol, Esymbol , is:

Esymbol � a2
�

k
n � Tbit

The energy per useful bit, Eb, can be written as: Eb � a2
� Tbit

The noise samples (noise density ratio N0) are added to the transmitted symbol stream, at a rate

of n
k
�

1
Tbit

, and a variance:

�
2
�

1
2
� N0 � BandwidthOfUse �

1
2
� N0 �

1
Tsymbol

�
2
�

1
2
� N0 �

n
k
�

1
Tbit
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As a result, the signal-to-noise ratio SNRbit (dB), is expressed as a function of the signal over

noise power, a
2

�
2

, assuming a is set to 1 in the scope of the study:

SNRbit (dB) � 10 � log10

Eb

N0

or

SNRbit (dB) � 10 � log10�
n

2 � k � �
2
�

Examples: �2 = 0.64 Watts/Hz

• AMR 12.2 kbps Class A ( frame length:51 coding rate:1/3 constraint length:9)

• SNR = 3.73 dB

• AMR 12.2 kbps Class C ( frame length:60 coding rate:1/2 constraint length:9)

• SNR = 1.94 dB

2.5 Bit Error Rates Measurements and Stopping Criteria

The bit error measurements consist of:

• Comparing the decoded data bits to the transmitted data bits

• Counting the number of bit errors

• Generating enough frames and bits to assume a point on a BER curve is a valid statistical
value

This is the reason a stopping criteria is needed. The number of generated bits/frames has an
obvious influence on a BER curve validity.

A value is considered valid if:

• The number of corrupted frames is greater than the empirical value of 1000

• The number of corrupted bits is greater than 1000 * frame length

• The number of generated bits is great enough to have 10 corrupted frames

2.6 BER Software Framework

A BER software framework needs to:

• Implement a communication channel for the different types of frames

• Implement the BER measurements and stopping criteria

• Fix a given noise variance (�2) and calculate the SNR for a given type of frame
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3 White Gaussian Noise Channel

3.1 Noise Generation

As just mentioned, to simulate a transmission channel, we need to distort the transmitted
channel symbols that were generated through the viterbi/turbo encode process and through
mapping into the antipodal base band. For the BER measurements outlined here, we assume
that transmission takes place over an AWGN channel, i.e., Gaussian distributed random values
are added to the original signal that was transmitted. To implement such a channel model on the
DSP, we need a source of such random numbers. Because of the required formatting, we seek
to implement a 8-bit, fixed-point random generator, which can be done in several ways. We must
ensure that implementation is robust with regards to the limited dynamic range, and that values
that fall outside the range that can be represented in 8-bit format are saturated to the most
positive or negative value.

3.2 Implementation

For the BER measurements, we chose to implement a fairly straightforward, but because of
many calls to library functions, a somewhat resource-consuming, method. First, we approximate
the Gaussian distribution with zero mean and standard deviation sigma

P(x) � 1
� 2��

exp�� x2
�(2�2)� (3.1)

by a binomial distribution given by

P(n) � �Nn
�pnqN�n (3.2)

This approximation is valid, provided that N is sufficiently large since

�Nn�pnqN�n
	

1
2�Npq�

exp�� (n � Np)2

2Npq
� (3.3)

as N 	 
. We set p � q � 1� 2 in (3.2) and choseN � �
2
�(pq) � 4�2 to obtain a binomial

distribution with standard deviation �. Then setting n� � n � Np, we obtain a distribution with
zero mean that approximates P(x) of (3.1).

As far as the software implementation goes, we make use of the run-time support library
function, rand(), to generate random bits that are simply interpreted as steps of a “random walk,”
in the positive and negative direction depending on whether bits are 0 or 1. The standard
deviation of the resulting distribution will then be the square root of the number of random bits
that were generated. The code is outlined below. Since the result will always be even (or odd)
given an even (or odd) number of steps, we may add or remove one step based on another
randomly generated bit pattern.

It should be pointed out that such an 8-bit random generator will not be accurate for all
conceivable values of the standard deviation �. This is not related to the actual implementation
itself, but is rather a consequence of the 8-bit format used. If sigma grows towards 0x7F
(maximum number that can be represented), output will differ from the pure Gaussian
distribution because of the many values being saturated. On the other hand, if � is close to zero,
output will be degenerated because of quantization. For the BER measurements performed
here, this function was always called with � � 0x20, and the results were then scaled
afterwards to obtain the desired noise power.
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/*
This function generates gaussian distributed random values in the 
range [−128, 127] with standard deviation equal to sigma. The gaussian 
distribution is approximated with a binomial distribution.
*/

char wgn_fixpt(unsigned char sigma)
{
       short value = 0;
       unsigned int number_of_steps;
       unsigned int number_of_iter;
       int i;
       unsigned int mask, remaining_steps;
       unsigned int positive_steps;

       number_of_steps = (short) sigma * (short) sigma;

  /* if sigma is even (odd) we always get an even (odd) number
  of steps and hence even (odd) output value. To correct that
  we make one more step (with probability=25%) or one less 
  step (p=25%) or leave it as is (p=50%). */

  mask = rand()&0x3;
  number_of_steps += (mask>>1)−(mask&1);

  /* in the loop below, 30 steps are calculated at once.
  Get # of iteration in the loop */

  number_of_iter = number_of_steps/30;
  remaining_steps = number_of_steps−number_of_iter*30;

 /* rand() in rts lib is returning a value in [0, 32767], 
    i.e. the rightmost bit is always zero. Hence we get 
    15 random bits from each call to rand() */

  for(i=0; i<number_of_iter; i++)
  {

     mask = ((rand() & 0x7FFF)<<15) | (rand() & 0x7FFF);
     positive_steps = _dotpu4(_bitc4(mask), 0x01010101);
     value += (positive_steps<<1)−30; //i.e. bitc(mask) − (30 − bitc(mask))
  }

 /* do the remaining steps (if sigma^2 was not divisible by 30) */
  mask = ((rand() & 0x7FFF)<<15) | (rand() & 0x7FFF);;
  mask >>= (30−remaining_steps);
  positive_steps = _dotpu4(_bitc4(mask), 0x01010101);
  value += (positive_steps<<1)−remaining_steps;

 /* saturate and cast to char */
  if (value>127) value = 127;
  if (value<−128) value =−128;
  return ((char) value);
}
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3.3 Accuracy

Let us assume the probability distribution of code outlined above is H(n). We need to compare
H(n), our generated noise function, to the Gaussian distribution P(x) given by equation (3.1).
Rather than comparing directly to P(x), we will compare it against its discrete version, called
Q(n), given by

Q(n) � �

n�1�2

n�1�2

P(x)dx �







�

�

�

erf� 2�

4�
�, n � 0

1
2

�

�
erf�|n| � 1

2

� 2�
�� erf�|n| � 1

2

� 2�
�

�

�
, n � 0

In other words, the result would be Q(n), that is, if we had a perfect Gaussian random generator,
and quantized its output to integer format. Plots of H(n) as well as the absolute difference |(H(n)
− Q(n)| are given below for � � 32. We see that the latter curve shows a good conformity
between H(n) and Q(n), thus justifying the approximations that were made.

Figure 3. Probability Distribution of the Noise Generator for sigma = 32
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Figure 4. Deviation of H(n) Compared With Q(n) for sigma = 32

3.4 Further Optimizations

Given a source for uniformly distributed random values, there are several possibilities to
generate Gaussian random numbers. One is the so-called Box-Muller transformation given by
the following pseudo code:

         do {
                 x1 = 2.0 * ranf() − 1.0;
                 x2 = 2.0 * ranf() − 1.0;
                 w = x1 * x1 + x2 * x2;
         } while ( w >= 1.0 );
         w = sqrt( (−2.0 * ln( w ) ) / w );
         y1 = x1 * w;
         y2 = x2 * w;

where ranf() gives a random number uniformly distributed in [0,1], and y1, y2 are two
independent Gaussian random numbers. A fixed-point implementation of the Box-Muller
transformation has the potential to be faster than the implementation outlined here, due to far
fewer calls to library functions. A prerequisite, however, is that the fixed-point (custom)

implementation of the mapping w � � 2ln(w)�w�  is carried out carefully with regards to its
singularity at w � 0.
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4 TMS320C6416 Coprocessors Soft-Decision Inputs and Configurations

The TMS320C6416 coprocessors produce the most likely transmitted sequence, given received
noisy sequence. An ideal decoder would work with infinite precision, or at least with
floating-point numbers. In practical systems, we quantize the received channel symbols with one
or a few bits of precision, referred to as soft-decision input. The VCP and TCP have different
soft-decision input requirements, so to decode the soft-decision inputs and create realistic BER
curves, you must configure the coprocessors as they would be in a typical 3G application.

4.1 TMS320C6416 Viterbi Coprocessor

4.1.1 Input Requirements

The inputs to the VCP coprocessor (channel soft decisions/systems and parities) have to be:

• quantized with the following resolution (Table 1) depending on the rate r and constraint
length K.

The VCP implementation on TMS320C6416 implies that the soft inputs should be quantized
so that the branch metrics satisfy the following bound B1 (branch metrics upper bound –
absolute value):

2(C�1)
� 1 � (2 � (K � 1) � 2) � B1

K is the constraint length and C determines the truncation of state metrics that can be
performed without loss of decoding performance.

