# OMAP5912 Multimedia Processor Direct Memory Access (DMA) Support Reference Guide

Literature Number: SPRU755C March 2005





#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

## Preface

# **Read This First**

### About This Manual

This document describes the direct memory access (DMA) support of the OMAP5912 multimedia processor.

### Notational Conventions

This document uses the following conventions.

□ Hexadecimal numbers are shown with the suffix h. For example, the following number is 40 hexadecimal (decimal 64): 40h.

### **Related Documentation From Texas Instruments**

Documentation that describes the OMAP5912 devices, related peripherals, and other technical collateral, is available in the OMAP5912 Product Folder on TI's website: www.ti.com/omap5912.

### Trademarks

OMAP and the OMAP symbol are trademarks of Texas Instruments.

This page is intentionally left blank.

4 Direct Memory Access (DMA) Support

# Contents

| 1 | DMA   | Overvie | w                                                       | 13 |
|---|-------|---------|---------------------------------------------------------|----|
| 2 | GDM   | A Handl | ers                                                     | 13 |
| - | 2.1   |         | iDMA Handler                                            |    |
|   |       | 2.1.1   | MPU GDMA Handler Configuration                          |    |
|   | 2.2   | DSP G   | DMA Handler                                             |    |
|   | 2.3   |         | DMA Handler configuration                               |    |
| 3 | Syste |         | -                                                       |    |
| Ŭ | 3.1   |         | nal Description                                         |    |
|   | 0.1   | 3.1.1   | Logical Channel Types                                   |    |
|   |       | 3.1.2   | OMAP 3.2 System DMA Instances                           |    |
|   |       | 3.1.3   | Synchronized Channel                                    |    |
|   |       | 3.1.4   | Physical Ports                                          |    |
|   |       | 3.1.5   | Port Channel Scheduling                                 |    |
|   |       | 3.1.6   | Logical Channel Scheduling                              |    |
|   |       |         | Logical Channel Scheduling Scheme                       |    |
|   |       |         | Logical Channel Priorities                              |    |
|   |       | 3.1.7   | Logical Channel Interleaving For Synchronized Transfers | 39 |
|   |       | 3.1.8   | Linking Logical Channels                                |    |
|   |       | 3.1.9   | Logical Channel Preempting                              | 42 |
|   |       | 3.1.10  | Addressing Modes                                        | 43 |
|   |       |         | Data Alignment                                          | 44 |
|   |       |         | Constant Addressing Mode                                | 45 |
|   |       |         | Post-Incremented Addressing Mode                        | 45 |
|   |       |         | Single-Indexed Addressing Mode                          | 46 |
|   |       |         | Double-Indexed Addressing Mode                          | 48 |
|   |       | 3.1.11  | Data Packing and Bursting                               | 50 |
|   |       | 3.1.12  | Interrupt Generation                                    |    |
|   |       |         | System DMA Interrupt Mapping                            |    |
|   |       | 3.1.13  | DMA IDLE Modes                                          | 58 |
|   |       |         | Dynamic Idle Mode                                       |    |
|   |       |         | System IDLE Request                                     |    |
|   |       |         | DMA Debug State                                         |    |
|   |       | 3.1.15  | Other Logical Channel Features                          |    |
|   |       |         | Transparent Copy                                        |    |
|   |       |         | Constant Fill                                           |    |
|   |       |         | Rotation                                                | 62 |

|      | :       | 3.1.16  | Compatibility with OMAP 3.0 and 3.1                  | 62   |
|------|---------|---------|------------------------------------------------------|------|
|      |         |         | Autoinitialization of Logical Channels               |      |
|      |         |         | OMAP3.0/3.1 System DMA Interrupt Mapping Rule        |      |
|      |         |         | annel                                                |      |
|      |         |         | Display Logical Channel                              |      |
|      | :       | 3.2.2   | LCD Channel Addressing Modes                         |      |
|      |         |         | Source Address and Block Size Alignment              |      |
|      |         |         | Source Address Modes                                 |      |
|      |         |         | Post-Incremented Addressing Mode                     |      |
|      |         |         | Single-Indexed Addressing Mode                       |      |
|      |         |         | Double-Indexed Addressing Mode                       |      |
|      | :       | 3.2.3   | DMA LCD Channel Sharing Feature                      |      |
|      |         | 3.2.4   | DMA LCD Channel Rotation                             |      |
|      |         | 3.2.5   | DMA LCD Channel Autoinitialization Feature           | 73   |
|      |         |         | DMA_LCD_Disable/Bus Error Feature                    |      |
|      | :       | 3.2.7   | LCD Channel Usage Restrictions                       | 75   |
|      |         |         | Exclusive Blocks                                     | 75   |
|      |         |         | Both Blocks Must Belong to a Single Source           | 75   |
|      |         |         | LCD Registers Can Be Configured During a Transfer    | 75   |
|      | :       | 3.2.8   | LCD Channel OMAP 3.0/3.1 Compatible Mode Programming | 78   |
|      |         |         | Configuration Registers                              | 78   |
|      |         |         | Addressing Mode                                      | 79   |
|      |         |         | DMA LCD Channel Sharing Feature                      | 79   |
|      |         |         | Disabling Feature                                    | 79   |
|      |         |         | LCD Channel Restriction                              | 79   |
|      |         |         | DMA LCD Channel Autoinitialization Feature           | . 80 |
|      |         |         | DMA Configuration Registers I/O Space                | 80   |
|      | 3.3     | System  | DMA Registers                                        | 81   |
|      | :       | 3.3.1   | Summary DMA Global Registers                         | 82   |
|      | :       | 3.3.2   | Logical Channel Registers                            | 90   |
|      | :       | 3.3.3   | LCD Channel Dedicated Registers                      | 107  |
|      |         |         | DMA LCD Top Address B1 Registers                     | 115  |
|      |         |         | DMA LCD Bottom Address B1 Registers                  |      |
|      |         |         | DMA LCD Top Address B2 Registers                     |      |
|      |         |         | DMA LCD Bottom Address B2 Registers                  |      |
| Rov  | ision L | listory |                                                      | 122  |
| 1104 |         |         |                                                      | . 20 |

# Figures

| 1  | MPU GDMA Handler                                                        | 14 |
|----|-------------------------------------------------------------------------|----|
| 2  | DSP GDMA Handler                                                        | 22 |
| 3  | System DMA Controller Simplified Block Diagram                          | 29 |
| 4  | Time Sharing Access on a System DMA Port                                | 36 |
| 5  | Logical Channel Interleaving on Channel Boundary With the Same Priority | 39 |
| 6  | Post-Incremented Addressing Mode Memory Accesses                        | 46 |
| 7  | Single-Indexed Addressing Mode Memory Accesses                          | 47 |
| 8  | Double-Indexed Addressing Mode Memory Accesses                          | 49 |
| 9  | 2-D Transparent Color Block Diagram                                     | 61 |
| 10 | 2-D Constant Color Fill Block Diagram                                   | 61 |
| 11 | DMA Packed Channel Status Register for Compatible Mode                  | 65 |
| 12 | LCD One-Block Mode Transfer Scheme                                      | 76 |
| 13 | LCD Dual-Block Mode Transfer Scheme                                     | 78 |
|    |                                                                         |    |

# **Tables**

| 1  | MPU GDMA Handler Mapping                                                                | . 14 |
|----|-----------------------------------------------------------------------------------------|------|
| 2  | MPU GDMA Handler Control Registers                                                      |      |
| 3  | Functional Multiplexing MPU DMA A Register (FUNC_MUX_MPU_DMA_A)                         | . 17 |
| 4  | Functional Multiplexing MPU DMA B Register (FUNC_MUX_MPU_DMA_B)                         |      |
| 5  | Functional Multiplexing MPU DMA C Register (FUNC_MUX_MPU_DMA_C)                         | . 18 |
| 6  | Functional Multiplexing MPU DMA D Register(FUNC_MUX_MPU_DMA_D)                          | . 19 |
| 7  | Functional Multiplexing MPU DMA E Register (FUNC_MUX_MPU_DMA_E)                         | . 20 |
| 8  | Functional Multiplexing MPU DMA F Register (FUNC_MUX_ARM_DMA_F)                         | . 20 |
| 9  | Functional Multiplexing MPU DMA G Register (FUNC_MUX_ARM_DMA_G)                         | . 21 |
| 10 | DSP GDMA Mapping                                                                        | . 22 |
| 11 | DSP DMA Handler Control Registers                                                       | . 23 |
| 12 | Functional Multiplexing DSP DMA A Register (FUNC_MUX_DSP_DMA_A)                         | . 24 |
| 13 | Functional Multiplexing DSP DMA B Register (FUNC_MUX_DSP_DMA_B)                         | . 25 |
| 14 | Functional Multiplexing DSP DMA C Register (FUNC_MUX_DSP_DMA_C                          | . 26 |
| 15 | Functional Multiplexing DSP DMA D Register (FUNC_MUX_DSP_DMA_D)                         | . 26 |
| 16 | Summary of Features Per Logical Channel Type (Without LCh-D)                            | . 31 |
| 17 | Associated Physical Channels Per Logical Channel Type                                   | . 32 |
| 18 | OMAP3.2 System DMA Supported Interface Port Type Table                                  | . 34 |
| 19 | Possible Data Transfer                                                                  | . 36 |
| 20 | Logical Channel Type Address Mode Summary                                               |      |
| 21 | Packing and Splitting Summary                                                           | . 51 |
| 22 | Channel Data Block to Transfer                                                          | . 54 |
| 23 | Channel Addresses and Access Types                                                      |      |
| 24 | Channel Data Block to Transfer                                                          | . 55 |
| 25 | Channel Addresses and Access Types                                                      | . 56 |
| 26 | Summary Table of Different Compatibility Modes                                          |      |
| 27 | Autoinitialization Configuration Bits Summary                                           |      |
| 28 | Interrupt Mapping per LCh for Both Compatible Modes                                     |      |
| 29 | Features Summary for LCh-D                                                              |      |
| 30 | Autoinitialization Bits Summary for LCD Channel in Noncompatible Mode                   | . 74 |
| 31 | Autoinitialization Configuration Bits Summary for LCD Channel in Compatible Mode        | . 80 |
| 32 | LCD Channel Register Mapping for OMAP 3.2 Respectively OMAP 3.0/3.1<br>Compatible Modes |      |
| 33 | DMA Global Control Registers                                                            |      |
| 34 | DMA Global Control Register (DMA_GCR)                                                   |      |
| 35 | DMA Software Compatible Register (DMA_GSCR)                                             |      |

Direct Memory Access (DMA) Support

8

SPRU755C

| 36 | DMA Software Reset Control Register (DMA_GRST)                         |     |
|----|------------------------------------------------------------------------|-----|
| 37 | DMA Hardware Version ID Register (DMA_HW_ID)                           |     |
| 38 | PCh-2 Version ID Register (DMA_PCh2_ID)                                |     |
| 39 | PCh-0 Version ID Register (DMA_PCh0_ID)                                |     |
| 40 | PCh-1 Version ID Register (DMA_PCh1_ID)                                |     |
| 41 | PCh-G Version ID Register (DMA_PChG_ID)                                |     |
| 42 | PCh-D Version ID Register (DMA_PChD_ID)                                |     |
| 43 | Global DMA Capability U Register 0 (DMA_ CAPS_0_U)                     |     |
| 44 | Global DMA Capability L Register 0 (DMA_ CAPS_0_L)                     |     |
| 45 | Global DMA Capability U Register 1 (DMA_CAPS_1_U)                      |     |
| 46 | Global DMA Capability L Register 1 (DMA_CAPS_1_L)                      |     |
| 47 | Global DMA Capability Register 2 (DMA_CAPS_2)                          |     |
| 48 | Global DMA Capability Register 3 (DMA_CAPS_3)                          |     |
| 49 | Global DMA Capability Register 4 (DMA_CAPS_4)                          |     |
| 50 | Physical Channel-x Status Registers (DMA_PCh2_SRDMA_PHhD_SR_0)         |     |
| 51 | DMA Logical Channel Configuration Registers                            |     |
| 52 | Channel Source Destination Parameters Register (DMA_CSDP)              |     |
| 53 | Data Types                                                             |     |
| 54 | DMA Channel Control Register (DMA_CCR)                                 |     |
| 55 | DMA Channel Interrupt Control Register(DMA_CICR)                       |     |
| 56 | DMA Channel Status Register (DMA_CSR)                                  |     |
| 57 | DMA Channel Source Start Address Lower Bits Register (DMA_CSSA_L)      |     |
| 58 | DMA Channel Source Start Address Upper Bits Register (DMA_CSSA_U)      |     |
| 59 | DMA Channel Destination Start Address Lower Bits Register (DMA_CDSA_L) |     |
| 60 | DMA Channel Destination Start Address Upper Bits Register (DMA_CDSA_U) |     |
| 61 | DMA Channel Element Number Register (DMA_CEN)                          |     |
| 62 | DMA Channel Frame Number Register (DMA_CFN)                            |     |
| 63 | DMA Channel Source Frame Index Register (DMA_CSFI)                     |     |
| 64 | DMA Channel Source Element Index Register (DMA_CSEI)                   |     |
| 65 | DMA Channel Source Element Index Register (DMA_CSAC)                   | 103 |
| 66 | DMA Channel Destination Address Counter Register (DMA_CDAC)            | 103 |
| 67 | DMA Channel Destination Element Index Register (DMA_CDEI)              | 103 |
| 68 | DMA Channel Destination Frame Index Register (DMA_CDFI)                | 104 |
| 69 | DMA COLOR Parameter Register (DMA_COLOR_L)                             | 104 |
| 70 | DMA COLOR Parameter Register (DMA_COLOR_U)                             | 105 |
| 71 | DMA Channel Control Register 2 (DMA_CCR2)                              | 105 |
| 72 | DMA Logical Channel Link Control Register (DMA_CLNK_CTRL)              | 106 |
| 73 | DMA Logical Channel Control Register (DMA_LCH_CTRL)                    | 107 |
| 74 | DMA Logical Channel Configuration Registers                            |     |
| 75 | DMA LCD Channel Source Destination Parameters Register (DMA_LCD_CSDP)  | 109 |
| 76 | DMA LCD Channel Control Register (DMA_LCD_CCR)                         | 110 |
| 77 | DMA LCD Control Register (DMA_LCD_CTRL)                                |     |
| 78 | DMA LCD Top Address B1 L Register (TOP_B1_L)                           | 116 |
| 79 | DMA LCD Top Address B1 U Register (TOP_B1_U)                           | 116 |

### Tables

| DMA LCD Bottom Address B1 L Register (BOT_B1_L)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DMA LCD Bottom Address B1 U Register (BOT_B1_U)                | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Top Address B2 L Register (TOP_B2_L)                   | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Top Address B2 U Register (TOP_B2_U)                   | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Bottom Address B2 L Register (BOT_B2_L)                | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Bottom Address B2 U Register (BOT_B2_U)                | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Source Element Index B1 Register (DMA_LCD_SRC_EI_B1)   | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Source Frame Index B1 Register L (DMA_LCD_SRC_FI_B1_L) | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Source Frame Index B1 Register U (DMA_LCD_SRC_FI_B1_U) | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Source Element Index B2 Register (DMA_LCD_SRC_EI_B2)   | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Source Frame Index B2 Register L (DMA_LCD_SRC_FI_B2_L) | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Source Frame Index B2 Register U (DMA_LCD_SRC_FI_B2_U) | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Source Element Number B1 Register (DMA_LCD_SRC_EN_B1)  | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Source Frame Number B1 Register (DMA_LCD_SRC_FN_B1)    | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Source Element Number B2 Register (DMA_LCD_SRC_EN_B2)  | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Source Frame Number B2 Register (DMA_LCD_SRC_FN_B2)    | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DMA LCD Logical Channel Control Register (DMA_LCD_LCH_CTRL)    | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Document Revision History                                      | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                | DMA LCD Bottom Address B1 U Register (BOT_B1_U)<br>DMA LCD Top Address B2 L Register (TOP_B2_L)<br>DMA LCD Top Address B2 U Register (TOP_B2_U)<br>DMA LCD Bottom Address B2 L Register (BOT_B2_L)<br>DMA LCD Bottom Address B2 U Register (BOT_B2_U)<br>DMA LCD Source Element Index B1 Register (DMA_LCD_SRC_EI_B1)<br>DMA LCD Source Frame Index B1 Register L (DMA_LCD_SRC_FI_B1_L)<br>DMA LCD Source Frame Index B1 Register U (DMA_LCD_SRC_FI_B1_U)<br>DMA LCD Source Element Index B2 Register U (DMA_LCD_SRC_FI_B1_U)<br>DMA LCD Source Frame Index B2 Register L (DMA_LCD_SRC_FI_B2_L)<br>DMA LCD Source Frame Index B2 Register L (DMA_LCD_SRC_FI_B2_L)<br>DMA LCD Source Frame Index B2 Register U (DMA_LCD_SRC_FI_B2_U)<br>DMA LCD Source Element Number B1 Register (DMA_LCD_SRC_FN_B1)<br>DMA LCD Source Frame Number B2 Register (DMA_LCD_SRC_FN_B2)<br>DMA LCD Logical Channel Control Register (DMA_LCD_LCH_CTRL) |

# Examples

| 1 | Packing Enabled                                               | 53 |
|---|---------------------------------------------------------------|----|
| 2 | Packing and Burst Enabled                                     | 54 |
| 3 | LCD Transfer: EMIFF (SDRAM) $\rightarrow$ LCD, One Block      | 75 |
| 4 | LCD Transfer: OCP_T1 (Test RAM) $\rightarrow$ LCD, Two Blocks | 77 |

This page is intentionally left blank.

12 Direct Memory Access (DMA) Support

This document describes the direct memory access (DMA) support of the OMAP5912 multimedia processor.

### 1 DMA Overview

The processor has two DMAs:

- □ The system DMA is embedded in OMAP3.2. It handles DMA transfers associated with MPU and shared peripherals.
- □ The DSP DMA is embedded in OMAP3.2. It handles DMA transfers associated with DSP peripherals. See the *OMAP5910/5912 Multimedia Processor DSP Subsystem Reference Guide* (SPRU890) for information on the DSP DMA.

The system DMA can support up to 31 hardware DMA requests. The DSP DMA supports 19 hardware DMA requests.

In OMAP5912, up to 56 different hardware DMA requests can be generated by MPU and shared peripherals. An embedded crossbar, called MPU GDMA handler, allows mapping any of these 56 requests to any of 31 the system DMA request.

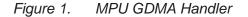
Similarly, DSP and shared peripherals can generate up to 28 hardware DMA requests. An embedded crossbar, called DSP GDMA handler allows mapping any of these 28 requests to any of the 19 DSP DMA requests.

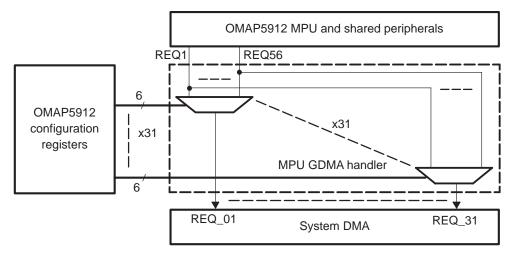
Both MPU and DSP GDMA handlers are configured through registers implemented in the configuration module.

### 2 GDMA Handlers

MPU and DSP peripherals DMA request mapping is configurable through two blocks called GDMA handlers. MPU GDMA handler is described in section 2.1. DSP GDMA handler is described in section 2.2.

### 2.1 MPU GDMA Handler


The MPU and shared peripherals control up to 56 DMA requests, whereas the system DMA can handle only 31 DMA requests.


The GDMA handler acts as a crossbar so that each of the incoming DMA requests can be remapped to any of the system DMA requests.

The mapping of each DMA request is done through the FUNC\_MPU\_DMA\_x registers located in the configuration module.

SPRU755C

A 6-bit field is associated with each system channel so that any incoming DMA request is remapped to the proper system DMA request. See Figure 1 for a description of the MPU GDMA handler.





The default configuration after reset ensures compatibility with the previous OMAP5912 generation. Programmers have flexibility to remap up to 31 requests according to the application task requirements. Table 1 describes the mapping between MPU and shared peripherals DMA requests and the MPU GDMA handler inputs.

 Table 1.
 MPU GDMA Handler Mapping

| MPU GDMA Handler Input Line | Peripheral Request     |
|-----------------------------|------------------------|
| REQ1                        | MCSI1 TX               |
| REQ2                        | MCSI1 RX               |
| REQ3                        | I <sup>2</sup> C RX    |
| REQ4                        | I <sup>2</sup> C TX    |
| REQ5                        | External DMA request 0 |
| REQ6                        | External DMA request 1 |
| REQ7                        | μWire TX               |
| REQ8                        | McBSP1 DMA TX          |
| REQ9                        | McBSP1 DMA RX          |
| REQ10                       | McBSP3 DMA TX          |

| MPU GDMA Handler Input Line | Peripheral Request     |
|-----------------------------|------------------------|
| REQ11                       | McBSP3 DMA RX          |
| REQ12                       | UART1 TX               |
| REQ13                       | UART1 RX               |
| REQ14                       | UART2 TX               |
| REQ15                       | UART2 RX               |
| REQ16                       | McBSP2 TX              |
| REQ17                       | McBSP2 RX              |
| REQ18                       | UART3 TX               |
| REQ19                       | UART3 RX               |
| REQ20                       | Camera IF RX           |
| REQ21                       | MMC/SDIO1 TX           |
| REQ22                       | MMC/SDIO1 RX           |
| REQ24                       | IRQ_LCD_LINE           |
| REQ26                       | USB W2FC RX0           |
| REQ27                       | USB W2FC RX1           |
| REQ28                       | USB W2FC RX2           |
| REQ29                       | USB W2FC TX0           |
| REQ30                       | USB W2FC TX1           |
| REQ31                       | USB W2FC TX2           |
| REQ33                       | SPI TX                 |
| REQ34                       | SPI RX                 |
| REQ38                       | CMT-APE TX (channel 0) |
| REQ39                       | CMT-APE RV (channel 0) |
| REQ40                       | CMT-APE TX (channel 1) |
| REQ41                       | CMT-APE RV (channel 1) |
| REQ42                       | CMT-APE TX (channel 2) |

### Table 1. MPU GDMA Handler Mapping (Continued)

SPRU755C

Direct Memory Access (DMA) Support

#### **GDMA Handlers**

| MPU GDMA Handler Input Line | Peripheral Request     |
|-----------------------------|------------------------|
| REQ43                       | CMT-APE RV (channel 2) |
| REQ44                       | CMT-APE TX (channel 3) |
| REQ45                       | CMT-APE RV (channel 3) |
| REQ46                       | CMT-APE TX (channel 4) |
| REQ47                       | CMT-APE RV (channel 4) |
| REQ48                       | CMT-APE TX (channel 5) |
| REQ49                       | CMT-APE RV (channel 5) |
| REQ50                       | CMT-APE TX (channel 6) |
| REQ51                       | CMT-APE RV (channel 6) |
| REQ52                       | CMT-APE TX (channel 7) |
| REQ53                       | CMT-APE RV (channel 7) |
| REQ54                       | MMC/SDIO2 TX           |
| REQ55                       | MMC/SDIO2 RX           |
| REQ58                       | Unconnected            |
| REQ59                       | Unconnected            |
| REQ60                       | Unconnected            |
| REQ61                       | Unconnected            |
| REQ62                       | Unconnected            |
| REQ63                       | Unconnected            |
| REQ64                       | Unconnected            |

MPU GDMA Handler Mapping (Continued) Table 1.

#### 2.1.1 **MPU GDMA Handler Configuration**

The mapping of the system DMA requests is done through the GDMA registers (shown in Table 2), which are implemented in the configuration module. Table 3 through Table 9 describe the register bits.

The values programmed into these registers represent a zero-based numbering of the DMA request. Thus, peripheral request number n is programmed as *n-1*, not *n*.

Direct Memory Access (DMA) Support

Table 2. MPU GDMA Handler Control Registers

| Base Address = 0xFFFE 1000 |                                                    |     |        |  |
|----------------------------|----------------------------------------------------|-----|--------|--|
| Name                       | Description                                        | R/W | Offset |  |
| FUNC_MUX_MPU_DMA_A         | Controls mapping for system DMA requests 1 to 5.   | R/W | 0xEC   |  |
| FUNC_MUX_MPU_DMA_B         | Controls mapping for system DMA requests 6 to 10.  | R/W | 0xF0   |  |
| FUNC_MUX_MPU_DMA_C         | Controls mapping for system DMA requests 11 to 15. | R/W | 0xF4   |  |
| FUNC_MUX_MPU_DMA_D         | Controls mapping for system DMA requests 16 to 20. | R/W | 0xF8   |  |
| FUNC_MUX_ARM_DMA_E         | Controls mapping for system DMA requests 21 to 25. | R/W | 0xFC   |  |
| FUNC_MUX_ARM_DMA_F         | Controls mapping for system DMA requests 26 to 30. | R/W | 0x100  |  |
| FUNC_MUX_ARM_DMA_G         | Controls mapping for system DMA request 31.        | R/W | 0x104  |  |

 Table 3.
 Functional Multiplexing MPU DMA A Register (FUNC\_MUX\_MPU\_DMA\_A)

| Base Address = 0xFFFE 1000, Offset Address = 0xEC |                     |                                                                                                                                          |     |       |
|---------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| Bit                                               | Name                | Function                                                                                                                                 | R/W | Reset |
| 31:30                                             | RESERVED            | Reserved.                                                                                                                                | R/W | 0x0   |
| 29:24                                             | CONF_ARM_DMA_REQ_05 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(5). $n$ is between 0 and 55.           | R/W | 0x04  |
| 23:18                                             | CONF_ARM_DMA_REQ_04 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(4). $n$ is between 0 and 55.           | R/W | 0x03  |
| 17:12                                             | CONF_ARM_DMA_REQ_03 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(3). $n$ is between 0 and 55.           | R/W | 0x02  |
| 11:6                                              | CONF_ARM_DMA_REQ_02 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(2). $n$ is between 0 and 55.           | R/W | 0x01  |
| 5:0                                               | CONF_ARM_DMA_REQ_01 | Writing value <i>n</i> in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(1). <i>n</i> is between 0 and 55. | R/W | 0x00  |

This register controls the system DMA crossbar and defines the mapping of MPU peripheral DMA requests 1 through 5 to system DMA requests. 56 MPU peripheral DMA requests can be mapped to the 31 system DMA controller requests. The values programmed in the register represent a zero-based numbering of peripheral DMA\_REQn (starting with 1). Peripheral DMA\_REQ1

is written as zero. For example, if bits 5:0 are equal to 3, then n+1 = 4, and DMA MPU peripheral request source 4 ( $I^{2}C TX$ ) is connected to system DMA\_REQ(1).

| Base Address = 0xFFFE 1000, Offset Address = 0xF0 |                     |                                                                                                                                 |     |       |
|---------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| Bit                                               | Name                | Function                                                                                                                        | R/W | Reset |
| 31:30                                             | RESERVED            | Reserved.                                                                                                                       | R/W | 0x0   |
| 29:24                                             | CONF_ARM_DMA_REQ_10 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(10). $n$ is between 0 and 55. | R/W | 0x09  |
| 23:18                                             | CONF_ARM_DMA_REQ_09 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(9). $n$ is between 0 and 55.  | R/W | 0x08  |
| 17:12                                             | CONF_ARM_DMA_REQ_08 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(8). $n$ is between 0 and 55.  | R/W | 0x07  |
| 11:6                                              | CONF_ARM_DMA_REQ_07 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(7). $n$ is between 0 and 55.  | R/W | 0x06  |
| 5:0                                               | CONF_ARM_DMA_REQ_06 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(6). $n$ is between 0 and 55.  | R/W | 0x05  |

 Table 4.
 Functional Multiplexing MPU DMA B Register (FUNC\_MUX\_MPU\_DMA\_B)

| Table 5. | Functional Multiplexing MPU DMA C Register |
|----------|--------------------------------------------|
|          | (FUNC_MUX_MPU_DMA_C)                       |

|       | Base Address = 0xFFFE 1000, Offset Address = 0xF4 |                                                                                                                                 |     |       |
|-------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| Bit   | Name                                              | Function                                                                                                                        | R/W | Reset |
| 31:30 | RESERVED                                          | Reserved.                                                                                                                       | R/W | 0x0   |
| 29:24 | CONF_ARM_DMA_REQ_15                               | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(15). $n$ is between 0 and 55. | R/W | 0x0E  |

Table 5.Functional Multiplexing MPU DMA C Register<br/>(FUNC\_MUX\_MPU\_DMA\_C) (Continued)

| Bit   | Name                | Function                                                                                                                        | R/W | Reset |
|-------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 23:18 | CONF_ARM_DMA_REQ_14 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(14). $n$ is between 0 and 55. | R/W | 0x0D  |
| 17:12 | CONF_ARM_DMA_REQ_13 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(13). $n$ is between 0 and 55. | R/W | 0x0C  |
| 11:6  | CONF_ARM_DMA_REQ_12 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(12). $n$ is between 0 and 55. | R/W | 0x0B  |
| 5:0   | CONF_ARM_DMA_REQ_11 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(11). $n$ is between 0 and 55. | R/W | 0x0A  |

 Table 6.
 Functional Multiplexing MPU DMA D Register(FUNC\_MUX\_MPU\_DMA\_D)

| Base Address = 0xFFFE 1000, Offset Address = 0xF8 |                     |                                                                                                                                 |     |       |
|---------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| Bit                                               | Name                | Function                                                                                                                        | R/W | Reset |
| 31:30                                             | RESERVED            | Reserved.                                                                                                                       | R/W | 0x0   |
| 29:24                                             | CONF_ARM_DMA_REQ_20 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(20). $n$ is between 0 and 55. | R/W | 0x13  |
| 23:18                                             | CONF_ARM_DMA_REQ_19 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(19). $n$ is between 0 and 55. | R/W | 0x12  |
| 17:12                                             | CONF_ARM_DMA_REQ_18 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(18). $n$ is between 0 and 55. | R/W | 0x11  |
| 11:6                                              | CONF_ARM_DMA_REQ_17 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(17). $n$ is between 0 and 55. | R/W | 0x10  |
| 5:0                                               | CONF_ARM_DMA_REQ_16 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(16). $n$ is between 0 and 55. | R/W | 0x0F  |

# Table 7.Functional Multiplexing MPU DMA E Register<br/>(FUNC\_MUX\_MPU\_DMA\_E)

|       | Base Address = 0xFFFE 1000, Offset Address = 0xFC |                                                                                                                                 |     |       |  |
|-------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|
| Bit   | Name                                              | Function                                                                                                                        | R/W | Reset |  |
| 31:30 | RESERVED                                          | Reserved.                                                                                                                       | R/W | 0x0   |  |
| 29:24 | CONF_ARM_DMA_REQ_25                               | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(25). $n$ is between 0 and 55. | R/W | 0x18  |  |
| 23:18 | CONF_ARM_DMA_REQ_24                               | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(24). $n$ is between 0 and 55. | R/W | 0x17  |  |
| 17:12 | CONF_ARM_DMA_REQ_23                               | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(23). $n$ is between 0 and 55. | R/W | 0x16  |  |
| 11:6  | CONF_ARM_DMA_REQ_22                               | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(22). $n$ is between 0 and 55. | R/W | 0x15  |  |
| 5:0   | CONF_ARM_DMA_REQ_21                               | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(21). $n$ is between 0 and 55. | R/W | 0x14  |  |

# Table 8.Functional Multiplexing MPU DMA F Register<br/>(FUNC\_MUX\_ARM\_DMA\_F)

| Base Address = 0xFFFE 1000, Offset Address = 0x100 |                     |                                                                                                                                 |     |       |
|----------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| Bit                                                | Name                | Function                                                                                                                        | R/W | Reset |
| 31:30                                              | RESERVED            | Reserved.                                                                                                                       | R/W | 0x0   |
| 29:24                                              | CONF_ARM_DMA_REQ_30 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(30). $n$ is between 0 and 55. | R/W | 0x1D  |
| 23:18                                              | CONF_ARM_DMA_REQ_29 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(29). $n$ is between 0 and 55. | R/W | 0x1C  |
| 17:12                                              | CONF_ARM_DMA_REQ_28 | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(28). $n$ is between 0 and 55. | R/W | 0x1B  |

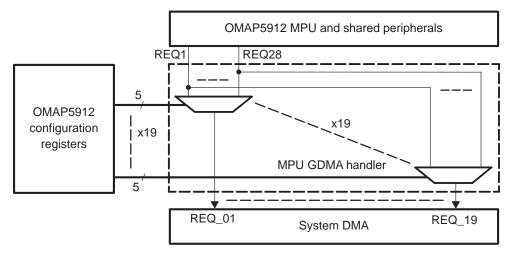
|      | (rente_mex_nnm_p) (continued) |                                                                                                                                 |     |       |
|------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| Bit  | Name                          | Function                                                                                                                        | R/W | Reset |
| 11:6 | CONF_ARM_DMA_REQ_27           | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(27). $n$ is between 0 and 55. | R/W | 0x1A  |
| 5:0  | CONF_ARM_DMA_REQ_26           | Writing value $n$ in this register maps DMA request source $n+1$ to system DMA controller DMA_REQ(26). $n$ is between 0 and 55. | R/W | 0x19  |

Table 8.Functional Multiplexing MPU DMA F Register<br/>(FUNC\_MUX\_ARM\_DMA\_F) (Continued)

 Table 9.
 Functional Multiplexing MPU DMA G Register (FUNC\_MUX\_ARM\_DMA\_G)

| Base Address = 0xFFFE 1000, Offset Address = 0x104 |                     |                                                                                                                                          |     |           |
|----------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| Bit                                                | Name                | Function                                                                                                                                 | R/W | Reset     |
| 31:6                                               | RESERVED            | Reserved.                                                                                                                                | R/W | 0x0000000 |
| 5:0                                                | CONF_ARM_DMA_REQ_31 | Writing value $n$ in this register maps<br>DMA request source $n+1$ to system<br>DMA controller DMA_REQ(31). $n$ is<br>between 0 and 55. | R/W | 0x1E      |

### 2.2 DSP GDMA Handler


The various DSP and shared peripherals control up to 28 DMA requests, whereas the DSP DMA in the OMAP3.2 can handle only 19 DMA requests.

The DSP GDMA handler acts as a crossbar so that each of the incoming DMA requests can be remapped to any of the DSP DMA requests.

The mapping of each DMA request is done through the FUNC\_DSP\_DMA\_x registers located in the configuration module.

A 5-bit field is associated with each DSP channel so that any incoming DMA request is remapped to the proper DSP DMA request.

The default configuration from reset ensures compatibility with the previous OMAP5912 generation. Programmers have the flexibility to remap up to 19 requests according to the application task requirements. See Figure 2 for a description of the DSP GDMA handler and Table 10 for DSP GDMA mapping.



### Figure 2. DSP GDMA Handler



| DSP GDMA Handler Input Line | Peripheral Request  |
|-----------------------------|---------------------|
| REQ1                        | MCSI1 TX            |
| REQ2                        | MCSI1 RX            |
| REQ3                        | MCSI2 TX            |
| REQ4                        | MCSI2 RX            |
| REQ5                        | MMC/SDIO2 TX        |
| REQ6                        | MMC/SDIO2 RX        |
| REQ7                        | Reserved            |
| REQ8                        | McBSP1 TX           |
| REQ9                        | McBSP1 RX           |
| REQ10                       | McBSP3 TX           |
| REQ11                       | McBSP3 RX           |
| REQ12                       | UART1 TX            |
| REQ13                       | UART1 RX            |
| REQ14                       | UART2 TX            |
| REQ15                       | UART2 RX            |
| REQ16                       | I <sup>2</sup> C RX |
| REQ17                       | I <sup>2</sup> C TX |

| DSP GDMA Handler Input Line | Peripheral Request     |
|-----------------------------|------------------------|
| REQ18                       | UART3 TX               |
| REQ19                       | UART3 RX               |
| REQ20                       | CMT-APE TX (channel 1) |
| REQ21                       | CMT-APE RV (channel 1) |
| REQ22                       | CMT-APE TX (channel 2) |
| REQ23                       | CMT-APE RV (channel 2) |
| REQ25                       | SPI TX                 |
| REQ26                       | SPI RX                 |
| REQ27                       | McBSP2 TX              |
| REQ28                       | McBSP2 RX              |
| REQ29                       | Unconnected            |
| REQ30                       | Unconnected            |
| REQ31                       | Unconnected            |
| REQ32                       | Unconnected            |

Table 10. DSP GDMA Mapping (Continued)

### 2.3 DSP GDMA Handler configuration

The mapping of the DSP DMA requests is done through the FUNC\_MUX\_DSP\_DMA\_X registers (shown in Table 11), which are implemented in the configuration module. Table 12 through Table 15 describe the register bits.

The values programmed into these registers represent a zero-based numbering of the DMA request. Thus, peripheral request number n is programmed as n-1, not n.

| Table 11. | DSP DMA | Handler Control | ol Registers |
|-----------|---------|-----------------|--------------|
|-----------|---------|-----------------|--------------|

| Base Address = 0xFFFE 1000 |                                                |     |        |  |  |
|----------------------------|------------------------------------------------|-----|--------|--|--|
| Name                       | Description                                    | R/W | Offset |  |  |
| FUNC_MUX_DSP_DMA_A         | Controls mapping for DSP DMA requests 1 to 6   | R/W | 0xD0   |  |  |
| FUNC_MUX_DSP_DMA_B         | Controls mapping for DSP DMA requests 7 to 12  | R/W | 0xD4   |  |  |
| FUNC_MUX_DSP_DMA_C         | Controls mapping for DSP DMA requests 13 to 18 | R/W | 0xD8   |  |  |
| FUNC_MUX_DSP_DMA_D         | Controls mapping for DSP DMA request 19        | R/W | 0xDC   |  |  |

SPRU755C

Direct Memory Access (DMA) Support

| Table 12. | Functional Multiplexing I | DSP DMA A Register ( | (FUNC_MUX_DSP_DMA_A) |
|-----------|---------------------------|----------------------|----------------------|
|           |                           |                      |                      |

|       | Base Address = 0xFFFE 1000, Offset Address = 0xD0 |                                                                                                                                       |     |       |  |
|-------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|
| Bit   | Name                                              | Function                                                                                                                              | R/W | Reset |  |
| 31:30 | RESERVED                                          | Reserved                                                                                                                              | R/W | 0x0   |  |
| 29:25 | CONF_DSP_DMA_REQ_06                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(6). $n$ is between 0 and 27.           | R/W | 0x05  |  |
| 24:20 | CONF_DSP_DMA_REQ_05                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(5). $n$ is between 0 and 27.           | R/W | 0x04  |  |
| 19:15 | CONF_DSP_DMA_REQ_04                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(4). $n$ is between 0 and 27.           | R/W | 0x03  |  |
| 14:10 | CONF_DSP_DMA_REQ_03                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(3). $n$ is between 0 and 27.           | R/W | 0x02  |  |
| 9:5   | CONF_DSP_DMA_REQ_02                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(2). $n$ is between 0 and 27.           | R/W | 0x01  |  |
| 4:0   | CONF_DSP_DMA_REQ_01                               | Writing value <i>n</i> in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(1). <i>n</i> is between 0 and 27. | R/W | 0x00  |  |

This register controls the DSP DMA crossbar and defines the mapping of DSP peripheral DMA requests 1 through 6 to OMAP3.2 DSP DMA requests. 28 DSP peripheral DMA requests can be mapped to the 19 DSP DMA controller requests. The values programmed in the register represent a zero-based numbering of DMA\_REQn (starting with 1). Thus, peripheral DMA\_REQ1 is written as zero. For example, if bits 4:0 are equal to 3, then n+1=4, and DSP DMA\_REQ(1) maps to DMA DSP peripheral request source 4 (MCSI2 RX).

|       | Base Address = 0xFFFE 1000, Offset Address = 0xD4 |                                                                                                                              |     |       |  |
|-------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|
| Bit   | Name                                              | Function                                                                                                                     | R/W | Reset |  |
| 31:30 | RESERVED                                          | Reserved                                                                                                                     | R/W | 0x0   |  |
| 29:25 | CONF_DSP_DMA_REQ_12                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(12). $n$ is between 0 and 27. | R/W | 0x0B  |  |
| 24:20 | CONF_DSP_DMA_REQ_11                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(11). $n$ is between 0 and 27. | R/W | 0x0A  |  |
| 19:15 | CONF_DSP_DMA_REQ_10                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(10). $n$ is between 0 and 27. | R/W | 0x09  |  |
| 14:10 | CONF_DSP_DMA_REQ_09                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(9). $n$ is between 0 and 27.  | R/W | 0x08  |  |
| 9:5   | CONF_DSP_DMA_REQ_08                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(8). $n$ is between 0 and 27.  | R/W | 0x07  |  |
| 4:0   | CONF_DSP_DMA_REQ_07                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(7). $n$ is between 0 and 27.  | R/W | 0x06  |  |

 Table 13.
 Functional Multiplexing DSP DMA B Register (FUNC\_MUX\_DSP\_DMA\_B)

| Table 14. | Functional Multiplexing | DSP DMA ( | C Reaister | (FUNC MUX | DSP DMA C |
|-----------|-------------------------|-----------|------------|-----------|-----------|
|           |                         |           |            |           |           |

| Base Address = 0xFFFE 1000, Offset Address = 0xD8 |                     |                                                                                                                              |     |       |
|---------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| Bit                                               | Name                | Function                                                                                                                     | R/W | Reset |
| 31:30                                             | RESERVED            | Reserved                                                                                                                     | R/W | 0x0   |
| 29:25                                             | CONF_DSP_DMA_REQ_18 | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(18). $n$ is between 0 and 27. | R/W | 0x11  |
| 24:20                                             | CONF_DSP_DMA_REQ_17 | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(17). $n$ is between 0 and 27. | R/W | 0x10  |
| 19:15                                             | CONF_DSP_DMA_REQ_16 | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(16). $n$ is between 0 and 27. | R/W | 0x0F  |
| 14:10                                             | CONF_DSP_DMA_REQ_15 | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(15). $n$ is between 0 and 27. | R/W | 0x0E  |
| 9:5                                               | CONF_DSP_DMA_REQ_14 | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(14). $n$ is between 0 and 27. | R/W | 0x0D  |
| 4:0                                               | CONF_DSP_DMA_REQ_13 | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(13). $n$ is between 0 and 27. | R/W | 0x0C  |

 Table 15.
 Functional Multiplexing DSP DMA D Register (FUNC\_MUX\_DSP\_DMA\_D)

|      | Base Address = 0xFFFE 1000, Offset Address = 0xDC |                                                                                                                              |     |           |  |  |
|------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----|-----------|--|--|
| Bit  | Name                                              | Function                                                                                                                     | R/W | Reset     |  |  |
| 31:5 | RESERVED                                          | Reserved for future expansion                                                                                                | R/W | 0x0000000 |  |  |
| 4:0  | CONF_DSP_DMA_REQ_19                               | Writing value $n$ in this register maps DMA request source $n+1$ to DSP DMA controller DMA_REQ(19). $n$ is between 0 and 27. | R/W | 0x12      |  |  |

### 3 System DMA

The system DMA is designed to off-load the block data transfer function from the MPU.

The OMAP 3.2 system DMA controller consists of:

- Sixteen logical channels plus one LCD logical channel
- Seven physical ports plus one for configuration
- Three physical channels plus one LCD dedicated physical channel

The ports are connected to the OCP-T1 and OCP-T2 targets, the external memory, the TIPB bridge, the MPUI, and one dedicated port connected to an LCD controller. The system DMA controller can be controlled via the MPU private TIPB or by an external host via the OCP-I port.

The system DMA controller is designed for low-power operation. It is partitioned into several clock domains where each clock domain is enabled only when it is used. All clocks are disabled when no DMA transfers are active.

Five different logical channels types are supported; each one represents a specific feature set.

- LCh-2D for memory to memory transfers, 1D and 2D
- LCh-P for peripheral transfers
- LCh-PD for peripheral transfers on a dedicated channel
- LCh-G for graphical transfers/operations
- LCh-D for display transfers

The features available are:

- Support for up to four address modes:
  - Constant
  - Post-incremented mode
  - Single-indexed
  - Double-indexed
- Different indexing for source-respective destination
- Logical channel chaining
- Software enabling
- Hardware enabling– 31 DMA request lines available
- Logical channel interleaving
- Logical channel preemption

- Two choices of logical channel arbitration of physical resources: round robin or fixed
- Two levels of logical channel priority
- Constant fill
- Transparent copy
- Rotation 0°, 90°, 180°, and 270°
- Seven ports enabling:
  - Memory-to-memory transfers
  - Peripheral-to-memory transfers
  - Memory-to-peripheral transfers
  - Peripheral-to-peripheral transfers
- Binary backward-compatible by default configuration
- Up to four logical channels active in parallel

The logical channel dedicated to the display, LCh-D, has several additional features.

- Channel can be shared by two LCD controllers
- Supports both single and dual block modes
- Supports separate indexing and numbering for dual block mode for both elements and frames

A graphical overview of the system DMA and its external connections is shown in Figure 3.

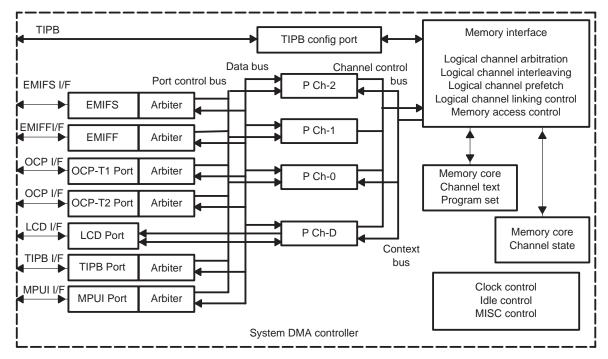



Figure 3. System DMA Controller Simplified Block Diagram

### 3.1 Functional Description

This section describes the system DMA capabilities and programming.

The configuration of the system DMA logical channel registers can be done in any order with the exception of the enable bit in the channel control register, DMA\_CCR. This bit enables all logical channel types, so this must be the last thing done when configuring a logical channel (LCh). During the time an LCh is enabled it is not allowed to change its configuration registers, which causes undefined effects. All global system DMA configuration registers must be changed before any LChs are enabled; if not, it undefined effects result.

The dedicated LCD channel has some additional features and different channel behavior compared to the generic channels. For more details, see section 3.2.1. Some channel features and behavior are common to both generic and LCD channels; this section describes them and indicates which are supported by the LCD channel.

### 3.1.1 Logical Channel Types

The OMAP system DMA is based on logical channels (LChs).

Each generic LCh can be configured to one of four different logical channel types; the dedicated LCD LCh can only be configured to LCh type D.

Logical channel types (LCh types) supported are:

- LCh-2D for nonsynchronized transfers (memory transfers, 1D and 2D)
- LCh-P for synchronized transfers (mostly peripheral transfers)
- LCh-PD similar to LCh-P but runs on a dedicated physical channel
- LCh-G for graphical transfers/operations
- LCh-D for display transfers

#### Note:

The logical channel dedicated for the display, LCh-D, must be configured to LCh type LCh-D.

Each logical channel type represents a specific subset of the system DMA features list. Even if the requirements of a specific transfer can fit into several LCh-types, it is important to select the correct LCh-type. Table 16 summarizes features per logical channel type.

| Supported Transfer Features |                                                    | LCh-2D<br>(2D) | LCh-P<br>(P) | LCh-PD<br>(PD) | LCh-G<br>(G) |
|-----------------------------|----------------------------------------------------|----------------|--------------|----------------|--------------|
| LCh Control                 | Transfer type                                      |                |              |                |              |
|                             | Synchronized                                       |                | $\checkmark$ |                | $\checkmark$ |
|                             | Two levels of priority                             |                | $\checkmark$ |                | $\checkmark$ |
|                             | Preemption at element boundary                     |                | $\checkmark$ |                | $\checkmark$ |
|                             | LCh interleaving on DMA request                    |                | $\checkmark$ |                |              |
|                             | Linking logical channel capability                 |                | $\checkmark$ |                | $\checkmark$ |
| Addressing                  | Types of addressing modes for SRC and D            | ST             |              |                |              |
|                             | Constant mode                                      | $\checkmark$   | $\checkmark$ |                | $\checkmark$ |
|                             | Post-increment mode                                | $\checkmark$   | $\checkmark$ |                | $\checkmark$ |
|                             | Single-indexed mode with separate<br>SRC/DST index |                | See Note     | See Note       | $\checkmark$ |
|                             | Double-indexed mode with separate<br>SRC/DST index |                | See Note     | See Note       | $\checkmark$ |
| Other                       | Other LCh-type features                            |                |              |                |              |
|                             | Constant fill                                      | $\checkmark$   |              |                | $\checkmark$ |
|                             | Transparent color                                  |                |              |                | $\checkmark$ |

Table 16. Summary of Features Per Logical Channel Type (Without LCh-D)

Note: Supported only on one end of the transfer (memory side—can be a source or a destination).

A separate table applies for the LCh-D (D), because several elements differ between that channel and these generic LChs. See Table 29 in section 3.2.1.

The abbreviations in parentheses in the Table 16 headings are used throughout this document as a guide to features supported for different LCh types.

### 3.1.2 OMAP 3.2 System DMA Instances

The OMAP 3.2 system DMA has 16 generic logical channels plus one logical channel dedicated to the LCD controller as well as three physical channels plus one dedicated to the LCD controller (PCh-0, PCh-1, PCh-2 plus PCh-D).

PCh-0 and PCh-1 are always dynamically allocated to any active LCh of type LCh-2D, LCh-G, and LCh-P. Dynamic allocation means that the physical channel that becomes free first services the active logical channel. PCh-2 is different from PCh-0 and PCh-1, because it is possible to configure one or several synchronized LChs to only use this physical channel. For example, the physical channel can be dedicated to one LCh or to several interleaved synchronized channels. This is done by specifying an LCh as LCh-PD type. The fourth channel, PCh-D, is specifically designed for transfers to the display and can only be used by the dedicated LCh-D. LCh-D must always be configured as type LCh-D.

Table 17. Associated Physical Channels Per Logical Channel Type

| LCh-Type | PCh Assigned         |
|----------|----------------------|
| LCh-2D   | PCh-0 or PCh-1       |
| LCh-P    | (dynamic allocation) |
| LCh-G    |                      |
| LCh-PD   | PCh-2                |
| LCh-D    | PCh-D                |

There are six global registers: PCh status register, PCh ID register, and one PCh status register per PCh channel. See respective register descriptions for more details.

### 3.1.3 Synchronized Channel

| LCh Types Supporting Syn- | 2D | Р | PD | G            | D |
|---------------------------|----|---|----|--------------|---|
| chronized Channels        |    |   |    | $\checkmark$ |   |

A synchronized channel (hardware activated) is a channel that only becomes active when it is enabled by software and subsequently receives a DMA request signal either from an peripheral or from an dedicated ball. There are 31 possible hardware DMA request sources, 1 to 31. A hardware DMA request cannot be shared between several concurrent channels (enabled and active). However, a hardware DMA request can be shared between different channels if they are part of a chain. The peripheral hardware request associated with each of the 31 system DMA request is controllable through MPU GDMA handler configuration.

Software must program the five SYNC bits located in the channel control register, DMA\_CCR, to configure the external DMA request that activates the channel. The logical channel becomes a synchronized channel when this field is set to reflect the number of the request line. Remember that no DMA request can be mapped as 0, which is reserved to specify a nonsynchronized transfer.

Each time a DMA request is received for a synchronized channel, the logical channel is activated and a block of data is transferred when a physical channel is assigned to it. This block of data can be:

An element

A complete element, which is defined by Data\_type. For example, 8/16/32 bits are transferred in response to a DMA request.

An entire frame

A complete frame of several elements is transferred in response to a DMA request.

An entire block

A complete block of several frames is transferred in response to a DMA request.

One DMA request can trigger several logical channels at the same time.

To configure an LCh to synchronize by element, frame, or block, program the frame synchronization (FS) bit in the DMA\_CCR register and the block synchronization (BS) bit in the DMA\_CCR2 register. If both bits are set to 0, the channel is synchronized by element. Setting both bits to 1 causes undefined effects.

- Description To configure an LCh to transfer one element per DMA request:
  - Configure the data type, also referenced as element size (ES), in the field Data\_type in the channel source destination parameter register (DMA\_CSDP).
  - Configure the number of transfers (elements) to take place before the LCh gets disabled again in the channel element number register (DMA\_CEN).
  - 3) Configure both FS and BS to 0.
- To configure an LCh to transfer *one frame* per DMA request:
  - 1) Configure the element size as described above.
  - 2) Configure the element number as described above. This represents the number of elements sent per frame, hence per DMA request.
  - Configure the number of transfers (frames) to take place before the LCh gets disabled again in the channel frame number registers (DMA\_CFN).
  - 4) Configure FS to 1 and BS to 0.

- To configure an LCh to transfer one block per DMA request:
  - 1) Configure the element size as described above.
  - 2) Configure the element number as described above. This represents the number of elements sent per frame.
  - 3) Configure the frame number as described above. This represents the number of frames sent per block.
  - 4) Configure FS to 0 and BS to 1.

It is also possible to stop a transfer by disabling the channel. This is done by resetting the ENABLE bit in the DMA\_CCR register.

### 3.1.4 Physical Ports

The system DMA can access different data types, depending on which DMA port is used and what the memory or peripheral is supporting. The system DMA ports can support different types of protocols and bus widths. This is important to understand, because it governs which type of transfer an LCh can perform. Table 18 summarizes the type of transfers that each port supports.

| Table 18. | OMAP3.2 System | DMA Supported Interfac | e Port Type Table                     |
|-----------|----------------|------------------------|---------------------------------------|
|           |                |                        | · · · · · · · · · · · · · · · · · · · |

| Port _Name                   | Port Functionality                                                                 |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------|--|--|--|--|
| OMAP EMIFF port              | Supports:                                                                          |  |  |  |  |
| OMAP EMIFS port              | 8/16/32-bit, 4x32-bit burst serialized access                                      |  |  |  |  |
| OMAP OCP-T1 port             | □ 4x32-bit burst serialized access, if it is the source port of the LCD            |  |  |  |  |
| OMAP OCP-T2 port             | channel.                                                                           |  |  |  |  |
| OMAP TIPB port               | Supports:                                                                          |  |  |  |  |
| OMAP MPUI port               | 8/16/32-bit serialized access                                                      |  |  |  |  |
| OMAP LCD port                | Supports:                                                                          |  |  |  |  |
|                              | 16-bit serialized access for OMAP LCD controller                                   |  |  |  |  |
|                              | 32-bit serialized access for OMAP external LCD controller                          |  |  |  |  |
| OMAP TIPB configuration port | TIPB configuration interface for system DMA. It supports 16-bit serialized access. |  |  |  |  |

Six of the physical ports can be selected to be the source and/or destination of a DMA transfer. The DMA LCD port can only function as a destination port. The TIPB configuration port cannot be used as a source or destination port.

Direct Memory Access (DMA) Support

- TIPB configuration interface:
  - Used by the MPU to control/configure the system DMA. Cannot be used as source or destination in a DMA transfer.
- External slow memory interface (Flash/ROM):
  - DMA accesses can be either single (8/16/32-bit) or burst (4x32-bit). If burst access is used and data packets are not 16-byte aligned, then single accesses (8/16/32-bit) are performed.
- External fast memory interface (SDRAM, DDR):
  - DMA accesses can be either single (8/16/32-bit) or burst (4x32-bit). If burst access is used and data packets are not 16-byte aligned, then single accesses (8/16/32-bit) are performed.
- OCP-T1 and OCP-T2 interface (Test RAM, Camera peripheral):
  - DMA accesses can be either single (8/16/32-bit) or burst (4x32-bit). If burst access is used and data packets are not 16-byte aligned, then single accesses (8/16/32-bit) are performed.
- □ TIPB interface (to peripherals via TIPB bridge):
  - All DMA accesses are done in single-access mode (8/16/32 bits).
- □ MPU interface (to SARAM and DARAM inside DSP subsystem):
  - All DMA accesses are done in single access mode (8/16/32 bits). For 32-bit transfer, the MPU interface does the packing and unpacking.
- LCD interface
  - Port to the OMAP embedded LCD controller. Supports 16-bit access for the OMAP LCD controller.

For all ports, only the number of programmed bytes are transferred; that is, there are no trailing or dirty bytes at the end of transfer.

Table 19 provides possible source ports (SRC), destination ports (DST), and data transfers.

#### System DMA

|                  |       |       |        | DST    |                |      |                  |
|------------------|-------|-------|--------|--------|----------------|------|------------------|
| SRC              | EMIFS | EMIFF | OCP-T1 | OCP-T2 | TIPB<br>Bridge | MPUI | LCD <sup>1</sup> |
| EMIFS            | Yes   | Yes   | Yes    | Yes    | Yes            | Yes  | No               |
| EMIFF            | Yes   | Yes   | Yes    | Yes    | Yes            | Yes  | Yes              |
| OCP-T1           | Yes   | Yes   | Yes    | Yes    | Yes            | Yes  | Yes              |
| OCP-T2           | Yes   | Yes   | Yes    | Yes    | Yes            | Yes  | Yes              |
| TIPB bridge      | Yes   | Yes   | Yes    | Yes    | Yes            | Yes  | No               |
| MPUI             | Yes   | Yes   | Yes    | Yes    | Yes            | Yes  | No               |
| LCD <sup>1</sup> | No    | No    | No     | No     | No             | No   | No               |

### Table 19. Possible Data Transfer

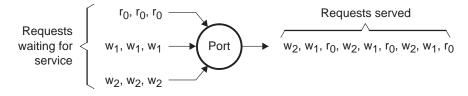
<sup>†</sup> Used for the OMAP internal LCD controller.

The port to use for source respective destination is configured in the channel source destination parameters register, DMA\_CSDP. The data type is also configured in this register.

#### Note:

No address space check is performed by the system DMA. All addressing outside the source and destination memory space causes undefined effects.

### 3.1.5 Port Channel Scheduling


Each DMA logical channel can be configured independently from other logical channels. Each DMA physical channel can have its own port or share it with other physical channels. If physical channels share a DMA port, a port arbiter prioritizes physical channel access.

The system DMA port arbiters follow a round robin scheme.

In Figure 4, a DMA port services three DMA physical channel requests:

- Physical channel 0 as a source port (read requests  $r_0$ )
- $\square$  Physical channel 1 as a destination port (write requests w<sub>1</sub>)
- $\square$  Physical channel 2 as a destination port (write requests w<sub>2</sub>)

### Figure 4. Time Sharing Access on a System DMA Port



Direct Memory Access (DMA) Support

36

SPRU755C

The system DMA port arbiters use a round robin scheme, but they are also dependent on the LCh priority. For more information about LCh priority, see the section on *Logical Channel Priorities* in section 3.1.6.

The arbiters use the following scheme each time the previous DMA port access has finished:

 Service all high-priority PChs using a round robin scheme. A low-priority transfer currently being served by the same port is not aborted or suspended by a high-priority transfer. The high-priority transfer waits.

Port arbitration is each-access based. If the current access is burst access, then the arbitration is on the boundary of burst. The higher priority PCh transfer takes the port as soon as the next available slot is open at the burst boundary.

2) If no highly prioritized PCh is present, then all PCh are arbitrated/served according to the round robin scheme.

## 3.1.6 Logical Channel Scheduling

A logical channel is marked as an active channel only when either of the following conditions has been meet:

Case 1:

- The logical channel is a synchronized channel.
- The logical channel enable field is set.
- The associated DMA request is triggered.

#### Case 2:

- The logical channel is a nonsynchronized channel.
- The logical channel enable field is set.

A logical channel can be assigned to a physical channel only when the logical channel is active.

When a physical channel is granted, the DMA controller loads the physical channel with the logical channel configuration register set, which controls the data transfer through the system DMA. At the end of a channel transfer, the current channel status is updated into the logical channel status register, and the current logical channel enable is cleared if it is a nonsynchronized channel.

### Logical Channel Scheduling Scheme

Each physical channel can only serve one logical channel at a time. If several logical channels are active and waiting to be served, they are interleaved based on an arbitration scheme in a TDMA manner. The supported arbitration schemes are:

- Round robin scheduling
- Fixed scheduling from low LCH ID to high LCH ID

The scheme to be used can be controlled by software on a global basis.

In the global control register, (DMA\_GCR), the ROUND\_ROBIN\_DISABLE bit controls which scheme to follow. This bit can only be changed when the DMA is quiescent (that is, when no LChs are enabled). Any change of this bit when a LCh is enabled causes undefined behaviors.

### **Logical Channel Priorities**

|                                   | 2D | Ρ | PD | G | D   |
|-----------------------------------|----|---|----|---|-----|
| LCh Types Supporting this Feature |    |   |    |   | N/A |

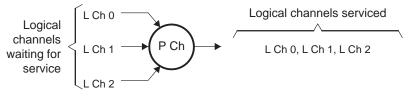
Each logical channel can be given a low or high priority level. When a DMA physical channel receives requests from several logical channels, it looks at their priorities. The physical channel assignment to logical channels follow the scheme described below:

- Requests from high-priority logical channels are served first. A higher priority logical channel can preempt the current on-going low-priority logical transfer and start the higher priority logical channel transferring. The preempted logical channel continues the transfer as soon as all high-priority channels are served. A transfer can be preempted on element boundary. See section 3.1.9 for more information on channel preempting.
- 2) Requests from low-priority logical channels are served only if there are no requests from high-priority logical channels. This can occur if no high-priority logical channels are activated, or if the high-priority logical channels are waiting for a synchronization event.
- Requests of the same priority level are served in a round robin or fixed scheduling scheme, as mentioned earlier in this document.

Use the PRIO bit in the logical channel register DMA\_CCR to configure the LCh priority.

# 3.1.7 Logical Channel Interleaving For Synchronized Transfers

| LCh Types Supporting this Feature | 2D | Р | PD | G | D |
|-----------------------------------|----|---|----|---|---|
|                                   |    |   |    |   |   |


Logical channel interleaving is a term used when more than one synchronized channel shares the same physical channel. A synchronized channel is only active and requesting access to a physical channel when a DMA request is received.

When a DMA request is served but more data remains to be transmitted, the logical channel stays enabled waiting for next DMA request. During this time, the physical channel is released if the LCh-type currently running supports logical channel interleaving.

A nonsynchronized LCh can use the physical channel as well (i.e., interleave), but it runs to finish before it releases the channel again. This means it is the responsibility of the software to configure nonsynchronized transfers in small enough blocks so that synchronized LChs are served in time. This is true only if all PCh are occupied.

Figure 5 shows an example of a logical channel interleaving scheme for three synchronized LChs where the DMA requests are received in order: LCh 0 request, LCh 1 request, and LCh 2 request.

## Figure 5. Logical Channel Interleaving on Channel Boundary With the Same Priority



It is possible to disable the interleaving on a logical channel basis. If this is done for a specific logical channel, that logical channel does not release the physical channel between the DMA requests until all the transfers are done or until the LCh is disabled by software. This is a way of dedicating a physical channel to a logical channel of type LCh-P or LCh-PD.

To disable LCh interleave for synchronized transfers, set the LCH\_INTERLEAVE\_DISABLE bit in the logical channel control register, DMA\_LCH\_CTRL.

A nonsynchronized transfer is not affected by the LCH\_INTERLEAVE\_DISABLE bit in any circumstances. A nonsynchronized transfer always releases the physical channel between transfers even if it is linked to another LCh using the logical channel linking feature.

## 3.1.8 Linking Logical Channels

|                                   |  | Ρ | PD | G | D |   |
|-----------------------------------|--|---|----|---|---|---|
| LCh Types Supporting This Feature |  |   |    |   |   | I |

Software can configure DMA logical channels to an LCh chain.

To configure and start a linked LCh chain:

- To link the LChs, configure the NEXTLCH\_ID bit in the logical channel link control register DMA\_CLNK\_CTRL to indicate the next logical channel to be enabled as soon as the current logical channel has finished the transfer.
- To define the LCh as being part of a linked queue, set the ENABLE\_LNK bit in the same register. In this way, the logical channel, defined by NEXTLCH\_ID, is enabled after the current channel finishes transferring.
- Start the chain by enabling the first LCh in the chain (set the ENABLE bit of the DMA\_CCR register to 1).

In order to stop a linked chain, software can write to the STOP\_LNK bit in logical channel link control register to disable chain and queue. This must be done to each LCh that is part of the chain. Writing to the STOP\_LNK bit resets both the ENABLE\_LNK bit and the LCh enable bit in the DMA\_CCR register. If a linked chain is run to finish without being stopped, the whole chain remains linked; that is, all LChs still have the ENABLE\_LNK bit set to 1. To start the same linked chain again, just enable the first LCh in the chain.

An LCh can be linked to all LCH 0 to 15 but not to/from the LCH-D. An LCh can link to itself, and two LChs can link to each other. Linking several LCh in a circular fashion is also possible.

#### Note:

When a linked LCh is stopped with STOP\_LNK, the bit ENABLE\_LNK is disabled and hence the LCh is not part of the chain any more.

The restrictions on linking logical channels are:

Constraint 1:

It is the software's responsibility to make sure that all NEXTLCH\_ID fields and ENABLE\_LNK bits are configured before the logical channel chain is started (first LCh is enabled).

Undefined effects occur if the software modifies these fields when the chain already is enabled.

Constraint 2:

It is the software's responsibility to make sure that only the head of chained logical channel is enabled. Undefined effects occur if the software enables a logical channel that is inside a chain.

Constraint 3:

It is the software's responsibility to ensure the chained logical channels have the same priority level; otherwise, undefined effects result.

Constraint 4:

It is the software's responsibility to make sure that the channel context does not change on the fly for a chained logic channel. The channel context must be set up by the software before the head of the chained logic channel is enabled. It can only be updated when the linked chain is disabled. Otherwise, undefined effects occur. An exception to this constraint is the STOP\_LNK bit.

Constraint 5:

If the chain is configured as a looping chain (for example, the LCh is linked to it self or two LChs are linked to each other), it is the software's responsibility to disable/stop it.

Constraint 6:

If the bit STOP\_LNK is set while the logical channel is running, then the logical channel is deactivated, the transfer is stopped, and no further linked logical channel is activated.

Constraint 7:

It is the software's responsibility to set the bit ENABLE\_LNK to 0 (or use STOP\_LNK) for all the LCh of a chain, if the LCh is to be reused without the chaining capability. Otherwise, activating any of these LCh activates the chain starting from this logical channel.

In other words, the ENABLE\_LNK bit is not reset by hardware at the end of a linked logical channel. A linked chain remains linked after the chain has been executed (if STOP\_LNK is not used).

Constraint 8:

If a synchronized LCh is part of the chain, it is the responsibility of the software to synchronize the LCh chain with the peripheral so DMA requests are not issued before the LCh is enabled.

A DMA request is ignored if it is received before the synchronized LCh is enabled by the chain.

#### System DMA

# 3.1.9 Logical Channel Preempting

|                                   | 2D           | Р | PD | G | D   |
|-----------------------------------|--------------|---|----|---|-----|
| LCh Types Supporting this Feature | $\checkmark$ |   |    |   | N/A |

A logical channel can be preempted on the element boundary, so that the current element and any ongoing bursts are fully transferred before the channel gets preempted.

Preemption occurs when a high-priority LCh suspends a low-priority LCh. This happens if no other PChs are free when the high-priority LCh gets active. For more details, see section 3.1.6.

A synchronized channel goes into an interleaved state once a DMA request is served, and it waits for a new DMA request. It goes into a preempted state once a higher priority logical channel is activated on the same physical channel.

A nonsynchronized channel goes into a preempted state once a higher logical channel is activated on the same physical channel.

A suspended (preempted) low-priority LCh always has a higher priority than a lower priority LCh to be scheduled later. In other words, the preempted LCh does not have to be rearbitrated. However, a suspended LCh takes over the next free PCh. This means that the same PCh is not necessarily to be used if the preempted LCh is of an LCh type supported by several PChs.

An active, preempted, synchronized LCh (the preempted LCh that received a DMA request and was active before the preemption) does not need a new DMA request. The LCh continues the transfer as soon as a PCh becomes free.

If new DMA requests are received when a synchronized LCh is preempted, an event drop is issued on the second new DMA request and the LCH is disabled. If the DROP\_IE bit is set to 1 in the DMA\_CICR register, then an interrupt is generated and the DROP bit in the DMA\_CSR register is set.

The content in the FIFOs in the physical channels is always transferred before the logical channel releases the physical channel. When a physical channel is preempted, it is always on the source element boundary. Therefore, the physical channel drains the FIFO data to the destination before the LCh releases the PCh.

### 3.1.10 Addressing Modes

An addressing mode is an address computation algorithm that a DMA channel uses to find where to access data. The system DMA supports four types of addressing modes:

- Constant index mode
- Post-incremented mode
- □ Single-indexed (element index) mode
- Double-indexed (element and frame index) mode

Based on LCh types, the summary of addressing modes is as follows:

### Table 20. Logical Channel Type Address Mode Summary

|                  | LCh-P a            | nd LCh-PD    |        |              |
|------------------|--------------------|--------------|--------|--------------|
| Addressing Mode  | Peripheral<br>Port | Memory Port  | LCh-2D | LCh-G        |
| Constant         | $\checkmark$       | $\checkmark$ |        | $\checkmark$ |
| Post-incremented | $\checkmark$       | $\checkmark$ |        | $\checkmark$ |
| Single-indexed   |                    | $\checkmark$ |        | $\checkmark$ |
| Double-indexed   |                    | $\checkmark$ |        | $\checkmark$ |

The amount of data (block size) to be transferred is programmed in bytes.

The data block to transfer is split into frames and elements. The data block size in bytes can be expressed as:

BSi = FN x EN x ES

where:

BSi: The block size in bytes.

FN: The number of frames in the block,  $1 \le FN \le 65535$  (unsigned) which is defined in the DMA channel frame number register (DMA\_CFN).

EN: The number of elements per frame,  $1 \le EN \le 65535$  (unsigned) which is defined in each DMA channel element number register (DMA\_CEN).

ES: The number of bytes per element,  $ES \in \{1, 2, 4\}$ , which is defined with the field DATA\_TYPE in register DMA channel source destination parameters (DMA\_CSDP).

A frame size in bytes:  $FSi = ES \times EN$ .

Setting FN or EN equal to 0 is not allowed, because it causes undefined effects.

Direct Memory Access (DMA) Support 43

SPRU755C

An element (data type) can be:

- $\square$  8-bit scalar data, s8 (which means that ES = 1)
- $\Box$  16-bit scalar data, s16 (which means that ES = 2)
- $\Box$  32-bit scalar data, s32 (which means that ES = 4)

To set up a channel for a transfer, the software must program two addressing modes:

- The source addressing mode, source index size
- The destination addressing mode, destination index size

Both address modes for source and destination are independent. For example, to transfer data from TIPB port to internal memory, the source-addressing mode can be constant and the destination mode can be post-incremented. However, the number of frames, the number of elements, and the element size are the same for both source and destination.

#### Note:

The channel source and destination start addresses are configured in separate registers: DMA\_CSSA\_L/U and DMA\_CDSA\_L/U respectively. Frame index and element index are configured in separate registers for both source and destination: DMA\_CSFI and DMA\_CSEI, respectively, for source, and DMA\_CDFI and DMA\_CDEI, respectively, for destination.

### Data Alignment

During a transfer, the start address and all the addresses computed by the DMA must be aligned on the type of data transferred (data type):

- If the data type is s8 (8-bit scalar data), then addresses can have any value.
- If the data type is s16 (16-bit scalar data), then addresses must be aligned on 16-bit word boundary (the lowest bit of the address always 0).
- If the data type is s32 (32-bit scalar data), then addresses must be aligned on 32-bit word boundary (the two lowest bit of the address always 00).
- If it is 4x32 burst access with s32 (32-bit scalar data), then addresses must be aligned on burst boundary (the four lowest bit of the address always 0000).
- If frame index is used, it must always produce addresses aligned on data type boundary.
- If element index is used, it must always produce addresses aligned on data type boundary.
- Transfer block size must be aligned on the data type boundary.

Failure to follow these rules generates undefined operation due to wrong endianism switching.

Direct Memory Access (DMA) Support

In summary, the general constraints are:

Start address (SA), Element\_Index (EI), and Frame\_Index (FI) must be aligned on data type (ES):

 SA
 mod ES=
 0

 (FI-1)
 mod ES=
 0

 (EI-1)
 mod ES=
 0

## **Constant Addressing Mode**

Address remains constant for each element to be transferred.

A(n+1) = A(n)

where:

A(n): Byte address of the element n within the transfer.

#### Note:

A(0) is always equal to the start address of the transfer. The same goes for all addressing modes.

### Post-Incremented Addressing Mode

Address is post-incremented by element size (ES).

A(n+1) = A(n) + ES

where:

An: Byte address of the element n within the transfer.

ES: Element size in bytes,  $ES \in \{1, 2, 4\}$ .

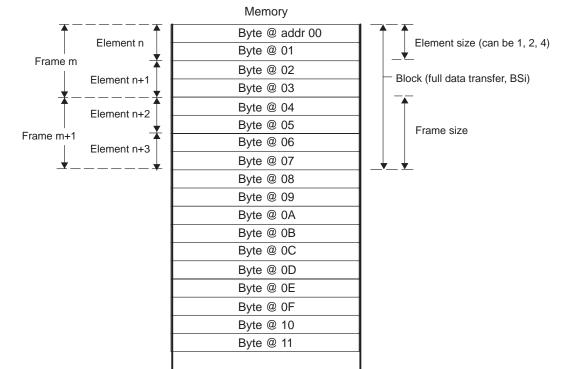
Figure 6 illustrates how the memory accesses are performed if an LCh is configured with post-increment addressing mode and:

□ Starting address: 00

Element size: 2 (16 bits)

Element number: 2

Element index: Ignored


Frame number: 2

Frame index: Ignored

SPRU755C

Direct Memory Access (DMA) Support

45



## Figure 6. Post-Incremented Addressing Mode Memory Accesses

### Single-Indexed Addressing Mode

Address is post-incremented by element size and an element index (expressed in bytes).

A(n+1) = A(n) + ES + (EI - 1)

EI = ((Stride EI - 1) \* ES) + 1

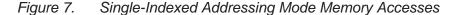
where:

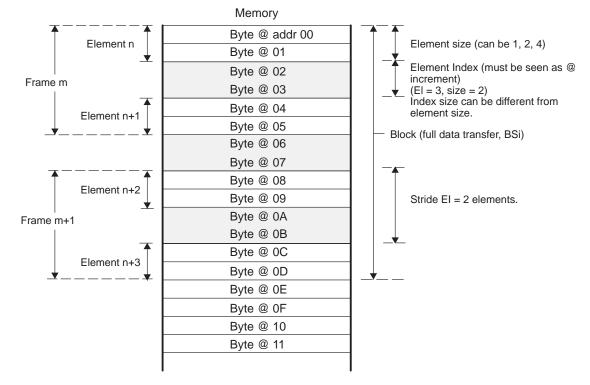
A(n): Byte address of the element n within the transfer.

ES: Element size in bytes,  $ES \in \{1, 2, 4\}$ .

EI: Element index in bytes, specified in a configuration register, -32768  $\leq$  EI  $\leq$  32767.

Stride EI: Number of elements between the beginning of current element, n, to the beginning of next element, n+1.


#### Note:


EI = 1 results in consecutive element accesses (the same behavior as with the post-incremented addressing mode).

46

Figure 7 illustrates how the memory accesses are performed if a LCh is configured with single indexed addressing mode and:

- □ Starting address: 00
- Element size: 2 (16 bits)
- Element number: 2
- Element index: 3
- Frame number: 2
- Frame index: Ignored





**Note:** El used between frames for single-indexed addressing mode. This is why this figure has three equal, big strides between the elements.

#### Double-Indexed Addressing Mode

Address is incremented by element size and a frame index if the end of the current frame is reached. Address is incremented by element size and an element index if the end of the current element is reached but the end of frame is not reached.

When not at end of a frame or transfer, that is, as long as element counter  $\neq$  0:

A(n+1) = A(n) + ES + (EI - 1)

When at end of a frame but not at the end of the transfer, that is, as long as element counter = 0 and frame counter  $\neq$  0:

A(n+1) = A(n) + ES + (FI - 1)

Calculate element and frame index as follows:

EI = ((Stride EI - 1) \* ES) + 1FI = ((Stride FI - 1) \* ES) + 1

where:

A(n): Byte address of the element n within the transfer.

ES: Element size in bytes,  $ES \in \{1, 2, 4\}$ .

EI: Element index in bytes, specified in a configuration register, -32768  $\leq$  EI  $\leq$  32767.

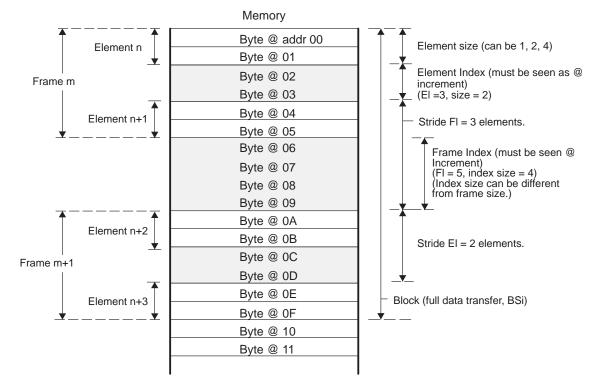
Stride EI: Number of elements between the beginning of current element, n, to the beginning of next element, n+1.

Element: Counter that is (re)initiated with the number of element per frame or per transfer. Decreased by 1 for each element transferred. Initial value is configured in register DMA channel element number, DMA\_CEN.

FI: Frame index in bytes, specified in a configuration register, -  $32768 \le FI \le 32767$ .

Stride FI: Number of elements between the beginning of last element of the current element and the beginning of first element of the next frame.

Frame counter: Counter that is (re)initiated with the number of frames per transfer. Decreased by 1 for each frame transferred. Initial value is configured in register DMA channel frame number, DMA\_CFN.


#### Note:

FI = 1 provides consecutive element accesses at end of frames. If EI = 1, the behavior is the same as with the post incremented addressing mode.

Figure 8 illustrates how the memory accesses are performed if an LCh is configured with double-indexed addressing mode and:

- Starting address: 00
- Element size: 2 (16 bits)
- Element number: 2
- Element index: 3
- Frame number: 2
- Frame index: 5





#### Note:

For all addressing modes, independent element and frame indexing were not supported for OMAP 3.0 and 3.1. The EI and FI configuration is dependent on the OMAP3\_1\_Compatible\_Disable bit in the DMA\_CCR register.

If DMA\_CCR[OMAP3\_1\_Compatible\_Disable]= 0:

- □ El(source) = El(destination) = DMA\_CSEI register
- □ FI(source) = FI(destination) = DMA\_CSFI register

If DMA\_CCR[OMAP3\_1\_Compatible\_Disable] = 1:

- □ EI(source) = DMA\_CSEI register
- □ EI(destination) = DMA\_CDEI register
- □ FI(source) = DMA\_CSFI register
- □ FI(destination) = DMA\_CDFI register

## 3.1.11 Data Packing and Bursting

| Lob Turner Durn extine this Frature | 2D           | Р | PD | G | D |
|-------------------------------------|--------------|---|----|---|---|
| LCh Types Supporting this Feature   | $\checkmark$ |   |    |   |   |

A DMA channel has the capacity to:

- Pack several consecutive byte accesses in a single word16 or word32 access. This increases the transfer rate. For a channel, the decision to pack to its source port is dependent on the source port access capability and whether source packing is enabled by software. The same goes for the destination port. Software can control packing for both destination and source with the bits SRC\_PACK and DST\_PACK in the DMA channel source destination parameters register (DMA\_CSDP).
- Split a single access, defined by its DMA Port capability, into subset access size if the address of single access is not aligned on access size. For example:
  - Split a word16 transfer into several byte accesses, if access address is not aligned on word16 address.
  - Split a word32 access into single word accesses, if access address is not aligned on word32 boundary.
  - Split 4x32-bit burst access into several byte/word/double-word accesses, if access address is not aligned on 4x32-bit burst access boundary.

Burst 4x32 bits if bursting is enabled and the accessed source or destination port supports it. Software can enable or disable bursting with the bit-fields SRC\_BURST\_EN and DST\_BURST\_EN in the DMA\_CSDP register. These bit-fields are ignored if the accessed port does not support bursting and hence, result in single accesses.

Table 21 summarizes the possible transfer configurations and shows the cases where packing and splitting are performed.

| Data Type | Port Access Capability | Packing / Splitting |  |
|-----------|------------------------|---------------------|--|
| s8        | s8                     | -                   |  |
|           | s16                    | pack 2 x s8 => 16   |  |
|           | s32                    | pack 4 x s8 => 32   |  |
| s16       | s8                     | split s16 => 2 x 8  |  |
|           | s16                    | -                   |  |
|           | s32                    | pack 2x s16 => 32   |  |
| s32       | s8                     | split s32 => 4 x 8  |  |
|           | s16                    | split s32 => 2 x 16 |  |
|           | s32                    | -                   |  |

### Table 21. Packing and Splitting Summary

To compute the type of an access (8/16/32-bit or 4x32-bit burst) and decide to pack consecutive accesses, an address calculation unit checks:

- □ Its related DMA port capabilities:
  - Can the port perform bytes, 16-bit, or 32-bit access?
  - Can the port perform 4x32-bit burst access?
- U What is allowed by the software in the configuration registers:
  - Is packing allowed?
  - Is bursting allowed?

The last bits of the address:

- Is the address even or odd?
- Is the address word16, word32, 4x32-bit burst aligned?
- The number of elements remaining in the frame
- The synchronized transfer type for the LCh

The restrictions for packing and bursting are as follows:

Constant address mode automatically disables packing and bursting on the DMA source or destination port where it is used. The other end of the DMA channel can still utilize packing and bursting if that DMA port is not configured to use constant address mode.

- ☐ All elements must be transferred continuously within a frame. That means that it cannot be synchronized on element boundary, and if single/dual-indexed addressing mode is used, element index (EI) must be set to 1.
- □ No packing or bursting can be done over frame boundary. It does not help to set frame index FI\_ to 1.
- No packing or bursting can be done over block boundary.

Once the type of access is decided, the current byte address can be incremented by 1, 2, 4, or 16 to reach the next memory space location. Then, the DMA port checks its physical channel FIFO to see if there is enough data (write access) or enough space (read access) in the FIFO, before issuing the access.

It is assumed that:

- A 16-bit target memory or peripheral also has a byte-write/read capability.
- A 32-bit target memory or peripheral also has a byte and word16 write/read capability.

If this is not the case, then the software must carefully set up the transfer as follows:

- □ Follow the address alignment rules. See the OMAP5910/5912 Multimedia Processor DSP Subsystem Reference Guide (SPRU890) for information on the DSP DMA.
- Set the data\_type to the same size as the peripheral register width that is the source or the destination of the DMA transfer.
- These rules apply only when the constant address mode is used (which is likely to be the case when a single register in source/destination), and no packing can be enabled.

Packing is controlled by the source and destination packing bits and packs several elements into a larger access element (word16 or word32). For instance, if the data\_type is set to s16, the source port supports 32-bit accesses, the source packing is enabled, and the address is aligned on word32, then the source port makes two 16-bit accesses and packs them to a word32 before sending word32 to the destination port. If the source port uses the constant addressing mode and the packing bit is enabled, then the packing bit is ignored.

Another sort of packing groups bytes or word16 accesses within an element. This is always done if the LCh is configured as such. Packing within an element is done if the access types are smaller than the element sizes (data\_type). For instance, if the data\_type is set to s32 but the source target port only supports 16 bits, then two consecutive word16 source accesses are packed to build the word32 element. This element is then sent to the destination port. This is done independently of the source and destination packing bits.

Packing within an element is supported even if the constant addressing mode is used or if El is different from 1.

Example 1 shows an example of packing enabled.

## Example 1. Packing Enabled

A detailed example (see Table 22 and Table 23) of packing 2 x s16 => 32 is:

- A logical channel is set up for a transfer with the following parameters for its source:
  - Number of frames in the block: FN = 2 elements
  - Number of elements per frame: EN = 5 elements
  - Type of data: s16
  - Frame index in bytes: FI = 13 bytes
  - Element index in bytes: EI = 1 byte
  - Source start address: SA = 2 bytes
  - Source addressing mode: Double-indexed addressing mode
  - The source port is a 32-bit port with byte/word16/word32 access capability.
  - Packing is enabled but burst is disabled.
  - Memory block to transfer is: element i, j (where j is the element number of frame i).
  - i and j start with the highest number and decreases, so the first element written is element 2,5.

### System DMA

| Address | Byte 0 Byte 1 | Byte 2 Byte 3 |
|---------|---------------|---------------|
| 0       |               | element 2,5   |
| 4       | element 2,4   | element 2,3   |
| 8       | element 2,2   | element 2,1   |
| 12      |               |               |
| 16      |               |               |
| 20      |               |               |
| 24      | element 1,5   | element 1,4   |
| 28      | element 1,3   | element 1,2   |
| 32      | element 1,1   |               |
| 36      |               |               |
| 40      |               |               |

| Table 22. | Channel Data   | Block to | Transfer |
|-----------|----------------|----------|----------|
|           | Unamilier Data | DIOUNIU  | nansici  |

The computed addresses and access type are:

| Table 23. | Channel Addresses and Access Types |
|-----------|------------------------------------|
|           |                                    |

| Access | Frame<br>Number j | Element<br>Number i | Address | Access Type |
|--------|-------------------|---------------------|---------|-------------|
| 0      | 2                 | 5                   | 2       | 16 bits     |
| 1      | 2                 | 4                   | 4       | 32 bits     |
| 2      | 2                 | 2                   | 8       | 32 bits     |
| 3      | 1                 | 5                   | 24      | 32 bits     |
| 4      | 1                 | 3                   | 28      | 32 bits     |
| 5      | 1                 | 1                   | 32      | 16 bits     |
| 6      |                   | End of t            | ransfer |             |

In this example, the first word16 is not packed to word32 because the address is not aligned on word32. The next accesses are packed because packing is enabled, constant addressing is not used, EI = 1, and the address is aligned on word32.

## Example 2. Packing and Burst Enabled

Example 2 shows an example (see Table 24 and Table 25) with source packing 2 x s16=> 32 plus burst 4x32-bit enabled,. This example results in exactly the same behavior as Example 1, because the burst capability is ignored. It is ignored because when the address is on a 4x32-bit aligned boundary, less than 4x32 bits are left in the frame.

54 Direct Memory Access (DMA) Support

If the frame size is increased by doubling the element size, EN = 10, the example is as follows (assumed that the targeted source support 4x32 bits burst):

A logical channel is set up for a transfer with the following parameters for its source:

- Number of frames in the block: FN = 2 elements.
- Number of elements per frame: EN = 10 elements.
- Type of data: s16.
- Frame index in bytes: FI = 9 bytes.
- Element index in bytes: EI = 1 byte.
- Source start address: SA = 14 bytes.
- Source addressing mode: Double indexed addressing mode.
- The source port is a 32-bit port with byte/word16/word32/4x32bit burst access capability.
- Source packing is enabled.
- Source burst is enabled.
- Memory block to transfer is: element i, j (where j is the element number of frame i).
- Note that i and j starts with the highest number and decreases, so the first element written is element 2,10.

Table 24 shows the channel blocks to transfer.

Table 24. Channel Data Block to Transfer

| Address | Byte 0 | Byte 1      | Byte 2 | Byte 3       |
|---------|--------|-------------|--------|--------------|
| 12      |        |             |        | Element 2,10 |
| 16      |        | Element 2,9 |        | Element 2,8  |
| 20      |        | Element 2,7 |        | Element 2,6  |
| 24      |        | Element 2,5 |        | Element 2,4  |
| 28      |        | Element 2,3 |        | Element 2,2  |
| 32      |        | Element 2,1 |        |              |
| 36      |        |             |        |              |
| 40      |        |             |        | Element 1,10 |
| 44      |        | Element 1,9 |        | Element 1,8  |
| 48      |        | Element 1,7 |        | Element 1,6  |
| 52      |        | Element 1,5 |        | Element 1,4  |
| 64      |        | Element 1,3 |        | Element 1,2  |
| 68      |        | Element 1,1 |        |              |
| 72      |        |             |        |              |

Table 25 lists the computed addresses and access types.

### System DMA

| Access | Frame<br>Number j | Element<br>Number i | Address<br>[byte] | Access Type |
|--------|-------------------|---------------------|-------------------|-------------|
| 0      | 2                 | 10                  | 10                | 16 bits     |
| 1      | 2                 | 9-2                 | 12                | 4x32 bits   |
| 2      | 2                 | 1                   | 28                | 16 bits     |
| 3      | 1                 | 10                  | 42                | 16 bits     |
| 4      | 1                 | 9,8                 | 44                | 32 bits     |
| 5      | 1                 | 7,6                 | 48                | 32 bits     |
| 6      | 1                 | 5,4                 | 52                | 32 bits     |
| 7      | 1                 | 3,2                 | 64                | 32 bits     |
| 8      | 1                 | 1                   | 68                | 16 bits     |
| 9      | End of transfe    | er                  |                   |             |

| Table 25. | Channel Addresses and Access | Types |
|-----------|------------------------------|-------|
|           |                              |       |

In this example the first word16 is not packed to word32 because the address is not aligned on word32. The next accesses bursts 4x32 bits, because burst is enabled, constant addressing is not used, EI = 1, address is 4x32 bits burst aligned, and enough data is left in the frame (16 bytes). All other transfers are word16 single accesses or 32 bit packed accesses. There are no more bursts because the next time the address is burst aligned, there is not enough data left in the frame (less than 16 bytes).

## 3.1.12 Interrupt Generation

| Lok Transa Orana setima (his Fasture | 2D           | Р | PD | G | D            |
|--------------------------------------|--------------|---|----|---|--------------|
| LCh Types Supporting this Feature    | $\checkmark$ |   |    |   | $\checkmark$ |

Each generic LCh can generate six different interrupts. The following interrupt sources can be programmed:

- □ End of block: The last byte of the transfer has been written into destination, enabled with bit BLOCK\_IE in register DMA\_CICR.
- □ End of frame: The last byte of the current frame has been written into destination, enabled with bit FRAME\_IE in register DMA\_CICR.
- □ Half of frame: The middle byte of current frame has been written into destination, enabled with bit HALF\_IE in register DMA\_CICR.
- □ Start of last frame: The first word of the last frame has been written into destination, enabled with bit LAST\_IE in register DMA\_CICR.
- Request collision: Two new DMA requests occurred before the end of service of previous request, enabled with DROP\_IE bit in register DMA\_CICR.

Timeout error: An access error occurred in the transfer to the source or the destination, enabled with bit TOUT\_IE in register DMA\_CICR. The countdown values are configured at the source and destination ports. No countdown value can be specified in the system DMA.

#### Note:

Configure the interrupt(s) to be generated for each generic LCh in the channel interrupt control register (DMA\_CICR). The LCh-D supports only two kinds of interrupts. See Table 77, *DMA LCD Control (DMA\_LCD\_CTRL)* for more information.

Each DMA logical channel can generate an interrupt to the MPU to reflect the transfer status. Each system DMA logical channel has a dedicated interrupt line to the MPU. All DMA interrupts are level sensitive interrupts; that is, an interrupt line is held active-low until the MPU reads the associated logical channel status register.

No new interrupts can be generated until the status register is read and thereby cleared. For each logical channel, all the interrupt sources are connected together to generate one interrupt. When an interrupt is issued by a logical channel, its status register, DMA\_CSR, is set to record the interrupt cause if its associated DMA\_CICR enable bit is set. The MPU interrupt service routine (ISR) can read this channel status register to find the sources of the interrupt. The status bits are automatically cleared after they are read by MPU.

The interrupt enable bits are used to choose the events that trigger the DMA channel to send an interrupt to the processor. There are two classes of events:

- Error event: errors during the transfer. These are timeout and request collision.
- Status event: DMA transfer status during DMA channel transfers. These are start of last frame, half of frame, end of frame, and end of block.

When an error event occurs and the corresponding interrupt enable bit is enabled, the following happens:

- ☐ The status register bit is activated.
- An interrupt is generated.
- The logical channel is disabled.
- □ The physical channel is released.

If there is an error but error interrupt is not enabled, no event is generated, the status register bit is not set, and no interrupt is generated. However, the LCh is disabled.

When a status event occurs and the corresponding interrupt enable bit is enabled, the following happens:

- The status register bit is activated.
- An interrupt is generated.
- No new interrupts can be generated until the status register is read and thereby cleared.

#### Note:

- One read in the status register clears all the status bits.
- No read in the status register keeps all the status bits and DMA interrupt output stays active low.

Therefore, software must always read the associated status register for each DMA interrupt received; otherwise, interrupts can be missed.

### System DMA Interrupt Mapping

System DMA interrupt mapping depends on the compatibility mode used.

If the OMAP3\_1\_COMPATIBLE\_DISABLE bit is set to 1 in the DMA\_CCR register, then the system DMA has one interrupt line per logical channel.

If this bit is set to zero, then several channels can share the same interrupt line. See 3.1.16 for more details.

Each logical channel has an associated status register, DMA\_CSR, where the source of the interrupt is shown.

### 3.1.13 DMA IDLE Modes

The system DMA can automatically enter an idle mode dynamically as soon as it is not active, or it can be put into idle/suspend mode on request from MPU via the clock generator module.

#### Dynamic Idle Mode

To save power, the system DMA has a built-in dynamic idle mode that is enabled by setting the CLOCK\_AUTOGATING\_ON bit in the global control register, DMA\_GCR.

The system DMA clock domain is split into several subdomains in this mode; each one of them is disabled if not used. This mode does not add any extra latency in the system DMA.

58 Direct Memory Access (DMA) Support

All internal clocks are in idle mode, disabled, when the following is fulfilled:

- 1) Clock\_Autogating\_on = 1 in DMA\_GCR.
- 2) No nonsynchronized LChs are enabled.
- Either no synchronized LChs are enabled, or synchronized LChs are enabled but no DMA request is received or pending.

The system DMA wakes up if software enables a new LCh or if a DMA request is received. The system DMA also wakes up temporarily if the MPU or OCP-I wants to read or write to any of the registers.

### System IDLE Request

The system DMA can be put into IDLE mode, when system needs to go into power saving mode. See the *OMAP5912 Multimedia Processor OMAP3.2 Subsystem Reference Guide* (SPRU749) and the *OMAP5912 Multimedia Processor Power Management Reference Guide* (SPRU753) for more information on prerequisite steps to put the system and/or the system DMA in idle. An idle request signal is sent to the DMA when the system wants it to go idle.

As soon as the DMA detects an idle request, it enters idle mode when all PChs are free (including PCh-D). All nonsynchronized LChs, synchronized LChs without DMA request detected, and suspended LChs are unscheduled PChs. The DMA enters idle mode even if one of the LCD controllers is assigned PCh-D but is in sleep mode. The DMA temporarily wakes up if:

- A synchronized LChs DMA request is detected
- There are any writes to generic LCh registers
- Any of the LCD controllers gets active

The DMA goes back to idle mode when all these tasks are completed. This also means as long as the system is requesting the system DMA to be in idle, nonsynchronized LChs can be enabled, but they are never activated. Synchronized LChs can be enabled and hence, activated at DMA request during this time.

The DMA finishes pending accesses of physical channels and resumes the logical channel transfer when released from idle. Therefore, it is the responsibility of software to ensure that when software issues IDLE instruction, all logical channels have been serviced.

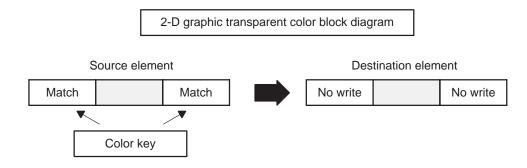
The power-saving difference between the dynamic idle mode and the system idle request is provided by the clock tree between the clock generation module and the system DMA clock input.

# 3.1.14 DMA Debug State

During debug mode the MPU can send a request to suspend the DMA. This is useful if, for instance, the MPU is halted by a breakpoint. How the system DMA responds to this request is controlled by software by configuring the FREE bit in the DMA global control register, DMA\_GCR. When the FREE bit is set to 0, all current transfers are suspended when a request is received from the MPU. The transfers resume when the MPU releases the debug request signal. If the FREE bit is set to 1, the DMA continues to run as usual, even if the MPU is sending a debug request signal. The channel status of the DMA interrupts is read on the DMA\_CSR register bits. In contrast with the functional mode, the DMA\_CSR bits are not cleared after an emulation read.

# 3.1.15 Other Logical Channel Features

The LCh-G type channel not only transfers data, but also provides hardware with 2-D graphic data processing features to improve 2-D graphic processing speed and graphic quality. It supports the following graphic features:


- Transparent copy
- Constant fill (or constant solid color fill)
- Rotation

LCh-2D also supports constant fill and rotation. Rotation is supported by all LCh types supporting separate element and frame indexed addressing (2 dimension addressing).

# Transparent Copy

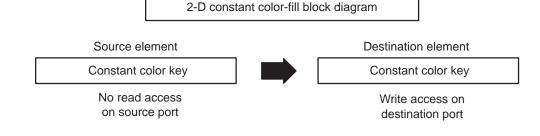
| LCh Types Supporting this Feature | 2D | Р | PD | G            | D |
|-----------------------------------|----|---|----|--------------|---|
|                                   |    |   |    | $\checkmark$ |   |

It is often desirable to transfer irregular shapes, especially in software for games. The system DMA supports the COLOR KEY feature for 8 BPP, 16 BPP, and 32 BPP from source to destination; that is, each element of channel source is compared to a color key and those data bits (pixels) that match the color key are not written to the destination.



### Figure 9. 2-D Transparent Color Block Diagram

This feature is enabled by setting the TRANSPARENT\_COPY\_ENABLE bit in the channel control 2 register, DMA\_CCR2. If this bit is enabled, the DMA color parameter registers, DMA\_COLOR\_L and DMA\_COLOR\_U, are used to specify the color key.


If the data type, ES, is 8 or 16 bits, only the DMA\_COLOR\_L register is used; if the data type is 32 bits, the DMA\_COLOR\_U register is also used. The system DMA always compares all bits (8, 16, or 32 bits). If other color depths (other than 8, 16, or 32) are used, it is the responsibility of the software to ensure that unused upper bits are constant. See the register description for more detailed information.

## **Constant Fill**

| LCh Types Supporting this Feature | 2D | Р | PD | G | D |
|-----------------------------------|----|---|----|---|---|
|                                   |    |   |    |   |   |

This feature allows filling a region with a constant (solid color) or a pattern by repeating the data horizontally and/or vertically in the region. The system DMA writes to the destination a constant color/value defined in a register. There is no read access on any system DMA source port.

### Figure 10. 2-D Constant Color Fill Block Diagram



SPRU755C

Direct Memory Access (DMA) Support

This feature is enabled by setting the bit Constant\_Fill\_Enable in the channel control register 2, DMA\_CCR2. If this bit is enabled, the register DMA color parameter, DMA\_COLOR\_L and DMA\_COLOR\_U, is used to specify the color key.

If the data type, ES, is 8 or 16 bits, only the DMA\_COLOR\_L register is used; if the data type is 32 bits, register DMA\_COLOR\_U is also used. See the register description for more detailed information.

## Rotation

| LCh Types Supporting this Feature | 2D           | Р | PD           | G            | D            |
|-----------------------------------|--------------|---|--------------|--------------|--------------|
|                                   | $\checkmark$ |   | $\checkmark$ | $\checkmark$ | $\checkmark$ |

All LCh types with independent source and destination indexing support four types of rotation: 0°, 90°, 180°, and 270°. This can be established with the help of double indexed addressing; that is, separate element/frame indexing. See section 3.1.10 for details of this addressing capability.

## 3.1.16 Compatibility with OMAP 3.0 and 3.1

After reset, the DMA and all LChs default to the OMAP 3.0/3.1 programming model. This is characterized by a reduced feature set, no LCH chaining, fewer LChs, program and active register sets per LCh, and a restricted number of interrupts (see Table 26).

New code for the DMA must use the programming model presented in previous sections of this document. Future versions of the DMA will be optimized for this programming model and new features will be added to it rather than the 3.0/1 compatible mode.

The DMA described here does not exhibit the same cycle-by-cycle behavior as previous implementations in OMAP 3.0/3.1 and hence time critical applications must be reverified when upgrading.

Two orthogonal mechanisms control the compatibility modes of the system DMA:

- A global register bit controls the DMA register and interrupt mapping.
- A register bit per logical channel controls the disabling/enabling of the OMAP 3.0/1 programmers model.

#### Note:

OMAP 3.2 is configured from reset to be OMAP 3.1 binary compatible.

When in OMAP 3.1, compatible mode PCh-0 and 1 are dynamically shared to serve the generic LChs.

To enable the new features introduced beyond OMAP 3.1, the following configuration register bits must be configured:

- OMAP 3\_1\_MAPPING\_DISABLE in register DMA\_GSCR
- OMAP3\_1\_COMPATIBLE\_DISABLE in register DMA\_CCR/DMA\_LCD\_CCR
- LCh register bit that enables/disables the OMAP 3.2 programming model.

| Global Register Bit<br>OMAP3_1_Map- |                |                                                  | LCh Register Bit<br>OMAP3 1com- |                                                                                                              |  |
|-------------------------------------|----------------|--------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| ping_Disable                        | Global Effects |                                                  | patible_disable                 | Per-LCH Effects                                                                                              |  |
| 0                                   |                | Reset values                                     | 0                               | Only OMAP 3.1 programming                                                                                    |  |
|                                     |                | 9 LCh + 1 LCh-D<br>available                     |                                 | model/feature set is supported.<br>PCh-2 cannot be used, so only the LCD                                     |  |
|                                     |                | OMAP 3.1 configu-<br>ration register map-        |                                 | channel and two generic logical physical channels are available to these LChs.                               |  |
|                                     |                | ping<br>OMAP 3.1 interrupt                       | 1                               | All features are available as described in the remainder of this document.                                   |  |
|                                     |                | line mapping                                     |                                 | All four physical channels are available                                                                     |  |
|                                     |                | 7 interrupt lines                                |                                 | to these LChs.                                                                                               |  |
| 1                                   |                | 16LCh + 1 LCh-D<br>available                     | 0                               | Only OMAP 3.1 .programming model/feature set is supported.                                                   |  |
|                                     |                | OMAP3.2 configu-<br>ration register map-<br>ping |                                 | PCh-2 cannot be used, so only the LCD channel and two generic physical channels are available to these LChs. |  |
|                                     |                | OMAP3.2 interrupt line mapping                   | 1                               | All features are available as earlier described in this document.                                            |  |
|                                     |                | 17 interrupt lines                               |                                 | All four physical channels are available to these LChs.                                                      |  |

Table 26. Summary Table of Different Compatibility Modes

**Note:** The LCh compatibility bit, OMAP3\_1\_compatible\_disable, is configured per logical channel, so it is possible to mix the programmer model for different logical channels.

The OMAP 3\_1\_MAPPING\_DISABLE bit in register DMA\_GSCR is a global register bit that enables/disables OMAP 3.1 register mapping and interrupt line mapping. DMA\_GSCR is a global register and must therefore be configured before any LCh is enabled. The DMA\_CCR/DMA\_LCD\_CCR registers are configured per LCh, which enables having different programming models for the LChs. The register and interrupt line mapping must be configured first and affect all the LChs, but the OMAP 3.0/3.1 and OMAP 3.2 programming models, respectively, can be mixed among the LChs.

## Autoinitialization of Logical Channels

In OMAP 3.0/3.1 compatible mode, autoinitialization is supported.

If a logical channel is autoinitialized, then the logical channel is automatically enabled itself again when a transfer is ended. A new or old logical channel configuration register set is loaded, and a new block of data is transferred.

Autoinitialization means that the logical channel gets reenabled. It does not mean that the physical channel is kept for the logical channel. The logical channel must return to the same scheduling schemes as normal before it gets access to a physical channel.

The autoinitialization bit is used to set the DMA into autoinitialization mode while END\_PROG and REPEAT bits are used to control DMA behavior while in autoinitialization mode. The bits AUTO\_INIT, END\_PROG, and REPEAT are all located in the channel control register, DMA\_CCR. Table 27 summarizes the autoinitialization mode.

Table 27. Autoinitialization Configuration Bits Summary

| Auto_init | Repeat           | End_prog   | Autoinitialization Behavior                                                                                                                                                                                                                                                                  |
|-----------|------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Dan <sup>2</sup> |            | No autoinitialization.                                                                                                                                                                                                                                                                       |
| 0         | Don't<br>care    | Don't care | Waits until software sets enable = 1 to enable the LCh and loads the PCh with its programming register set.                                                                                                                                                                                  |
| 1         | 0                | 0          | As both repeat and end_prog bits equal 0, the LCh is still enabled, but pending. At the end of the current transfer, the LCh channel waits until repeat or end_prog = 1 to re-activate itself again.                                                                                         |
|           |                  |            | When end_prog = 1, the programming register set is copied to the active register set: a new context is programmed.                                                                                                                                                                           |
| 1         | 0                | 1          | At the end of the current transfer, the LCh immediately loads the PCh with its programming register set when PCh is granted (end_prog = 1 allows loading the new LCh context, disregarding the repeat bit). The channel reinitializes itself and starts a new transfer with the new context. |
| 1         | 1                | Don't care | The LCh reinitializes itself at the end of the current transfer and starts a new transfer with the previous channel context (active register set).                                                                                                                                           |
|           |                  |            |                                                                                                                                                                                                                                                                                              |

This table differs slightly from what is implemented in OMAP 3.0/3.1 hardware, where the programming register set is always loaded when END\_PROG or REPEAT is set to 1.

## OMAP3.0/3.1 System DMA Interrupt Mapping Rule

The OMAP 3.1 system DMA has nine channels plus one LCD channel, which share seven interrupt lines; the OMAP 3.2 system DMA has one interrupt line per channel. In order to be backward compatible, the below interrupt mapping modes have been implemented.

64 Direct Memory Access (DMA) Support

To control the mappings:

OMAP 3.2 Mapping: DMA\_CCR.OMAP3\_1\_Mapping\_Disable = 1 OMAP 3.1 Mapping: DMA\_CCR.OMAP3\_1\_Mapping\_Disable = 0

See the OMAP5912 Multimedia Processor Interrupts Reference Guide (SPRU757) for more details about interrupts.

Table 28. Interrupt Mapping per LCh for Both Compatible Modes

| Interrupt Line     | OMAP 3.2 Mapping | OMAP 3.1 Mapping |
|--------------------|------------------|------------------|
| MPU level 1 IRQ 19 | LCH_0            | LCH_0 and LCH_6  |
| MPU level 1 IRQ 20 | LCH_1            | LCH_1 and LCH_7  |
| MPU level 1 IRQ 21 | LCH_2            | LCH_2 and LCH_8  |
| MPU level 1 IRQ 22 | LCH_3            | LCH_3            |
| MPU level 1 IRQ 23 | LCH_4            | LCH_4            |
| MPU level 1 IRQ 24 | LCH_5            | LCH_5            |
| MPU level 2 IRQ 53 | LCH_6            | N/A              |
| MPU level 2 IRQ 54 | LCH_7            | N/A              |
| MPU level 2 IRQ 55 | LCH_8            | N/A              |
| MPU level 2 IRQ 56 | LCH_9            | N/A              |
| MPU level 2 IRQ 57 | LCH_10           | N/A              |
| MPU level 2 IRQ 58 | LCH_11           | N/A              |
| MPU level 2 IRQ 59 | LCH_12           | N/A              |
| MPU level 2 IRQ 60 | LCH_13           | N/A              |
| MPU level 2 IRQ 61 | LCH_14           | N/A              |
| MPU level 2 IRQ 62 | LCH_15           | N/A              |
| MPU level 1 IRQ 25 | LCH_D            | LCH_12           |

In case of simultaneous events in two physical channels that share the same interrupt line, only one interrupt is generated and all the relevant status bits are set.

Each physical channel has a seven-bit status register. When an interrupt is shared by two logical channels, the MPU can read the status from the two channels in one TIPB access. The data read has the format shown in Figure 11.

Figure 11. DMA Packed Channel Status Register for Compatible Mode

|    | [13:7]                | [6:0]                 |
|----|-----------------------|-----------------------|
| 00 | DMA_CSR [LCH_6] [6:0] | DMA_CSR [LCH_0] [6:0] |

65

# 3.2 LCD Channel

## 3.2.1 Display Logical Channel

The display logical channel, LCh-D, transfers data to the LCD controller from a video block buffer stored in memory. In the OMAP 3.2 system, the memory source for the transfer can be Test RAM (OCP-T1), or EMIFF. These transfers can be arranged to have the source in one or two blocks.

Table 29 gives a summary of features for the LCD LCh type.

Table 29. Features Summary for LCh-D

| Supported T | ransfer Features                                                                    | LCh-D (D)    |  |  |
|-------------|-------------------------------------------------------------------------------------|--------------|--|--|
| LCh Control | Transfer type                                                                       |              |  |  |
|             | Memory to external LCD controller                                                   | $\checkmark$ |  |  |
|             | Memory to OMAP LCD controller                                                       | $\checkmark$ |  |  |
|             | Nonsynchronized                                                                     | $\checkmark$ |  |  |
|             |                                                                                     | See Note 1   |  |  |
|             | Two levels of priority                                                              |              |  |  |
|             | Preemption at element boundary                                                      |              |  |  |
|             | LCh interleaving on DMA request                                                     |              |  |  |
|             | Linking logical channel capability                                                  |              |  |  |
|             | Automatic initialization                                                            | $\checkmark$ |  |  |
| Addressing  | Types of addressing modes for src and dst                                           |              |  |  |
|             | Constant mode                                                                       |              |  |  |
|             | Post increment mode                                                                 | See Note 2   |  |  |
|             | Single-indexed mode, with separate SRC/DST index                                    | See Note 2   |  |  |
|             | Double-indexed mode, with separate SRC/DST index                                    | See Note 2   |  |  |
|             | Supports single and dual block modes                                                | See Note 2   |  |  |
|             | Supports separate element/frame index and element/frame numbers for dual block mode | See Note 2   |  |  |

Notes: 1) LCh-D can be synchronized with the external LCD controller but not with the OMAP internal LCD controller.

2) The LCh-D destination port is the LCD port. The access address to the display is controlled by the LCD controller. Hence, these features only apply on the source.

The dual-block mode allows concurrent transfer and image processing (reloading of one block while a second is being processed). Switching from one block to another is achieved by loading the configuration register of the second block buffer and then starting the second block transfer after the first block buffer has been fully transferred. This is automatic, enabling the dual-block feature by setting the BLOCK\_MODE bit in the DMA LCD control register (DMA\_LCD CTRL).

5 Direct Memory Access (DMA) Support

Separate element/frame index and number of elements between the two buffers are also supported in the dual-block mode.

The LCD channel sends the read request to the relevant port, defined by the lcd\_source\_port bit in the DMA LCD control register (DMA\_LCD CTRL) just as the destination port is selected by the lcd\_destination\_port in the same register. The destination port can be either the OMAP internal LCD controller or the external LCD controller port.

The dedicated DMA channel contains a FIFO used as an elastic buffer to prevent underflow or overrun to/of the LCD.

Hardware ignores the bottom address register of blocks for dual- and single-block access mode. Each block size is defined by

Block\_Size = ES x EN x FN in bytes

where:

ES = Element Size: number of bytes within an element. Bit-field data\_type is configured in register DMA LCD channel source destination parameters (DMA\_LCD\_CSDP).

EN = Element number (within one frame).

FN = Frame number.

In order to support graphic functionality, this DMA LCD channel also supports rotation capability at 0°, 90°, 180°, and 270°, by utilizing its source double index mode.

### 3.2.2 LCD Channel Addressing Modes

Post-incremented, single-indexed (element index), and double indexed (element and frame indexes) addressing modes are supported from the source port side. However, note that there is no write address to compute in the destination for the display channel. The read FIFO address is controlled by the LCD controller, so there is no write address to a port.

### Source Address and Block Size Alignment

On the destination side, the accesses are fixed to 32 bits for external LCD controller and 16 bits for OMAP LCD controller. There is no address alignment because the LCD controller does not use addresses to access data from the LCD channel.

Source memory accesses can be 32/16/8-bit or 4x32-bit burst accesses. The LCD channel is compliant with the generic logical channel constraint; that is, address must be aligned on data\_type.

Data block size must be a multiple of the 32-bit for external LCD controller, and a multiple of the 16-bit for OMAP LCD controller.

However, the data\_type can still be 32/16/8-bit for both the OMAP and external LCD controllers.

### Source Address Modes

The four different LCD channel source address algorithms use the following notations. The address mode descriptions are as follows:

A(n): Byte address of the element n within the transfer.

- ES\_B1: Element size in block 1 (in bytes):  $ES \in \{1, 2, 4\}$ .
- ES\_B2: Element size in block 2 (in bytes):  $ES \in \{1, 2, 4\}$ .
- BS\_B1: Block size of block 1 (in bytes).

 $BS_B1 = BB1 - TB1 = ES_B1 \times EN_B1 \times FN_B1$ 

BS\_B2: Block size of block 2 (in bytes).

 $BS_B2 = BB2 - TB2 = ES_B2 \times EN_B2 \times FN_B2$ 

- BB1: Bottom address of block 1.
- BB2: Bottom address of block 2.
- TB1: Top address of block 1.
- TB2: Top address of block 2.

DBM: Dual-block mode.

EN\_B1: Number of elements within a frame of block 1.

EN\_B2: Number of elements within a frame of block 2.

Element\_counter\_B1: Counter that is (re)initiated with the number of elements per frame or per transfer inside block 1. Decreased by one at each element transferred. Initial value EN\_B1 is configured in register DMA channel element number, DMA\_CEN.

Element\_counter\_B2: Counter that is (re)initiated with the number of elements per frame inside block 2. Decreased by one at each element transferred. Initial value EN\_B2 is configured in register DMA channel element number, DMA CEN.

Frame\_counter\_B1: Counter that is (re)initiated with the number of frames inside block 1. Decreased by one at each frame transferred. Initial value FN\_B1 is configured in register DMA channel frame number, DMA\_CFN.

Frame\_counter\_B2: Counter that is (re)initiated with the number of frames inside block 2. Decreased by one at each frame transferred. Initial value FN\_B2 is configured in register DMA channel frame number, DMA\_CFN.

EI\_B1: Block 1 element index in bytes  $-32768 \le EI_B1 \le 32767$ .

EI\_B2: Block 2 element index in bytes  $-32768 \le EI_B1 \le 32767$ .

Stride\_EI\_B1: Number of elements between the beginning of the current element (n) and the beginning of the next one (n+1) in block 1.

Stride\_EI\_B2: Number of elements between the beginning of the current element (n) and the beginning of the next one (n+1) in block 2.

Stride\_FI\_B1: Number of elements between the beginning of the last element of the current frame and the beginning of the first element of the next frame in block 1.

Stride\_FI\_B2: Number of elements between the beginning of the last element of the current frame and the beginning of the first element of the next frame in block 2.

FI\_B1: block 1 frame index in bytes:

-2147483648 < FI\_B1 < 2147483647.

FI\_B2: block 2 frame index in bytes:

-2147483648 < FI\_B2 < 2147483647.

## Post-Incremented Addressing Mode

Address is post-incremented by element size (ES\_B1 or ES\_B2 depending on which block is active if in dual-block mode).

DBM = 0 (one block mode)

Only block 1 is active:

A(0) = TB1.

 $A(n+1) = A(n) + ES_B1$  until the end of block 1.

Then, when A(n) reaches BB1, A(n+1) = TB1 again

DBM = 1 (dual block mode)

SPRU755C

Direct Memory Access (DMA) Support

69

When block 1 is active:

A(0) = TB1.  $A(n+1) = A(n) + ES_B1$  until the end of block 1. Then, when A(n) reaches BB1, A(n+1) = TB2: block 2 becomes active.

When block 2 is active:

$$\begin{split} A(n) &= TB2.\\ A(n+1) &= A(n) + ES_B2 \text{ until the end of block 2.}\\ \text{Then, when } A(n) \text{ reaches BB2, } A(n+1) &= TB1: \text{ block 1 becomes active again.} \end{split}$$

### Single-Indexed Addressing Mode

Address is incremented by element size and element index. All is expressed in bytes.

DBM = 0 (one block mode)

Only block 1 is active:

A(0) = TB1.  $A(n+1) = A(n) + ES_B1 + (EI_B1 - 1)$ where EI\_B1 = ((Stride\_EI\_B1 - 1) \* ES\_B1) + 1

A(n) is incremented in this way until the end of block 1. Then, when A(n) reaches BB1, A(n+1) = TB1 again.

#### Note:

Stride\_EI\_B1 = 1 (equivalent to  $EI_B1 = 1$ ) gives consecutive element accesses, hence the same behavior as with the post-incremented addressing mode.

DBM = 1 (dual block mode)

When block 1 is active:

A(0) = TB1.  $A(n+1) = A(n) + ES_B1 + (EI_B1 - 1)$ where EI\_B1 = ((Stride\_EI\_B1 - 1) \* ES\_B1) + 1

A(n) is incremented in this way until the end of block 1. Then, when A(n) reaches BB1, A(n+1) = TB2: block 2 becomes active.

When block 2 is active:

A(n) = TB2.  $A(n+1) = A(n) + ES_B2 + (EI_B2 - 1)$ where  $EI_B2 = ((Stride_EI_B2 - 1) * ES_B2) + 1$ 

70

A(n) is incremented in this way until the end of block 2. Then, when A(n) reaches BB2, A(n+1) = TB1: block 1 becomes active again.

#### Note:

Stride\_EI\_B1/2 = 1 (equivalent to  $EI_B1/2 = 1$ ) give consecutive element accesses, hence the same behavior as with the Post\_Incremented addressing mode.

In dual-block mode, block 2 can be active first.

#### Double-Indexed Addressing Mode

Address is incremented by element size and element index if the end of the current frame is not reached.

Address is incremented by element size and frame index if the end of the current frame is reached.

All is expressed in bytes.

DBM = 0 (one block mode)

Only block 1 is active:

A(0) = TB1.

 $A(n+1) = A(n) + ES_B1 + (EI_B1 - 1)$ where EI\_B1 = ((Stride\_EI\_B1 - 1) \* ES\_B1) + 1

A(n) is incremented in this way until the end of the current frame, that is: as long as  $Element\_counter\_B1 \neq 0$ .

When end of frame (but not end of block 1) is reached, that is: Element\_counter\_B1 = 0 and Frame\_counter\_B1  $\neq$  0:

 $A(n+1) = A(n) + ES_B1 + (FI_B1 - 1)$ where FI\_B1 = ((Stride\_FI\_B1 - 1) \* ES\_B1) + 1

When A(n) reaches BB1, A(n+1) = TB1 again

DBM = 1 (dual block mode)

When block 1 is active:

A(0) = TB1.  $A(n+1) = A(n) + ES_B1 + (EI_B1 - 1)$ where EI\_B1 = ((Stride\_EI\_B1 - 1) \* ES\_B1) + 1

A(n) is incremented in this way until the end of the current frame, that is: as long as  $Element\_counter\_B1 \neq 0$ .

When end of frame (but not end of block 1) is reached, that is: Element\_counter\_B1 = 0 and Frame\_counter\_B1  $\neq$  0: 
$$\begin{split} A(n+1) &= A(n) + ES_B1 + (FI_B1 - 1) \\ \text{where } FI_B1 &= ((Stride_FI_B1 - 1) * ES_B1) + 1 \\ \text{When } A(n) \text{ reaches } BB1, A(n+1) &= TB2: \text{ block } 2 \text{ becomes active.} \end{split}$$

When block 2 is active:

A(0) = TB2A.  $A(n+1) = A(n) + ES_B2 + (EI_B2 - 1)$ where  $EI_B2 = ((Stride_EI_B2 - 1) * ES_B2) + 1$ 

A(n) is incremented in this way until the end of the current frame, that is: as long as  $Element\_counter\_B2 \neq 0$ .

When end of frame (but not end of block 2) is reached, that is: Element\_counter\_B2 = 0 and Frame\_counter\_B2  $\neq$  0:

 $A(n+1) = A(n) + ES_B2 + (FI_B2 - 1)$ where FI\_B2 = ((Stride\_FI\_B2 - 1) \* ES\_B2) + 1

When A(n) reaches BB2, A(n+1) = TB1: block 1 becomes active again.

#### Note:

Both Stride\_EI\_B1/2= 1 (equivalent to  $EI_B1/2 = 1$ ) and Stride\_FI\_B1/2 = 1 (equivalent to  $EI_B1/2 = 1$ ) give consecutive element accesses, hence the same behavior as with the post-incremented addressing mode.

In dual-block mode, block 2 can be active first.

### 3.2.3 DMA LCD Channel Sharing Feature

The LCD channel in the OMAP 3.2 system DMA supports the LCD controller. The lcd\_destination\_port bit in the DMA LCD control register (DMA\_LCD\_CTRL) sets the DMA to use the LCD controller. The OMAP LCD controller supports 16-bit single accesses. See the *OMAP5912 Multimedia Processor Display Interface Reference Guide* (SPRU764) for detailed information about the LCD controller.

LCh-D is enabled differently depending on which LCD controller used:

In OMAP LCD controller mode, the LCD channel is enabled when the OMAP LCD controller is enabled; that is, when bit LCDEN = 1 in the LCD control register (LCDCONTROL). For more information, see the LCD control register description in the OMAP5912 Multimedia Processor Display Interface Reference Guide (SPRU764).

#### 3.2.4 DMA LCD Channel Rotation

This DMA LCD channel supports four types of rotation:  $0^{\circ}$ ,  $90^{\circ}$ ,  $180^{\circ}$ , and  $270^{\circ}$ , by using the double indexed addressing mode in LCD channel source port. This feature allows the use of display screens that are not oriented as they were designed. For example, a 320x240 screen can be used in a 240x320 application.

#### 3.2.5 DMA LCD Channel Autoinitialization Feature

In order to support special requirements for LCD display, the detailed autoinitialization feature for the LCD channel is described below.

□ If the DMA LCD channel is connected to the OMAP external LCD controller:

When software sets the DMA\_LCD\_CCR.ENABLE bit to 1, then the logical LCD channel is enabled. It loads LCD channel programming register set to its channel active register set. Then the logical LCD channel (LCh\_D) is active, and data starts transferring.

□ If the DMA LCD channel is connected to the OMAP LCD controller:

When software enables the OMAP LCD controller, bit LCDCONTROL. LCDEN is set to 1 and the DMA LCD channel is automatically enabled at the same time. It loads LCD channel programming register set to channel active register set. The logical LCD channel is active, and data starts transferring.

At the end of the transfer, the LCD logical channel is enabled again, when auto-init is set to 1, and it loads LCD physical channel with:

□ Channel programming set, if end\_prog = 1 and repeat = 1

□ Channel active set, if end\_prog = 0 and repeat = 1

Table 30 provides a bit summary.

#### System DMA

| Auto_init | Repeat        | end_prog   | Autoinitialization Behavior                                                                                                                                                                                                                                                                                                                         |
|-----------|---------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |               |            | No autoinitialization.                                                                                                                                                                                                                                                                                                                              |
| 0         | Don't<br>care | Don't care | It waits until enable = 1 to enable the LCD logical channel, and loads the physical LCD channel with its programming register set. However, the LCD logical channel is active only when the LCD controller enables it.                                                                                                                              |
| 1         | 0             | 0          | As both repeat and end_prog bits equal 0, the channel is still enabled but pending. At the end of the current transfer, <i>the logical LCD channel waits until repeat or end_prog = 1 to reactivate itself again.</i> When end_prog = 1 the programming register set is copied to the active register set: <i>a new context is programmed.</i>      |
| 1         | 0             | 1          | At the end of the current transfer, the logical LCD channel immediately loads the physical LCD channel with its programming register set, when physical LCD channel is granted (end_prog = 1 allows loading the new context, disregarding the repeat bit). <i>The channel reinitializes itself and starts a new transfer with the new context</i> . |
| 1         | 1             | Don't care | The channel reinitializes itself at the end of the current transfer and starts a new transfer with the previous context (active register set).                                                                                                                                                                                                      |

## Table 30. Autoinitialization Bits Summary for LCD Channel in Noncompatible Mode

#### 3.2.6 DMA\_LCD\_Disable/Bus Error Feature

Software can disable the LCD channel on the fly. If the LCD channel is disabled, then transfer stops immediately.

During LCD channel transfer, if an underflow occurs, the DMA LCD channel resets its enable bit and the LCD channel stops immediately.

LCD PCh underflow is possible when the destination is the OMAP LCD controller (reads from external controller are stalled until data is ready).

If underflow occurs, a signal is sent to the OMAP LCD controller, and the FUF bit is set in the OMAP LCD controller status register (LCSR). An interrupt is generated when a LCSR bit is set. See the *OMAP5912 Multimedia Processor Display Interface Reference Guide* (SPRU764).

If one hardware request is currently being serviced, and other hardware requests are triggered, then the DMA\_LCD controller will stop and signal an event drop interrupt on the second new hardware request (bus error).

## 3.2.7 LCD Channel Usage Restrictions

#### **Exclusive Blocks**

The hardware design does not detect any overlap between two block buffers; that is, the start and stop addresses of each buffer must represent two different physical parts into the memory. In dual-block mode, the top address of the second block must be greater (and not equal to) than the bottom address of the first block.

## Both Blocks Must Belong to a Single Source

In case of dual-block mode operation, it is not possible to have one block read from one source and one block read from a second source. To change from a source to another, the LCD\_LCD\_EN (enable transfer) signal must not be asserted and all pending LCD interrupts must be processed.

## LCD Registers Can Be Configured During a Transfer

There is a shadow register set for the LCD channel, which allows the software to change the LCD channel context on the fly after the LCD channel enabled. This is not supported in the OMAP 3.0/3.1 system DMA.

Example 3 shows a transfer from a video block, located in SDRAM, to the OMAP LCD controller.

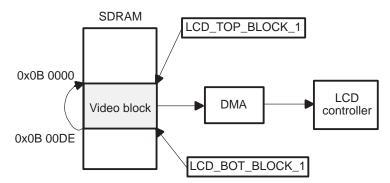
#### Example 3. LCD Transfer: EMIFF (SDRAM) $\rightarrow$ LCD, One Block

The size for the LCD display is  $6 \times 16$  pixels with 16 bits per pixels. So the length of the video frame is  $6\times16\times2$  (in bytes) + 32 bytes for the palette = 224 bytes. If the video block starts at address  $0\times0B0000$ , the bottom address of the video block is  $0\times0B00DE$ .

Step 1: Registers are set as:

DMA\_LCD\_CTRL

BLOCK\_MODE = 0 (one block) BLOCK\_IT\_IE = 1 BUS\_ERROR\_IT\_IE = 1 LCD\_SOURCE\_PORT = 0 (SDRAM)


 $DMA\_LCD\_TOP\_B1\_U = 0x000B$  $DMA\_LCD\_TOP\_B1\_L = 0x0000$  $DMA\_LCD\_BOT\_B1\_U = 0x000B$  $DMA\_LCD\_BOT\_B1\_L = 0x00DE$ 

DMA\_LCD\_TOP\_B2\_U = irrelevant DMA\_LCD\_TOP\_B2\_L = irrelevant DMA\_LCD\_BOT\_B2\_U = irrelevant DMA\_LCD\_BOT\_B2\_L = irrelevant

**Step 2:** The transfer starts when the enable (hardware) signal from the OMAP LCD controller is asserted high.

The transfer runs, and an interrupt is generated at the end of the block.

Figure 12. LCD One-Block Mode Transfer Scheme



**Step 3:** When an interrupt occurs, read the DMA\_LCD\_CTRL register, to know the source of the interrupt.

If DMA\_LCD\_CTRL[3] = 1 (that is to say, block\_1\_it\_cond = 1), end of block 1 interrupt is detected.

If end of block is reached, the DMA restarts at the top of the block.

Step 4: Reset DMA\_LCD\_CTRL [3] and wait for another interrupt.

Direct Memory Access (DMA) Support

#### Example 4. LCD Transfer: OCP\_T1 (Test RAM) $\rightarrow$ LCD, Two Blocks

Example 4 shows a transfer from two video blocks located in memory connected to the OCP\_T1 port to the LCD controller.

The size for the LCD display is  $6 \times 16$  pixels with 16 bits per pixels. So the length of one video block is  $6 \times 16 \times 2$  (in bytes) + 32 bytes for the palette = 224 bytes. If the video block 1 starts at address 0x0B0000, the bottom address of the video block is 0x0B00DE. If the video block 2 starts at address 0x0C0000, the bottom address of the video block is 0x0C00DE.

Step 1: Registers are set as:

DMA\_LCD\_CTRL

BLOCK\_MODE = 1 (two blocks) BLOCK\_IT\_IE = 1 BUS\_ERROR\_IT\_IE = 1 LCD\_SOURCE\_PORT = 1 (IMIF)

 $DMA\_LCD\_TOP\_B1\_U = 0x000B$  $DMA\_LCD\_TOP\_B1\_L = 0x0000$  $DMA\_LCD\_BOT\_B1\_U = 0x000B$  $DMA\_LCD\_BOT\_B1\_L = 0x00DE$ 

DMA\_LCD\_TOP\_B2\_U = 0x000C DMA\_LCD\_TOP\_B2\_L = 0x00000 DMA\_LCD\_BOT\_B2\_U = 0x000C DMA\_LCD\_BOT\_B2\_L = 0x00DE

**Step 2:** The transfer starts when the enable (hardware) signal from the OMAP LCD controller is asserted high.

The transfer runs, and the interrupts are generated at the end of block 1 and 2, respectively.

DMA\_LCD\_CTRL [3] = block\_1\_it\_cond = 1. This bit is a status bit, which detects the interrupt.

When end of block 1 is reached, the DMA restarts at the top address of block 2 and DMA\_LCD\_CTRL [3] is reset to be able to detect a next interrupt.



Figure 13. LCD Dual-Block Mode Transfer Scheme

DMA\_LCD\_CTRL [4] = BLOCK\_2\_IT\_COND = 1: end of block 2 is reached. The DMA restarts at the top address of block 1, and DMA\_LCD\_CTRL [4] is reset to be able to detect a next interrupt.

Switching between the two frames is automatic; it does not need any reconfiguration of the channel.

## 3.2.8 LCD Channel OMAP 3.0/3.1 Compatible Mode Programming

Users have the option of having new LCD channel features and maintaining compatibility with the previous LCD channel. To keep compatible with the OMAP3.1 programming mode, care must be taken on the following points. Everywhere else, there is no compatibility obstacle.

## **Configuration Registers**

The DMA\_LCD\_CTRL register is one of the LCD configuration registers. This register manages the operation of dual or single block mode, the interrupt enable bits, and the source port for the next transfer. Then it returns information by setting the status bits in its register. An interrupt can be sent at the end of the transfer of each block; this interrupt line is connected to the LCD interrupt line of the DMA.

#### Addressing Mode

In OMAP 3.1 compatible mode, the LCD channel only supports the *post-increment* addressing mode on the source side.

Address is post-incremented by element size (ES\_B1 or ES\_B2 depending on which block is active if in dual-block mode)

 $A(n+1) = A(n) + ES_B1/2$  if  $TB1/2 \le A(n+1) \le BB1/2$ 

where:

A(n) is the byte address of element n within the transfer.

ES\_B1/2 is block1/2 element size.

TB1/2 is top address for block1/2 and BB1/2 is bottom address for block1/2.

See post-increment details in section 3.2.2.

Hardware rotation is not supported in compatible mode due to restrictions on addressing modes.

#### DMA LCD Channel Sharing Feature

A second external LCD controller is not supported in compatible mode. Only the OMAP3.2 embedded LCD controller is available.

#### **Disabling Feature**

The LCD channel cannot be disabled by software. However, it stops transferring as soon as the OMAP LCD controller disables the LCD channel. Then it restarts from the beginning again, after the LCD controller enables the LCD channel.

### LCD Channel Restriction

In OMAP 3.1 compatible mode, it is not possible to change any bit of any LCD channel register until a transfer has been fully completed, because no shadow registers exist in LCD channel as in regular channels. To update registers, the LCD\_Controller must not be enabled and all pending LCD interrupts must be processed.

The LCD channel source can only have 32-bit access from L3\_OCP\_T1 (Test RAM) or EMIFF (SDRAM).

Selecting the lcd\_source\_port bit-field (in the DMA\_LCD\_CTRL register) to binary 10 or 11 causes undefined effects.

SPRU755C

#### DMA LCD Channel Autoinitialization Feature

At the end of transfer, the LCD logical channel is enabled again if LCD\_LCD\_EN is set to 1 in the OMAP LCD controller. Table 31 summarizes the autoinitialization behavior in compatible mode.

Table 31. Autoinitialization Configuration Bits Summary for LCD Channel in Compatible Mode

| Auto_init    | Repeat       | End_prog     | Autoinitialization Behavior                                                                                                                                                                                                                                                                                                                                              |
|--------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hardwired 1  | Hardwired 1  | Hardwired 1  | At the end of the current transfer, the logical LCD channel<br>immediately loads the physical LCD channel with its<br>programming register set, when physical LCD channel is<br>granted (end_prog = 1 allows loading the new context,<br>disregarding the repeat bit). <i>The channel reinitializes itself</i><br><i>and starts a new transfer with the new context.</i> |
|              |              |              | However, the LCD logical channel is active only when the LCD controller enables it.                                                                                                                                                                                                                                                                                      |
| 0 (Software) | X (Software) | X (Software) | Not supported                                                                                                                                                                                                                                                                                                                                                            |
| 1 (Software) | X (Software) | X (Software) | Not supported                                                                                                                                                                                                                                                                                                                                                            |

#### DMA Configuration Registers I/O Space

Each channel has its own address space. The configuration address is split into several fields. Each field is decoded to generate a channel select and a register select within the channel.

More configuration registers were added to the LCD channel OMAP 3.2. This results in two different LCD channel register mappings which are dependent on the mode selected, which is controlled by bit OMAP3\_1\_MAPPING\_DISABLE in register DMA\_GSCR.

Table 32 shows the register mapping in the two different modes (OMAP 3.0/3.1 compatible or not).

# Table 32. LCD Channel Register Mapping for OMAP 3.2 Respectively OMAP 3.0/3.1 Compatible Modes Compatible Modes

| Offset | Register Mapping in OMAP 3.2<br>Mapping Mode | Register Mapping in OMAP<br>3.0/3.1 Mapping Mode |
|--------|----------------------------------------------|--------------------------------------------------|
| E3C0   | DMA_LCD_CSDP                                 | DMA_LCD_CTRL                                     |
| E3C2   | DMA_LCD_CCR                                  | DMA_LCD_TOP_B1_L                                 |
| E3C4   | DMA_LCD_CTRL                                 | DMA_LCD_TOP_B1_U                                 |
| E3C6   | Reserved                                     | DMA_LCD_BOT_B1_L                                 |

| Offset | Register Mapping in OMAP 3.2<br>Mapping Mode | Register Mapping in OMAP 3.0/3.1 Mapping Mode |
|--------|----------------------------------------------|-----------------------------------------------|
| E3C8   | DMA_LCD_TOP_B1_L                             | DMA_LCD_BOT_B1_U                              |
| E3CA   | DMA_LCD_TOP_B1_U                             | DMA_LCD_TOP_B2_L                              |
| E3CC   | DMA_LCD_BOT_B1_L                             | DMA_LCD_TOP_B2_U                              |
| E3CE   | DMA_LCD_BOT_B1_U                             | DMA_LCD_BOT_B2_L                              |
| E3D0   | DMA_LCD_TOP_B2_L                             | DMA_LCD_BOT_B2_U                              |
| E3D2   | DMA_LCD_TOP_B2_U                             | N/A                                           |
| E3D4   | DMA_LCD_BOT_B2_L                             | N/A                                           |
| E3D6   | DMA_LCD_BOT_B2_U                             | N/A                                           |
| E3D8   | DMA_LCD_SRC_EI_B1                            | N/A                                           |
| E3DA   | DMA_LCD_SRC_FI_B1_L                          | N/A                                           |
| E3DC   | DMA_LCD_SRC_EI_B2                            | N/A                                           |
| E3DE   | DMA_LCD_SRC_FI_B2_L                          | N/A                                           |
| E3E0   | DMA_LCD_SRC_EN_B1                            | N/A                                           |
| E3E2   | DMA_LCD_SRC_EN_B2                            | N/A                                           |
| E3E4   | DMA_LCD_SRC_FN_B1                            | N/A                                           |
| E3E6   | DMA_LCD_SRC_FN_B2                            | N/A                                           |
| E3EA   | DMA_LCH_CTRL                                 | N/A                                           |
| E3F4   | DMA_LCD_SRC_FI_B1_U                          | N/A                                           |
| E3F6   | DMA_LCD_SRC_FI_B2_U                          | N/A                                           |

Table 32. LCD Channel Register Mapping for OMAP 3.2 Respectively OMAP 3.0/3.1 Compatible Modes (Continued)

## 3.3 System DMA Registers

- All reserved bits and all reserved registers must be written to as 0x0000.
- All reserved bits are read as 0.
- ☐ The configuration and status registers are part of a superset that is designed for a 16-bit port and a 16-bit channels DMA. This superset enables optimal design reuse in hardware and software, and this design reuse capability requires generic register mapping. These requirements cause some registers to seem at times almost empty.

SPRU755C

## 3.3.1 Summary DMA Global Registers

Table 33 lists the DMA global control registers. Table 34 through Table 50 describe the register bits. You must configure global registers before any LCh is enabled, to avoid undefined effects.

| Base Address = 0xFFFE DC00 |                               |     |        |  |
|----------------------------|-------------------------------|-----|--------|--|
| Name                       | Description                   | R/W | Offset |  |
| DMA_GCR                    | DMA global control            | R/W | 0x00   |  |
| DMA_GSCR                   | DMA software compatible       | R/W | 0x04   |  |
| DMA_GRST                   | Software reset control        | R/W | 0x08   |  |
| DMA_HW_ID                  | DMA version ID                | R/W | 0x42   |  |
| DMA_PCh2_ID                | Physical channel 2 version ID | R/W | 0x44   |  |
| DMA_PCh0_ID                | Physical channel 0 version ID | R/W | 0x46   |  |
| DMA_PCh1_ID                | Physical channel 1 version ID | R/W | 0x48   |  |
| DMA_PChG_ID                | Physical channel G version ID | R/W | 0x4A   |  |
| DMA_PChD_ID                | Physical channel D version ID | R/W | 0x4C   |  |
| DMA_CAPS_0_U               | Global DMA capability 0 upper | R/W | 0x4E   |  |
| DMA_CAPS_0_L               | Global DMA capability 0 lower | R/W | 0x50   |  |
| DMA_CAPS_1_U               | Global DMA capability 1 upper | R/W | 0x52   |  |
| DMA_CAPS_1_L               | Global DMA capability 1 lower | R/W | 0x54   |  |
| DMA_CAPS_2                 | Global DMA capability 2       | R/W | 0x56   |  |
| DMA_CAPS_3                 | Global DMA capability 3       | R/W | 0x58   |  |
| DMA_CAPS_4                 | Global DMA capability 4       | R/W | 0x5A   |  |
| DMA_PCh2_SR                | Physical channel 2 status     | R/W | 0x60   |  |
| DMA_PCh0_SR                | Physical channel 0 status     | R/W | 0x80   |  |
| DMA_PCh1_SR                | Physical channel 1 status     | R/W | 0x82   |  |
| DMA_PChD_SR_0              | Physical channel D status     | R/W | 0xC0   |  |

## Table 33. DMA Global Control Registers

Direct Memory Access (DMA) Support

| Bit  | Name                | Function                                                                                                                                                               | R/W | Reset |
|------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| 15:5 | RESERVED            | Reserved                                                                                                                                                               | R/W | ND    |
| 4    | ROUND_ROBIN_DISABLE | DMA physical channel scheduler round robin<br>scheduling disable:                                                                                                      | R/W | 0     |
|      |                     | 0: DMA physical channel scheduler uses round<br>robin scheduling scheme to schedule next<br>available logical channel.                                                 |     |       |
|      |                     | 1: DMA physical channel scheduler uses fixed<br>weighted scheduling scheme (from LCH_0 to<br>LCH_i) to schedule next available logical channel.                        |     |       |
| 3    | CLK_AUTOGATING_ON   | DMA Clock autogating on:                                                                                                                                               | R/W | 1     |
|      |                     | 0 = DMA clocks are always on.                                                                                                                                          |     |       |
|      |                     | 1 = DMA cuts off its clocks, according to its activity. Clock_Autogating_on must always be enabled but can be disabled for silicon debug reasons.                      |     |       |
| 2    | FREE                | DMA reaction to the suspend signal:                                                                                                                                    | R/W | 0     |
|      |                     | 0 = DMA suspends all the current transfers when it<br>receives the suspend signal from the processor.<br>Transfers resume when the MPU releases the<br>suspend signal. |     |       |
|      |                     | 1 = DMA continues running when it receives the<br>suspend signal from the processor (For example:<br>when the processor is halted for debug by a<br>breakpoint ).      |     |       |
| 1:0  | RESERVED            | Reserved                                                                                                                                                               | R/W | 0     |

 Table 34.
 DMA Global Control Register (DMA\_GCR)

|      | Base Address = 0xFFFE DC00, Offset = 0x04 |                                                                                                                                                                    |     |       |  |
|------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|
| Bit  | Name                                      | Function                                                                                                                                                           | R/W | Reset |  |
| 15:4 | RESERVED                                  | Reserved                                                                                                                                                           | R/W | ND    |  |
| 3    | OMAP3_1_MAPPING                           | OMAP3.1 mapping disable                                                                                                                                            | R/W | 0     |  |
|      | DISABLE                                   | 0 = DMA compatible with OMAP 3.0/3.1 system<br>DMA interrupt line mapping and logical channel<br>configuration register address mapping (system<br>DMA I/O space). |     |       |  |
|      |                                           | 1 = DMA compatible with OMAP_3.2 DMA. Maps<br>interrupt lines and logical channel configuration<br>register address mapping as defined for OMAP<br>3.2.            |     |       |  |
|      |                                           | Compatibility is also dependent on the<br>OMAP3_1_Compatible_Disable bit in register<br>DMA_LCH_CCR.                                                               |     |       |  |
| 2:0  | RESERVED                                  | Reserved                                                                                                                                                           | R/W | ND    |  |

## Table 35. DMA Software Compatible Register (DMA\_GSCR)

| Table 36. | DMA Software | Reset Control | Reaister ( | (DMA G | RST) |
|-----------|--------------|---------------|------------|--------|------|
|           |              |               |            |        |      |

| Base Address = 0xFFFE DC00, Offset = 0x08 |          |                                                                                                                                     |     |       |  |
|-------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|
| Bit                                       | Name     | Function                                                                                                                            | R/W | Reset |  |
| 15:1                                      | RESERVED | Reserved                                                                                                                            | R/W | ND    |  |
| 0                                         | SW_RESET | DMA software reset control:                                                                                                         | R/W | 0     |  |
|                                           |          | 0: SW will always read this bit as 0.<br>1: Resets the whole DMA when software writes 1<br>to this bit (automatically clears to 0). |     |       |  |

| Table 37. | DMA Hardware | Version ID | Reaister | (DMA HW ID) |
|-----------|--------------|------------|----------|-------------|
|           |              |            |          |             |

|      |      | Base Address = 0xFFFE DC00, Offset = 0x4 | 2   |        |
|------|------|------------------------------------------|-----|--------|
| Bit  | Name | Function                                 | R/W | Reset  |
| 15:0 |      | DMA version ID number                    | R   | 0x0001 |

## Table 38. PCh-2 Version ID Register (DMA\_PCh2\_ID)

|      | Base Address = 0xFFFE DC00, Offset = 0x44 |                             |   |        |  |
|------|-------------------------------------------|-----------------------------|---|--------|--|
| Bit  | Bit Name Function                         |                             |   | Reset  |  |
| 15:0 | PCH2_ID                                   | DMA PCh-2 version ID number | R | 0x0001 |  |

## Table 39. PCh-0 Version ID Register (DMA\_PCh0\_ID)

|      |         | Base Address = 0xFFFE DC00, Offset = 0x46 |     |        |
|------|---------|-------------------------------------------|-----|--------|
| Bit  | Name    | Function                                  | R/W | Reset  |
| 15:0 | PCH0_ID | DMA PCh-0 version ID number               | R   | 0x0001 |

## Table 40. PCh-1 Version ID Register (DMA\_PCh1\_ID)

|      | Base Address = 0xFFFE DC00, Offset = 0x48 |                             |     |        |  |
|------|-------------------------------------------|-----------------------------|-----|--------|--|
| Bit  | Bit Name Function                         |                             | R/W | Reset  |  |
| 15:0 | PCH1_ID                                   | DMA PCh-1 version ID number | R   | 0x0001 |  |

## Table 41. PCh-G Version ID Register (DMA\_PChG\_ID)

|      | Base Address = 0xFFFE DC00, Offset = 0x4A |                             |     |        |  |
|------|-------------------------------------------|-----------------------------|-----|--------|--|
| Bit  | Bit Name Function                         |                             | R/W | Reset  |  |
| 15:0 | PCHG_ID                                   | DMA PCh-G version ID number | R   | 0x0001 |  |

## Table 42. PCh-D Version ID Register (DMA\_PChD\_ID)

|      | Base Address = 0xFFFE DC00, Offset = 0x4C |                             |     |        |  |  |
|------|-------------------------------------------|-----------------------------|-----|--------|--|--|
| Bit  | Bit Name Function                         |                             | R/W | Reset  |  |  |
| 15:0 | PCHD_ID                                   | DMA PCh-D version ID number | R   | 0x0001 |  |  |

## Table 43. Global DMA Capability U Register 0 (DMA\_ CAPS\_0\_U)

| Base Address = 0xFFFE DC00, Offset = 0x4E |          |                                                                                                                                            |     |       |  |
|-------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|
| Bit                                       | Name     | Function                                                                                                                                   | R/W | Reset |  |
| 15:4                                      | RESERVED | Reserved                                                                                                                                   | R   | ND    |  |
| 3                                         | CFC      | Constant fill capacity:<br>0: PCh-G/PCh-0, or -1 cannot do constant fill copy.<br>1: PCh-G/PCh-0, or -1 can do constant fill copy.         | R   | 1     |  |
| 2                                         | TBLTC    | Transparent BLT capability:<br>0: PCh-G/PCh-0, or -1 cannot do transparent BLT copy.<br>1: PCh-G/PCh-0, or -1 can do transparent BLT copy. | R   | 1     |  |

85

|     |       | Base Address = 0xFFFE DC00, Offset = 0x4E                                         |     |       |
|-----|-------|-----------------------------------------------------------------------------------|-----|-------|
| Bit | Name  | Function                                                                          | R/W | Reset |
| 1   | OD    | Overlap detection capability (not available in OMAP3.2):                          | R   | 0     |
|     |       | 0: PCh-G cannot do overlap detection.<br>1: PCh-G can do overlap detection.       |     |       |
| 0   | DBLTC | Directional BLT capability (not available in OMAP3.2):                            | R   | 0     |
|     |       | 0: PCh-G cannot do directional BLT copy.<br>1: PCh-G can do directional BLT copy. |     |       |

## Table 43. Global DMA Capability U Register 0 (DMA\_ CAPS\_0\_U) (Continued)

 Table 44.
 Global DMA Capability L Register 0 (DMA\_ CAPS\_0\_L)

|      | Base Address = 0xFFFE DC00, Offset = 0x50 |                                                                                                     |     |       |  |  |  |
|------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|-----|-------|--|--|--|
| Bit  | Name                                      | Function                                                                                            | R/W | Reset |  |  |  |
| 15:3 | RESERVED                                  | Reserved                                                                                            | R   | ND    |  |  |  |
| 2    |                                           | Sub-byte destination capability (not available in OMAP 3.2);                                        | R   | 0     |  |  |  |
|      |                                           | 0: PCh-G cannot do bub-byte adjust for expansion.<br>1: PCh-G can do bub-byte adjust for expansion. |     |       |  |  |  |
| 1    | RESERVED                                  | Reserved                                                                                            | R   | ND    |  |  |  |
| 0    |                                           | Origin coordinate capability (not available in OMAP 3.2):                                           | R   | 0     |  |  |  |
|      |                                           | 0: PCh-G cannot do origin coordinate calculation.<br>1: PCh-G can do origin coordinate calculation. |     |       |  |  |  |

| Table 45. | Global DMA ( | Capability L | J Register 1 ( | (DMA CAP | S 1 U) |
|-----------|--------------|--------------|----------------|----------|--------|
|           |              |              |                |          | /      |

|      | Base Address = 0xFFFE DC00, Offset = 0x52 |          |     |       |  |
|------|-------------------------------------------|----------|-----|-------|--|
| Bit  | Name                                      | Function | R/W | Reset |  |
| 15:0 | RESERVED                                  | Reserved | R   | ND    |  |

## Table 46. Global DMA Capability L Register 1 (DMA\_CAPS\_1\_L)

| Base Address = 0xFFFE DC00, Offset = 0x54 |          |                                                                                     |     |       |  |  |
|-------------------------------------------|----------|-------------------------------------------------------------------------------------|-----|-------|--|--|
| Bit                                       | Name     | Function                                                                            | R/W | Reset |  |  |
| 15:2                                      | RESERVED | Reserved                                                                            | R   | ND    |  |  |
| 1                                         | CE       | 1-bit palletized capability (not available in OMAP 3.2):                            |     |       |  |  |
|                                           |          | 0: PCh-G cannot do 1-bit color expansion.<br>1: PCh-G can do 1-bit color expansion. |     |       |  |  |
| 0                                         | RESERVED | Reserved                                                                            | R   | ND    |  |  |

| Table 47. | Global DMA Ca | apability Register 2 | 2 (DMA | CAPS 2) |
|-----------|---------------|----------------------|--------|---------|
|           |               |                      |        |         |

| Base Address = 0xFFFE DC00, Offset = 0x56 |          |                                                                                                                                                         |     |       |  |
|-------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|
| Bit                                       | Name     | Function                                                                                                                                                | R/W | Reset |  |
| 15:9                                      | RESERVED | Reserved                                                                                                                                                | R   | ND    |  |
| 8                                         | SSDIC    | Separate source/double-index capability:                                                                                                                | R   | 1     |  |
|                                           |          | <ul><li>0: Does not support separate src/dst index for 2-D addressing.</li><li>1: Supports separate src/dst index for 2-D addressing.</li></ul>         |     |       |  |
| 7                                         | DDIAC    | Destination double-index address capability:                                                                                                            | R   | 1     |  |
|                                           |          | <ul><li>0: Does not support double-index address mode in destination port.</li><li>1: Supports double-index address mode in destination port.</li></ul> |     |       |  |
| 6                                         | DSIAC    | Destination single-index address capability:                                                                                                            | R   | 1     |  |
|                                           |          | <ul><li>0: Does not support single-index address mode in destination port.</li><li>1: Supports single-index address mode in destination port.</li></ul> |     |       |  |
| 5                                         | DPIAC    | Destination post-increment address capability:                                                                                                          | R   | 1     |  |
|                                           |          | 0: Does not support post-increment address mode in destination port.                                                                                    |     |       |  |
|                                           |          | 1: Supports post-increment address mode in destination port.                                                                                            |     |       |  |
| 4                                         | DCAC     | Destination constant address capability:                                                                                                                | R   | 1     |  |
|                                           |          | <ul><li>0: Does not support constant address mode in destination port.</li><li>1: Supports constant address mode in destination port.</li></ul>         |     |       |  |
| 3                                         | SDIAC    | Source double-index address capability:                                                                                                                 | R   | 1     |  |
|                                           |          | <ul><li>0: Does not support double-index address mode in source port.</li><li>1: Supports double-index address mode in source port.</li></ul>           |     |       |  |

## System DMA

## Table 47. Global DMA Capability Register 2 (DMA\_CAPS\_2) (Continued)

|     | Base Address = 0xFFFE DC00, Offset = 0x56 |                                                                                                                                       |     |       |  |
|-----|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|
| Bit | Name                                      | Function                                                                                                                              | R/W | Reset |  |
| 2   | SSIAC                                     | Source single-index address capability:                                                                                               | R   | 1     |  |
|     |                                           | 0: Does not support single-index address mode in source port.<br>1: Supports single-index address mode in source port.                |     |       |  |
| 1   | SPIAC                                     | Source post-increment address capability:                                                                                             | R   | 1     |  |
|     |                                           | 0: Does not support post-increment address mode in source port.<br>1: Supports post-increment address mode in source port.            |     |       |  |
| 0   | SCAC                                      | Source constant address capability:                                                                                                   | R   | 1     |  |
|     |                                           | <ul><li>0: Does not support constant address mode in source port.</li><li>1: Supports constant address mode in source port.</li></ul> |     |       |  |

## Table 48. Global DMA Capability Register 3 (DMA\_CAPS\_3)

| Base Address = 0xFFFE DC00, Offset = 0x58 |          |                                                                                                                                                                                                   |     |       |
|-------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| Bit                                       | Name     | Function                                                                                                                                                                                          | R/W | Reset |
| 15:6                                      | RESERVED | Reserved                                                                                                                                                                                          | R   | ND    |
| 5                                         | CCC      | Channel chaining capability:                                                                                                                                                                      | R   | 1     |
|                                           |          | 0: Does not support logical channel chaining capability.<br>1: Supports logical channel chaining capability.                                                                                      |     |       |
| 4                                         | IC       | LCh interleave capability:                                                                                                                                                                        | R   | 1     |
|                                           |          | 0: Does not support logical channel interleave capability.<br>1: Supports logical channel interleave capability.                                                                                  |     |       |
| 3                                         | ARC      | Autoinit and repeat capability:                                                                                                                                                                   | R   | 1     |
|                                           |          | <ul> <li>0: Does not support repeat feature in autoinitialization mode.</li> <li>1: Supports repeat feature in autoinitialization mode (supported only in OMAP 3.0/1 compatible mode).</li> </ul> |     |       |
| 2                                         | AEC      | Autoinit and End_prog capability:                                                                                                                                                                 | R   | 1     |
|                                           |          | 0: Does not support End_Prog feature in autoinit mode.<br>1: Supports End_Prog feature in autoinit mode (supported<br>only in OMAP 3.0/1 compatible mode).                                        |     |       |

# Table 48. Global DMA Capability Register 3 (DMA\_CAPS\_3) (Continued)

|     | Base Address = 0xFFFE DC00, Offset = 0x58 |                                                                   |     |       |
|-----|-------------------------------------------|-------------------------------------------------------------------|-----|-------|
| Bit | Name                                      | Function                                                          | R/W | Reset |
| 1   | FSC                                       | Frame synchronization capability:                                 | R   | 1     |
|     |                                           | 0: Does not support synchronization transfer on frame boundary.   |     |       |
|     |                                           | 1: Supports synchronization transfer on frame boundary.           |     |       |
| 0   | ESC                                       | Element synchronization capability:                               | R   | 1     |
|     |                                           | 0: Does not support synchronization transfer on element boundary. |     |       |
|     |                                           | 1: Supports synchronization transfer on element boundary.         |     |       |

| Table 49. | Global DMA Capability Register 4 (DMA_CAPS_4) |  |
|-----------|-----------------------------------------------|--|
|           |                                               |  |

|      | Base Address = 0xFFFE DC00, Offset = 0x5A |                                                                                                                                                           |     |       |
|------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| Bit  | Name                                      | Function                                                                                                                                                  | R/W | Reset |
| 15:7 | RESERVED                                  | Reserved                                                                                                                                                  | R   | ND    |
| 6    | SSC                                       | Sync status capability:                                                                                                                                   | R   | 1     |
|      |                                           | <ul><li>0: Does not support synchronization transfer status bit generation.</li><li>1: Supports synchronization transfer status bit generation.</li></ul> |     |       |
| 5    | BIC                                       | Block interrupt capability (end of block):                                                                                                                | R   | 1     |
|      |                                           | <ul><li>0: Does not support block interrupt generation capability.</li><li>1: Supports block interrupt generation capability.</li></ul>                   |     |       |
| 4    | LFIC                                      | Last frame interrupt capability (start of last frame):                                                                                                    | R   | 1     |
|      |                                           | <ul><li>0: Does not support last frame interrupt generation capability.</li><li>1: Supports last frame interrupt generation capability.</li></ul>         |     |       |
| 3    | FIC                                       | Frame interrupt capability (end of frame):                                                                                                                | R   | 1     |
|      |                                           | <ul><li>0: Does not support frame interrupt generation capability.</li><li>1: Supports frame interrupt generation capability.</li></ul>                   |     |       |
| 2    | HFIC                                      | Half frame interrupt capability (half of frame):                                                                                                          | R   | 1     |
|      |                                           | <ul><li>0: Does not support half frame interrupt generation capability.</li><li>1: Supports half frame interrupt generation capability.</li></ul>         |     |       |

#### Table 49. Global DMA Capability Register 4 (DMA\_CAPS\_4) (Continued)

|     | Base Address = 0xFFFE DC00, Offset = 0x5A |                                                                                                                            |   |   |
|-----|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---|---|
| Bit | Bit Name Function R/W F                   |                                                                                                                            |   |   |
| 1   | EDIC                                      | Event drop interrupt capability (request collision):                                                                       | R | 1 |
|     |                                           | 0: Does not support event drop interrupt generation capability.<br>1: Supports event drop interrupt generation capability. |   |   |
| 0   | TOIC                                      | Timeout interrupt capability (timeout error):                                                                              | R | 1 |
|     |                                           | 0: Does not support timeout interrupt generation capability.<br>1: Supports timeout interrupt generation capability.       |   |   |

Table 50. Physical Channel-x Status Registers (DMA\_PCh2\_SR,..., DMA\_PHhD\_SR\_0)

|      | Base Address = 0xFFFE DC00, Offset = 0x60, 0x80. 0x82, 0xC0 |                                                                |     |       |  |
|------|-------------------------------------------------------------|----------------------------------------------------------------|-----|-------|--|
| Bit  | Name                                                        | Function                                                       | R/W | Reset |  |
| 15:8 | RESERVED                                                    | Reserved                                                       | R   | ND    |  |
| 7:0  | ALCN                                                        | Active logical channel number for associated physical channel. | R   | 0xFF  |  |

Table 33 specifies which physical channels match each offset. These return the logical channel ID, which is active in the associated physical channel. These four registers can be used to monitor the progress of a DMA physical channel transfer.

Each register is a snapshot of the current logical channel number, which is active on the physical channel:

FF: DMA Physical\_Channel\_x is IDLE.

Others: DMA Logical\_Channel\_Number is active on the physical channel.

If PchD is active, DMA\_PChD\_SR\_0 will read as 0x1F if DMA is in OMAP3.2 compatible mode and 0xC in OMAP3.0/3.1 compatible mode.

## 3.3.2 Logical Channel Registers

This set of registers is instantiated within each logical channel to the DMA. The registers for the display channel, LCh-D are specific for that channel. Hence, these registers are collected in a dedicated section for the LCh-D, see Section 3.3.3.

All registers for a specific LCh must be configured before the LCh is enabled; if not, it will cause undefined effects. There are some exceptions to this rule when in OMAP3.0/3.1 compatible mode.

0 Direct Memory Access (DMA) Support

90

Table 51 lists the logical channel configuration registers. Table 52 through Table 96 describe the register bits.

Table 51. DMA Logical Channel Configuration Registers

| Base Address = FFFE D800 |                                            |     |                     |
|--------------------------|--------------------------------------------|-----|---------------------|
| Name                     | Description                                | R/W | Offset <sup>†</sup> |
| DMA_CSDP                 | Channel source destination parameters      | R/W | 0x00 + (n*0x40)     |
| DMA_CCR                  | Channel control register                   | R/W | 0x02 + (n*0x40)     |
| DMA_CICR                 | Channel interrupt control register         | R/W | 0x04 + (n*0x40)     |
| DMA_CSR                  | Channel status register                    | R   | 0x06 + (n*0x40)     |
| DMA_CSSA_L               | Channel source start addr, lower bits      | R/W | 0x08 + (n*0x40)     |
| DMA_CSSA_U               | Channel source start addr, upper bits      | R/W | 0x0A + (n*0x40)     |
| DMA_CDSA_L               | Channel destination start addr, lower bits | R/W | 0x0C + (n*0x40)     |
| DMA_CDSA_U               | Channel destination start addr, upper bits | R/W | 0x0E + (n*0x40)     |
| DMA_CEN                  | Channel element number                     | R/W | 0x10 + (n*0x40)     |
| DMA_CFN                  | Channel frame number                       | R/W | 0x12 + (n*0x40)     |
| DMA_CSFI                 | Channel source frame index                 | R/W | 0x14 + (n*0x40)     |
| DMA_CSEI                 | Channel source element index               | R/W | 0x16 + (n*0x40)     |
| DMA_CSAC                 | Channel source addr counter                | R   | 0x18 + (n*0x40)     |
| DMA_CDAC                 | Channel destination addr counter           | R   | 0x1A + (n*0x40)     |
| DMA_CDEI                 | Channel destination element index          | R/W | 0x1C + (n*0x40)     |
| DMA_CDFI                 | Channel destination frame index            | R/W | 0x1E + (n*0x40)     |
| DMA_COLOR_L              | Color parameter register, lower bits       | R/W | 0x20 + (n*0x40)     |
| DMA_COLOR_U              | Color parameter register, upper bits       | R/W | 0x22 + (n*0x40)     |
| DMA_CCR2                 | Channel control register 2                 | R/W | 0x24 + (n*0x40)     |
| DMA_CLNK_CTRL            | Channel link control register              | R/W | 0x28 + (n*0x40)     |
| DMA_LCH_CTRL             | Logical channel control register           | R/W | 0x2A + (n*0x40)     |

<sup>†</sup>n is the logical channel numbered 0x0 through 0xF.

SPRU755C

|       | Base Address = 0xFFFE D800, Offset Address = 0x00 + n*0x40 |                                                                  |     |       |  |
|-------|------------------------------------------------------------|------------------------------------------------------------------|-----|-------|--|
| Bit   | Name                                                       | Function                                                         | R/W | Reset |  |
| 15:14 | DST_BURST_EN                                               | Destination burst enable                                         | R/W | 00    |  |
| 13    | DST_PACK                                                   | Destination packing                                              | R/W | 0     |  |
| 12:9  | DST                                                        | Transfer destination                                             | R/W | 0000  |  |
| 8:7   | SRC_BURST_EN                                               | Source burst enable                                              | R/W | 00    |  |
| 6     | SRC_PACK                                                   | Source packing                                                   | R/W | 0     |  |
| 5:2   | SRC                                                        | Transfer source                                                  | R/W | 0000  |  |
| 1:0   | DATA_TYPE                                                  | Defines the type of the data moved in the channel (see Table 53) | R/W | 00    |  |

Table 52. Channel Source Destination Parameters Register (DMA\_CSDP)

Table 53. Data Types

| Data_type | Туре                                 |
|-----------|--------------------------------------|
| 00        | s8: 8 bits scalar                    |
| 01        | s16: 16 bits scalar                  |
| 10        | s32: 32 bits scalar                  |
| 11        | Illegal (cause<br>undefined effects) |

Start\_Address must be aligned on the boundary of the type of data moved. For example, if data\_type is s32, the source and destination start address must be aligned on a word32. If data\_type is s8, source and destination start\_address can have any value. Otherwise, the DMA is forced to transfer a different type of data to the PORT because of the unaligned start address value, which can cause undefined effects.

It is the software's responsibility to make sure that start address is aligned with channel data type.

src: Transfer source

A unique identifier is given to each port. This field identifies the port originator of the transfer.

| src    | OMAP Source Port                  |
|--------|-----------------------------------|
| 0000   | EMIFF                             |
| 0001   | EMIFS                             |
| 0010   | OCP_T1                            |
| 0011   | TIPB                              |
| 0100   | OCP_T2                            |
| 0101   | MPUI                              |
| Others | Illegal (cause undefined effects) |

□ SRC\_PACK: source packing

The DMA ports can have a data bus width different from the type of data moved by the DMA channel. For example, we can read s8 data\_type on a 32-bit DMA port. The DMA channel has the capacity to pack four consecutive s8 data reads in a single 32-bit read access, to increase transfer bandwidth. The packing is made in respect of endianism.

SRC PACK = 1: the source port makes packed accesses; SRC PACK = 0: the source port never makes packed accesses.

SRC\_BURST\_EN: source burst enable

Used to enable bursting on the source port. When bursting is enabled, the source port performs bursts 4 x src\_width access. When bursting is disabled, the source port performs single accesses of SRC\_WIDTH access.

| SRC_BURST_EN | Burst Type                                |
|--------------|-------------------------------------------|
| 00           | Single access                             |
| 01           | Single access                             |
| 10           | Burst 4x Src_width (Only support 4x32bit) |
| 11           | Burst 8x Src_width (Not supported)        |

If the source port of the channel has no burst access capability, this field is ignored.

☐ destination fields: (dst, dst\_pack, dst\_burst\_en) contains the same parameters as the source fields, but for the destination port

| Base Address = 0xFFFE D800, Offset Address = 0x02 + n*0x40 |                                 |                                               |     |       |  |
|------------------------------------------------------------|---------------------------------|-----------------------------------------------|-----|-------|--|
| Bit                                                        | Name                            | Function                                      | R/W | Reset |  |
| 15:14                                                      | DST_AMODE                       | Destination addressing mode                   | R/W | 00    |  |
| 13:12                                                      | SRC_AMODE                       | Source addressing mode                        | R/W | 00    |  |
| 11                                                         | END_PROG                        | End of programming status bit                 | R/W | 0     |  |
| 10                                                         | OMAP_3_1_COMPATIB<br>LE_DISABLE | OMAP 3.0/3.1 channel compatibility control    | R/W | 0     |  |
| 9                                                          | REPEAT                          | Repetitive operation                          | R/W | 0     |  |
| 8                                                          | AUTO_INIT                       | Autoinitialization at the end of the transfer | R/W | 0     |  |
| 7                                                          | ENABLE                          | Logical channel enable                        | R/W | 0     |  |
| 6                                                          | PRIO                            | Channel priority                              | R/W | 0     |  |
| 5                                                          | FS                              | Frame synchronization                         | R/W | 0     |  |
| 4:0                                                        | SYNC                            | Synchronization control                       | R/W | 00000 |  |

Table 54. DMA Channel Control Register (DMA\_CCR)

#### SYNC: Synchronization control

This field is used to specify the external DMA request, which can trigger the transfer for the LCh. There are 31 possible choices for the system DMA. Each LCh can be triggered by one of the DMA request inputs. A hardware DMA request cannot be shared between several concurrent channels (enabled and active). However, a hardware DMA request can be shared between different channels if they are part of a chain. Therefore, the user must carefully generate DMA requests if a sharing strategy is chosen. Otherwise, event drop of channel transfer may occur when the next DMA request is issued to trigger another channel transfer while the current channel transfer is still going on. For nonsynchronized LCh transfers, this field must be set to binary 00000.

□ FS: Frame synchronization

This bit and the bs bit in the DMA\_CCR2 register are used to program the way that a DMA\_request is serviced in a synchronized transfer.

fs = 1 and bs = 0: An entire frame is transferred each time a DMA\_request is made. This frame can be interleaved on the DMA ports with other channel requests. fs = 0 and bs = 1: An entire block is transferred each time a DMA\_request is made. This block can be interleaved on the DMA port with other channel requests.

fs = 0 and bs = 0: An element is transferred each time a DMA\_request is made. This element can be interleaved on the DMA port with other channel requests.

fs = 1 and bs = 1: This is not allowed and causes undefined results.

PRIO: Channel priority

Prio = 1: The logical channel has the highest priority level.

- Prio = 0: The logical channel has the lowest priority level.
- ENABLE: Logical channel enable

This bit is used to enable/disable the transfer in the DMA channel.

Enable = 1: The transfer starts. Enable = 0: The transfer stops, and it is reset.

This bit is automatically cleared by the DMA hardware once the transfer is accomplished. Clearing of this bit by the DMA has the priority over write by the processor. If both occur simultaneously, the configuration write is discarded.

AUTO\_INIT: Autoinitialization at the end of the transfer

Only supported in OMAP 3.0/1 compatible mode. In OMAP 3.2 mode, when bit OMAP3\_1\_COMPATIBLE\_DISABLE = 1, this bit must always be set to 0.

Auto init = 1: DMA is in autoinitialization mode. Once the current transfer is complete, the channel automatically reinitializes itself and starts a new transfer if repeat or end\_prog bits is set.

Auto init = 0: DMA is in non-autoinitialization mode. The DMA channel stops at the end of the current transfer.

There are two ways to stop a channel while it is in auto-init mode:

- Write 0 in DMA\_CCR.ENABLE bit: the channel immediately stops.
- Write 0 in DMA CCR.AUTO-INIT: the channel completes the current transfer and stops.

REPEAT: Repetitive operation

Only supported in OMAP 3.0/3.1 compatible mode. In OMAP 3.2 mode, when bit OMAP3\_1\_Compatible\_Disable = 1, this bit must always be set to 0. The functionality of repeat and end\_prog are dependent on each other. See Table 27 for more details (following descriptions do not cover all possibilities).

Repeat = 1: When DMA channel is in autoinitialization mode and end\_prog = 0, once the current transfer is complete, the channel automatically reinitializes itself and starts a new transfer.

Repeat = 0: When DMA channel is in autoinitialization mode and end\_prog = 0, once the current transfer is complete, the channel automatically reinitializes itself and starts a new transfer.

Note that even if REPEAT bit is only supported in OMAP3.0/3.1 compatible mode, its behavior with respect to END\_PROG bit is slightly different than in OMAP3.1.

OMAP3\_1\_COMPATIBLE\_DISABLE: OMAP 3.0/3.1 channel compatibility control

This bit is used to set the DMA logical channel programming model to be used. By default, all DMA logical channels are in omap\_3.1 compatible mode.

 $omap3_1_compatible_disable = 0$ : The logical channel is in OMAP\_3.0/3.1 compatible mode.

omap3\_1\_compatible\_disable = 1: The logical channel is in OMAP\_3.2 compatible mode.

END\_PROG: End of programming status bit

Only supported in OMAP 3.0/1 compatible mode. In OMAP 3.2 mode, when bit OMAP3\_1\_COMPATIBLE\_DISABLE = 1, this bit must always be set to 0.

End\_prog = 1: When DMA channel is in autoinitialization mode, it allows the channel to reinitialize itself after the current DMA channel transfer has been finished.

End\_prog = 0: When DMA channel is in autoinitialization mode and REPEAT bit is 0, DMA delays the channel autoinitialization until end\_prog bit is set to 1 after the current DMA channel transfer has been finished.

Note that even if END\_PROG bit is only supported in OMAP3.0/3.1 compatible mode, its behavior with respect to REPEAT bit is slightly different than in OMAP3.1.

SRC\_AMODE: Source addressing mode

This field is used to choose the addressing mode on the source port of a channel.

src\_amode = 00: Constant address
src\_amode = 01: Post-incremented address
src\_amode = 10: Single index (element index)
src\_amode = 11: Double index (element index and frame index)

DST\_AMODE: Destination addressing mode

This field is used to choose the addressing mode on the destination port of a channel.

dst\_amode = 00: Constant address
dst\_amode = 01: Post-incremented address
dst\_amode = 10: Single index (element index)
dst\_amode = 11: Double index (element index and frame index)

Table 55. DMA Channel Interrupt Control Register(DMA\_CICR)

| Base Address = 0xFFFE D800, Offset Address = 0x04 + n*0x40 |          |                                                                 |     |       |  |
|------------------------------------------------------------|----------|-----------------------------------------------------------------|-----|-------|--|
| Bit                                                        | Name     | Function                                                        | R/W | Reset |  |
| 15:6                                                       | RESERVED | Reserved                                                        | R/W | N/A   |  |
| 5                                                          | BLOCK_IE | End block interrupt enable (end of block)                       | R/W | 0     |  |
| 4                                                          | LAST_IE  | Last frame interrupt enable (start of last frame)               | R/W | 0     |  |
| 3                                                          | FRAME_IE | Frame interrupt enable (end of frame)                           | R/W | 0     |  |
| 2                                                          | HALF_IE  | Half-frame interrupt enable (half of frame)                     | R/W | 0     |  |
| 1                                                          | DROP_IE  | Synchronization event drop interrupt enable (request collision) | R/W | 1     |  |
| 0                                                          | TOUT_IE  | Timeout interrupt enable (timeout error)                        | R/W | 1     |  |

The interrupt enable bits are used to choose the events that cause the DMA channel send an interrupt to the processor. There are two classes of events:

- Error event: Errors during the transfer; for example timeout and event drop.
- Status event : DMA transfer status, during DMA channel transfers; for example new frame starts, end of data block to transfer is reached.

Direct Memory Access (DMA) Support 97

Each time an event occurs, if the corresponding interrupt enable bit is set, the channel sends an interrupt to the processor. At the same time, the corresponding status bit is set in DMA\_CSR (DMA channel status register). A status bit is not set, if the corresponding interrupt enable bit in the DMA\_CICR equals 0.

TOUT\_IE: Timeout interrupt enable (timeout error)

tout\_ie = 1: The DMA sends an interrupt to the processor if a timeout error occurs either in the source or in the destination port of the channel.

tout\_ie = 0: The DMA does not send an interrupt to the processor if a timeout error occurs.

DROP\_IE: Synchronization event drop interrupt enable (request collision) drop\_ie = 1: The channel sends an interrupt to the processor if the channel transfer is synchronized on DMA requests and two successive DMA requests drop. This occurs when a new DMA request is made while the service of the previous one has not been finished yet.

 $drop_ie = 0$ : The channel does not interrupt the processor when a synchronization event drop occurs.

□ HALF\_IE: Half-frame interrupt enable (half of frame)

half\_ie = 1: The channel sends an interrupt to the processor when the transfer of the first half of the current frame completes.

half\_ie = 0: The channel does not interrupt the processor when the transfer of the first half of the current frame completes.

**FRAME\_IE:** Frame interrupt enable (end of frame)

frame\_ie = 1: The channel sends an interrupt to the processor when the transfer of the current frame completes.

frame\_ie = 0: The channel does not interrupt the processor when the transfer of the current frame completes.

LAST\_IE: Last frame interrupt enable (start of last frame)

last\_ie = 1: The channel sends an interrupt to the processor when the transfer of the last frame starts.

last\_ie = 0: The channel does not interrupt the processor when the transfer of the last frame starts.

BLOCK\_IE: End block interrupt enable (end of block)

block\_ie = 1: The channel sends an interrupt to the processor when the transfer of the block completes.

block\_ie = 0: The channel does not interrupt the processor when the transfer of the block completes.

The DMA channel status register is written by the DMA to reflect the channel status. It can be read by the processor by polling or after an interrupt. After a functional read, all the DMA\_CSR bits are automatically cleared. However, DMA\_CSR bits are not cleared after emulation read.

| Base Address = 0xFFFE D800, Offset Address = 0x06 + n*0x40 |          |                                        |     |       |  |
|------------------------------------------------------------|----------|----------------------------------------|-----|-------|--|
| Bit                                                        | Name     | Function                               | R/W | Reset |  |
| 15:7                                                       | RESERVED | Reserved                               | R   | N/A   |  |
| 6                                                          | SYNC     | Synchronization status                 | R   | 0     |  |
| 5                                                          | BLOCK    | End block (end of block)               | R   | 0     |  |
| 4                                                          | LAST     | Last frame (start of last frame)       | R   | 0     |  |
| 3                                                          | FRAME    | Frame (end of frame)                   | R   | 0     |  |
| 2                                                          | HALF     | Half frame (half of frame)             | R   | 0     |  |
| 1                                                          | DROP     | Event drop (request collision)         | R   | 0     |  |
| 0                                                          | TOUT     | Timeout in the channel (timeout error) | R   | 0     |  |

| Table 56. | DMA Channel Status Registe | er (DMA CSR) |
|-----------|----------------------------|--------------|
|           |                            |              |

A status bit is not set if the corresponding interrupt enable bit in the DMA\_CICR register = 0.

☐ TOUT: Timeout in the channel (timeout error) tout = 1: Timeout occurred in channel.

tout = 0: No timeout error occurred in channel.

DROP: Event drop (request collision)

drop = 1: Synchronization event drop occurred during the transfer. drop = 0: No event drop occurred during the transfer.

HALF: Half frame (half of frame)

half = 1: First half of the current frame has been transferred. half = 0: First half of the current frame has not finished transferring yet.

□ FRAME (end of frame)

frame = 1: A complete frame has been transferred. frame = 0: Transfer of the current frame is still in progress.

- LAST: Last frame (start of last frame)
  - last = 1: The transfer of the last frame has started.

last = 0: Last frame has not started yet.

99

BLOCK: End block (end of block)

block = 1: The current transfer in the channel has been finished, but another one may have started if DMA\_CCR2[AUTO\_INIT] = 1.

block = 0: Current transfer has not finished yet.

SYNC: Synchronization status

Set to 1 when a DMA request is made in a synchronized channel. When there is a TIPB read access to DMA\_CSR register, this bit returns to zero.

Sync = 1: Logical channel is servicing synchronized DMA request.

Sync = 0: Logical channel is not servicing a synchronized channel, or DMA request has not been scheduled.

Table 57. DMA Channel Source Start Address Lower Bits Register (DMA\_CSSA\_L)

|      |      | Base Address = 0xFFFE D800, Offset Address = 0x08 + n*0x40 |     |       |
|------|------|------------------------------------------------------------|-----|-------|
| Bit  | Name | Function                                                   | R/W | Reset |
| 15:0 | SSAL | Source start address, lower bits                           | R/W | N/A   |
|      |      |                                                            |     |       |

Source start address, lower bits

Lower bits of the source start address, expressed in bytes. The source start address generated by the DMA is up to a 32-bit address, made of the concatenation of DMA\_CSSA\_U and DMA\_CSSA\_L.

| Table 58. | DMA Channel Source S | Start Address Upper Bits | Register (DMA CS | SSA U) |
|-----------|----------------------|--------------------------|------------------|--------|
|           |                      |                          |                  |        |

|      |      | Base Address = 0xFFFE D800, Offset Address = 0x0A + n*0x40 |     |       |
|------|------|------------------------------------------------------------|-----|-------|
| Bit  | Name | Function                                                   | R/W | Reset |
| 15:0 | SSAU | Source start address, upper bits                           | R/W | N/A   |
|      |      |                                                            | -   |       |

Source start address, upper bits

Upper bits of the source start address, expressed in bytes. The source start address generated by the DMA is a byte address, made of concatenation of DMA\_CSSA\_U and DMA\_CSSA\_L.

## Table 59. DMA Channel Destination Start Address Lower Bits Register (DMA\_CDSA\_L)

|      |      | Base Address = 0xFFFE D800, Offset Address = 0x0C + n*0x40 |     |       |
|------|------|------------------------------------------------------------|-----|-------|
| Bit  | Name | Function                                                   | R/W | Reset |
| 15:0 | DSAL | Destination start address, lower bits                      | R/W | N/A   |
|      |      | Destination start address, lower bits                      |     |       |

Lower bits for the destination start address, expressed in bytes. The destination start address is up to a 32-bit address, made of the concatenation of DMA\_CDSA\_U and DMA\_CDSA\_L.

Table 60. DMA Channel Destination Start Address Upper Bits Register  $(DMA\_CDSA\_U)$ 

|                                       |      | Base Address = 0xFFFE D800, Offset Address = 0x0E + n*0x40                                              |     |       |
|---------------------------------------|------|---------------------------------------------------------------------------------------------------------|-----|-------|
| Bit                                   | Name | Function                                                                                                | R/W | Reset |
| 15:0                                  | DSAU | Destination start address, upper bits                                                                   | R/W | N/A   |
| Destination start address, upper bits |      |                                                                                                         |     |       |
|                                       |      | Upper bits for the source start address, exprese destination start address is made of the concatenation |     |       |

and DMA\_CDSA\_L.

| Table 61. | DMA Channel Element Number Register (DMA | CEN) |
|-----------|------------------------------------------|------|
| 10010 011 |                                          | ,    |

|      |      | Base Address = 0xFFFE D800, Offset Address = 0x10 + n*0x40 |     |       |
|------|------|------------------------------------------------------------|-----|-------|
| Bit  | Name | Function                                                   | R/W | Reset |
| 15:0 | EN   | Channel element number                                     | R/W | N/A   |

Element number

Number of elements within a frame (unsigned). The maximum element number is 65535.

15:0

FN

|     |      | Base Address = 0xFFFE D800, Offset Address = 0x12 + n*0x40 |     |       |
|-----|------|------------------------------------------------------------|-----|-------|
| Bit | Name | Function                                                   | R/W | Reset |

Channel frame number

 Table 62.
 DMA Channel Frame Number Register (DMA\_CFN)

Frame number

Number of frames within the block to be transferred (unsigned). The maximum frame number is 65535.

R/W

N/A

The size in bytes of the data block to transfer is data\_block\_in\_bytes = DMA\_CFN x DMA\_CEN x DMA\_CSDP[data\_type].

| Table 63. | DMA Channel | Source Frame | Index Register | (DMA_CSFI) |
|-----------|-------------|--------------|----------------|------------|
|-----------|-------------|--------------|----------------|------------|

|      |      | Base Address = 0xFFFE D800, Offset Address = 0x14 + n*0x40 |     |       |
|------|------|------------------------------------------------------------|-----|-------|
| Bit  | Name | Function                                                   | R/W | Reset |
| 15:0 | SFI  | Channel source frame index                                 | R/W | N/A   |

□ Channel source frame index

Contains the channel source frame index, expressed as signed value in bytes, which is used to compute addresses when double indexed addressing mode is used in DMA source port.

| Table 64. | DMA Channel Source Element Ind | lex Register (DMA_CSEI) |
|-----------|--------------------------------|-------------------------|
|-----------|--------------------------------|-------------------------|

|      |      | Base Address = 0xFFFE D800, Offset Address = 0x16 + n*0x40 |     |       |
|------|------|------------------------------------------------------------|-----|-------|
| Bit  | Name | Function                                                   | R/W | Reset |
| 15:0 | SEI  | Channel source element index                               | R/W | N/A   |

Channel source element index

Contains the channel source element index, expressed as signed value in bytes, which is used to compute the addresses when single index addressing mode is used.

| Table 65. | DMA Channel So | irce Element Index | Register (DM) | 4_CSAC) |
|-----------|----------------|--------------------|---------------|---------|
|-----------|----------------|--------------------|---------------|---------|

|      | Base Address = 0xFFFE D800, Offset Address = 0x18 + n*0x40 |                                     |     |       |
|------|------------------------------------------------------------|-------------------------------------|-----|-------|
| Bit  | Name                                                       | Function                            | R/W | Reset |
| 15:0 | SAC                                                        | Source element/frame address 16 LSB | R   | N/A   |

This register can be used to monitor the progress of a DMA transfer on channel source port:

- □ It is a snapshot of the source address generated by the channel source address counter, which is scheduled in the channel source port.
- □ It is incremented on each access made on the channel source port (S8, S16 or S32).

Note that in OMAP3.0/3.1 the address used by this register was dedicated to DMA\_CPC register, which does not exist anymore.

Table 66. DMA Channel Destination Address Counter Register (DMA\_CDAC)

|      |      | Base Address = 0xFFFE D800, Offset Address = 0x1A + n*0x40 |          |            |
|------|------|------------------------------------------------------------|----------|------------|
| Bit  | Name | Function                                                   | R/W      | Reset      |
| 15:0 | DAC  | Destination element/frame address 16 LSB                   | R        | N/A        |
|      |      | This register can be used to monitor the progress of a DMA | transfer | on channel |

destination port:

- It is a snapshot of the destination address generated by the channel destination address counter, which is scheduled in the channel destination port.
- It is incremented on each access made on the channel destination port (S8, S16 or S32).

| Table 67. | DMA Channel | Destination | Element | Index | Register | (DMA | CDEL | ) |
|-----------|-------------|-------------|---------|-------|----------|------|------|---|
|           |             |             |         |       |          |      |      |   |

|      |      | Base Address = 0xFFFE D800, Offset Address = 0x1C + n*0x40 |     |       |
|------|------|------------------------------------------------------------|-----|-------|
| Bit  | Name | Function                                                   | R/W | Reset |
| 15:0 | DEI  | Channel destination element index                          | R/W | N/A   |

Channel destination element index

Contains the channel destination element index, expressed as a signed value in bytes, which is used to compute the addresses, when single/double indexed addressing mode is used.

#### Note:

When DMA\_ CCR[10] = 1, then destination\_element\_index = DMA\_CDEI. When DMA\_ CCR[10] = 0, then destination\_element\_index = DMA\_CSEI.

Table 68. DMA Channel Destination Frame Index Register (DMA\_CDFI)

| Base Address = 0xFFFE D800, Offset Address = 0x1E + n*0x40 |      |                                                                                                                                    |     |       |  |  |
|------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|--|
| Bit                                                        | Name | Function                                                                                                                           | R/W | Reset |  |  |
| 15:0                                                       | DFI  | Channel destination frame index                                                                                                    | R/W | N/A   |  |  |
|                                                            |      | Channel destination frame index                                                                                                    |     |       |  |  |
|                                                            |      | Contains the channel destination frame index, ex value in bytes, which is used to compute the add indexed addressing mode is used. | •   | •     |  |  |
|                                                            |      | Note:                                                                                                                              |     | 1     |  |  |
|                                                            |      | When DMA_CCR[10] = 1, then destination_frame_ind<br>When DMA_CCR[10] = 0, then destination_frame_ind                               |     |       |  |  |

 Table 69.
 DMA COLOR Parameter Register (DMA\_COLOR\_L)

| Bit  | Name | Function                                                                                                                                                 | R/W        | Reset    |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
| 15:0 | FCL  | Channel BLT foreground color (LSW)                                                                                                                       | R/W        | N/A      |
|      |      | This register can be used to provide parameter for DM transparent copy features. It must be configured in big er                                         |            |          |
|      |      | If DMA_CCR2[Constant_Fill_Enable] = 1, then it def<br>for constant filling.                                                                              | ines the   | paramete |
|      |      | If data_type = 8 bit, then<br>DMA_COLOR_L[7:0]: it defines parameter for co                                                                              | nstant fil | lling    |
|      |      | If data_type = 16 bit, then<br>DMA_COLOR_L[15:0]: it defines parameter for c                                                                             | onstant    | filling  |
|      |      | If data_type = 32 bit, then<br>DMA_COLOR_L[15:0]: it defines parameter[15:0]<br>filling<br>DMA_COLOR_U[15:0]: it defines parameter[3<br>constant filling | <b>、</b> , |          |

If DMA\_CCR2[Transparent\_Copy\_Enable] = 1, then it defines color key parameter for transparent copy.
 If data\_type = 8 bit, then
 DMA\_COLOR\_L[7:0]: it defines color key for transparent copy
 If data\_type = 16 bit, then
 DMA\_COLOR\_L[15:0]: it defines color key for transparent copy
 If data\_type = 32 bit, then
 DMA\_COLOR\_L[15:0]: it defines color key[15:0] (LSW) for
 transparent copy
 DMA\_COLOR\_U[15:0]: it defines color key[31:16] (MSW) for
 transparent copy

Table 70. DMA COLOR Parameter Register (DMA\_COLOR\_U)

|      |      | Base Address = 0xFFFE D800, Offset Address = 0x22 + n*0x40 |     |       |
|------|------|------------------------------------------------------------|-----|-------|
| Bit  | Name | Function                                                   | R/W | Reset |
| 15:0 | FCU  | Channel BLT foreground color (MSW)                         | R/W | N/A   |

For more details, see Table 69, DMA COLOR Parameter Register.

#### Table 71. DMA Channel Control Register 2 (DMA\_CCR2)

| Base Address = 0xFFFE D800, Offset Address = 0x24 + n*0x40 |          |                         |     |       |
|------------------------------------------------------------|----------|-------------------------|-----|-------|
| Bit                                                        | Name     | Function                | R/W | Reset |
| 15:3                                                       | RESERVED | Reserved                | R/W | N/A   |
| 2                                                          | BS       | Block Synchronization   | R/W | N/A   |
| 1                                                          | TCE      | Transparent copy enable | R/W | N/A   |
| 0                                                          | CFE      | Constant fill enable    | R/W | N/A   |

BS: Block synchronization

This bit and the fs bit in the DMA\_CCR register are used to program the way that a DMA\_request is serviced in a synchronized transfer.

Transparent copy enable

1: Transparent copy operation is enabled. During transparent copy operation, any source data type that matches the DMA\_COLOR\_U/L registers is not written to the destination.

0: Transparent copy operation is disabled. During transparent copy operation, any source pixel is written to the destination (No mask, brush are supported).

#### Constant fill enable

1: Constant fill operation is enabled. During constant fill operation, it writes destination with DMA\_COLOR\_U/L, instead of data from source.

0: Constant fill operation is disabled. During BLT operation, any source data is written to the destination without constant fill.

Table 72. DMA Logical Channel Link Control Register (DMA\_CLNK\_CTRL)

|      | Base Address = 0xFFFE D800, Offset Address = 0x28 + n*0x40 |             |                       |       |  |  |
|------|------------------------------------------------------------|-------------|-----------------------|-------|--|--|
| Bit  | Name                                                       | Function    | R/W                   | Reset |  |  |
| 15   | EL                                                         | Enable_Lnk  | R/W                   | 0     |  |  |
| 14   | SL                                                         | Stop_Lnk    | R/W                   | 0     |  |  |
| 13:5 | RESERVED                                                   | Reserved    | R/W                   | N/A   |  |  |
| 4    | NID                                                        | Next LCh_ID | R/W<br>(read<br>as 0) | 0     |  |  |
| 3:0  | NID                                                        | Next LCh_ID | R/W                   | 0000  |  |  |

Used to control logical channel linked queue.

- NEXTLCH\_ID: Defines the NEXTLCH\_ID, which is used to build logical channel chaining queue. The LOGICAL\_CHANNEL\_I is enabled, after the current logical channel finishes transfer (i = 0-15).
- STOP\_LNK: Disables the logical channel on channel linked queue.

1: The logical channel, defined by NEXTLCH\_ID, is disabled, and ENABLE\_LNK is disabled.

0: No logical channel in chained is disabled.

ENABLE\_LNK: Defines the logical channel that is on channel linked queue.

1: The logical channel, defined by NEXTLCH\_ID, is enabled after the current channel finishes transferring.

0: No logical channel is chained after the current logical channel.

| Table 73. | DMA Logical | Channel | Control | Register | (DMA_ | _LCH_ | CTRL) |
|-----------|-------------|---------|---------|----------|-------|-------|-------|
|-----------|-------------|---------|---------|----------|-------|-------|-------|

|      | Base Address = 0xFFFE D800, Offset Address = 0x2A + n*0x40 |                        |     |       |  |  |
|------|------------------------------------------------------------|------------------------|-----|-------|--|--|
| Bit  | Name                                                       | Function               | R/W | Reset |  |  |
| 15   | LID                                                        | LCH Interleave Disable | R/W | 0     |  |  |
| 14:4 | RESERVED                                                   | Reserved               | R/W | N/A   |  |  |
| 3:0  | LT                                                         | LCH Туре               | R/W | 0000  |  |  |

Used to control logical channel access.

- □ LCH\_Type: Defines the logical channel assignment relationship to physical channel and associated features.
  - 0000: LCh-2D dynamically shares PCh-0 and -1
  - 0001: LCh-G dynamically shares PCh-0 and -1
  - 0010: LCh-P dynamically shares PCh-0 and -1
  - 0111: LCh-PD PCh-2

All other configurations result in undefined effects.

LCH\_Interleave\_Disable: Defines synchronized logical channel interleave mode enable.

0: Synchronized logical channel interleave mode enabled. The logical channel transfer can be interleaved at the end of DMA request transfers.

1: A synchronized logical channel interleave mode is disabled. The logical channel takes control of the PCh until the entire DMA data has been transferred, regardless of DMA requests. The LCh/PCh cannot be preempted when interleaving is disabled, regardless of the LCh priority setting.

#### 3.3.3 LCD Channel Dedicated Registers

Table 74 lists the DMA channel dedicated registers. Table 75 through Table 96 describe the register bits.

| Base Address = FFFE EC00                 |                                                  |     |      |  |  |
|------------------------------------------|--------------------------------------------------|-----|------|--|--|
| Name Description R/W Offset <sup>†</sup> |                                                  |     |      |  |  |
| DMA_LCD_CSDP                             | DMA LCD channel source destination<br>parameters | R/W | 0xC0 |  |  |
| DMA_LCD_CCR                              | DMA LCD channel control                          | R/W | 0xC2 |  |  |

| Table 74. | DMA Logical Channel | Configuration Registers |
|-----------|---------------------|-------------------------|
|-----------|---------------------|-------------------------|

<sup>†</sup> Some offsets are not in numerical order to facilitate the relationship between the upper and lower words of some registers.

#### System DMA

| Base Address = FFFE EC00 |                                  |     |                     |  |  |  |
|--------------------------|----------------------------------|-----|---------------------|--|--|--|
| Name                     | Description                      | R/W | Offset <sup>†</sup> |  |  |  |
| DMA_LCD_CTRL             | DMA LCD control                  | R/W | 0xC4                |  |  |  |
| TOP_B1_L                 | DMA LCD top address B1 L         | R/W | 0xC8                |  |  |  |
| TOP_B1_U                 | DMA LCD top address B1 U         | R/W | 0xCA                |  |  |  |
| BOT_B1_L                 | DMA LCD bottom address B1 L      | R/W | 0xCC                |  |  |  |
| BOT_B1_U                 | DMA LCD bottom address B1 U      | R/W | 0xCE                |  |  |  |
| TOP_B2_L                 | DMA LCD top address B2 L         | R/W | 0xD0                |  |  |  |
| TOP_B2_U                 | DMA LCD top address B2 U         | R/W | 0xD2                |  |  |  |
| BOT_B2_L                 | DMA LCD bottom address B2 L      | R/W | 0xD4                |  |  |  |
| BOT_B2_U                 | DMA LCD bottom address B2 U      | R/W | 0xD6                |  |  |  |
| DMA_LCD_SRC_EI_B1        | DMA LCD source element index B1  | R/W | 0xD8                |  |  |  |
| DMA_LCD_SRC_FI_B1_L      | DMA LCD source frame index B1 L  | R/W | 0xDA                |  |  |  |
| DMA_LCD_SRC_FI_B1_U      | DMA LCD source frame index B1 U  | R/W | 0xF4                |  |  |  |
| DMA_LCD_SRC_EI_B2        | DMA LCD source element index B2  | R/W | 0xDC                |  |  |  |
| DMA_LCD_SRC_FI_B2_L      | DMA LCD source frame index B2 L  | R/W | 0xDE                |  |  |  |
| DMA_LCD_SRC_FI_B2_U      | DMA LCD source frame index B2 U  | R/W | 0xF6                |  |  |  |
| DMA_LCD_SRC_EN_B1        | DMA LCD source element number B1 | R/W | 0xE0                |  |  |  |
| DMA_LCD_SRC_FN_B1        | DMA LCD source frame number B1   | R/W | 0xE4                |  |  |  |
| DMA_LCD_SRC_EN_B2        | DMA LCD source element number B2 | R/W | 0xE2                |  |  |  |
| DMA_LCD_SRC_FN_B2        | DMA LCD source frame number B2   | R/W | 0xE6                |  |  |  |
| DMA_LCD_LCH_CTRL         | DMA LCD logical channel control  | R/W | 0xEA                |  |  |  |

| Table 74. | DMA Logical | Channel | Configuration | Registers | (Continued) |
|-----------|-------------|---------|---------------|-----------|-------------|
|           |             |         |               |           |             |

<sup>†</sup>Some offsets are not in numerical order to facilitate the relationship between the upper and lower words of some registers.

|       | Base Address = 0xFFFE E300, Offset Address = 0xC0 |                                             |     |       |  |
|-------|---------------------------------------------------|---------------------------------------------|-----|-------|--|
| Bit   | Name                                              | Function                                    | R/W | Reset |  |
| 15:14 | BURST_EN_B2                                       | Burst enable for block 2. (Tie off = $10$ ) | R/W | 00    |  |
| 13    | PACK_EN_B2                                        | Pack enable for block 2                     | R/W | 0     |  |
| 12:11 | DATA_TYPE_B2                                      | Data type for block 2. (Tie off = $10$ )    | R/W | 00    |  |
| 10:9  | RESERVED                                          | Reserved                                    | R/W | ND    |  |
| 8:7   | BURST_EN_B1                                       | Burst enable for block 1. (Tie off = 10)    | R/W | 00    |  |
| 6     | PACK_EN_B1                                        | Pack enable for block 1                     | R/W | 0     |  |
| 5:2   | RESERVED                                          | Reserved                                    | R/W | ND    |  |
| 1:0   | DATA_TYPE_B1                                      | Data type for block 1. (Tie off = 10)       | R/W | 00    |  |

Table 75. DMA LCD Channel Source Destination Parameters Register (DMA\_LCD\_CSDP)

The OMAP\_3.1\_mode tie-off values are the values given to the bits in OMAP3.1 compatible mode, since the DMA\_LCD\_CCR, DMA\_LCH\_CTRL, and DMA\_LCD\_CSDP registers do not exist in the compatible mode. These values are tied off/on in hardware.

