
Technical Article Excuse Me for Being a Little Forward... with My Topology

TEXAS INSTRUMENTS

Dennis Barrett

There is so much attention given to flyback and LLC power-conversion topologies, I thought it was time to visit an old friend: the forward topology. It has been widely used for decades and for good reason. It is hard to find a single-ended topology that delivers uniformly high marks in design simplicity, low cost and good efficiency. It is especially well suited for lower- to mid-range power applications (less than 300W) that require high output currents.

The key advantages that the forward converter has over a flyback include better transformer utilization, lower peak currents and a filtered output.

Alas, the single-switch forward converter is not without inherent problems such as transformer core saturation, voltage spikes caused by the transformer leakage inductance, and switching loss. Using a resistor-capacitordiode (RCD) clamp addresses the reset of the transformer, and the active clamp forward (ACF) uses an auxiliary switch to replace the RCD clamp's diode and resistor to reduce leakage. zero voltage-switching (ZVS) techniques are used to address switching loss.

In Ching-Shan Leu's paper, "Improved Forward Topologies for DC-DC Applications with Built-In Input Filter," the author compares the various approaches against results of the two main characteristics that all of these methods are trying to improve: efficiency and voltage stress. Figure 2 supports Leu's conclusion that ACF (referred to as FAC in Figure 2) has the best performance, offering the lowest stress combined with the highest efficiency.

1

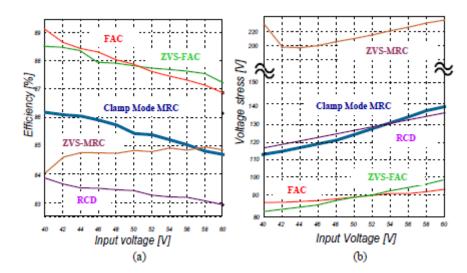


Figure 2. Comparison of Efficiency and Voltage Stress in Forward Converters

Texas Instruments has a broad selection of ACF topologies shown in Table 1, with the LM5025A voltage mode and the UCC2897A current mode among the most popular.

Device	Typical Power Level (W)		Current Mode	 Topologies	Maximum Practical Frequency	700-V Start-UP Circuit	110-V Start-Up Circuit	Soft Start	Output Drive (Sink/ Source) (A)	Package(s)
LM5025/A/B/C/D	50 to 250	\checkmark		Act-Clamp Fwd/Flyback	1 MHz		\checkmark	\checkmark	3/3	16-TSSOP/QFN
LM5026	50 to 250		1	Act-Clamp Fwd/Flyback	1 MHz		~	~	3/3	16-TSSOP/QFN
LM5027/A	50 to 250	\checkmark		Act-Clamp Fwd/Flyback	1 MHz		\checkmark	\checkmark	2/2	20-TSSOP, 24-WQFN
LM5034	50 to 600		~	Dual Interleaved Act-Clamp Fwd	1 MHz		~	~	2.5/2.5	20-TSSOP
UCC2891/3	75 to 600		~	Act-Clamp Fwd/Flyback	1 MHz		~	\checkmark	2.2/2.2	20-TSSOP, 16-SOIC
UCC2892/4	75 to 600		~	Act-Clamp Fwd/Flyback	1 MHz			~	2.2/2.2	20-TSSOP, 16-SOIC
UCC2897A	75 to 600		✓	Act-Clamp Fwd/Flyback	1 MHz		✓	\checkmark	2.2/2.2	20-TSSOP, 16-SOIC

Table 1. Texas Instruments ACF devices

TI also offers over 79 and counting active-clamp TI Designs reference designs for free download. For example, the very popular Telecom Bus Converter for Module Replacement reference design (with seminar materials) is a 175W telecom ACF design (5V@35A) in a very small form factor with up to 95% efficiency and lower conduction losses than a flyback.

The active clamp forward converter has several key advantages, and offers the best efficiency and lowest voltage stress from the forward topologies presented. It's okay to be a bit forward: begin your active clamp design today.

Additional Resources

- · Explore more TI Designs reference designs for forward active clamps
- Learn more about the UCC2897A and LM5025A

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated