
�	������� �����
��
������
������
�����

User’s Guide

1999 Digital Signal Processing Solutions

Printed in U.S.A., May 1999 SPRU159A

19
99User’s �	������� �����
��

Guide
������ ������
�����

�������
	�������������� ������������

������ 	����

SPRU159A
May 1999

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright  1999, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This user’s guide serves as an applications reference book for the
TMS320C40 and TMS320C44 digital signal processors (DSP). Throughout
the book, all references to the TMS320C4x apply to both devices (exceptions
are noted).

Specifically, this book complements the TMS320C4x User’s Guide by provid-
ing information to assist managers and hardware/software engineers in ap-
plication development. It includes example code and hardware connections
for various applications.

The guide shows how to use the instruction set, the architecture, and the ’C4x
interface. It presents examples for frequently used applications and discusses
more involved examples and applications. It also defines the principles in-
volved in many applications and gives the corresponding assembly language
code for instructional purposes and for immediate use. Whenever the detailed
explanation of the underlying theory is too extensive to be included in this
manual, appropriate references are given for further information.

How to Use This Manual

The following table summarizes the information contained in this user’s guide:

If you are looking for
information about: Turn to these chapters:

Arithmetic Chapter 3, Logical and Arithmetic Operations

Communication Ports Chapter 8, Using the Communication Ports

Companding Chapter 6, Applications-Oriented Operations

Development Support Chapter 10, Development Support and Part Or-
der Information

iv

If you are looking for
information about: Turn to these chapters:

DMA Coprocessor Chapter 7, Programming the DMA Coprocessor

FTTs Chapter 6, Applications-Oriented Operations

Filters Chapter 6, Applications-Oriented Operations

Ordering Parts Chapter 10, Development Support and Part Or-
der Information

Repeat Modes Chapter 2, Program Control

Reset Chapter 1, Processor Initialization

Stacks Chapter 2, Program Control

Tips Chapter 5, Programming Tips

Wait States Chapter 4, Memory Interfacing

XDS510 Emulator Chapter 11, XDS510 Emulator Design Consider-
ations

Style and Symbol Conventions

This document uses the following conventions:

� Program listings, program examples, file names, and symbol names are
shown in a special font. Examples use a bold version of the special font
for emphasis. Here is a sample program listing segment:

*
LOOP1 RPTB MAX

CMPF *AR0,R0 ;Compare number to the maximum
MAX LDFLT *AR0,R0 ;If greater, this is a new max

B NEXT
LOOP2 RPTB MIN

CMPF *AR0++(1),R0 ;Compare number to the minimum
MIN LDFLT *–AR0(1),R0 ;If smaller, this is new minimum
NEXT .

.

� Throughout this book MSB indicates the most significant bit and LSB indi-
cates the least significant bit. MS indicates the most significant byte and
LS indicates the least significant byte.

v

Information About Cautions and Warnings

This book may contain cautions and warnings.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you .

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

vi

Related Documentation From Texas Instruments

The following books describe the TMS320 floating-point devices and related
support tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477–8924. When ordering,
please identify the book by its title and literature number.

TMS320C4x User’s Guide (literature number SPRU063) describes the ’C4x
32-bit floating-point processor, developed for digital signal processing as
well as parallel processing applications. Covered are its architecture, in-
ternal register structure, instruction set, pipeline, specifications, and op-
eration of its six DMA channels and six communication ports.

TMS320C4x Parallel Processing Development System Technical Refer-
ence (literature number SPRU075) describes the TMS320C4x parallel
processing system, a system with four C4xs with shared and distributed
memory.

Parallel Processing with the TMS320C4x (literature number SPRA031) de-
scribes parallel processing and how the ’C4x can be used in parallel pro-
cessing. Also provides sample parallel processing applications.

TMS320C3x/C4x Assembly Language Tools User’s Guide (literature
number SPRU035) describes the assembly language tools (assembler,
linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic
debugging directives for the ’C3x and ’C4x generations of devices.

TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide (litera-
ture number SPRU034) describes the TMS320 floating-point C compiler.
This C compiler accepts ANSI standard C source code and produces
TMS320 assembly language source code for the ’C3x and ’C4x genera-
tions of devices.

TMS320C4x C Source Debugger User’s Guide (literature number
SPRU054) tells you how to invoke the ’C4x emulator and simulator ver-
sions of the C source debugger interface. This book discusses various
aspects of the debugger interface, including window management, com-
mand entry, code execution, data management, and breakpoints. It also
includes a tutorial that introduces basic debugger functionality.

TMS320C4x Technical Brief (literature number SPRU076) gives a con-
densed overview of the ’C4x DSP and its development tools. It also lists
TMS320C4x third parties.

vii

TMS320 Family Development Support Reference Guide (literature number
SPRU011) describes the ’320 family of digital signal processors and the
various products that support it. This includes code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). This book also
lists related documentation, outlines seminars and the university pro-
gram, and gives factory repair and exchange information.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that supply various
products that serve the family of ’320 digital signal processors—software
and hardware development tools, speech recognition, image process-
ing, noise cancellation, modems, etc.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using ’C2x,
’C3x, ’C4x, ’C5x, and other TI DSPs.

Related Articles and Books

A wide variety of related documentation is available on digital signal process-
ing. These references fall into one of the following application categories:

� General-Purpose DSP
� Graphics/Imagery
� Speech/Voice
� Control
� Multimedia
� Military
� Telecommunications
� Automotive
� Consumer
� Medical
� Development Support

In the following list, references appear in alphabetical order according to au-
thor. The documents contain beneficial information regarding designs, opera-
tions, and applications for signal-processing systems; all of the documents
provide additional references. Texas Instruments strongly suggests that you
refer to these publications.

General-Purpose DSP :

1) Antoniou, A., Digital Filters: Analysis and Design, New York, NY:
McGraw-Hill Company, Inc., 1979.

2) Brigham, E.O., The Fast Fourier Transform, Englewood Cliffs, NJ: Pren-
tice-Hall, Inc., 1974.

viii

3) Burrus, C.S., and T.W. Parks, DFT/FFT and Convolution Algorithms, New
York, NY: John Wiley and Sons, Inc., 1984.

4) Chassaing, R., Horning, D.W., “Digital Signal Processing with Fixed and
Floating-Point Processors.” CoED, USA, Volume 1, Number 1, pages 1–4,
March 1991.

5) Defatta, David J., Joseph G. Lucas, and William S. Hodgkiss, Digital Sig-
nal Processing: A System Design Approach, New York: John Wiley, 1988.

6) Erskine, C., and S. Magar, “Architecture and Applications of a Second-
Generation Digital Signal Processor.” Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, USA, 1985.

7) Essig, D., C. Erskine, E. Caudel, and S. Magar, “A Second-Generation
Digital Signal Processor.” IEEE Journal of Solid-State Circuits, USA, Vol-
ume SC–21, Number 1, pages 86–91, February 1986.

8) Frantz, G., K. Lin, J. Reimer, and J. Bradley, “The Texas Instruments
TMS320C25 Digital Signal Microcomputer.” IEEE Microelectronics, USA,
Volume 6, Number 6, pages 10–28, December 1986.

9) Gass, W., R. Tarrant, T. Richard, B. Pawate, M. Gammel, P. Rajasekaran,
R. Wiggins, and C. Covington, “Multiple Digital Signal Processor Environ-
ment for Intelligent Signal Processing.” Proceedings of the IEEE, USA,
Volume 75, Number 9, pages 1246–1259, September 1987.

10) Gold, Bernard, and C.M. Rader, Digital Processing of Signals, New York,
NY: McGraw-Hill Company, Inc., 1969.

11) Hamming, R.W., Digital Filters, Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1977.

12) IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Pro-
cessing, New York, NY: IEEE Press, 1979.

13) Jackson, Leland B., Digital Filters and Signal Processing, Hingham, MA:
Kluwer Academic Publishers, 1986.

14) Jones, D.L., and T.W. Parks, A Digital Signal Processing Laboratory Using
the TMS32010, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

15) Lim, Jae, and Alan V. Oppenheim, Advanced Topics in Signal Processing,
Englewood Cliffs, NJ: Prentice- Hall, Inc., 1988.

16) Lin, K., G. Frantz, and R. Simar, Jr., “The TMS320 Family of Digital Signal
Processors.” Proceedings of the IEEE, USA, Volume 75, Number 9, pages
1143–1159, September 1987.

ix

17) Lovrich, A., Reimer, J., “An Advanced Audio Signal Processor.” Digest of
Technical Papers for 1991 International Conference on Consumer Elec-
tronics, June 1991.

18) Magar, S., D. Essig, E. Caudel, S. Marshall and R. Peters, “An NMOS Digi-
tal Signal Processor with Multiprocessing Capability.” Digest of IEEE Inter-
national Solid-State Circuits Conference, USA, February 1985.

19) Morris, Robert L., Digital Signal Processing Software, Ottawa, Canada:
Carleton University, 1983.

20) Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

21) Oppenheim, Alan V., and R.W. Schafer, Digital Signal Processing, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1975 and 1988.

22) Oppenheim, A.V., A.N. Willsky, and I.T. Young, Signals and Systems, En-
glewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

23) Papamichalis, P.E., and C.S. Burrus, “Conversion of Digit-Reversed to Bit-
Reversed Order in FFT Algorithms.” Proceedings of ICASSP 89, USA,
pages 984–987, May 1989.

24) Papamichalis, P., and R. Simar, Jr., “The TMS320C30 Floating-Point Digi-
tal Signal Processor.” IEEE Micro Magazine, USA, pages 13–29, Decem-
ber 1988.

25) Parks, T.W., and C.S. Burrus, Digital Filter Design, New York, NY: John
Wiley and Sons, Inc., 1987.

26) Peterson, C., Zervakis, M., Shehadeh, N., “Adaptive Filter Design and
Implementation Using the TMS320C25 Microprocessor.” Computers in
Education Journal, USA, Volume 3, Number 3, pages 12–16, July–Sep-
tember 1993.

27) Prado, J., and R. Alcantara, “A Fast Square-Rooting Algorithm Using a
Digital Signal Processor.” Proceedings of IEEE, USA, Volume 75, Number
2, pages 262–264, February 1987.

28) Rabiner, L.R. and B. Gold, Theory and Applications of Digital Signal Pro-
cessing, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

29) Simar, Jr., R., and A. Davis, “The Application of High-Level Languages to
Single-Chip Digital Signal Processors.” Proceedings of ICASSP 88, USA,
Volume D, page 1678, April 1988.

30) Simar, Jr., R., T. Leigh, P. Koeppen, J. Leach, J. Potts, and D. Blalock, “A
40 MFLOPS Digital Signal Processor: the First Supercomputer on a Chip.”
Proceedings of ICASSP 87, USA, Catalog Number 87CH2396–0, Volume
1, pages 535–538, April 1987.

x

31) Simar, Jr., R., and J. Reimer, “The TMS320C25: a 100 ns CMOS VLSI Dig-
ital Signal Processor.” 1986 Workshop on Applications of Signal Process-
ing to Audio and Acoustics, September 1986.

32) Texas Instruments, Digital Signal Processing Applications with the
TMS320 Family, 1986; Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

33) Treichler, J.R., C.R. Johnson, Jr., and M.G. Larimore, A Practical Guide
to Adaptive Filter Design, New York, NY: John Wiley and Sons, Inc., 1987.

Graphics/Imagery :

1) Andrews, H.C., and B.R. Hunt, Digital Image Restoration, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

2) Gonzales, Rafael C., and Paul Wintz, Digital Image Processing, Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

3) Papamichalis, P.E., “FFT Implementation on the TMS320C30.” Proceed-
ings of ICASSP 88, USA, Volume D, page 1399, April 1988.

4) Pratt, William K., Digital Image Processing, New York, NY: John Wiley and
Sons, 1978.

5) Reimer, J., and A. Lovrich, “Graphics with the TMS32020.” WESCON/85
Conference Record, USA, 1985.

Speech/Voice :

1) DellaMorte, J., and P. Papamichalis, “Full-Duplex Real-Time Implementa-
tion of the FED-STD-1015 LPC-10e Standard V.52 on the TMS320C25.”
Proceedings of SPEECH TECH 89, pages 218–221, May 1989.

2) Frantz, G.A., and K.S. Lin, “A Low-Cost Speech System Using the
TMS320C17.” Proceedings of SPEECH TECH ’87, pages 25–29, April
1987.

3) Gray, A.H., and J.D. Markel, Linear Prediction of Speech, New York, NY:
Springer-Verlag, 1976.

4) Jayant, N.S., and Peter Noll, Digital Coding of Waveforms, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

5) Papamichalis, Panos, Practical Approaches to Speech Coding, Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

6) Papamichalis, P., and D. Lively, “Implementation of the DOD Standard
LPC–10/52E on the TMS320C25.” Proceedings of SPEECH TECH ’87,
pages 201–204, April 1987.

7) Pawate, B.I., and G.R. Doddington, “Implementation of a Hidden Markov
Model-Based Layered Grammar Recognizer.” Proceedings of ICASSP
89, USA, pages 801–804, May 1989.

8) Rabiner, L.R., and R.W. Schafer, Digital Processing of Speech Signals,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

xi

9) Reimer, J.B. and K.S. Lin, “TMS320 Digital Signal Processors in Speech
Applications.” Proceedings of SPEECH TECH ’88, April 1988.

10) Reimer, J.B., M.L. McMahan, and W.W. Anderson, “Speech Recognition
for a Low-Cost System Using a DSP.” Digest of Technical Papers for 1987
International Conference on Consumer Electronics, June 1987.

Control :

1) Ahmed, I., “16-Bit DSP Microcontroller Fits Motion Control System Ap-
plication.” PCIM, October 1988.

2) Ahmed, I., “Implementation of Self Tuning Regulators with TMS320 Fami-
ly of Digital Signal Processors.” MOTORCON ’88, pages 248–262, Sep-
tember 1988.

3) Ahmed, I., and S. Lindquist, “Digital Signal Processors: Simplifying High-
Performance Control.” Machine Design, September 1987.

4) Ahmed, I., and S. Meshkat, “Using DSPs in Control.” Control Engineering,
February 1988.

5) Allen, C. and P. Pillay, “TMS320 Design for Vector and Current Control of
AC Motor Drives.” Electronics Letters, UK, Volume 28, Number 23, pages
2188–2190, November 1992.

6) Bose, B.K., and P.M. Szczesny, “A Microcomputer-Based Control and
Simulation of an Advanced IPM Synchronous Machine Drive System for
Electric Vehicle Propulsion.” Proceedings of IECON ’87, Volume 1, pages
454–463, November 1987.

7) Hanselman, H., “LQG-Control of a Highly Resonant Disc Drive Head Posi-
tioning Actuator.” IEEE Transactions on Industrial Electronics, USA, Vol-
ume 35, Number 1, pages 100–104, February 1988.

8) Jacquot, R., Modern Digital Control Systems, New York, NY: Marcel Dek-
ker, Inc., 1981.

9) Katz, P., Digital Control Using Microprocessors, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

10) Kuo, B.C., Digital Control Systems, New York, NY: Holt, Reinholt, and
Winston, Inc., 1980.

11) Lovrich, A., G. Troullinos, and R. Chirayil, “An All-Digital Automatic Gain
Control.” Proceedings of ICASSP 88, USA, Volume D, page 1734, April
1988.

12) Matsui, N. and M. Shigyo, “Brushless DC Motor Control Without Position
and Speed Sensors.” IEEE Transactions on Industry Applications, USA,
Volume 28, Number 1, Part 1, pages 120–127, January–February 1992.

xii

13) Meshkat, S., and I. Ahmed, “Using DSPs in AC Induction Motor Drives.”
Control Engineering, February 1988.

14) Panahi, I. and R. Restle, “DSPs Redefine Motion Control.” Motion Control
Magazine, December 1993.

15) Phillips, C., and H. Nagle, Digital Control System Analysis and Design, En-
glewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Multimedia :

1) Reimer, J., “DSP-Based Multimedia Solutions Lead Way Enhancing Audio
Compression Performance.” Dr. Dobbs Journal, December 1993.

2) Reimer, J., G. Benbassat, and W. Bonneau Jr., “Application Processors:
Making PC Multimedia Happen.” Silicon Valley PC Design Conference,
July 1991.

Military :

1) Papamichalis, P., and J. Reimer, “Implementation of the Data Encryption
Standard Using the TMS32010.” Digital Signal Processing Applications,
1986.

Telecommunications :

1) Ahmed, I., and A. Lovrich, “Adaptive Line Enhancer Using the
TMS320C25.” Conference Records of Northcon/86, USA, 14/3/1–10,
September/October 1986.

2) Casale, S., R. Russo, and G. Bellina, “Optimal Architectural Solution Us-
ing DSP Processors for the Implementation of an ADPCM Transcoder.”
Proceedings of GLOBECOM ’89, pages 1267–1273, November 1989.

3) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice
Echo Canceller on a SINGLE TMS32020.” Proceedings of ICASSP 86,
USA, Catalog Number 86CH2243–4, Volume 1, pages 429–432, April
1986.

4) Cole, C., A. Haoui, and P. Winship, “A High-Performance Digital Voice
Echo Canceller on a Single TMS32020.” Proceedings of IEEE Internation-
al Conference on Acoustics, Speech and Signal Processing, USA, 1986.

5) Lovrich, A., and J. Reimer, “A Multi-Rate Transcoder.” Transactions on
Consumer Electronics, USA, November 1989.

6) Lovrich, A. and J. Reimer, “A Multi-Rate Transcoder.” Digest of Technical
Papers for 1989 International Conference on Consumer Electronics, June
7–9, 1989.

xiii

7) Lu, H., D. Hedberg, and B. Fraenkel, “Implementation of High-Speed Voi-
ceband Data Modems Using the TMS320C25.” Proceedings of ICASSP
87, USA, Catalog Number 87CH2396–0, Volume 4, pages 1915–1918,
April 1987.

8) Mock, P., “Add DTMF Generation and Decoding to DSP– µP Designs.”
Electronic Design, USA, Volume 30, Number 6, pages 205–213, March
1985.

9) Reimer, J., M. McMahan, and M. Arjmand, “ADPCM on a TMS320 DSP
Chip.” Proceedings of SPEECH TECH 85, pages 246–249, April 1985.

10) Troullinos, G., and J. Bradley, “Split-Band Modem Implementation Using
the TMS32010 Digital Signal Processor.” Conference Records of
Electro/86 and Mini/Micro Northeast, USA, 14/1/1–21, May 1986.

Automotive :

1) Lin, K., “Trends of Digital Signal Processing in Automotive.” International
Congress on Transportation Electronic (CONVERGENCE ’88), October
1988.

Consumer :

1) Frantz, G.A., J.B. Reimer, and R.A. Wotiz, “Julie, The Application of DSP
to a Product.” Speech Tech Magazine, USA, September 1988.

2) Reimer, J.B., and G.A. Frantz, “Customization of a DSP Integrated Circuit
for a Customer Product.” Transactions on Consumer Electronics, USA,
August 1988.

3) Reimer, J.B., P.E. Nixon, E.B. Boles, and G.A. Frantz, “Audio Customiza-
tion of a DSP IC.” Digest of Technical Papers for 1988 International Con-
ference on Consumer Electronics, June 8–10 1988.

Medical :

1) Knapp and Townshend, “A Real-Time Digital Signal Processing System
for an Auditory Prosthesis.” Proceedings of ICASSP 88, USA, Volume A,
page 2493, April 1988.

2) Morris, L.R., and P.B. Barszczewski, “Design and Evolution of a Pocket-
Sized DSP Speech Processing System for a Cochlear Implant and Other
Hearing Prosthesis Applications.” Proceedings of ICASSP 88, USA, Vol-
ume A, page 2516, April 1988.

xiv

Development Support :

1) Mersereau, R., R. Schafer, T. Barnwell, and D. Smith, “A Digital Filter De-
sign Package for PCs and TMS320.” MIDCON/84 Electronic Show and
Convention, USA, 1984.

2) Simar, Jr., R., and A. Davis, “The Application of High-Level Languages to
Single-Chip Digital Signal Processors.” Proceedings of ICASSP 88, USA,
Volume 3, pages 1678–1681, April 1988.

If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about
Texas Instruments Digital Signal
Processing (DSP) products

Write to:
Texas Instruments Incorporated
Market Communications Manager
MS 736
P.O. Box 1443
Houston, Texas 77251–1443

Order Texas Instruments
documentation

Call the TI Literature Response Center:
(800) 477–8924

Ask questions about product
operation or report suspected
problems

Contact the DSP hotline:
Phone: (713) 274–2320
FAX: (713) 274–2324
Electronic Mail: 4389750@mcimail.com.

Obtain the source code in this
user’s guide.

Call the TI BBS:
(713) 274–2323

Ftp from:
ftp.ti.com
log in as user ftp
cd to /mirrors/tms320bbs

Visit TI online, including
TI&ME�, your own customized
web page.

Point your browser at:
http://www.ti.com

Report mistakes or make com-
ments about this or any other TI
documentation.

Send electronic mail to:
comments@books.sc.ti.com

Send printed comments to:
Texas Instruments Incorporated
Technical Publications Mgr., MS 702
P.O. Box 1443
Houston, Texas 77251–1443

xv

Trademarks

MS is a registered trademark of Microsoft Corp.

MS-Windows is a registered trademark of Microsoft Corp.

MS-DOS is a registered trademark of Microsoft Corp.

OS/2 is a trademark of International Business Machines Corp.

Sun and SPARC are trademarks of Sun Microsystems, Inc.

VAX and VMS are trademarks of Digital Equipment Corp.

Contents

xvii

Contents

1 Processor Initialization 1-1.
Provides examples for initializing the processor.

1.1 Reset Process 1-2.
1.2 Reset Signal Generation 1-3.
1.3 Multiprocessing System Reset Considerations 1-5.
1.4 How to Initialize the Processor 1-6.

2 Program Control 2-1.
Provides examples for initializing the processor and discusses program control features.

2.1 Subroutines 2-2.
2.1.1 Regular Subroutine Calls 2-2.
2.1.2 Zero-Overhead Subroutine Calls 2-4.

2.2 Stacks and Queues 2-7.
2.2.1 System Stacks 2-7.
2.2.2 User Stacks 2-8.
2.2.3 Queues and Double-Ended Queues 2-9.

2.3 Interrupt Examples 2-11.
2.3.1 Correct Interrupt Programming 2-11.
2.3.2 Software Polling of Interrupts 2-11.
2.3.3 Using One Interrupt for Two Services 2-12.
2.3.4 Nesting Interrupts 2-13.

2.4 Context Switching in Interrupts and Subroutines 2-14.
2.5 Repeat Modes 2-18.

2.5.1 Block Repeat 2-18.
2.5.2 Delayed Block Repeat 2-19.
2.5.3 Single-Instruction Repeat 2-20.

2.6 Computed GOTOs to Select Subroutines at Runtime 2-21.

Contents

xviii

3 Logical and Arithmetic Operations 3-1.
Provides examples for performing logical and arithmetic operations.

3.1 Bit Manipulation 3-2.
3.2 Block Moves 3-3.
3.3 Byte and Half-Word Manipulation 3-4.
3.4 Bit-Reversed Addressing 3-6.

3.4.1 CPU Bit-Reversed Addressing 3-6.
3.4.2 DMA Bit-Reversed Addressing 3-7.

3.5 Integer and Floating-Point Division 3-9.
3.5.1 Integer Division 3-9.
3.5.2 Computation of Floating-Point Inverse and Division 3-12.

3.6 Calculating a Square Root 3-15.
3.7 Extended-Precision Arithmetic 3-17.
3.8 Floating-Point Format Conversion: IEEE to/From ’C4x 3-19.

4 Memory Interfacing 4-1.
Provides examples for TMS320C4x System Configuration, Memory Interfaces, and Reset.

4.1 System Configuration 4-2.
4.2 External Interfacing 4-3.
4.3 Global and Local Bus Interfaces 4-4.
4.4 Zero Wait-State Interfacing to RAMs 4-5.

4.4.1 Consecutive Reads Followed by a Write Interface Timing 4-6.
4.4.2 Consecutive Writes Followed by a Read Interface Timing 4-7.
4.4.3 RAM Interface Using One Local Strobe 4-7.
4.4.4 RAM Interface Using Both Local Strobes 4-8.

4.5 Wait States and Ready Generation 4-11.
4.5.1 ORing of the Ready Signals (STRBx SWW = 10) 4-12.
4.5.2 ANDing of the Ready Signals (STRBx SWW = 11) 4-12.
4.5.3 External Ready Generation 4-13.
4.5.4 Ready Control Logic 4-14.
4.5.5 Example Circuit 4-15.
4.5.6 Page Switching Techniques 4-18.

4.6 Parallel Processing Through Shared Memory 4-21.
4.6.1 Shared Global-Memory Interface 4-21.
4.6.2 Shared-Memory Interface Design Example 4-22.

5 Programming Tips 5-1.
Provides hints for writing more efficient C and assembly-language code.

5.1 Hints for Optimizing C Code 5-2.
5.2 Hints for Optimizing Assembly-Language Code 5-5.

Contents

xixContents

6 Applications-Oriented Operations 6-1.
Describes common algorithms and provides code for implementing them.

6.1 Companding 6-2.
6.2 FIR, IIR, and Adaptive Filters 6-7.

6.2.1 FIR Filters 6-7.
6.2.2 IIR Filters 6-9.
6.2.3 Adaptive Filters (LMS Algorithm) 6-13.

6.3 Lattice Filters 6-17.
6.4 Matrix-Vector Multiplication 6-21.
6.5 Fast Fourier Transforms (FFTs) 6-24.

6.5.1 Complex Radix-2 DIF FFT 6-26.
6.5.2 Complex Radix-4 DIF FFT 6-33.
6.5.3 Faster Complex Radix-2 DIT FFT 6-41.
6.5.4 Real Radix-2 FFT 6-56.

6.6 ’C4x Benchmarks 6-86.

7 Programming the DMA Coprocessor 7-1.
Provides examples for programming the TMS320C4x’s on-chip peripherals.

7.1 Hints for DMA Programming 7-2.
7.2 When a DMA Channel Finishes a Transfer 7-3.
7.3 DMA Assembly Programming Examples 7-4.
7.4 DMA C-Programming Examples 7-9.

8 Using the Communication Ports 8-1.
Describes how to interface with the TMS320C4x communication ports.

8.1 Communication Ports 8-2.
8.2 Signal Considerations 8-5.
8.3 Interfacing With a Non-’C4x Device 8-7.
8.4 Terminating Unused Communication Ports 8-8.
8.5 Design Tips 8-9.
8.6 Commport to Host Interface 8-10.

8.6.1 Simplified Hardware Interface for ’C40 PG w 3.3, or ’C44 devices 8-10.
8.6.2 Improved Drive and Sense Amplifiers 8-12.
8.6.3 How the Circuit Works 8-13.
8.6.4 The Interface Software 8-13.

8.7 An I/O Coprocessor–’C4x Interface 8-14.
8.8 Implementing a Token Forcer 8-15.
8.9 Implementing a CSTRB Shortener Circuit 8-17.
8.10 Parallel Processing Through Communication Ports 8-18.
8.11 Broadcasting Messages From One ’C4x to Many ’C4x Devices 8-20.

Contents

xx

9 ’C4x Power Dissipation 9-1.
Explains the current consumption of .the ’C4x and also provides information about current con-
sumption by components.

9.1 Capacitive and Resistive Loading 9-2.
9.2 Basic Current Consumption 9-4.

9.2.1 Current Components 9-4.
9.2.2 Current Dependency 9-4.
9.2.3 Algorithm Partitioning 9-5.
9.2.4 Test Setup Description 9-5.

9.3 Current Requirement of Internal Components 9-7.
9.3.1 Quiescent 9-7.
9.3.2 Internal Operations 9-7.
9.3.3 Internal Bus Operations 9-8.

9.4 Current Requirement of Output Driver Components 9-12.
9.4.1 Local or Global Bus 9-13.
9.4.2 DMA 9-16.
9.4.3 Communication Port 9-16.
9.4.4 Data Dependency 9-17.
9.4.5 Capacitive Loading Dependence 9-19.

9.5 Calculation of Total Supply Current 9-20.
9.5.1 Combining Supply Current Due to All Components 9-20.
9.5.2 Supply Voltage, Operating Frequency, and Temperature Dependencies 9-21. . .
9.5.3 Design Equation 9-22.
9.5.4 Average Current 9-23.
9.5.5 Thermal Management Considerations 9-23.

9.6 Example Supply Current Calculations 9-27.
9.6.1 Processing 9-27.
9.6.2 Data Output 9-27.
9.6.3 Average Current 9-28.
9.6.4 Experimental Results 9-28.

9.7 Design Considerations 9-29.
9.7.1 System Clock and Signal Switching Rates 9-29.
9.7.2 Capacitive Loading of Signals 9-30.
9.7.3 DC Component of Signal Loading 9-30.

10 Development Support and Part Order Information 10-1.
Describes ’C4x support available from TI and third-part vendors.

10.1 Development Support 10-2.
10.1.1 Third-Party Support 10-3.
10.1.2 The DSP Hotline 10-3.
10.1.3 The Bulletin Board Service (BBS) 10-4.
10.1.4 Internet Services 10-4.
10.1.5 Technical Training Organization (TTO) TMS320 Workshops 10-5.

Contents

xxiContents

10.2 Sockets 10-6.
10.2.1 Tool-Activated ZIF PGA Socket (TAZ) 10-7.
10.2.2 Handle-Activated ZIF PGA Socket (HAZ) 10-8.

10.3 Part Order Information 10-9.
10.3.1 Nomenclature 10-9.
10.3.2 Device and Development Support Tools 10-10.

11 XDS510 Emulator Design Considerations 11-1.
Describes the JTAG emulator cable. Tells you how to construct a 14-pin connector on your tar-
get system and how to connect the target system to the emulator.

11.1 Designing Your Target System’s Emulator Connector (14-Pin Header) 11-2.
11.2 Bus Protocol 11-3.
11.3 IEEE 1149.1 Standard 11-3.
11.4 JTAG Emulator Cable Pod Logic 11-4.
11.5 JTAG Emulator Cable Pod Signal Timing 11-5.
11.6 Emulation Timing Calculations 11-6.
11.7 Connections Between the Emulator and the Target System 11-8.

11.7.1 Buffering Signals 11-8.
11.7.2 Using a Target-System Clock 11-10.
11.7.3 Configuring Multiple Processors 11-11.

11.8 Mechanical Dimensions for the 14-Pin Emulator Connector 11-12.
11.9 Emulation Design Considerations 11-14.

11.9.1 Using Scan Path Linkers 11-14.
11.9.2 Emulation Timing Calculations for SPL 11-16.
11.9.3 Using Emulation Pins 11-18.
11.9.4 Performing Diagnostic Applications 11-23.

A Glossary A-1.