Used to control the LCD channel dual/single block transferring.

data\_type\_b1/data\_type\_b2: Defines the type of data moved in the LCD channel from source port for block\_1/block\_2

| DATA_TYPE [15:14] or [8:7] | type                |
|----------------------------|---------------------|
| 00                         | s8: 8 bits scalar   |
| 01                         | s16: 16 bits scalar |
| 10                         | s32: 32 bits scalar |
| 11                         | illegal value       |

Start\_Address must be aligned on the boundary of the type of data moved. For example, if data\_type is s32 the source start address must be aligned on a word32. If data\_type is s8, source start\_address can have any value.

It is the software's responsibility to make sure that start address is aligned with channel data\_type.

PACK\_EN\_B1/PACK\_EN\_B2: packing enable for block\_1/block\_2 transfer

The DMA ports can have a data bus width different from the type of data moved by the DMA channel. For example, s8 data\_type can be read on a 32-bit DMA port. The DMA channel has the capacity to pack four consecutive s8 data reads in a single 32-bit read access in order to increase transfer bandwidth.

Pack\_en\_b1/Pack\_en\_b2 = 1: The source port makes packed accesses. Pack\_en\_b1/Pack\_en\_b2 = 0: The source port never makes packed accesses.

BURST\_EN\_B1 / BURST\_EN\_B2: burst enable for block\_1 / block\_2 transfer

Used to enable bursting on the source port. When bursting is enabled, the source port performs bursts 4 x src\_width access. When bursting is disabled, the source port performs single accesses of src\_width access.

| SRC_BURST_EN[1:0] | Burst Type                                     |
|-------------------|------------------------------------------------|
| 00                | Single access                                  |
| 01                | Reserved                                       |
| 10                | Burst 4x port_width (Support 4x32bit accesses) |
| 11                | Reserved                                       |

If the source port of the channel has no burst access capability, this field is ignored.

| Table 76. | DMA LCD ( | Channel Control | Register | (DMA | LCD | CCR) |
|-----------|-----------|-----------------|----------|------|-----|------|
|           |           |                 |          |      |     |      |

| Base Address = 0xFFFE E300, Offset Address =0xC2 |                                |                                                          |            |       |  |
|--------------------------------------------------|--------------------------------|----------------------------------------------------------|------------|-------|--|
| Bit                                              | Name                           | Function                                                 | R/W        | Reset |  |
| 15:14                                            | SRC_AMODE_B2                   | Source addressing mode for block 2. (Tie off: 01)        | R/W        | 00    |  |
| 13:12                                            | SRC_AMODE_B1                   | Source addressing mode for block 2. (Tie off 01)         | R/W        | 00    |  |
| 11                                               | end_prog                       | End of programming status bit. (Tie off = 0)             | R/W<br>rst | 00    |  |
| 10                                               | OMAP3_1_Compatible_<br>disable | OMAP3.1 channel compatibility control.                   | R/W        | 0     |  |
| 9                                                | REPEAT                         | Repetitive operation. (Tie off = $1$ )                   | R/W        | 0     |  |
| 8                                                | AUTOINIT                       | Autoinitialize at the end of the transfer. (Tie off = 1) | R/W        | 0     |  |
| 7                                                | ENABLE                         | Enable transfer. (Tie off = 1)                           | R/W<br>rst | 0     |  |

| Bit | Name     | Function                        | R/W | Reset |
|-----|----------|---------------------------------|-----|-------|
| 6   | PRIO     | Channel priority. (Tie off = 1) | R/W | 0     |
| 5   | RESERVED | Reserved                        | R/W | ND    |
| 4   | BS       | Block synchronize               | R/W | ND    |
| 3:0 | RESERVED | Reserved                        | R/W | ND    |

Table 76. DMA LCD Channel Control Register (DMA\_LCD\_CCR) (Continued)

The OMAP\_3.1\_mode tie-off values are the values given to the bits in OMAP3.1 compatible mode, since the DMA\_LCD\_CCR, DMA\_LCH\_CTRL, and DMA\_LCD\_CSDP registers do not exist in the compatible mode. These values are tied off/on in hardware.

bs: block synchronize

If the external LCD controller is the destination and bs = 1:

Then the DMA LCD channel is synchronized on blocks. This means a block transfer is started each time the LCh is enabled and a hardware synchronization signal is received from the external LCD controller.

- One DMA LCD channel request triggers one block transfer, in both single and dual block modes.
- Two DMA LCD channel requests are required to trigger two block transfers, even if it is in dual block mode.

If the external LCD controller is enabled and bs = 0:

The LCD channel is a software-triggered channel. This means a transfer can start as soon as the LCh is enabled.

If the OMAP LCD controller is the destination, the bs bit is ignored.

If auto init and repeat and/or end prog are set, a hardware request for successive block transfers is required.

Prio\_0 : Channel priority

 $Prio_0 = 1$ : The channel has the high-priority level.

 $Prio_0 = 0$ : The channel has the low-priority level.

Enable:

This bit is used to enable/disable the transfer in the DMA LCD channel when OMAP external LCD controller is selected.

Enable = 1: The transfer starts.

Enable = 0: The transfer stops and is reset.

SPRU755C

Direct Memory Access (DMA) Support 111

This bit is automatically cleared by the DMA hardware once the transfer is completed. However, if AUTO\_INIT = 1 and REPEAT = 1, the channel continues without being disabled. Clearing of this bit by the DMA has priority over a write by the processor. If both occur simultaneously, the configuration write is discarded.

#### Note:

If the software must use this bit as a flag, it must do a back to back read to make sure that correct value of this enable bit is latched. This is because the enable bit can be asynchronously reset at the end of channel transfer, and a wrong value may send back when this risk condition happens.

AUTO\_INIT: Autoinitialization at the end of the transfer

auto\_init = 1: LCD channel is in autoinitialization mode. Once the current transfer is complete, the channel automatically reinitializes itself and starts a new transfer, if REPEAT or END\_PROG bits is set. Else, if neither REPEAT nor END\_PROG equals 1, wait for the END\_PROG to be set to 1 to reload the channel with a new context and let the transfer restart.

auto\_init = 0: LCD channel is in non-autoinitialization mode. The DMA channel stops at the end of the current transfer.

REPEAT: repetitive operation

Repeat = 1: When LCD channel is in autoinitialization mode, once the current transfer is complete the channel automatically reinitializes itself and starts a new transfer with the previous or a new context depending on the end\_prog bit (0/1).

Repeat = 0: When LCD channel is in autoinitialization mode, once the current transfer is complete the channel automatically reinitializes itself and starts a new transfer only if END\_PROG = 1.

The repeat bit is not considered if  $AUTO_INIT = 0$ .

OMAP3\_1\_COMPATIBLE\_DISABLE: Omap3.1 channel compatibility control.

This bit is used to set DMA LCD channel programming model.

omap3\_1\_compatible\_disable = 1: The LCD channel is in OMAP3.2 compatible mode.

omap3\_1\_compatible\_disable = 0: The LCD channel is in OMAP3.1 compatible mode.

END\_PROG: end of programming status bit

end\_prog = 1: When LCD channel is in autoinitialization mode, it allows the channel to reinitialize itself with a new channel context (the program register set is copied to the active register set) after the current DMA channel transfer has been finished. The end\_prog bit automatically resets itself when the new context has been loaded.

end\_prog = 0: When LCD channel is in autoinitialization mode, and REPEAT bit is 1, DMA continues LCD next transfer with the same channel context. If REPEAT = 0, the channel does not reinitialize itself and does not start a new transfer.

The end\_prog bit is not considered if  $AUTO_INIT = 0$ .

SRC\_AMODE\_B1/SRC\_AMODE\_B2: Source addressing mode for block1 or block2 transfer. This field is used to choose the addressing mode on the source port of the channel.

src\_amode\_b1/b2 = 00: Reserved

src\_amode\_b1/b2 = 01: Post-incremented address

src\_amode\_b1/b2 = 10: Single index (element index)

src\_amode\_b1/b2 = 11: Double index (element and frame indexes)

There is no need for a dst\_amode\_b1/dst\_amode\_b2 because there is no write address to a destination port in the LCD channel case.

| Base Address = 0xFFFE E300, Offset Address = 0xC4 |                       |                                                         |                       |       |  |  |
|---------------------------------------------------|-----------------------|---------------------------------------------------------|-----------------------|-------|--|--|
| Bit                                               | Name                  | Function                                                | R/W                   | Reset |  |  |
| 15:9                                              | RESERVED              | Reserved.                                               | R/W                   | ND    |  |  |
| 8                                                 | LDP                   | LCD destination port (OMAP or external LCD controller). | R/W                   | 0     |  |  |
| 7:6                                               | LSP                   | LCD source port. Memory source for the LCD channel.     | R/W                   | 00    |  |  |
| 5                                                 | BUS_ERROR_IT_<br>COND | Bus error interrupt condition.                          | R/W<br>(read<br>as 0) | 0     |  |  |
| 4                                                 | BLOCK_2_IT_COND       | Block 2 interrupt condition.                            | R/W                   | 0     |  |  |
| 3                                                 | BLOCK_1_IT_COND       | Block 1 interrupt condition.                            | R/W                   | 0     |  |  |
| 2                                                 | BUS_ERROR_IT_IE       | Buss error interrupt enable.                            | R/W                   | 0     |  |  |
| 1                                                 | BLOCK_IT_IE           | Block interrupt enable.                                 | R/W                   | 0     |  |  |
| 0                                                 | BLOCK_MODE            | Type of block mode used for the LCD transfer.           | R/W                   | 0     |  |  |

Table 77. DMA LCD Control Register (DMA\_LCD\_CTRL)

SPRU755C

Direct Memory Access (DMA) Support 113

The DMA LCD control register contains nine bit-fields, which control the LCD channel operation. There are two cases of interrupt: end block buffer or abort on the bus (bus error). Bits block\_it\_ie and bus\_error\_iie (interrupt enable) enable the generation of the interrupt.

If the status bits (xxx\_cond bits and the corresponding interrupt enable bits xxx\_ie bits) are all set, an interrupt signal is sent from the DMA LCD channel to the CPU. The CPU reads this register to find the cause of the interrupt.

Users must write to this register to clear the status bits.

BLOCK\_MODE: Type of block mode used for the LCD transfer

0: One block buffer; only registers relative to block 1 are used.

1: Two block buffers; the LCD channel reads alternatively top\_block\_1 and top\_block\_2.

BLOCK\_IT\_IE: end block interrupt enable

0: Interrupt disabled.

1: Interrupt enabled.

This bit enables an end of block interrupt for either block 1 or 2 when dual block mode is selected.

- BUS\_ERROR\_IT\_IE: bus error interrupt enable
  - 0: Interrupt disabled.
  - 1: Interrupt enabled.
- BLOCK\_1\_IT\_COND: status LCD channel bit. Users must write to this register to clear the status bits.

0: No end of block 1 interrupt detected.

- 1: End of block 1 interrupt detected.
- BLOCK\_2\_IT\_COND: status LCD channel bit. Users must write to this register to clear the status bits.

0: No end of block 2 interrupt detected.

- 1: End of block 2 interrupt detected.
- BUS\_ERROR\_IT\_COND: status LCD channel bit. Users must write to this register to clear the status bits.

0: No bus error interrupt detected.

1: Bus error interrupt detected.

□ LCD\_SOURCE\_PORT: memory source for the LCD channel

This bit indicates which memory source is selected for the next LCD transfer.

- 00: Memory source is SDRAM.
- 01: Memory source is L3\_OCP\_T1 (Camera).
- 10: Memory source is L3\_OCP\_T2 (Test SRAM).
- 11: Reserved.
- LCD\_DESTINATION\_PORT: LCD controller for the LCD channel

This bit indicates which LCD controller is selected for the next LCD transfer.

- 0: OMAP controller is connected to the DMA LCD channel.
- 1: External LCD controller is connected to the DMA LCD channel.

#### Note:

To enable the external LCD controller, users must have the external LCD clock active (even if it is not ready to send an image). The following must be set to accomplish this:

DMA\_GSCR.OMAP31\_MAPPING\_DISABLE = 1

DMA\_LCD\_CTRL.ICD\_DESTINATION\_PORT = 1

DMA\_LCD\_CCR.OMAP31\_COMPATIBLE\_DISABLE = 1

In order to enter deep idle mode, users must set DMA\_LCD\_CTRL.LCD\_DES-TINATION\_PORT = 0. Indeed, DMA\_LCD\_CTRL.LCD\_DESTINA-TION\_PORT = 1 is a condition that prevents OMAP3.2 from going to idle state because the clock request corresponding to external LCD controller clock is kept active. Consequently, deep idle mode cannot be initiated.

## DMA LCD Top Address B1 Registers

The LCD top address B1 registers are two 16-bit registers, which contain the start address for the video RAM buffer 1. The 32-bit address is obtained by the concatenation of the two word16 as described here:

LCD\_TOP\_B1 = DMA\_LCD\_TOP\_B1\_U & DMA\_LCD\_TOP\_B1\_L

#### Note:

The LSB of the word32 is equal to zero. Address of video buffer must always be even.

| Tahla 78  | DMA LCD Top Address B1 L Register (TOP_B1_L) |
|-----------|----------------------------------------------|
| Table 70. | DIMALCO TOP Address DT L Register (TOT_DT_L) |
|           |                                              |

|      | Base Address = 0xFFFE E300, Offset Address = 0xC8 |                                               |     |       |  |  |
|------|---------------------------------------------------|-----------------------------------------------|-----|-------|--|--|
| Bit  | Name                                              | Function                                      | R/W | Reset |  |  |
| 15:1 |                                                   | LCD TOP address for block buffer 1 lower bits | R/W | ND    |  |  |
| 0    |                                                   | 0 (always tied to 0)                          | R   | 0     |  |  |

# Table 79. DMA LCD Top Address B1 U Register (TOP\_B1\_U)

| Base Address = 0xFFFE E300, Offset Address = 0xCA |      |                                               |     |       |
|---------------------------------------------------|------|-----------------------------------------------|-----|-------|
| Bit                                               | Name | Function                                      | R/W | Reset |
| 15:0                                              |      | LCD TOP address for block buffer 1 upper bits | R/W | ND    |

# DMA LCD Bottom Address B1 Registers

The LCD bottom address B1 registers are two 16-bit registers that contain the bottom address for the video RAM buffer 1. The 32-bit address is obtained by the concatenation of the two word16 as described here:

LCD\_BOTTOM\_B1 = DMA\_LCD\_BOT\_B1\_U & DMA\_LCD\_BOT\_B1\_L

Note:

The LSB of the word32 is equal to zero. Address of video buffer must always be even.

Table 80. DMA LCD Bottom Address B1 L Register (BOT\_B1\_L)

|      | Base Address = 0xFFFE E300, Offset Address = 0xCC |                                               |     |       |  |
|------|---------------------------------------------------|-----------------------------------------------|-----|-------|--|
| Bit  | Name                                              | Function                                      | R/W | Reset |  |
| 15:1 |                                                   | LCD BOT address for block buffer 1 lower bits | R/W | ND    |  |
| 0    |                                                   | 0 (always tied to 0)                          | R   | 0     |  |

# Table 81. DMA LCD Bottom Address B1 U Register (BOT\_B1\_U)

|      | Base Address = 0xFFFE E300, Offset Address = 0xCE |                                               |     |       |  |
|------|---------------------------------------------------|-----------------------------------------------|-----|-------|--|
| Bit  | Name                                              | Function                                      | R/W | Reset |  |
| 15:0 |                                                   | LCD BOT address for block buffer 1 upper bits | R/W | ND    |  |

### DMA LCD Top Address B2 Registers

The LCD top address B2 registers are two 16-bit registers that contain the start address for the video RAM buffer 2. The 32-bit address is obtained by the concatenation of the two word16 as described here:

LCD\_TOP\_B2 = DMA\_LCD\_TOP\_B2\_U & DMA\_LCD\_TOP\_B2\_L

#### Note:

The LSB of the word32 is equal to zero. Address of video buffer must always be even.

| Table 82. | DMA LCD To | op Address | B2 L Register | (TOP B2 L) |
|-----------|------------|------------|---------------|------------|
|           |            |            |               |            |

|      |      | Base Address = 0xFFFE E300, Offset Address = 0xD0 |     |       |
|------|------|---------------------------------------------------|-----|-------|
| Bit  | Name | Function                                          | R/W | Reset |
| 15:1 |      | LCD TOP address for block buffer 2 lower bits     | R/W | ND    |
| 0    |      | 0 (always tied to 0)                              | R   | 0     |

Table 83. DMA LCD Top Address B2 U Register (TOP\_B2\_U)

|      |      | Base Address = 0xFFFE E300, Offset Address = 0xD2 |     |       |
|------|------|---------------------------------------------------|-----|-------|
| Bit  | Name | Function                                          | R/W | Reset |
| 15:0 |      | LCD TOP address for block buffer 2 upper bits     | R/W | ND    |

# DMA LCD Bottom Address B2 Registers

The LCD bottom B2 address registers are two 16-bit registers that contain the bottom address for the video RAM buffer 2. The 32-bit address is obtained by the concatenation of the two word16 as described here:

LCD\_BOTTOM\_B2 = DMA\_LCD\_BOT\_B2\_U & DMA\_LCD\_BOT\_B2\_L

#### Note:

The LSB of the word32 is equal to zero. Address of video buffer must always be even.

|          | Ba           | ase Address = 0xFFFE E300, Offset Address = 0xD4 |     |       |
|----------|--------------|--------------------------------------------------|-----|-------|
| Bit      | Name         | Function                                         | R/W | Reset |
| 15:1     |              | LCD BOT address for block buffer 2 lower bits    | R/W | ND    |
| 0        |              | 0 (always tied to 0)                             | R   | 0     |
| Table 85 | 5. DMA LCD B | ottom Address B2 U Register (BOT_B2_U)           |     |       |
|          | Ba           | ase Address = 0xFFFE E300, Offset Address = 0xD6 |     |       |
| Bit      | Name         | Function                                         | R/W | Reset |
| 15:0     |              | LCD BOT address for block buffer 2 upper bits    | R/W | ND    |

### Table 84. DMA LCD Bottom Address B2 L Register (BOT\_B2\_L)

| Table 86. | DMA LCD Source   | Element Index B1   | Reaister  | (DMA LCD | SRC EI B1) | ) |
|-----------|------------------|--------------------|-----------|----------|------------|---|
| 10010 00. | DIVIN LOD COULOG | Elonnonic maox B i | riogiotor |          |            | / |

|      |      | Base Address = 0xFFFE E300, Offset Address = 0xD8 |     |       |
|------|------|---------------------------------------------------|-----|-------|
| Bit  | Name | Function                                          | R/W | Reset |
| 15:0 |      | LCD source element index for block 1              | R/W | ND    |
|      |      | LCD channel source element index for block 1      |     |       |

Contains the channel source element index for LCD video RAM buffer 1, expressed as signed value in bytes, which is used to compute the addresses when single or double-indexed addressing mode is used.

Table 87. DMA LCD Source Frame Index B1 Register L (DMA\_LCD\_SRC\_FI\_B1\_L)

|      |      | Base Address = 0xFFFE E300, Offset Address = 0xDA | 1   |       |
|------|------|---------------------------------------------------|-----|-------|
| Bit  | Name | Function                                          | R/W | Reset |
| 15:0 |      | LCD source frame index for block 1 L              | R/W | ND    |

Table 88. DMA LCD Source Frame Index B1 Register U (DMA\_LCD\_SRC\_FI\_B1\_U)

|      |      | Base Address = 0xFFFE E300, Offset Address = 0xF4 |     |       |
|------|------|---------------------------------------------------|-----|-------|
| Bit  | Name | Function                                          | R/W | Reset |
| 15:0 |      | LCD source frame index for block 1 U              | R/W | ND    |

LCD channel source frameindex for block 1

These registers contain the channel source frame index for video RAM buffer 1, expressed as a signed value in bytes, which is used to compute addresses when double-indexed addressing mode is used.

 Table 89.
 DMA LCD Source Element Index B2 Register (DMA\_LCD\_SRC\_EI\_B2)

|           |      | Base Address = 0xFFFE E300, Offset Address = 0xDC                                                                                                       |           |            |
|-----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|
| Bit       | Name | Function                                                                                                                                                | R/W       | Reset      |
| 15:0      |      | LCD source element index for block 2                                                                                                                    | R/W       | ND         |
|           |      | LCD channel source element index for block 2                                                                                                            |           |            |
|           |      | Contains the channel source element index for LCE<br>expressed as signed value in bytes, which is u<br>addresses when single or double-indexed addressi | sed to co | mpute th   |
| Table 90. | DMA  | LCD Source Frame Index B2 Register L (DMA_LCD_S                                                                                                         | RC_FI_B   | 2_L)       |
|           |      | Base Address = 0xFFFE E300, Offset Address = 0xDE                                                                                                       |           |            |
| Bit       | Name | Function                                                                                                                                                | R/W       | Reset      |
| 15:0      |      | LCD source frame index for block 2 L                                                                                                                    | R/W       | ND         |
| Table 91. | DMA  | LCD Source Frame Index B2 Register U (DMA_LCD_S                                                                                                         | SRC_FI_E  | 32_U)      |
|           |      | Base Address = 0xFFFE E300, Offset Address = 0xF6                                                                                                       |           |            |
| Bit       | Name | Function                                                                                                                                                | R/W       | Reset      |
| 15:0      |      | LCD source frame index for block 2 U                                                                                                                    | R/W       | ND         |
|           |      | LCD channel source frame index for block 2<br>Contains the channel source frame index for v                                                             | ideo RAN  | l buffer 2 |

expressed as signed value in bytes, which is used to compute addresses when double-indexed addressing mode is used.

| Table 92. | DMA LCD Source Element Number B1 Register (DMA_LCD_SRC_EN_B1) |  |
|-----------|---------------------------------------------------------------|--|
|           |                                                               |  |

|      |      | Base Address = 0xFFFE E300, Offset Address = 0xE0                                         |          |             |
|------|------|-------------------------------------------------------------------------------------------|----------|-------------|
| Bit  | Name | Function                                                                                  | R/W      | Reset       |
| 15:0 |      | LCD channel source element number for block 1                                             | R/W      | ND          |
|      |      | LCD channel source element number for block 1                                             |          |             |
|      |      | Number of elements within a frame (unsigned) for the The maximum element number is 65535. | video RA | M buffer 1. |

| Table 93. DMA LCD Source Frame Number B1 Register (DMA_LCD_SRC_FN_B1) | able 93. | DMA LCD Source Frame Number B1 Register (DMA_LCD_SI | RC_FN_B1 |
|-----------------------------------------------------------------------|----------|-----------------------------------------------------|----------|
|-----------------------------------------------------------------------|----------|-----------------------------------------------------|----------|

|      |      | Base Address = 0xFFFE E300, Offset Address = 0xE4 |     |       |
|------|------|---------------------------------------------------|-----|-------|
| Bit  | Name | Function                                          | R/W | Reset |
| 15:0 |      | LCD channel source frame number for block 1       | R/W | ND    |

LCD channel source frame number for block 1

Number of frames within a block (unsigned) for the video RAM buffer 1. The maximum frame number is 65535.

The size in bytes of the data block to transfer is:

data\_block\_in\_bytes = DMA\_LCD\_SRC\_FN\_B1 x DMA\_LCD\_SRC\_EN\_B1 x DMA\_LCD\_CDSP[DATA\_TYPE\_B1]

Table 94. DMA LCD Source Element Number B2 Register (DMA\_LCD\_SRC\_EN\_B2)

|      | Base Address = 0xFFFE E300, Offset Address = 0xE2 |                                                                                           |          |             |  |
|------|---------------------------------------------------|-------------------------------------------------------------------------------------------|----------|-------------|--|
| Bit  | Name                                              | Function                                                                                  | R/W      | Reset       |  |
| 15:0 |                                                   | LCD channel source element number for block 2                                             | R/W      | ND          |  |
|      |                                                   | LCD channel source element number for block 2                                             |          |             |  |
|      |                                                   | Number of elements within a frame (unsigned) for the The maximum element number is 65535. | video RA | M buffer 2. |  |

| Table 95. | DMA LCD Source | Frame Numbe | r B2 Register | (DMA LCD SRO | C FN B2) |
|-----------|----------------|-------------|---------------|--------------|----------|
|           |                |             |               | ·            | /        |

| Base Address = 0xFFFE E300, Offset Address = 0xE6 |      |                                                                                                                            |        |       |
|---------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------|--------|-------|
| Bit                                               | Name | Function                                                                                                                   | R/W    | Reset |
| 15:0                                              |      | LCD channel source frame number for block 2                                                                                | R/W    | ND    |
|                                                   |      | LCD channel source frame number for block 2                                                                                |        |       |
|                                                   |      | Number of frames within a block (unsigned) for the<br>The maximum frame number is 65535. The size in by<br>to transfer is: |        |       |
|                                                   |      | data_block_in_bytes = DMA_LCD_SRC_FN_B2 x<br>DMA_LCD_SRC_EN_B2 x<br>DMA_LCD_CSDP[DATA_TY                                   | PE B21 |       |

|      |          | Base Address = 0xFFFE E300, Offset Address = 0xEA |     |       |
|------|----------|---------------------------------------------------|-----|-------|
| Bit  | Name     | Function                                          | R/W | Reset |
| 15:4 | RESERVED | Reserved                                          | R/W | ND    |
| 3:0  | LCH_TYPE | Logical channel type.                             | R/W | 0000  |

 Table 96.
 DMA LCD Logical Channel Control Register (DMA\_LCD\_LCH\_CTRL)

Used to control logical channel access. The OMAP\_3.1\_mode tie-off values are those values given to the bits in OMAP 3.1 compatible mode, because the DMA\_LCD\_CCR, DMA\_LCH\_CTRL, and DMA\_LCD\_CSDP registers do not exist in the compatible mode. These values are tied off/on in hardware. (For LCH\_TYPE, the tie-off value is 0000).

LCH\_Type:

Defines logical channel assignment relationship to associated features and physical channel.

The only possible configuration is: 0100: LCh-D PCh-D. This bit field must be configured as above to secure forward compatibility.

This page is intentionally left blank.

# **Revision History**

Table 97 lists the changes made since the previous version of this document.

Table 97. Document Revision History

| Page   | Additions/Modifications/Deletions                                                                                                          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Global | DSP DMA section was removed, see updated information in the OMAP5910/5912 Multimedia<br>Processor DSP Subsystem Reference Guide (SPRU890). |

# Index



# D

DMA overview DSP DMA mapping 21 DSP GDMA handler configuration 23 MPU GDMA handler 13 MPU GDMA handler configuration 16 DSP DMA mapping 21 DSP GDMA handler 23



MPU GDMA handler configuration 16



notational conventions 3



related documentation from Texas Instruments 3 revision history 123



trademarks 3

124 Direct Memory Access (DMA) Support