The VCP is designed with C = 12 and the branch metrics can have a maximum dynamic
range of  6+1 sign bits do [−64;+63]. This give another branch metrics upper bound

B2 � 64

So for a given constraint length, min(B1,B2) will give the final branch metrics maximum
bound B.

To satisfy B in the branch metrics calculation, the soft input resolution D is calculated with the
following formula where 1/n is the rate.

B � n � 2D

Example:

K=9 then B1 � 113.72 and the branch metrics range B2 is [−64;+63]. So the branch
metrics need to be in [−64;+63] range.

If rate 1/3, log2�
64
3
� � 4.41, so the soft inputs need to be quantized on 4+1sign = 5 bits.

Calculation for the different constraint length and rate are summarized in Table 1.

Table 1. VCP Soft Input Resolution

1/Rate K Resolution

2
3
4

5, 6, 7, 8, 9
5, 6, 7, 8,9
5, 6, 7, 8,9

6
5
5
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• sign-extended to 8 bits according to the resolution.
Example: rate 1/3 and K=9

The VCP input will have then to be provided with the following format:
SSSSI.FFF (S = sign bit, I = integer, F = fractional bit).

4.1.2 Implementation

The code below shows an efficient implementation based on the TMS320C6416 instruction set.

The in[ ] buffer contains 2nd complement, signed 8-bit words with the following resolution:
SIII.FFFF and is aligned on a 4-bytes boundary.
unsigned int i, j = 0;
char  maxpos, maxneg;
unsigned int maxpos4, maxneg4;
unsigned int rangemax4 = 0x1f1f1f1f;  // +31, max positive that won’t be saturated
unsigned int rangemin4 = 0xE0E0E0E0;  //−32, most negative that won’t be saturated
double temp;
unsigned int outtemp, temp1, temp2, shr_amnt;
unsigned int mask_repl_pos, mask_repl_neg, mask_not_repl, mask_neg_or_pos;
unsigned int repl_neg, repl_pos, repl;

       maxpos   = _set(0x00000000,0,8−softInputResolution);
       maxneg   = _sshvr((−128), (softInputResolution−2));
       maxpos4  = _packl4(_pack2(maxpos,maxpos),_pack2(maxpos,maxpos));
       maxneg4  = _packl4(_pack2(maxneg,maxneg),_pack2(maxneg,maxneg));
       shr_amnt = softInputResolution−4;

for (i=0; i<length; i+=4, j++)
{
   // pack outtemp with ”normal” output, some may be saturated later
       temp    = _mpysu4(in[j], 0x01010101);
       temp1   = _shr2(_hi(temp), shr_amnt);
       temp2   = _shr2(_lo(temp), shr_amnt);
       outtemp = _packl4(temp1, temp2);

   // determine which bytes to saturate and which to keep 
       mask_neg_or_pos = _cmpgtu4(in[j], 0x7F7F7F7F);
       mask_repl_neg   = _xpnd4(_cmpgtu4(rangemin4, in[j]) & mask_neg_or_pos);
       mask_repl_pos   = _xpnd4(_cmpgtu4(in[j], rangemax4) & ~mask_neg_or_pos);
       mask_not_repl   = ~(mask_repl_pos | mask_repl_neg);

   // clear outtemp from the bytes that are going to be saturated 
       outtemp  = outtemp & mask_not_repl;
       repl_neg = mask_repl_neg & maxneg4;
       repl_pos = mask_repl_pos & maxpos4;

   // repl holds saturated bytes (saturated to positive and negative) 
       repl = repl_neg | repl_pos;

   //  merge ”normal” and saturated bytes 
       out[j] = outtemp | repl;
}

4.1.3 VCP Configuration

The VCP should be serviced using the TMS320C6416 enhanced direct memory access (EDMA)
module for most accesses, but you must first configure the VCP control values. The VCP control
values, or input configuration (IC) values will be sent via the EDMA to program its operation. To
generate the VCP BER curves, the coprocessor was configured as it would be in a typical 3G
application.
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Here is a description of VCP IC words in a typical case (AMR 12.2 kbps − class A  in 3GPP
standard):

Table 2. VCP Configuration Example

Input Configuration

POLY0 = 0x6F
POLY1 = 0xB3
POLY2 = 0xC9
POLY3 = 0x00
YAMEN = 1
YAMT = 100

F = 93
R = C = 0
IMAXS = 0x400
IMINS = 0x0
IMAXI = 0x0
RATE = 1/3

SDHD = hard decisions
OUTF = 1
TB = tailed
SYMR = 0x1
SYMX = 0x6

 

4.2 TMS320C6416 Turbo Coprocessor

4.2.1 Input Requirements

The inputs to the TCP coprocessor (channel soft decisions / systems and parities) have to be:

• scaled by a factor

�

2 Esymbol�

�
2

In the channel simulation, the received symbols r with an energy Esymbol  can be written as

r �� Esymbol� � 1,� 1 � noise,

assuming BPSK modulation. Both Esymbol  and the variance �2 of the received frame need to
be estimated.