Figures

xxii

Figures

1–1 Reset Circuit 1-3.
1–2 Voltage on the RESET Pin 1-4.
2–1 System Stack Configuration 2-8.
2–2 Implementations of High-to-Low Memory Stacks 2-9.
2–3 Implementations of Low-to-High Memory Stacks 2-9.
3–1 DMA Bit-Reversed Addressing 3-8.
4–1 Possible System Configurations 4-2.
4–2 External Interfaces 4-3.
4–3 Consecutive Reads Followed by a Write 4-6.
4–4 Consecutive Writes Followed by a Read 4-7.
4–5 ’C4x Interface to Eight Zero-Wait-State SRAM 4-8.
4–6 ’C4x Interface to Zero-Wait-State SRAMs, Two Strobes 4-10.
4–7 Logic for Generation of 0, 1, or 2 Wait States for Multiple Devices 4-14.
4–8 Page Switching for the CY7B185 4-19.
4–9 Timing for Read Operations Using Bank Switching 4-20.
4–10 ’C4x Shared/Distributed-Memory Networks 4-21.
6–1 Data Memory Organization for an FIR Filter 6-7.
6–2 Data Memory Organization for a Single Biquad 6-9.
6–3 Data Memory Organization for N Biquads 6-11.
6–4 Structure of the Inverse Lattice Filter 6-17.
6–5 Data Memory Organization for Inverse Lattice Filters 6-18.
6–6 Structure of the Forward Lattice Filter 6-19.
6–7 Data Memory Organization for Matrix-Vector Multiplication 6-21.
8–1 Impedance Matching for ’C4x Communication-Port Design 8-5.
8–2 Better Commport Signal Splitter 8-11.
8–3 Improved Interface Circuit 8-12.
8–4 A ’C32 to ’C4x Interface 8-14.
8–5 A Token Forcer Circuit (Output) 8-15.
8–6 Communication-Port Driver Circuit (Input) 8-16.
8–7 CSTRB Shortener Circuit 8-17.
8–8 ’C4x Parallel Connectivity Networks 8-18.
8–9 Message Broadcasting by One ’C4x to Many ’C4x Devices 8-21.
9–1 Test Setup 9-6.
9–2 Internal and Quiescent Current Components 9-8.
9–3 Internal Bus Current Versus Transfer Rate 9-9.
9–4 Internal Bus Current Versus Data Complexity Derating Curve 9-10.

Figures

xxiiiContents

9–5 Local /Global Bus Current Versus Transfer Rate and Wait States 9-14.
9–6 Local /Global Bus Current Versus Transfer Rate at Zero Wait States 9-15.
9–7 DMA Bus Current Versus Clock Rate 9-16.
9–8 Communication Port Current Versus Clock Rate 9-17.
9–9 Local /Global Bus Current Versus Data Complexity 9-18.
9–10 Pin Current Versus Output Load Capacitance (10 MHz) 9-19.
9–11 Current Versus Frequency and Supply Voltage 9-21.
9–12 Change in Operating Temperature (5C) 9-22.
9–13 Load Currents 9-25.
10–1 Tool-Activated ZIF Socket 10-7.
10–2 Handle-Activated ZIF Socket 10-8.
10–3 Device Nomenclature 10-10.
11–1 14-Pin Header Signals and Header Dimensions 11-2.
11–2 JTAG Emulator Cable Pod Interface 11-4.
11–3 JTAG Emulator Cable Pod Timings 11-5.
11–4 Target-System-Generated Test Clock 11-10.
11–5 Multiprocessor Connections 11-11.
11–6 Pod/Connector Dimensions 11-12.
11–7 14-Pin Connector Dimensions 11-13.
11–8 Connecting a Secondary JTAG Scan Path to an SPL 11-15.
11–9 EMU0/1 Configuration 11-19.
11–10 Suggested Timings for the EMU0 and EMU1 Signals 11-21.
11–11 EMU0/1 Configuration With Additional AND Gate to Meet Timing

Requirements 11-21.
11–12 EMU0/1 Configuration Without Global Stop 11-22.
11–13 TBC Emulation Connections for n JTAG Scan Paths 11-23.

Tables

xxiv

Tables

1–1 RESET Vector Locations in the ’C40 and ’C44 1-2.
4–1 Local/Global Bus Control Signals 4-4.
4–2 Page Switching Interface Timing 4-20.
6–1 ’C4x Application Benchmarks 6-86.
6–2 FFT Timing Benchmarks (Cycles) 6-87.
9–1 Wait State Timing Table 9-15.
9–2 Current Equation Typical Values (FCLK = 40 MHz) 9-23.
10–1 Sockets that Accept the 325-pin ’C40 and the 304-pin ’C44 10-6.
10–2 Manufacturer Phone Numbers 10-6.
10–3 Device Part Numbers 10-11.
10–4 Development Support Tools Part Numbers 10-12.
11–1 14-Pin Header Signal Descriptions 11-2.
11–2 Emulator Cable Pod Timing Parameters 11-5.

Examples

xxvContents

Examples

1–1 Processor Initialization Example 1-7.
1–2 Linker Command File for Linking the Previous Example 1-9.
1–3 Enabling the Cache 1-9.
2–1 Regular Subroutine Call (Dot Product) 2-3.
2–2 Zero-Overhead Subroutine Call (Dot Product) 2-5.
2–3 Use of Interrupts for Software Polling 2-11.
2–4 Use of One Interrupt Signal for Two Different Services 2-12.
2–5 Interrupt Service Routine 2-13.
2–6 Context Save and Context Restore 2-15.
2–7 Use of Block Repeat to Find a Maximum or a Minimum 2-18.
2–8 Loop Using Delayed Block Repeat 2-19.
2–9 Loop Using Single Repeat 2-20.
2–10 Computed GOTO 2-21.
3–1 Use of TSTB for Software-Controlled Interrupt 3-2.
3–2 Copy a Bit from One Location to Another 3-2.
3–3 Block Move Under Program Control 3-3.
3–4 Use of Packing Data From Half-Word FIFO to 32-Bit Data Memory 3-4.
3–5 Use of Unpacking 32-Bit Data Into Four-Byte-Wide Data Array 3-5.
3–6 CPU Bit-Reversed Addressing 3-7.
3–7 Integer Division 3-11.
3–8 Inverse of a Floating-Point Number With 32-Bit Mantissa Accuracy 3-14.
3–9 Reciprocal of the Square Root of a Positive Floating Point 3-16.
3–10 64-Bit Addition 3-17.
3–11 64-Bit Subtraction 3-18.
3–12 32-Bit by 32-Bit Multiplication 3-18.
3–13 IEEE to ’C4x Conversion Within Block Memory Transfer 3-21.
3–14 ’C4x to IEEE Conversion Within Block Memory Transfer 3-21.
4–1 PLD Equations for Ready Generation 4-16.
5–1 Exchanging Objects in Memory 5-2.
5–2 Optimizing a Loop 5-3.
5–3 Allocating Large Array Objects 5-4.
6–1 m-Law Compression 6-3.
6–2 m-Law Expansion 6-4.
6–3 A-Law Compression 6-5.
6–4 A-Law Expansion 6-6.
6–5 FIR Filter 6-8.

Examples

xxvi

6–6 IIR Filter (One Biquad) 6-10.
6–7 IIR Filter (N > 1 Biquads) 6-12.
6–8 Adaptive FIR Filter (LMS Algorithm) 6-15.
6–9 Inverse Lattice Filter 6-18.
6–10 Lattice Filter 6-20.
6–11 Matrix Times a Vector Multiplication 6-22.
6–12 Complex Radix-2 DIF FFT 6-27.
6–13 Table With Twiddle Factors for a 64-Point FFT 6-32.
6–14 Complex Radix-4 DIF FFT 6-34.
6–15 Faster Version Complex Radix-2 DIT FFT 6-42.
6–16 Bit-Reversed Sine Table 6-55.
6–17 Real Forward Radix-2 FFT 6-56.
6–18 Real Inverse Radix-2 FFT 6-73.
7–1 Array initialization With DMA 7-4.
7–2 DMA Transfer With Communication-Port ICRDY Synchronization 7-5.
7–3 DMA Split-Mode Transfer With External-Interrupt Synchronization 7-6.
7–4 DMA Autoinitialization With Communication Port ICRDY 7-7.
7–5 Single-Interrupt-Driven DMA Transfer 7-8.
7–6 Unified-Mode DMA Using Read Sync 7-10.
7–7 Unified-Mode DMA Using Autoinitialization (Method 1) 7-11.
7–8 Unified-Mode DMA Using Autoinitialization (Method 2) 7-12.
7–9 Split-Mode Auxiliary DMA Using Read Sync 7-13.
7–10 Split-Mode Auxiliary and Primary Channel DMA 7-14.
7–11 Split-Mode DMA Using Autoinitialization 7-15.
7–12 Include File for All C Examples (dma.h) 7-17.
8–1 Read Data from Communication Port With CPU ICFULL Interrupt 8-3.
8–2 Write Data to Communication Port With Polling Method 8-4.

1-1 Chapter Title—Attribute Reference

Processor Initialization

Before you execute a DSP algorithm, it is necessary to initialize the processor.
Initialization brings the processor to a known state. Generally, initialization
takes place any time after the processor is reset. This chapter reviews the con-
cepts explained in the user’s guide and provides examples.

Topic Page

1.1 Reset Process 1-2.

1.2 Reset Signal Generation 1-3.

1.3 Multiprocessing System Reset Considerations 1-5.

1.4 How to Initialize the Processor 1-6.

Chapter 1

Reset Process

 1-2

1.1 Reset Process

After RESET is applied, the ’C4x jumps to the address stored in the reset vec-
tor location and starts execution from that point.

In order to reset the ’C4x correctly, you need to comply with several hardware
and software requirements:

� Select the reset vector location:

� The RESET vector of the ’C4x can be mapped to one of four different
locations that are controlled by the value of the RESETLOC(1,0) pins
at RESET. Table 1–1 shows possible reset vectors for the ’C40 and
’C44.

� If the DSP is in microcomputer mode (ROMEN pin =1), RESET-
LOC(1,0) must be equal to 0,0 for the boot loader to operate correctly.

� If the DSP is in microcomputer mode, set the IIOFx pins as discussed in
the bootloader chapter TMS320C4x User’s Guide so that the bootloader
works properly.

� Provide the correct reset vector value:

� The RESET vector normally contains the address of the system initial-
ization routine.

� In microcomputer mode the reset vector is initialized automatically by
the processor to point to the beginning of the on–chip boot loader
code. No user action is required.

� In microprocessor mode, the reset vector is typically stored in an
EPROM. Example 1–1 shows how you can initialize that vector.

� Apply a low level to the RESET input. (See section 1.2).

Table 1–1.RESET Vector Locations in the ’C40 and ’C44

Value at RESETLOCx Pin
Get Reset Vector From

RESETLOC1 RESETLOC0
Get Reset Vector From
Hex Memory Address Bus

0 0 00000 0000 Local

0 1 07FFF FFFF† Local

1 0 08000 0000† Global

1 1 0FFFF FFFF† Global

† This corresponds to the 32-bit address that the processor accesses. However, in the ’C44 only
the 24-LSBs of the reset address are driven on pins A0–A23 and pins LA0–LA23. The corre-
sponding LSTRBx pins are also activated.

 Reset Signal Generation

1-3 Processor Initialization

1.2 Reset Signal Generation

Several aspects of ’C4x system hardware design are critical to overall system
operation. One such aspect is reset signal generation.

The reset input controls initialization of internal ’C4x logic and execution of the
system initialization software. For proper system initialization, the RESET sig-
nal must be applied for at least ten H1 cycles, that is, 400 ns for a ’C4x operat-
ing at 50 MHz. Upon power up, however, it can take 20 ms or more before the
system oscillator reaches a stable operating state. Therefore, the power-up
reset circuit should generate a low pulse on the RESET pin for 100 to 200 ms.
Once a proper reset pulse has been applied, the processor fetches the reset
vector from location zero, which contains the address of the system initializa-
tion routine. Figure 1–1 shows a circuit that will generate an appropriate pow-
er-up or push-button reset signal.

Figure 1–1. Reset Circuit

+5 V

TMS320C4x

Reset

R1 = 100 kΩ

C1 = 4.7 µF

74ALS34

The voltage on the RESET pin is controlled by the R1C1 network. After a reset,
this voltage rises exponentially according to the time constant R1C1, as shown
in Figure 1–2. In Figure 1–1, the 74ALS34 provides a clean RESET signal to
the ’C4x.

Reset Signal Generation

 1-4

Figure 1–2. Voltage on the RESET Pin

Voltage

VCC

V1

t0 = 0 t1
Time

V = VCC (1 – e – t /τ)

The duration of the low pulse on the RESET pin is approximately t1, which is
the time it takes for the capacitor C1 to be charged to 1.5 V. This is approxi-
mately the voltage at which the reset input switches from a logic 0 to a logic
1. The capacitor voltage is expressed as

(5)V � VCC�1� e�t
��

where τ = R1C1 is the reset circuit time constant. Solving (5) for t results in

t �� R1C1ln�1� V
VCC

� (6)

Setting the following:

R1 = 100 kΩ

C1 = 4.7 µF

VCC = 5 V

V = V1 = 1.5 V

results in t = 167 ms. Therefore, the reset circuit of Figure 1–1 provides a low
pulse for a long enough time to ensure the stabilization of the system oscillator
upon powerup.

Note:

Reset does not have internal Schmidt hysteresis. To ensure proper reset op-
eration, avoid low rise and fall times. Rise/fall time should not exceed one
CLKIN cycle.

 Multiprocessing System Reset Considerations

1-5 Processor Initialization

1.3 Multiprocessing System Reset Considerations

If synchronization of multiple ’C4x DSPs is required, all processors should be
provided with the same input clock and the same reset signal. After powerup,
when the clock has stabilized, set RESET high for a few H1/H3 cycles and then
set it low to synchronize their H1/H3 clock phases. Following the falling edge,
RESET should remain low for at least ten H1 cycles and then be driven high.
The circuit in Figure 1–1 can be used for RESET generation.

Pullup resistors are recommended at each end of the connection to avoid unin-
tended triggering after reset when RESET going low is not received on all ’C4x
devices at the same time.

It is recommended that you power up the system with RESET low. This
prevents ’C4x asynchronous signals from driving unknown values
before RESET goes low, which could create bus contention in
communication-port pins, resulting in damage to the device.

How to Initialize the Processor

 1-6

1.4 How to Initialize the Processor
After reset, the C4x jumps to the address stored in the reset vector location and
starts execution from that point. The RESET vector normally contains the ad-
dress of the system initialization routine.

The initialization routine should typically perform several tasks:

� Set the DP register.
� Set the stack pointer.
� Set the interrupt vector table.
� Set the trap vector table.
� Set the memory control register.
� Clear/enable cache.

Note:

When running under microcomputer mode (ROMEN = 1). The address
stored in the reset vector location points to the beginning of the bootloader
code. The on-chip bootloader automatically initializes the memory-control
register values from the bootloader table

The following examples illustrate how to initialize the ’C4x when using assem-
bly language and when using C.

Processor initialization under assembly language

If you are running under an assembly-only environment, Example 1–1 pro-
vides a basic initialization routine. This example shows code for initializing the
’C4x to the following machine state:

� Timer 0 interrupt is enabled.

� Trap 0 is initialized.

� The program cache is enabled.

� The DP is initialized to point to the .text section.

� The stack pointer is initialized to the beginning of the mystack section.

� The memory control registers are initialized.

� The ’C4x is initialized to run in microcontroller mode with the reset vector
located at address 08000 0000h (RESETLOC(1,0)=1,0).

� The program has already been loaded into memory location at address =
0x4000 0000.

You need to allocate the section addresses using a linker command file (see
the TMS320 Floating-Point DSP Assembly Language Tools User’s Guide
book for more information about linker command files) as shown in
Example 1–2.

 How to Initialize the Processor

1-7 Processor Initialization

Example 1–1.Processor Initialization Example

;
; Create Reset Vector
;

.sect ”rst_sect” ;Named section for RESET vector
reset .word init ;RESET vector
;
; Create Interrupt Vector Table
;
_myvect .sect ”myvect” ;Named section for int. vectors

.space 2 ;Reserved space

.word tint0 ;Timer 0 ISR address
;
; Create Trap Vector Table
;
_mytrap .sect ”mytrap” ; named section for trap vectors

.word trap0 ;Trap 0 subroutine address
;
; Create Stack
;
_mystack .usect ”mystack”,500 ; reserve 500 locations for

 ; stack
.text

stacka .word _mystack ; address of mystack section
ivta .word _myvect ; address of myvect section
tvta .word _mytrap ; address of mytrap section
ieval .word 1 ; IE register value
gctrl .word ???????? ; target board specific
lctrl .word ???????? ; target board specific
mctrla .word 100000h ; address of the global memory

; control register
init:
;
; Initialize the DP Register
;

ldp stacka
;
; Set Expansion Register IVTP
;

LDI @ivta,AR0
LDPE AR0,IVTP

;
; Set Expansion Register TVTP
;

LDI @tvta,AR0
LDPE AR0,TVTP

How to Initialize the Processor

 1-8

Example 1–1. Processor Initialization Example (Continued)

;
; Initialize global memory interface control
;

ldi @mctrla,ar0
LDI @gctrl,R0
STI R0,*AR0

;
; Initialize local memory interface control
;

LDI @lctrl,R0
STI R0,*+AR0(4)

;
; Initialize the Stack Pointer
;

LDI @stacka,SP
;
; Enable timer interrupt
; This is equivalent to ldi 1,iie
;

LDI @ieval,IIE
;
; Clear/Enable Cache and Enable Global Interrupts
;

OR 3800H,ST ;
;
; Global interrupt enable
;

BR BEGIN ; Branch to the beginning of
; the application

begin

< this is your application code>
trap0

 .. < this is your trap0 trap code>
reti

tint0
 .. < this is your tint0 interrupt

 service routine>
reti
.end

 How to Initialize the Processor

1-9 Processor Initialization

Example 1–2.Linker Command File for Linking the Previous Example

MEMORY
{
 EPROM: org = 0x80000000 len = 0x10 /* EPROM reset vector location */
 RAM: org = 0x40000000 len = 0x100 /* extend RAM */
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{

 rst_sect: > EPROM
 myvect: > RAM
 mystack: > RAM
 .text: > RAM
 mytrap: > RAM

}

Processor initialization under C language

If you are running under a C environment, your initialization routine is typically
boot.asm (from the RTS40.LIB library that comes with the floating-point
compiler). In addition to initializing global variables, boot.asm initializes the DP
register (pointing to the .bss section) and the SP register (pointing to the .stack
section). You need to enable the cache, as shown in Example 1–3, and setup
your interrupts inside your main routine before you enable interrupts. See the
Application Report, Setting Up TMS320 DSP Interrupts in C (SPRA036), for
more information.

Example 1–3.Enabling the Cache

main() {
asm(” or 1800,st”) ; enable cache
/* asm(” or 3800,st”) */ ; enable cache and interrupts
}

 1-10

2-1 Chapter Title—Attribute Reference

Program Control

Several ’C4x instructions provide program control and facilitate high-speed
processing. These instructions directly handle:

� Regular and zero-overhead subroutine calls
� Software stack
� Interrupts
� Delayed branches
� Single- and multiple-instruction loops without overhead

Topic Page

2.1 Subroutines 2-2.

2.2 Stacks and Queues 2-7.

2.3 Interrupt Examples 2-11.

2.4 Context Switching in Interrupts and Subroutines 2-14.

2.5 Repeat Modes 2-18.

2.6 Computed GOTOs to Select Subroutines at Runtime 2-21.

Chapter 2

Subroutines

 2-2

2.1 Subroutines

The ’C4x provides two ways to invoke subroutine calls: regular calls and zero-
overhead calls. The regular and zero-overhead subroutine calls use the soft-
ware stack and extended-precision register R11, respectively, to save the re-
turn address. The following subsections use example programs to explain how
this works.

2.1.1 Regular Subroutine Calls

The ’C4x has a 32-bit program counter (PC) and a virtually unlimited software
stack. The CALL and CALLcond subroutine calls increment the stack pointer
and store the contents of the next value of the PC counter on the stack. At the
end of the subroutine, RETScond performs a conditional return.

Example 2–1 illustrates the use of a subroutine to determine the dot product
of two vectors. Given two vectors of length N, represented by the arrays a[0],
a[1], ..., a[N–1] and b[0], b[1],..., b[N–1], the dot product is computed from the
expression

d = a[0] b[0] + a[1] b[1] + ... + a[N–1] b[N–1]

Processing proceeds in the main routine to the point where the dot product is
to be computed. It is assumed that the arguments of the subroutine have been
appropriately initialized. At this point, a CALL is made to the subroutine, trans-
ferring control to that section of the program memory for execution, then re-
turning to the calling routine via the RETS instruction when execution has com-
pleted. Note that for this particular example, it would suffice to save the register
R2. However, a larger number of registers are saved for demonstration pur-
poses. The saved registers are stored on the system stack, which should be
large enough to accommodate the maximum anticipated storage require-
ments. Other methods of saving registers could be used equally well.

 Subroutines

2-3 Program Control

Example 2–1.Regular Subroutine Call (Dot Product)

*
* TITLE REGULAR SUBROUTINE CALL (DOT PRODUCT)
*
*
* MAIN ROUTINE THAT CALLS THE SUBROUTINE ‘DOT’ TO COMPUTE THE
* DOT PRODUCT OF TWO VECTORS.

.

.
LDI @blk0,AR0 ;AR0 points to vector a
LDI @blk1,AR1 ;AR1 points to vector b
LDI N,RC ; RC contains the number of elements
CALL DOT
.
.

*
*
*SUBROUTINE DOT
*
*
*EQUATION: d = a(0) * b(0) + a(1) * b(1) + ... + a(N–1) * b(N–1)
*
*
*THE DOT PRODUCT OF a AND b IS PLACED IN REGISTER R0. N MUST
*BE GREATER THAN OR EQUAL TO 2.
*
*
* ARGUMENT ASSIGNMENTS:
* ARGUMENT | FUNCTION
* –––––––––––––– +–––––––––––––––––––––––––
* AR0 | ADDRESS OF a(0)
* AR1 | ADDRESS OF b(0)
* RC | LENGTH OF VECTORS (N)
*
*
* REGISTERS USED AS INPUT: AR0, AR1, RC
* REGISTER MODIFIED: R0
* REGISTER CONTAINING RESULT: R0
*
*

.global DOT
*
DOT PUSH ST ;Save status register

PUSH R2 ;Use the stack to save R2’s
PUSHF R2 ;bottom 32 and top 32 bits
PUSH AR0 ;Save AR0
PUSH AR1 ;Save AR1
PUSH RC ;Save RC
PUSH RS
PUSH RE

*
*
* Initialize R0:

MPYF3 *AR0,*AR1,R0;a(0) * b(0) –> R0

Subroutines

 2-4

Example 2–1.Regular Subroutine Call (Dot Product) (Continued)

|| SUBF R2,R2,R2 ;Initialize R2.
SUBI 2,RC ;Set RC = N–2

*
*
* DOT PRODUCT (1 <= i < N)*

RPTS RC ; Setup the repeat single.
MPYF3 *++AR0(1),*++AR1(1),R0 ; a(i) * b(i) –> R0

|| ADDF3 R0,R2,R2 ; a(i–1)*b(i–1) + R2 –> R2
*

ADDF3 R0,R2,R0 ; a(N–1)*b(N–1) + R2 –> R0
*
*
* RETURN SEQUENCE
*

POP RE
POP RS
POP RC ;Restore RC
POP AR1 ;Restore AR1
POP AR0 ;Restore AR0
POPF R2 ;Restore top 32 bits of R2
POP R2 ;Restore bottom 32 bits of R2
POP ST ;Restore ST
RETS ;Return

*
* end
*

.end

2.1.2 Zero-Overhead Subroutine Calls

Two instructions, link and jump (LAJ) and link and jump conditional (LAJcond),
implement zero-overhead subroutine calls to be implemented on the ’C4x. Un-
like CALL and CALLcond, which put the value of PC + 1 into the software stack,
LAJ and LAJcond put the value of PC + 4 into extended-precision register R11.
Three instructions following LAJ or LAJcond are executed before going to the
subroutine. The restriction that applies to these three instructions is the same
as that of the three instructions following a delayed branch. At the end of the
subroutine, you can use a delayed branch conditional, BcondD, in the register
addressing mode with R11 as source, to perform a zero-overhead subroutine
return.

For comparison, the same dot product example with a zero-overhead subrou-
tine call is given in the following example program.

 Subroutines

2-5 Program Control

Example 2–2.Zero-Overhead Subroutine Call (Dot Product)

*
* TITLE ZERO-OVERHEAD SUBROUTINE CALL (DOT PRODUCT)
*
*
* MAIN ROUTINE THAT CALLS THE SUBROUTINE ‘DOT’ TO COMPUTE THE
* DOT PRODUCT OF TWO VECTORS.

.

.

.
LAJ DOT
LDI @blk0,AR0 ; AR0 points to vector a
LDI @blk1,AR1 ; AR1 points to vector b
LDI N,RC ; RC contains the number of elements
.
.
.

*
*SUBROUTINE DOT
*
*EQUATION: d = a(0) * b(0) + a(1) * b(1) + ... + a(N–1) * b(N–1)
*
* THE DOT PRODUCT OF a AND b IS PLACED IN REGISTER R0. N MUST
* BE GREATER THAN OR EQUAL TO 2.
*
* ARGUMENT ASSIGNMENTS:
* ARGUMENT | FUNCTION
* – –––––––––––––– +–––––––––––––––––––––––––
* AR0 | ADDRESS OF a(0)
* AR1 | ADDRESS OF b(0)
* RC | LENGTH OF VECTORS (N)

*
* REGISTERS USED AS INPUT: AR0, AR1, RC
* REGISTER MODIFIED: R0
* REGISTER CONTAINING RESULT: R0
*
*

*
.global DOT

*
DOT PUSH ST ;Save status register

PUSH R2 ;Use the stack to save R2’s
PUSHF R2 ;bottom 32 and top 32 bits
PUSH AR0 ;Save AR0
PUSH AR1 ;Save AR1
PUSH RC ;Save RC
PUSH RS
PUSH RE

Subroutines

 2-6

Example 2–2.Zero-Overhead Subroutine Call (Dot Product) (Continued)

* Initialize R0:
MPYF3 *AR0,*AR1,R0 ;a(0) * b(0) –> R0

|| SUBF R2,R2,R2 ;Initialize R2.
SUBI 2,RC ;Set RC = N–2

*

* DOT PRODUCT (1 <= i < N)
*

RPTS RC ; Setup the repeat single
MPYF3 *++AR0(1),*++AR1(1),R0; a(i) * b(i) –> R0

|| ADDF3 R0,R2,R2 ; a(i–1)*b(i–1) + R2 –> R2
*

ADDF3 R0,R2,R0 ; a(N–1)*b(N–1) + R2 –> R0
*
* RETURN SEQUENCE
*

POP RE
POP RS
POP RC ;Restore RC
POP AR1 ;Restore AR1
POP AR0 ;Restore AR0
BUD R11 ;Return
POPF R2 ;Restore top 32 bits of R2
POP R2 ;Restore bottom 32 bits of R2
POP ST ;Restore ST

*
* end
*

.end

 Stacks and Queues

2-7 Program Control

2.2 Stacks and Queues

The ’C4x provides a dedicated stack pointer (SP) for building stacks in
memory. Also, the auxiliary registers can be used to build user stacks and a
variety of more general linear lists. This section discusses the implementation
of the following types of linear lists:

Stack A linear list for which all insertions and deletions are made at one
end of the list.

Queue A linear list for which all insertions are made at one end of the
list, and all deletions are made at the other end.

Dequeue A double-ended queue linear list for which insertions and dele-
tions are made at either end of the list.

2.2.1 System Stacks

A stack in the ’C4x fills from a low-memory address to a high-memory address,
as is shown in Figure 2–1. A system stack stores addresses and data during
subroutine calls, traps, and interrupts.

The stack pointer (SP) is a 32-bit register that contains the address of the top
of the system stack. The SP always points to the last element pushed onto the
stack. A push performs a preincrement, and a pop performs a postdecrement
of the SP. Provisions should be made to accommodate your software’s antici-
pated storage requirements.

The stack pointer (SP) can be read from as well as written to; multiple stacks
can be created by updating the SP. The SP is not initialized by the hardware
during reset; it is important to remember to initialize its value so that the it points
to a predetermined memory location. Example 1–1 on page 1-7, shows how
to initialize the SP. You must initialize the stack to a valid free memory space.
Otherwise, use of the stack could corrupt data or program memory.

The program counter is pushed onto the system stack on subroutine calls,
traps, and interrupts. It is popped from the system stack on returns. The PUSH,
POP, PUSHF, and POPF instructions push and pop the system stack. The
stack can be used inside of subroutines as a place of temporary storage of reg-
isters, as is the case shown in Example 2–1, on page 2-3.

Stacks and Queues

 2-8

Two instructions, PUSHF and POPF, are for floating-point numbers. These in-
structions can pop and push floating-point numbers to registers R0 — R11. This
feature is very useful for saving the extended-precision registers (see
Example 2–1 and Example 2–2). PUSH saves the lower 32 bits of an extended-
precision register, and PUSHF saves the upper 32 bits. To recover this exten-
ded-precision number, execute a POPF followed by POP. It is important to per-
form the integer and floating-point PUSH and POP in the above order, since
POPF forces the last eight bits of the extended-precision registers to zero.

Figure 2–1. System Stack Configuration

Bottom of stack

Top of stack

(Free)

Low Memory

High Memory

SP

.

.

.

2.2.2 User Stacks

User stacks can be built to store data from low-to-high memory or from high-to-
low memory. Two cases for each type of stack are shown. You can build stacks
by using the preincrement/decrement and postincrement/decrement modes
of modifying the auxiliary registers (AR).

You can implement stack growth from high to low memory in two ways:

Case 1: Store to memory using *– –ARn to push data onto the stack, and read
from memory using *ARn++ to pop data off the stack.

Case 2: Store to memory using *ARn– – to push data onto the stack, and read
from memory using * ++ARn to pop data off the stack.

Figure 2–2 illustrates these two cases. The only difference is that in case 1,
the AR always points to the top of the stack, and in case 2, the AR always points
to the next free location on the stack.

 Stacks and Queues

2-9 Program Control

Figure 2–2. Implementations of High-to-Low Memory Stacks

Top of stack

Low Memory

High Memory

(Free)

Bottom of stack

ARn Top of stack

Low Memory

High Memory

(Free)

Bottom of stack

Case 1 Case 2

ARn

You can implement stack growth from low to high memory in two ways:

Case 3: Store to memory using *++ARn to push data onto the stack, and read
from memory using *ARn– – to pop data off the stack.

Case 4: Store to memory using *ARn++ to push data onto the stack, and read
from memory using *– –ARn to pop data off the stack.

Figure 2–3 shows these two cases. In case 3, the AR always points to the top
of the stack. In case 4, the AR always points to the next free location on the
stack.

Figure 2–3. Implementations of Low-to-High Memory Stacks

Top of stack

Low Memory

High Memory

(Free)

Bottom of stack

ARn Top of stack

Low Memory

High Memory

(Free)

Bottom of stack

Case 3 Case 4

ARn

.

.

.

.

.

.

2.2.3 Queues and Double-Ended Queues

The implementations of queues and double-ended queues is based upon the
manipulation of the auxiliary registers for user stacks.

Stacks and Queues

 2-10

For queues, two auxiliary registers are used: one to mark the front of the queue
from which data is popped and the other to mark the rear of the queue to where
data is pushed.

For double-ended queues, two auxiliary registers are also necessary. One
register marks one end of the double-ended queue, and the other register
marks the other end. Data can be popped from or pushed onto either end.

 Interrupt Examples

2-11 Program Control

2.3 Interrupt Examples

When using interrupts, you must consider several issues. This section offers
examples of several interrupt-related topics:

� Interrupt Service Routines
� Context Switching
� Interrupt-Vector Table (IVTP)
� Interrupt Priorities

2.3.1 Correct Interrupt Programming

For interrupts to work properly you need to execute the following sequence of
steps, as is shown in Example 1–1:

1) Set the interrupt-vector table in a 512-word boundary.
2) Initialize the IVTP register.
3) Create a software stack.
4) Enable the specific interrupt.
5) Enable global interrupts.
6) Generate the interrupt signal.

2.3.2 Software Polling of Interrupts

The interrupt flag register can be polled, and action can be taken, depending
on whether an interrupt has occurred. This is true even when maskable inter-
rupts are disabled.This can be useful when an interrupt-driven interface is not
implemented. Example 2–3 shows the case in which a subroutine is called
when external interrupt 1 has not occurred.

Example 2–3.Use of Interrupts for Software Polling

* TITLE INTERRUPT POLLING
.
.
.
TSTB 40H,IIF ;Test if interrupt 1 has occurred
CALLZ SUBROUTINE ;If not, call subroutine
.
.
.

When interrupt processing begins, the program counter is pushed onto the
stack, and the interrupt vector is loaded in the program counter. Interrupts are
disabled when GIE is cleared to 0 and the program continues from the address
loaded in the program counter. Because all maskable interrupts are disabled,
interrupt processing can proceed without further interruption unless the inter-
rupt service routine re-enables interrupts, or the NMI occurs.

Interrupt Examples

 2-12

2.3.3 Using One Interrupt for Two Services

The IVTP can be changed to point to alternate interrupt-vector tables. This re-
locatable feature of the table allows you to use a single interrupt signal for more
than one service.

In Example 2–4, the IVTP is reset in the external INT0 interrupt service rou-
tines EINT0A and EINT0B. After the value of the IVTP is changed, the CPU
goes to a different interrupt service routine when the same interrupt signal re-
occurs.

Example 2–4.Use of One Interrupt Signal for Two Different Services

* TITLE USE OF ONE INTERRUPT SIGNAL FOR TWO DIFFERENT SERVICES
*
* IN THIS EXAMPLE, THE ADDRESS OF EINT0A AND EINT0B ARE IN
* MEMORY LOCATION 03H AND 1003H, RESPECTIVELY. ASSUME THE IVTP
* HAS NOT BEEN CHANGED AFTER DEVICE RESET AND THE EXTERNAL
* INTERRUPT IIOF0 IS ENABLED. WHEN THE FIRST IIOF0 INTERRUPT
* SIGNAL COMES IN, THE EINT0A ROUTINE WILL BE EXECUTED AND THEN
* IF THE NEXT IIOF0 INTERRUPT SIGNAL OCCURS, THE EINT0B ROUTINE
* WILL BE EXECUTED, AND SO ON. THE EINT0A AND EINT0B ROUTINES
* WILL TAKE TURNS TO BE EXECUTED WHEN THE IIOF0 INTERRUPT
* SIGNAL OCCURS.
*
* External IIOF0 interrupt service routine A
*

.global EINT0A
EINT0A: .

.

.

.
LDI 1000H,R0 ;Change IVTP to point to 1000H
LDPE R0,IVTP
.
.

*
RETI ;Return and enable interrupts

*

* External IIOF0 interrupt service routine A
*

.global EINT0B
EINT0B: .

.

.

.
LDI 0,R0 ;Change IVTP to point to 0
LDPE R0,IVTP
.
.

*
RETI ;Return and enable interrupts

 Interrupt Examples

2-13 Program Control

2.3.4 Nesting Interrupts

In Example 2–5, the interrupt service routine for INT2 temporarily modifies the
interrupt enable register (IIE) and interrupt flag register (IIF) to permit interrupt
processing when an interrupt to INT0 or NMI (but no other interrupt) occurs.
When the routine finishes processing, the IIE register is restored to its original
state. Notice that the RETIcond instruction not only pops the next program
counter address from the stack, but also restores GIE and CF bits from the
PGIE and PCF bits. This re-enables all interrupts that were enabled before the
INT2 interrupt was serviced.

Example 2–5.Interrupt Service Routine

* TITLE INTERRUPT SERVICE ROUTINE
.global ISR2

*
ENABLE .set 2000h
MASK .set 9h
*
* INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT2–
*
ISR2:

PUSH ST ;Save status register
PUSH DP ;Save data page pointer
PUSH IIE ;Save interrupt enable register
PUSH IIF
PUSH R0 ;Save lower 32 bits and
PUSHF R0 ;upper 32 bits of R0
PUSH R1 ;Save lower 32 bits and
PUSHF R1 ;upper 32 bits of R1
LDI 0,IIE ;Unmask all internal interrupts
LDI MASK, R0
MH0 R0, IIF ;Enable INT2
OR ENABLE,ST ;Enable all interrupts

*
* MAIN PROCESSING SECTION FOR ISR2

.

.

.

XOR ENABLE,ST ;Disable all interrupts
POPF R1 ;Restore upper 32 bits and
POP R1 ;lower 32 bits of R1
POPF R0 ;Restore upper 32 bits and
POP R0 ;lower 32 bits of R0
POP IIF
POP IIE ;Restore interrupt enable register
POP DP ;Restore data page register
POP ST ;Restore status register

*
RETI ;Return and enable interrupts

Context Switching in Interrupts and Subroutines

 2-14

2.4 Context Switching in Interrupts and Subroutines

Context switching is commonly required when a subroutine call or interrupt is
processed. It can be extensive or simple, depending on system requirements.
For the ’C4x, the program counter is automatically pushed onto the stack. Im-
portant information in other ’C4x registers, such as the status, auxiliary, or ex-
tended-precision registers, must be saved in the stack with PUSH/PUSHF and
recovered later with POP/POPF instructions.

You need to preserve only the registers that are modified inside of your subrou-
tine or interrupt/trap service routine and that could potentially affect the pre-
vious context environment.

Note:

The status register should be saved first and restored last to preserve the
processor status without any further change caused by other context-switch-
ing instructions.

If the previous context environment was in C, then your program must perform
one of two tasks:

� If the program is in a subroutine, it must preserve the dedicated C regis-
ters:

Save as integers Save as floating-point

R4 RS R6 R7

AR4 AR5

AR6 AR7

FP DP (small model only)

SP R8 (‘C4x only)

� If the program is in an interrupt service routine, it must preserve all of the
’C4x registers, as Example 2–6 shows.

If the previous context environment was in assembly language, you need to
determine which registers you must save based on the operations of your as-
sembly-language code.

 Context Switching in Interrupts and Subroutines

2-15 Program Control

Example 2–6.Context Save and Context Restore

* .global ISR1
*
* TOTAL CONTEXT SAVE ON INTERRUPT.
*
ISR1: PUSH ST ;Save status register
*
* SAVE THE EXTENDED PRECISION REGISTERS
*

PUSH R0 ;Save the lower 32 bits of R0
PUSHF R0 ;and the upper 32 bits
PUSH R1 ;Save the lower 32 bits of R1
PUSHF R1 ;and the upper 32 bits
PUSH R2 ;Save the lower 32 bits of R2
PUSHF R2 ;and the upper 32 bits
PUSH R3 ;Save the lower 32 bits of R3
PUSHF R3 ;and the upper 32 bits
PUSH R4 ;Save the lower 32 bits of R4
PUSHF R4 ;and the upper 32 bits
PUSH R5 ;Save the lower 32 bits of R5
PUSHF R5 ;and the upper 32 bits
PUSH R6 ;Save the lower 32 bits of R6
PUSHF R6 ;and the upper 32 bits
PUSH R7 ;Save the lower 32 bits of R7
PUSHF R7 ;and the upper 32 bits
PUSH R8 ;Save the lower 32 bits of R8
PUSHF R8 ;and the upper 32 bits
PUSH R9 ;Save the lower 32 bits of R9
PUSHF R9 ;and the upper 32 bits
PUSH R10 ;Save the lower 32 bits of R10
PUSHF R10 ;and the upper 32 bits
PUSH R11 ;Save the lower 32 bits of R11
PUSHF R11 ;and the upper 32 bits

*
* SAVE THE AUXILIARY REGISTERS
*

PUSH AR0 ;Save AR0
PUSH AR1 ;Save AR1
PUSH AR2 ;Save AR2
PUSH AR3 ;Save AR3
PUSH AR4 ;Save AR4
PUSH AR5 ;Save AR5
PUSH AR6 ;Save AR6
PUSH AR7 ;Save AR7

*

Context Switching in Interrupts and Subroutines

 2-16

Example 2–6.Context Save and Context Restore (Continued)

* SAVE THE REST OF THE REGISTERS FROM THE REGISTER FILE
*

PUSH DP ;Save data page pointer
PUSH IR0 ;Save index register IR0
PUSH IR1 ;Save index register IR1
PUSH BK ;Save block-size register
PUSH IIE ;Save interrupt enable register
PUSH IIF ;Save interrupt flag register
PUSH DIE ;Save DMA interrupt enable register
PUSH RS ;Save repeat start address

PUSH RE ;Save repeat end address
PUSH RC ;Save repeat counter

*
* SAVE IS COMPLETE
*
*
* YOUR INTERRUPT SERVICE ROUTINE CODE GOES HERE*

.global RESTR
*
* CONTEXT RESTORE AT THE END OF A SUBROUTINE CALL OR

INTERRUPT.
RESTR:
*
* RESTORE THE REST REGISTERS FROM THE REGISTER FILE
*

POP RC ;Restore repeat counter
POP RE ;Restore repeat end address
POP RS ;Restore repeat start address
POP DIE ;Restore DMA interrupt enable register
POP IIF ;Restore interrupt flag register
POP IIE ;Restore interrupt enable register
POP BK ;Restore block-size register
POP IR1 ;Restore index register IR1
POP IR0 ;Restore index register IR0
POP DP ;Restore data page pointer

*
* RESTORE THE AUXILIARY REGISTERS
*

POP AR7 ;Restore AR7
POP AR6 ;Restore AR6
POP AR5 ;Restore AR5
POP AR4 ;Restore AR4
POP AR3 ;Restore AR3
POP AR2 ;Restore AR2
POP AR1 ;Restore AR1
POP AR0 ;Restore AR0

*

 Context Switching in Interrupts and Subroutines

2-17 Program Control

Example 2–6.Context Save and Context Restore (Continued)

* RESTORE THE EXTENDED PRECISION REGISTERS
*

POPF R11 ;Restore the upper 32 bits and
POP R11 ;the lower 32 bits of R11
POPF R10 ;Restore the upper 32 bits and
POP R10 ;the lower 32 bits of R10
POPF R9 ;Restore the upper 32 bits and
POP R9 ;the lower 32 bits of R9
POPF R8 ;Restore the upper 32 bits and
POP R8 ;the lower 32 bits of R8
POPF R7 ;Restore the upper 32 bits and
POP R7 ;the lower 32 bits of R7
POPF R6 ;Restore the upper 32 bits and
POP R6 ;the lower 32 bits of R6
POPF R5 ;Restore the upper 32 bits and
POP R5 ;the lower 32 bits of R5
POPF R4 ;Restore the upper 32 bits and
POP R4 ;the lower 32 bits of R4
POPF R3 ;Restore the upper 32 bits and
POP R3 ;the lower 32 bits of R3
POPF R2 ;Restore the upper 32 bits and
POP R2 ;the lower 32 bits of R2
POPF R1 ;Restore the upper 32 bits and
POP R1 ;the lower 32 bits of R1
POPF R0 ;Restore the upper 32 bits and
POP R0 ;the lower 32 bits of R0
POP ST ;Restore status register

*
* RESTORE IS COMPLETE
*

RETI

Repeat Modes

 2-18

2.5 Repeat Modes

The RPTB, RPTBD, and RPTS instructions support looping without overhead.
Loop execution parameters are specified by three registers, as can be seen
in the following examples:

� RS (Repeat start address)
� RE (Repeat end address)
� RC (Repeat counter)

In principle, it is possible to nest repeat blocks. However, there is only one set
of control registers: RS, RE, and RC. It is, therefore, necessary to save these
registers before entering an inside loop and to restore these registers after
completing the inside loop. It takes four cycles of overhead to save and restore
these registers. Hence, sometimes it may be more economical to implement
a nested loop by the more traditional method of using a register as a counter
and then using a delayed branch, rather than by using the nested repeat block
approach. Often, implementing the outer loop as a counter and the inner loop
as a RPTB/RPTBD instruction produces the fastest execution.

2.5.1 Block Repeat
Example 2–7 shows the use of the block repeat to find the maximum or the
minimum value of 147 numbers. The elements of the array are either all
positive or all negative numbers. Because the loop cannot be predetermined,
the RPTBD instruction is not suitable here.

Example 2–7.Use of Block Repeat to Find a Maximum or a Minimum

*
* TITLE USE OF BLOCK REPEAT TO FIND A MAXIMUM OR A MINIMUM
*
* THIS ROUTINE FINDS MAXIMUM OR MINIMUM OF N=147 NUMBERS

.

.

.

LDI 146,RC ;Initialize repeat counter to 147–1
LDI @ADDR,AR0 ;AR0 points to beginning of array
LDF *AR0++(1),R0 ;Initialize MAX or MIN to first value
BLT LOOP2 ;If negative array, find minimum

*
LOOP1 RPTB MAX

CMPF *AR0,R0 ;Compare number to the maximum
MAX LDFLT *AR0,R0 ;If greater, this is a new maximum

B NEXT
LOOP2 RPTB MIN

CMPF *AR0++(1),R0 ;Compare number to the minimum
MIN LDFLT *–AR0(1),R0 ;If smaller, this is new minimum
NEXT .

.

.

 Repeat Modes

2-19 Program Control

2.5.2 Delayed Block Repeat

Example 2–8 shows an application of the delayed block-repeat construct. In
this example, an array of 64 elements is flipped over by exchanging the ele-
ments that are equidistant from the end of the array. In other words, if the origi-
nal array is:

a(1), a(2),..., a(31), a(32),..., a(63), a(64);

then the final array after the rearrangement is:

a(64), a(63),..., a(32), a(31),..., a(2), a(1).

Because the exchange operation is performed on two elements at the same
time, it requires 32 operations. The repeat counter (RC) is initialized to 31. In
general, if RC contains the number N, the loop is executed N + 1 times. In the
example, the loop begins at the fourth instruction following the RPTBD instruc-
tion (at the EXCH label). RC should not be initiated in the next three instruc-
tions following the RPTBD.

Example 2–8.Loop Using Delayed Block Repeat

* TITLE LOOP USING DELAYED BLOCK REPEAT
*
* THIS CODE SEGMENT EXCHANGES THE VALUES OF ARRAY
* ELEMENTS THAT ARE SYMMETRIC AROUND THE MIDDLE OF THE
* ARRAY.
*

.

.

.
LDI 31,RC ;Initialize repeat counter

*
RPTBD EXCH ;Repeat RC + 1 times between

;START and EXCH
LDI @ADDR,AR0 ;AR0 points to

beginning of array
LDI AR0,AR1
ADDI 63,AR1 ;AR1 points to the end of the

array
*
* The loop starts here
START LDI *AR0,R0 ;Load one memory element in R0,
|| LDI *AR1,R1 ;and the other in R1
EXCH STI R1,*AR0++(1) ;Then, exchange their locations
|| STI R0,*AR1––(1)

.

.

.

Repeat Modes

 2-20

2.5.3 Single-Instruction Repeat

Example 2–9 shows an application of the repeat-single construct. In this ex-
ample, the sum of the products of two arrays is computed. The arrays are not
necessarily different. If the arrays are a(i) and b(i), and if each is of length
N = 512, register R2 contains the following quantity:

a(1) b(1) + a(2) b(2) +...+ a(N) b(N).

The value of the repeat counter (RC) is specified to be 511 in the instruction.

Example 2–9.Loop Using Single Repeat

* TITLE LOOP USING SINGLE REPEAT
*

.

.

.
LDI @ADDR1,AR0 ;AR0 points to array a(i)
LDI @ADDR2,AR1 ;AR1 points to array b(i)

*
LDF 0.0,R2 ;Initialize R0

*
MPYF3 *AR0++(1),*AR1++(1),R1 ;Compute first product

*
RPTS 511 ;Repeat 512 times

*
MPYF3 *AR0++(1),*AR1++(1),R1 ;Compute next product and

|| ADDF3 R1,R2,R2 ;accumulate the previous
*

ADDF R1,R2 ;One final addition
.
.
.

 Computed GOTOs to Select Subroutines at Runtime

2-21 Program Control

2.6 Computed GOTOs to Select Subroutines at Runtime

Occasionally, it is convenient to select during runtime, not during assembly, the
subroutine to be executed. The ’C4x’s computed GOTO supports this selec-
tion. You can implement the computed GOTO by using the CALLcond instruc-
tion in the register addressing mode. This instruction uses the contents of the
register as the address of the call. Example 2–10 shows the case of a task con-
troller.