• quantized on 8 bits as SIIII.FFF (S = sign bit, I = integer, F = fractional bit).

4.2.2 Implementation

4.2.2.1 Estimating the Scaling Factor

Consider a high speed data rate frame of N soft symbols xi .

X
^
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1
N
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�
2
�

N
N � 1

� (X2
^
� (X

^
)2)

The high speed data rate frame length are generally big enough to consider N
N � 1

� 1

Then the variance will be computed as: �
2
� X2

^
� (X

^
)2

Now estimate the energy per symbol of the received frame. The mean of the square received

symbols X2
^

 can be used to calculate the energy per symbol Esymbol . A received symbol can be
written as:

xi � Esymbol� � ui � ni

where ui  is a BPSK symbol with value +1 or −1 and ni  comes from AWG noise with zero

mean and variance �2.

X2
^
��

N

i�1

� Esymbol� � ui � ni�
2

Considering a zero mean noise, �
N

i�1

ni � 0 and �2
��

N

i�1

n2
i

X2
^
� Esymbol � �

2 or Esymbol � X2
^
� �

2

and assuming N
N � 1

� 1 , then: E � (X
^

)2

the scaling factor can then be estimated as:

scalingFactor � � 2 �

Esymbol�

�
2

or

scalingFactor � � 2 �
X
^

X2
^
� (X

^
)2

The implementation on a fixed point DSP may require a lookup table such as

scalingFactor � � f(sigma2) � Esymbol� .

4.2.2.2 Quantization

Below is an efficient implementation based on the TMS320C6416 instruction set.

The in[ ] buffer contains a 2nd complement signed 8-bit word with the following resolution:
SIII.FFFF and is aligned on a 4 bytes boundary.

double  temp,temp1,temp2;
S32   hi_temp1,lo_temp1,hi_temp2,lo_temp2;
U32   scale, i, j=0;
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/* duplicate scale in 4 bytes */
scale = _packl4(_pack2(scale_fixpt,scale_fixpt),_pack2(scale_fixpt,scale_fixpt));

for(i=0; i < length; i+=4, j++)
{

   /* scale 4 input values by scaling factor */
      // in[j] is in signed Q4, and scale holds unsigned Q5
      // then temp is in signed Q9
       temp=_mpysu4(in[j],scale);

   /* saturate into upper byte and negate */
         temp1=_smpy2(_hi(temp),0xC000C000);
         temp2=_smpy2(_lo(temp),0xC000C000);

   // here, upper 16 bits of temp1 and temp2 will be in signed Q8, i.e. 
   // upper 8 bits are in Q0. We need Q3, hence scale 3 positions left.

        hi_temp1=_sshl(_hi(temp1),3);
        lo_temp1=_sshl(_lo(temp1),3);
        hi_temp2=_sshl(_hi(temp2),3);
        lo_temp2=_sshl(_lo(temp2),3);

   /* pack 4 upper bytes of sshl’s */
        out[j]=_packh4(_packh2(hi_temp1,lo_temp1),  _packh2(hi_temp2,lo_temp2));
}

4.2.3 TCP Configuration

The TCP should be serviced using the TMS320C6416 EDMA module for most accesses, but
you must first configure the TCP control values. The TCP control values, or input configuration
(IC) values will be sent via the EDMA to program its operation. To generate the TCP BER
curves, the coprocessor was configured as it would be in a typical 3G application.

Here is a description of TCP IC words in a typical case (144 kbps data  in 3GPP standard) :

Table 3. TCP Configuration Example

Input Configuration

FL = 3168
OUTF = 1
INTER = 1
RATE = 1/3
OPMOD = SA

R = 0x71

SFL = 0x0

SNR Threshold disabled

MAXIT = 8

LASTNSB = 0

NSB = 7

P = 32
NWORDDSP = 0x252
NWORDINTER = 0x630

NWORDHD = 0x63

TAIL1 = 0x00F5FDD3
TAIL2 = 0x00F70104
TAIL3 = 0x00000000
TAIL4 = 0x00EFFE02
TAIL5 = 0x00FDFB23
TAIL6 = 0x00000000
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5 BER Results

Here are some bit error rate curves performed on a TMS320C6416 PG1.1 device. The most
common 3GPP rates have been chosen.

5.1 VCP: 3GPP Frames
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AMR 12.2 kbps Class B
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32kbps conv. Data
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5.2 TCP: 3GPP Frames
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384kbps data
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