Example 2–10. Computed GOTO

* TITLE COMPUTED GOTO
*
* TASK CONTROLLER
*
* THIS MAIN ROUTINE CONTROLS THE ORDER OF TASK EXECUTION
* (6 TASKS IN THE PRESENT EXAMPLE). TASK0 THROUGH TASK5 ARE
* THE NAMES OF SUBROUTINES TO BE CALLED. THEY ARE EXECUTED
* IN ORDER, TASK0, TASK1, ... TASK5. WHEN AN INTERRUPT
* OCCURS, THE INTERRUPT SERVICE ROUTINE IS EXECUTED, AND THE
* PROCESSOR CONTINUES WITH THE INSTRUCTION FOLLOWING THE
* IDLE INSTRUCTION. THIS ROUTINE SELECTS THE APPROPRIATE
* TASK FOR THE CURRENT CYCLE, CALLS THE TASK AS A SUBROUTINE,
* AND BRANCHES BACK TO THE IDLE INSTRUCTION TO WAIT FOR THE
* NEXT SAMPLE INTERRUPT WHEN THE SCHEDULED TASK HAS COMPLETED
* EXECUTION. R0 HOLDS THE OFFSET FROM THE BASE ADDRESS OF THE
* TASK TO BE EXECUTED. BIT 15 (SET COND BIT) OF STATUS REGISTER
* (ST) SHOULD BE SET TO 1.
*

LDI 5,IR0 ;Initialize IR0
LDI @ADDR,AR1 ;AR1 holds the base address

;of the table
WAIT IDLE ;Wait for the next interrupt

ADDI *+AR1(IR0),R1 ;Add base address to the
;table entry number

SUBI 1,IR0 ;Decrement IR0
LDILT 5,IR0 ;If IR0<0, reinitialize it to 5
CALLU R1 ;Execute appropriate task
BR WAIT

*
TSKSEQ .word TASK5 ;Address of TASK5

.word TASK4 ;Address of TASK4

.word TASK3 ;Address of TASK3

.word TASK2 ;Address of TASK2

.word TASK1 ;Address of TASK1

.word TASK0 ;Address of TASK0
ADDR .word TSKSEQ

 2-22

3-1 Chapter Title—Attribute Reference

Logical and Arithmetic Operations

The ’C4x instruction set supports both integer and floating-point arithmetic and
logical operations. The basic functions of such instructions can be combined
to form more complex operations. This chapter contains the following opera-
tions examples:

� Bit manipulation
� Block moves
� Byte and half-word manipulation
� Bit-reversed addressing
� Integer and floating-point division
� Square root
� Extended-precision arithmetic
� Floating-point format conversion between IEEE and ’C4x formats

Topic Page

3.1 Bit Manipulation 3-2.

3.2 Block Moves 3-3.

3.3 Byte and Half-Word Manipulation 3-4.

3.4 Bit-Reversed Addressing 3-6.

3.5 Integer and Floating-Point Division 3-9.

3.6 Calculating a Square Root 3-15.

3.7 Extended-Precision Arithmetic 3-17.

3.8 Floating-Point Format Conversion: IEEE to/From ’C4x 3-19.

Chapter 3

Bit Manipulation

 3-2

3.1 Bit Manipulation

Instructions for logical operations, such as AND, OR, NOT, ANDN, and XOR,
can be used together with shift instructions for bit manipulation. A special
instruction, TSTB, tests bits. TSTB does the same operation as AND, but the
result of the TSTB is used only to set the condition flags and is not written any-
where. Example 3–1 and Example 3–2 demonstrate the use of several in-
structions for bit manipulation and testing.

Example 3–1.Use of TSTB for Software-Controlled Interrupt

* TITLE USE OF TSTB FOR SOFTWARE-CONTROLLED INTERRUPT
*
* IN THIS EXAMPLE, ALL INTERRUPTS HAVE BEEN DISABLED BY
* RESETTING THE GIE BIT OF THE STATUS REGISTER. WHEN AN
* INTERRUPT ARRIVES, IT IS STORED IN THE IF REGISTER. THE
* PRESENT EXAMPLE ACTIVATES THE INTERRUPT SERVICE ROUTINE INTR
* WHEN IT DETECTS THAT INT2- HAS OCCURRED.

.

.

.
TSTB 4,IIF ; Check if bit 2 of IF is set,
CALLNZ INTR ; and, if so, call subroutine INTR
.
.
.

Example 3–2.Copy a Bit from One Location to Another

* TITLE COPY A BIT FROM ONE LOCATION TO ANOTHER
*
* BIT I OF R1 NEEDS TO BE COPIED TO BIT J OF R2. AR0 POINTS TO A LOCATION
* HOLDING I, AND IT IS ASSUMED THAT THE NEXT MEMORY LOCATION HOLDS THE VALUE J.
*

.

.

.
LDI 1,R0
LSH *AR0,R0 ;Shift 1 to align it with bit I
TSTB R1,R0 ;Test the I–th bit of R1
BZD CONT ;If bit = 0, branch delayed
LDI 1,R0
LSH *+AR0(1),R0 ;Align 1 with J–th location
ANDN R0,R2 ;If bit = 0, reset J–th bit of R2
OR R0,R2 ;If bit = 1, set J–th bit of R2
CONT
.
.
.

 Block Moves

3-3 Logical and Arithmetic Operations

3.2 Block Moves

Because the ’C4x directly addresses a large amount of memory, blocks of data
or program code can be stored off-chip in slow memories and then loaded
on-chip for faster execution. Data can also be moved from on-chip memory to
off-chip memory for storage or for multiprocessor data transfers.

The DMA can transfer data efficiently in parallel with CPU operations. Alterna-
tively, you can use the load and store instructions in a repeat mode to perform
data transfers under program control. Example 3–3 shows how to transfer a
block of 512 floating-point numbers from external memory to block 1 of on-chip
RAM.

Example 3–3.Block Move Under Program Control

* TITLE BLOCK MOVE UNDER PROGRAM CONTROL
*
extern .word 01000H
block1 .word 02FFC00H

.

.

.
LDI @extern,AR0 ;Source address
LDI @block1,AR1 ;Destination address
LDF *AR0++,R0 ;Load the first number
RPTS 510 ;Repeat following instruction 511 times
LDF *AR0++,R0 ;Load the next number, and...

|| STF R0,*AR1++ ;store the previous one
STF R0,*AR1 ;Store the last number
.
.
.

Byte and Half-Word Manipulation

 3-4

3.3 Byte and Half-Word Manipulation

A set of instructions for byte and half-word accessibility, such as LB(3,2,1,0),
LBU(3,2,1,0), LH(1,0), LHU(1,0), LWL(0,1,2,3), LWR(0,1,2,3), MB(3,2,1,0),
and MH(1,0), is available on the ’C4x. In an application such as image process-
ing, it is often important to be able to manipulate packed data. For example,
the pixels in color images are often represented by four 8-bit unsigned quanti-
ties — red, green, blue and alpha — which are packed into a single 32-bit
word. The byte and half-word instruction makes it very easy to manipulate this
packed data.

Example 3–4 shows the packing of data from a half-word FIFO to 32-bit data
memory, and Example 3–5 shows the unpacking of a 32-bit data array into a
4-byte-wide data array (assuming the 32-bit data array contains four 8-bit un-
signed numbers).

Example 3–4.Use of Packing Data From Half-Word FIFO to 32-Bit Data Memory

* TITLE USE OF PACKING DATA FROM HALF-WORD FIFO
* TO 32-BIT DATA MEMORY
*
* IN THIS EXAMPLE, EVERY TWO INPUT 16 BITS DATA HAS BEEN
* PACKED INTO ONE 32-BIT DATA MEMORY. THE LOOP SIZE
* USED HERE IS ARRAY SIZE, NOT THE INPUT DATA LENGTH.

.

.

.

LDI size-1,RC ;Load array size
RPTBD PACK
LDI @fifo_adr,AR1 ;Load fifo address
LDI @array,AR2 ;Load data array address
NOP

* >>>>>>>>>>>>>>>> ;Loop starts here
LWL0 *AR1,R9 ;Pack 16 LSBs
LWL1 *AR1,R9 ;Pack 16 MSBs

PACK STI R9,*AR2++(1) ;Store the data
.
.
.

 Byte and Half-Word Manipulation

3-5 Logical and Arithmetic Operations

Example 3–5.Use of Unpacking 32-Bit Data Into Four-Byte-Wide Data Array

* TITLE USE OF UNPACKING 32-BIT DATA INTO FOUR BYTE-WIDE
* DATA ARRAY
*
* THIS EXAMPLE ASSUMED THAT THE 32-BIT DATA CONTAINS FOUR 8-BIT
* UNSIGNED DATA.

.

.

. LDI size–1,RC ;Load array size
LDI @input_adr,AR0 ;Load RPTBD UNPACK input address
LDI @array1,AR1 ;Load output data array 1 address
RPTBD UNPACK
LDI @array2,AR2 ;Load output data array 2 address
LDI @array3,AR3 ;Load output data array 3 address
LDI @array4,AR4 ;Load output data array 4 address

* >>>>>>>>>>>>>>>> ;Loop starts here
LBU0 *AR0,R8 ;Unpack first byte
STI R8,*AR1++(1)
LBU1 *AR0,R8 ;Unpack second byte
STI R8,*AR2++(1)
LBU2 *AR0,R8 ;Unpack third byte
STI R8,*AR3++(1)
LBU3 *AR0++(1),R8 ;Unpack fourth byte

UNPACK STI R8,*AR4++(1)
.
.
.

Bit-Reversed Addressing

 3-6

3.4 Bit-Reversed Addressing

The ’C4x can implement fast Fourier transforms (FFT) with bit-reversed ad-
dressing. If the data to be transformed is in the correct order, the final result
of the FFT is scrambled in bit-reversed order. To recover the frequency-do-
main data in the correct order, certain memory locations must be swapped.
The bit-reversed addressing mode makes swapping unnecessary. The next
time data is accessed, the access is bit-reversed rather than sequential. In
’C4x, this bit-reversed addressing can be implemented through both the CPU
and DMA.

For correct CPU or DMA bit-reversed operation, the base address of bit-re-
versed addressing must be located on a boundary of the size of the table. To
clarify this point, assume an FFT of size N = 2n. When real and imaginary data
are stored in separate arrays, the n LSBs of the base address must be zero,
(0) and IR0 must be initialized to 2n–1 (half of the FFT size). When real and
imaginary data are stored in consecutive memory locations (Re–Im–Re–Im)
the n+1 LSBs of the base address must be zero (0), and IR0 must be equal
to IR0 = 2n = N (FFT size).

3.4.1 CPU Bit-Reversed Addressing

One auxiliary register (AR0, in this case) points to the physical location of a
data value. When you add IR0 to the auxiliary register by using bit-reversed
addressing, addresses are generated in a bit-reversed fashion (reverse carry
propagation). The largest index (IR0, in this case) for bit reversing is 00FF
FFFFh.

Example 3–6 illustrates how to move a 512-point complex FFT from the place
of computation (pointed at by AR0) to a location pointed at by AR1. Reads are
executed in a bit-reversed fashion and writes in a linear fashion. In this exam-
ple, real and imaginary parts XR(i) and XI(i) of the data are not stored in sepa-
rate arrays, but they are interleaved with XR(0), XI(0), XR(1), XI(1), ..., XR(N1),
XI(N1). Because of this arrangement, the length of the array is 2N instead of
N, and IR0 is set to 512 instead of 256.

 Bit-Reversed Addressing

3-7 Logical and Arithmetic Operations

Example 3–6.CPU Bit-Reversed Addressing

*
* TITLE BIT-REVERSED ADDRESSING
*
* THIS EXAMPLE MOVES THE RESULT OF THE 512-POINT FFT COMPUTATION, POINTED AT BY
* AR0, TO A LOCATION POINTED AT BY AR1. REAL AND IMAGINARY POINTS ARE ALTERNATING.
*

.

.

.
LDI 511,RC ;Repeat 511+1 times
RPTBD LOOP
LDI 512,IR0 ;Load FFT size
LDI 2,IR1
LDF *+AR0(1),R1 ;Load first imaginary point

*
LDF *AR0++(IR0)B,R0 ;Load real value (and point to next

|| STF R1,*+AR1(1) ;location) and store the imaginary value
LOOP LDF *+AR0(1),R1 ;Load next imaginary point and store
|| STF R0,*AR1++(IR1) ;previous real value

.

.

.

3.4.2 DMA Bit-Reversed Addressing

In DMA bit-reversed addressing, two bits in the DMA control register enable
bit-reversed addressing on DMA reads (READ BIT REV) and DMA writes
(WRITE BIT REV). The source address index register and destination address
index register define the size of the bit-reversed addressing. Their function is
similar to the CPU index register IR0 described in the previous subsection.
Two DMA block transfers are required when the DMA is used for bit-reversed
transfer of complex numbers: one to transfer the real ports and one to transfer
the imaginary ports.

Figure 3–1 illustrates the DMA settings required for a DMA operation equiva-
lent to Example 3–6. Unified-autoinitialization mode and bit-reversed read are
used. For more detailed information about DMA operation, refer to The DMA
Coprocessor in the TMS320C4x User’s Guide.

Bit-Reversed Addressing

 3-8

Figure 3–1. DMA Bit-Reversed Addressing

00C0 1009h

AR0

IR0

512

AR1

2

label

Control Register

src Address

src Index

Counter

dst Address

dst Index

Link Pointer

label 00C0 1005h

AR0+1

IR0

512

AR1+1

2

 Integer and Floating-Point Division

3-9 Logical and Arithmetic Operations

3.5 Integer and Floating-Point Division

You can use the single-cycle instruction, RCPF, to generate an estimate of the
reciprocal of a floating-point number. This estimate has the correct exponent,
and the mantissa is accurate to the eighth binary place (the error of the mantis-
sa is < 2–8). Often, this is a satisfactory estimate of the reciprocal of a floating-
point number. In other cases, this estimate can be used as a seed for an algo-
rithm that computes the reciprocal to even greater accuracy. The Newton-
Raphson algorithm described later is one such case.

Although it provides no special instruction for integer division, the instruction
set can perform an efficient division routine. Additionally, the FLOAT, RCPF,
and FIX instructions can produce a rough estimate.

3.5.1 Integer Division

You can implement division on the ’C4x by repeating SUBC, a special condi-
tional subtract instruction. Consider the case of a 32-bit positive dividend with
i significant bits (and 32–i sign bits), and a 32-bit positive divisor with j signifi-
cant bits (and 32–j sign bits). The repetition of the SUBC command i–j + 1 times
produces a 32-bit result in which the lower i–j + 1 bits are the quotient, and the
upper 31–i + j bits are the remainder of the division.

SUBC implements binary division in the same manner as long division. The
divisor (assumed to be smaller than the dividend) is shifted left i–j times to align
with the dividend. Then, using SUBC, the shifted divisor is subtracted from the
dividend. For each subtract that does not produce a negative answer, the divi-
dend is replaced by the difference. It is then shifted to the left, and the LSB is
set to 1. If the difference is negative, the dividend is simply shifted left by one.
This operation is repeated i–j + 1 times.

As an example, consider the division of 33 by 5 using both long division and
the SUBC method. In this case, i = 6, j = 3, and the SUBC operation is repeated
6–3 + 1 = 4 times.

LONG DIVISION:

00000000000000000000000000000101

00000000000000000000000000000110

Quotient

Remainder

00000000000000000000000000100001
–101

1101

–101

11

Integer and Floating-Point Division

 3-10

SUBC METHOD:

00000000000000000000000000100001
00000000000000000000000000101000

Dividend
Divisor (aligned)
(1st SUBC com-
mand)Negative difference

↓
00000000000000000000000000100001
00000000000000000000000000101000

New Dividend + Quotient
Divisor
Difference (>0) (2nd SUBC
command)00000000000000000000000000011010

↓
New Dividend + Quotient
Divisor
Difference (>0) (3rd SUBC
command)

00000000000000000000000000100001
00000000000000000000000000101000

00000000000000000000000000011010

↓
00000000000000000000000000011011
00000000000000000000000000101000

Negative difference

↓

New Dividend + Quotient
Divisor
(4th SUBC command)

00000000000000000000000000110110

Remainder
↓ ↓

Final Result

Quot.

When the SUBC command is used, both the dividend and the divisor must be
positive. Example 3–7 shows a realization of the integer division in which the
sign of the quotient is properly handled. The last instruction before returning
modifies the condition flag, in case subsequent operations depend on the sign
of the result.

 Integer and Floating-Point Division

3-11 Logical and Arithmetic Operations

Example 3–7.Integer Division

*
* TITLE INTEGER DIVISION
*
* SUBROUTINE DIVI
*
*
* INPUTS: SIGNED INTEGER DIVIDEND IN R0,
* SIGNED INTEGER DIVISOR IN R1.
*
* OUTPUT: R0/R1 into R0.
*
* REGISTERS USED: R0–R3, IR0, IR1
*
* OPERATION: 1. NORMALIZE DIVISOR WITH DIVIDEND
* 2. REPEAT SUBC
* 3. QUOTIENT IS IN LSBs OF RESULT
*
* CYCLES: 31–62 (DEPENDS ON AMOUNT OF NORMALIZATION)
* .globl DIVI
SIGN .set R2
TEMPF .set R3
TEMP .set IR0
COUNT .set IR1
* DIVI – SIGNED DIVISION
DIVI:
*
* DETERMINE SIGN OF RESULT. GET ABSOLUTE VALUE OF OPERANDS.
*

XOR R0,R1,SIGN ;Get the sign
ABSI R0
ABSI R1
CMPI R0,R1 ;Divisor > dividend ?
BGTD ZERO ;If so, return 0

*
* NORMALIZE OPERANDS. USE DIFFERENCE IN EXPONENTS AS SHIFT COUNT
* FOR DIVISOR, AND AS REPEAT COUNT FOR ’SUBC’.
*

FLOAT R0,TEMPF ;Normalize dividend
PUSHF TEMPF ;PUSH as float
POP COUNT ;POP as int
LSH –24,COUNT ;Get dividend exponent
FLOAT R1,TEMPF ;Normalize divisor
PUSHF TEMPF ;PUSH as float
POP TEMP ;POP as int
LSH –24,TEMP ;Get divisor exponent
SUBI TEMP,COUNT ;Get difference in exponents
LSH COUNT,R1 ;Align divisor with dividend

*
* DO COUNT+1 SUBTRACT & SHIFTS.
*

RPTS COUNT
SUBC R1,R0

*

Integer and Floating-Point Division

 3-12

Example 3–7.Integer Division (Continued)
* MASK OFF THE LOWER COUNT+1 BITS OF R0
*

SUBRI 31,COUNT ;Shift count is (32 – (COUNT+1))
LSH COUNT,R0 ;Shift left
NEGI COUNT
LSH COUNT,R0 ;Shift right to get result

*
* CHECK SIGN AND NEGATE RESULT IF NECESSARY.
*

NEGI R0,R1 ;Negate result
ASH –31,SIGN ;Check sign
LDINZ R1,R0 ;If set, use negative result
CMPI 0,R0 ;Set status from result RETS

*
* RETURN ZERO.
*
ZERO:

LDI 0,R0
RETS
.end

If the dividend is less than the divisor and you want fractional division, you can
perform a division after you determine the desired accuracy of the quotient in
bits. If the desired accuracy is k bits, start by shifting the dividend left by k posi-
tions. Then apply the algorithm described above, and replace with i + k. It is
assumed that i + k is less than 32.

3.5.2 Computation of Floating-Point Inverse and Division

When you use the RCPF (reciprocal of a floating-point number) instruction to
generate an estimate of the reciprocal of a floating-point number, you can also
use Newton-Raphson algorithm to extend the precision of the mantissa of the
reciprocal of a floating-point number that the instruction generates. The floa-
ting-point division can be obtained by multiplying the dividend and the recipro-
cal of the divisor.

The input to RCPF is assumed to be v = v(man) × 2v(exp). The output is x =
x(man) × 2 x(exp). The value v(man) (or x(man)) is composed of three fields:
the sign bit v(sign), an implied nonsign bit, and the fraction field v(frac).

Four rules apply to generating the reciprocal of a floating-point number:

1) If v > 0, then x(exp) = –v(exp) – 1, and x(man) = 2/v(man).
For the special case in which the 10 MSBs of v(man) = 01.00000000b,
then x(man) = 2–2 –8 = 01.11111111b. In both cases, the 23 LSBs of
x(frac) = 0.

2) If v < 0, then x(exp) = –v(exp) – 1, and x(man) = 2/v(man).
For the special case in which the 10 MSBs of v(man) = 10.00000000b,

 Integer and Floating-Point Division

3-13 Logical and Arithmetic Operations

then x(man) = –1 – 2–8 = 10.11111111b. In both cases, the 23 LSBs of
x(frac) = 0.

3) If v = 0 (v(exp) = –128), then x(exp) = 127, and
x(man) = 01.1111111111111111111111111111111b.
In other words, if v = 0, then x becomes the largest positive number repre-
sentable in the extended-precision floating-point format. The overflow flag
(V) is set to 1.

4) If v(exp) = 127, then x(exp) = –128, and x(man) = 0.
The zero flag (Z) is set to 1.

The Newton-Raphson algorithm is:

x[n+1] = x[n](2.0 – vx[n])

In this algorithm, v is the number for which the reciprocal is desired. x[0] is the
seed for the algorithm and is given by RCPF. At every iteration of the algorithm,
the number of bits of accuracy in the mantissa doubles. Using RCPF, accuracy
starts at eight bits. With one iteration, accuracy increases to16 bits in the man-
tissa, and with the second iteration, accuracy increases to 32 bits in the mantis-
sa. Example 3–8 shows the program for implementing this algorithm on the
’C4x.

Integer and Floating-Point Division

 3-14

Example 3–8.Inverse of a Floating-Point Number With 32-Bit Mantissa Accuracy

*
* TITLE INVERSE OF A FLOATING-POINT NUMBER WITH 32-BIT
* MANTISSA ACCURACY
*
* SUBROUTINE INVF
*
* THE FLOATING-POINT NUMBER v IS STORED IN R0. AFTER THE
* COMPUTATION IS COMPLETED, 1/v IS STORED IN R1.
*
* TYPICAL CALLING SEQUENCE:
* LAJU INVF
* LDF v, R0
* NOP <–––– can be other non-pipeline-break
* NOP <–––– instructions
*
* ARGUMENT ASSIGNMENTS:
*
* ARGUMENT |FUNCTION
* –––––––––––––– +––
* R0 | v = NUMBER TO FIND THE RECIPROCAL OF
* | (UPON THE CALL)
* R1 | 1/v (UPON THE RETURN)
*
* REGISTER USED AS INPUT: R0
* REGISTERS MODIFIED: R1, R2
* REGISTER CONTAINING RESULT: R1
* REGISTER FOR SUBROUTINE CALL: R11
*
* CYCLES: 7 (not including subroutine overhead)
* WORDS: 8 (not including subroutine overhead)
*
*

.global INVF
*
INVF: RCPF R0,R1 ;Get x[0] = the

;estimate of 1/v, R0 = v
*

MPYF3 R1,R0,R2
SUBRF 2.0,R2
MPYF R2,R1 ;End of first iteration

;(16 bits accuracy)
*

BUD R11 ;Delayed return to caller
*

MPYF3 R1,R0,R2
SUBRF 2.0,R2
MPYF R2,R1 ;End of second iteration

;(32 bits accuracy)
*
* R1 = 1/v, Return to caller
*

.end

 Calculating a Square Root

3-15 Logical and Arithmetic Operations

3.6 Calculating a Square Root

In many applications, normalization of data values is necessary. Often, the
normalizing factor is the square root of another quantity. For example, given
a vector, the unit vector in the same direction as the original vector can be
found by normalizing the original vector by its length. This involves a division
by a square root. The ’C4x single-cycle instruction RSQRF generates an
estimate of the reciprocal of the square root of a positive floating-point number.
This estimate has the correct exponent, and the mantissa is accurate to the
eighth binary place (the error of the mantissa is < 2–8). Three rules apply to this
algorithm:

1) If v(exp) is even, then x(exp) = –(v(exp)/2) – 1, and
x(man) = 2/sqrt(v(man)).

For the special case where the 10 MSBs of y(man) = 01.00000000b, then
x(man) = 2 – 2 –8 = 01.11111111b. In both cases, the 23 LSBs of x(frac) = 0.

2) If v(exp) is odd, then x(exp) = –((v(exp) – 1)/2) – 1 and
x(man) = sqrt(2/v(man)). The 23 LSBs of x(frac) = 0.

3) If v = 0 (v(exp) = –128), then x(exp) = 127, and
x(man) = 01.1111111111111111111111111111111b.
In other words, if v = 0, then x becomes the largest positive number repre-
sentable in the extended-precision floating-point format. The overflow flag
(V) is set to 1.

If you need larger precision than the RSQRF instruction gives for the estimate
of the reciprocal of the square root, you can use the Newton-Raphson algo-
rithm to further extend the precision of the mantissa. The algorithm is:

x[n+1] = x[n](1.5 – (v/2) x [n] x [n])

In this equation, v is the number for which the reciprocal is desired. x[0] is the
seed for the algorithm and is given by RSQRF. At every iteration of the algo-
rithm, the number of bits of accuracy in the mantissa doubles. Using RSQRF,
accuracy starts at eight bits. With one iteration, accuracy increases to16 bits,
and with the second iteration, accuracy increases to 32 bits in the mantissa.
Example 3–9 shows the program for implementing this algorithm on the ’C4x.

Calculating a Square Root

 3-16

Example 3–9.Reciprocal of the Square Root of a Positive Floating Point
* TITLE RECIPROCAL OF THE SQUARE ROOT OF A POSITIVE
* FLOATING-POINT
*
* SUBROUTINE RCPSQRF
*
* THE FLOATING-POINT NUMBER v IS STORED IN R0. AFTER THE
* COMPUTATION IS COMPLETED, 1/SQRT(v) IS STORED IN R1.
*
* TYPICAL CALLING SEQUENCE:
* LDF v, R0
* LAJU RCPSQRF
*
* ARGUMENT ASSIGNMENTS:
*
* ARGUMENT | FUNCTION
* –––––––––––– +––––––––––––––––––––––––––––––––––––––
* R0 | v = NUMBER TO FIND THE RECIPROCAL OF
* | (UPON THE CALL)
* R1 | 1/sqrt(v) (UPON THE RETURN)
*
* REGISTER USED AS INPUT: R0
* REGISTERS MODIFIED: R1, R2
* REGISTER CONTAINING RESULT: R1
* REGISTER FOR SUBROUTINE CALL: R11
*
* CYCLES: 10 (not including subroutine overhead)
* WORDS: 10 (not including subroutine overhead)
*

.global RCPSQRF
*
RCPSQRF: RSQRF R0,R1 ;Get x[0] = the estimate of 1/sqrt(v), R0 = v

MPYF 0.5,R0 ;R0 = v/2
*

MPYF3 R1,R1,R2 ;First iteration
MPYF R0,R2
SUBRF 1.5,R2
MPYF R2,R1 ;End of first iteration (16 bits accuracy)

*
MPYF3 R1,R1,R2 ;Second iteration

*
BRD R11 ;Delayed return to caller

*
MPYF R0,R2
SUBRF 1.5,R2
MPYF R2,R1 ;End of second iteration (32 bits accuracy)

*
* R1 = 1/SQRT(v), Return to caller
*

.end

You can find the square root by a simple multiplication: sqrt(v) = vx[n] in which
x[n] is the estimate of 1/sqrt(v) as determined by the Newton-Raphson algo-
rithm or another algorithm.

 Extended-Precision Arithmetic

3-17 Logical and Arithmetic Operations

3.7 Extended-Precision Arithmetic

The ’C4x offers 32 bits of precision in the mantissa for integer arithmetic, and
24 bits of precision in the mantissa for floating-point arithmetic. For higher pre-
cision in floating-point operations, the twelve extended-precision registers, R0
to R11, contain eight more bits of accuracy. Because no comparable extension
is available for fixed-point arithmetic, this section discusses how to achieve
fixed-point double precision. The technique consists of performing the arith-
metic by parts and is similar to the way in which longhand arithmetic is done.

The instructions, ADDC (add with carry) and SUBB (subtract with borrow) use
the status carry bit for extended-precision arithmetic. The carry bit is affected
by the arithmetic operations of the ALU and by the rotate and shift instructions.
You can also manipulate it directly by setting the status register to certain val-
ues. For proper operation, the overflow mode bit should be reset (OVM = 0)
so that the accumulator results are not loaded with the saturation values.
Example 3–10 and Example 3–11 show 64-bit addition and 64-bit subtraction,
respectively. The first operand is stored in the registers R0 (low word) and R1
(high word). The second operand is stored in registers R2 and R3, respective-
ly. The result is stored in R0 and R1.

Example 3–10. 64-Bit Addition

*
* TITLE 64-BIT ADDITION
*
* TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING
*
* A 64-BIT RESULT. THE NUMBERS X (R1,R0) AND Y (R3,R2)
*
* ARE ADDED, RESULTING IN W (R1,R0).
*
* R1 R0
* + R3 R2
* –––––––
* R1 R0
*

ADDI R2,R0
ADDC R3,R1

Extended-Precision Arithmetic

 3-18

Example 3–11. 64-Bit Subtraction

*
* TITLE 64-BIT SUBTRACTION
*
* TWO 64-BIT NUMBERS ARE SUBTRACTED FROM EACH OTHER
* PRODUCING A 64-BIT RESULT. THE NUMBERS X (R1,R0) AND
* Y (R3,R2) ARE SUBTRACTED, RESULTING IN W (R1,R0).
*
* R1 R0
* – R3 R2
* –––––––
* R1 R0
*

SUBI R2,R0
SUBB R3,R1

When two 32-bit numbers are multiplied, a 64-bit product results. To do this,
’C4x provides a 32 bit x 32-bit multiplier and two special instructions, MPYSHI
(multiply signed integer and produce 32 MSBs) and MPYUHI (multiply un-
signed integer and produce 32 MSBs). Example 3–12 shows the implementa-
tion of a 32-bit x 32-bit multiplication.

Example 3–12. 32-Bit by 32-Bit Multiplication

*
* TITLE 32 BIT × 32-BIT MULTIPLICATION
*
* MULTIPLIES 2 32-BIT NUMBERS, PRODUCING A 64-BIT RESULT.
* THE TWO NUMBERS R0 AND R1 ARE MULTIPLIED, RESULTING
* IN W (R3,R2).
*
* R0
* × R1
* ––––
* R3 R2
*

MPYI3 R0,R1,R2
MPYSHI3 R0,R1,R3

 Floating-Point Format Conversion: IEEE to/From ’C4x

3-19 Logical and Arithmetic Operations

3.8 Floating-Point Format Conversion: IEEE to/From ’C4x

In fixed-point arithmetic, the binary point that separates the integer from the
fractional part of the number is fixed at a certain location. Therefore, if the
binary point of a 32-bit number is fixed after the most significant bit (which is
also the sign bit), only a fractional number (a number with an absolute value
less than 1), can be represented. In other words, there is a number with 31 frac-
tional bits. All operations assume that the binary point is fixed at this location.
The fixed-point system, although simple to implement in hardware, imposes
limitations in the dynamic range of the represented number. This causes scal-
ing problems in many applications. You can avoid this difficulty by using floa-
ting-point numbers.

A floating-point number consists of a mantissa m multiplied by base b raised
to an exponent e:

m × be

In current hardware implementations, the mantissa is typically a normalized
number with an absolute value between 1 and 2, and the base is b = 2. Al-
though the mantissa is represented as a fixed-point number, the actual value
of the overall number floats the binary point because of the multiplication by
be. The exponent e is an integer whose value determines the position of the
binary point in the number. IEEE has established a standard format for the re-
presentation of floating-point numbers.

To achieve higher efficiency in the hardware implementation, the ’C4x uses a
floating-point format that differs from the IEEE standard. However, ’C4x has
two single-cycle instructions, TOIEEE and FRIEEE, for the format conversion.
These two instructions can also be used with the STF instruction, which allows
the data format to be converted within memory-to-memory transfer. Here are
descriptions of both formats and an example program to convert between
them.

’C4x floating-point format:

e s f

1 23 bits8 bits

In a 32-bit word representing a floating-point number, the first 8 bits corre-
spond to the exponent expressed in twos-complement format. One bit is for
sign, and 23 bits are for the mantissa. The mantissa is expressed in twos-com-
plement form with the binary point after the most significant nonsign bit. Be-
cause this bit is the complement of the sign bit s, it is suppressed. In other
words, the mantissa actually has 24 bits. One special case occurs when

Floating-Point Format Conversion: IEEE to/From ’C4x

 3-20

e = –128. In this case, the number is interpreted as zero, independently of the
values of s and f (which are, by default, set to zero). To summarize, the values
of the represented numbers in the ’C4x floating-point format are as follows:

2e * (01.f) if s = 0
2e * (10.f) if s = 1
0 if e = –128

IEEE floating-point format:

es f

1 23 bits 8 bits

The IEEE floating-point format uses sign-magnitude notation for the mantissa.
In a 32-bit word representing a floating-point number, the first bit is the sign bit.
The next 8 bits correspond to the exponent, expressed in an offset-by-127 for-
mat (the actual exponent is e–127). The following 23 bits represent the abso-
lute value of the mantissa with the most significant 1 implied. The binary point
is fixed after this most significant 1. In other words, the mantissa actually has
24 bits. Several special cases are summarized below.

These are values of the represented numbers in the IEEE floating-point for-
mat:

(–1)s * 2e–127 * (01.f) if 0 < e < 255

Special cases:

(–1)s * 0.0 if e = 0 and f = 0 (zero)
(–1)s * 2–126 * (0.f) if e = 0 and f <> 0 (denormalized)
(–1)s * infinity if e = 255 and f = 0 (infinity)
NaN (not a number) if e = 255 and f <> 0

The ’C4x performs the conversion according to these definitions of the for-
mats. It assumes that the source data for the IEEE format is in memory only
and that the source data for the ’C4x floating-point format is in either memory
or an extended-precision register. The destination for both conversions must
be in an extended-precision register. In the case of block memory transfer, the
no-penalty data-format conversion can be executed by parallel instruction with
STF. Example 3–13 and Example 3–14 show the data-format conversion
within the data transformation between communication port and internal RAM.

 Floating-Point Format Conversion: IEEE to/From ’C4x

3-21 Logical and Arithmetic Operations

Example 3–13. IEEE to ’C4x Conversion Within Block Memory Transfer

* TITLE IEEE TO ’C4x CONVERSION WITHIN BLOCK MEMORY
* TRANSFER
*
* PROGRAM ASSUMES THAT INPUT FIFO OF COMMUNICATION PORT 0
* IS FULL OF IEEE FORMAT DATA. EIGHT DATA WORDS ARE
* TRANSFERRED FROM COMMUNICATION PORT 0 TO INTERNAL RAM
* BLOCK 0 AND THE DATA FORMAT IS CONVERTED FROM IEEE FORMAT
* TO ’C4x FLOATING-POINT FORMAT.
*

.

.

.
LDI @CP0_IN,AR0 ;Load comm port0 input FIFO address
LDI @RAM0,AR1 ;Load internal RAM block 0 address
FRIEEE *AR0,R0 ;Convert first data
RPTS 6
FRIEEE *AR0,R0 ;Convert next data

|| STF R0,*AR1++(1) ;Store previous data
STF R0,*AR1++(1) ;Store last data
.
.
.

Example 3–14. ’C4x to IEEE Conversion Within Block Memory Transfer

* TITLE ’C4x TO IEEE CONVERSION WITHIN BLOCK MEMORY
* TRANSFER
*
* PROGRAM ASSUMES THAT OUTPUT FIFO OF COMMUNICATION PORT 0
* IS EMPTY. EIGHT DATA WORDS ARE TRANSFERRED FROM INTERNAL
* RAM BLOCK 0 TO COMMUNICATION PORT 0 AND THE DATA FORMAT
* IS CONVERTED FROM ’C4x FLOATING-POINT FORMAT TO
* IEEE FORMAT.
*

.

.

.
LDI @CP0_OUT,AR0 ;Load comm port0 output FIFO address
LDI @RAM0,AR1 ;Load internal RAM block 0 address
TOIEEE *AR1++(1),R0 ;Convert first data
RPTS 6
TOIEEE *AR1++(1),R0 ;Convert next data

|| STF R0,*AR0 ;Store previous data
STF R0,*AR0 ;Store last data
.
.
.

 3-22

4-1 Chapter Title—Attribute Reference

Memory Interfacing

The ’C4x’s advanced interface design can be used to implement a wide variety
of system configurations. Its two external buses and DMA capability provide
a flexible parallel 32-bit interface to byte-or word-wide devices.

This chapter describes how to use the ’C4x’s memory interfaces to connect to
various external devices. Specific discussions include implementation of a
parallel interface to devices with and without wait states and implementing
system control functions.

4.1 System Configuration 4-2.

4.2 External Interfacing 4-3.

4.3 Global and Local Bus Interfaces 4-4.

4.4 Zero Wait-State Interfacing to RAMs 4-5.

4.5 Wait States and Ready Generation 4-11.

4.6 Parallel Processing Through Shared Memory 4-21.

Chapter 4

System Configuration

 4-2

4.1 System Configuration

Figure 4–1 illustrates an expanded configuration of a ’C4x system with differ-
ent types of external devices and the interfaces to which they are connected.

Figure 4–1. Possible System Configurations

Local bus

Interrupt
interface

External flags

System
control

Timer interface

Global bus

’C4x

Analog I/O Large shared
memory

Peripherals

I/O devices

Bit I/O

Peripherals

Peripherals

Fast local
memory

I/O devices

Timer interface

Communication
 ports Peripherals

’C4x devices

Clock, reset
 generator, etc

In your design, you can use any subset or superset of the illustrated compo-
nents.

 External Interfacing

4-3 Memory Interfacing

4.2 External Interfacing

The ’C4x interfaces connect to a wide variety of device types. Each of these
interfaces is tailored to a particular type of device such as memory, DMA, par-
allel and serial peripherals, and I/O. In addition, ’C4x devices can interface di-
rectly with each other, without external logic, through their communication
ports or their external flag pins IIOF(0–3). Each interface comprises one or
more signal lines, which transfer information and control its operation.
Figure 4–2 shows the signal groups for these interfaces.

Figure 4–2. External Interfaces

Data
address

STRB1 control

Emulation
interface

Master clock

Clock outputs

Reset and
ROM control

Data
address

Timer interface
and I/O flags

D0–31
A0–30

DE
AE

STAT(3–0)
LOCK

STRB0
R/W0

STRB1
R/W1
PAGE1
RDY1

LD0–31
LA0–30

LDE
LAE

LSTAT(3–0)
LLOCK

TCLK1

LSTRB0
LR/W0

LPAGE0
LRDY0

LCE0

32
31

4

32
31

’C4x

Data enable
Address enable

PAGE0
RDY0
CE0

CE1

IIOF(3–0)
NMI
IACK
RESET
RESETL0C(1,0)
ROMEN
X1
X2/CLKIN
H1
H3

TCK
TDO
TDI
TMS
TRST
EMU0
EMU1

Interrupt acknowledge
Nonmaskable interrupt
Interrupt and I/O Flags

STRB1 control enable

STRB0 control enable

Interlock signal

STRB0 control

Status

Data enable
Address enable

LSTRB1
LR/W1

LPAGE1
LRDY1

CnD(7–0)
CREQn
CACKn

CSTRBn
CRDYn

8

TCLK0

Communication
port interface

(6 Sets)

LSTRB1 control enable

LSTRB1 control

LSTRB0 control enable

LSTRB0 control

Interlock signal
Status4

4

2

LCE1

Global
Bus Local

Bus

Note: n = 0 for communication port 0, n = 1 for communication port 1, etc.

The global and local buses implement the primary memory-mapped interfaces
to the device. These interfaces allow external devices such as DMA controllers
and other microprocessors to share resources with one or more ’C4x devices
through a common bus.

Global and Local Bus Interfaces

 4-4

4.3 Global and Local Bus Interfaces

The ’C4x uses the global and local buses to access the majority of its
memory-mapped locations. Since these two memory interfaces are identical
in every way, except for their positions in the memory map, each example in
this memory interface section focuses on only one of the two interfaces. How-
ever, all of the examples are applicable to either the local or global bus. The
buses have identical but mutually exclusive sets of control signals:

Table 4–1.Local/Global Bus Control Signals

Global Bus Local Bus

STRB0 LSTRB0

STRB1 LSTRB1

CE0 LCE0

CE1 LCE1

RDY0 LRDY0

RDY1 LRDY1

AE LAE

DE LDE

PAGE0 LPAGE0

PAGE1 LPAGE1

R/W0 LR/W0

R/W1 LR/W1

While both the global bus and the local bus can interface to a wide variety of
devices, they most commonly interface to memories.

 Zero Wait-State Interfacing to RAMs

4-5 Memory Interfacing

4.4 Zero Wait-State Interfacing to RAMs

A memory-read access time is normally defined as the time between address
valid and data valid. This time can be determined by:

Read access time = tc(H) – (td(H1L–A) + tsu(D)R)

where:

tc(H) = H1/H3 cycle time

td(H1L–A) = H1 low to address valid

tsu(D)R = Data valid before next H1 low (read)

For a full-speed, zero wait-state interface to any device, a 50-MHz ’C4x (40-ns
instruction cycle time) requires a read access time of 21 ns from address stable
to data valid. For most memories, the access time from chip enable is the same
as access time from address; thus, it is possible to use 20-ns memories at full
speed with a 50-MHz ’C4x. However, to use 20-ns memories properly, you
must avoid long delays between the processor and the memories.

Avoiding these delays is not always possible, because interconnections and
gating for chip-enable generation can cause them. In addition, if you choose
a memory device with an output enable, the output enable must become active
quickly enough to ensure that the memory can meet the data valid timing
requirements of the ’C4x. For memories with 20-ns access times, the output
enable active to data valid timing parameter is typically less than 10 ns.

Currently available RAMs without output-enable (OE) control lines include the
1-bit wide organized RAMs and most of the 4-bit wide RAMs. Those with OE
controls include the byte-wide and a few of the 4-bit wide RAMs. Many of the
fastest RAMs do not provide OE control; they use chip-enable (CE) controlled
write cycles to ensure that data outputs do not turn on for write operations. In
CE-controlled write cycles, the write control line (WE) goes low before CE goes
low, and internal logic holds the outputs disabled until the cycle is completed.
Using CE-controlled write cycles is an efficient way to interface fast RAMs
without OE controls to the ’C4x at full speed.

Note:

You can find timing parameters for CLKIN, H1, H3, and memory in the
TMS320C40 and TMS320C44 data sheets.

Zero Wait-State Interfacing to RAMs

 4-6

4.4.1 Consecutive Reads Followed by a Write Interface Timing

Figure 4–3 shows the timing of consecutive reads followed by a write. For con-
secutive reads, LSTRB0 stays active (low), and LR/W stays high as long as
read cycles continue. For back-to-back reads, the ’C4x requires zero-wait-
state memories to have an address-valid to data-valid time of less than 21 ns.

For most memory devices, this time is the same as the memory access time,
which is t1 = 20 ns. Thus, memories with access times of 25 ns or more cannot
meet this timing.

Memory device timing is not as critical for zero-wait-state as for nonzero-wait-
state write cycles, because of the two H1 cycle writes of the ’C4x. The extra
cycle gives LSTRB0 enough time to frame LR/W, preventing memories that
go into high impedance slowly at the end of a read cycle from driving the bus
during the subsequent write cycle. For the memory device used in this design
(Figure 4–3), the data lines are guaranteed to into high impedance (t2 = 10 ns)
after CS goes inactive, which gives more than 23 ns of margin before the ’C4x
starts driving the bus with write data. Also, the extra cycle with LSTRB0
inactive prevents writes to random locations in memory while the address is
changing between consecutive writes.

For the write cycles shown in Figure 4–3 and Figure 4–4, the RAM requires
15 ns of write data setup before CS goes high, and this design provides at least
24 ns (t3). A data hold time of 0 ns (t4) is required by the RAM, and this design
provides greater than 13 ns. Finally, the RAM’s 20-ns setup and 0-ns hold
times for address (with respect to CS high) ensure a clear margin.

Figure 4–3. Consecutive Reads Followed by a Write

LR/W0

LSTRB0

LD(31–0)

LA(30–0)

H1

Valid
read addr Valid read addr Write address

Valid write dataValid
data

Valid
data

t1 t2

 Zero Wait-State Interfacing to RAMs

4-7 Memory Interfacing

Figure 4–4. Consecutive Writes Followed by a Read

LR/W0

STRB0

LD(31–0)

LA(30–0)

H1

Valid write address Valid write address

Valid write data Valid dataValid write data

Read address

t3

t4

4.4.2 Consecutive Writes Followed by a Read Interface Timing

Figure 4–4 shows the timing of consecutive writes followed by a read. Notice
that between consecutive writes, LR/W stays low, but STRB0 goes inactive to
frame the write cycles. Although ’C4x zero-wait-state writes take two H1
cycles, writes appear to take one cycle internally (from the perspective of the
CPU and DMA) if no access to the interface is already in progress.

In the read cycle following the writes in Figure 4–4, the ’C4x requires zero-wait-
state memories to have a LSTRB-active to data-valid time of less than 21 ns
(one H1 cycle minus (H1 low to LSTRB active plus data setup before H1 low)).
For most memory devices, this time is the same as the memory access time,
which is t1 = 20 ns in this design. Thus, a margin of only 1 ns exists, leaving
little allowance for STRB gating if desired.

4.4.3 RAM Interface Using One Local Strobe

Figure 4–5 shows the ’C4x’s local bus interfaced to eight Integrated Device
Technology IDT71258 20-ns 64K × 4-bit CMOS static RAMs with zero wait
states using chip-enable controlled write cycles. The SRAMs are arranged to
implement the first 64K, 32-bit words in external memory, located at addresses
00000h thru 0FFFFh (internal ROM is assumed to be disabled). If these 64K
words of SRAM are the only memory controlled by LSTRB0, the LSTRB AC-
TIVE field of the local memory interface control register (LMICR) should be set
to its minimum value of 011112, allowing LSTRB0 to be active for only the first

Zero Wait-State Interfacing to RAMs

 4-8

64K words of the ’C4x’s memory space. In addition, if this memory is the only
memory interfaced to LSTRB0, LSTRB0 requires only one page, and the PA-
GESIZE field of the LMICR should be set to 011112. Also note that in
Figure 4–5, the LRDY0 input is tied low, selecting zero wait states for all
LSTRB0 accesses on the local bus. With all of the zero-wait-state memory
controlled by LSTRB0, LSTRB1 can be used to control accesses to slower
read-only memory devices or other types of memory.

Figure 4–5. ’C4x Interface to Eight Zero-Wait-State SRAM

’C4x

A15–A0

LD(31–0)

I/O3 – 0

LR/W0

LSTRB0

LRDY0

WE

A15–A0

32

CS

16

A15–A0

WE

CS

I/O3 – 0

IDT71258 SRAM

IDT71258 SRAM

In this circuit implementation, no external logic is necessary to interface the
’C4x to the memory device. Typically, memory devices must be held inactive
(CS inactive) during changes in WE; this avoids undesired memory accesses
while the address changes. The ’C4x ensures this glueless interface because
LSTRB always frames changes in LR/W.

4.4.4 RAM Interface Using Both Local Strobes

Figure 4–6 shows the ’C4x’s local bus interfaced to HM6708 — 20-ns 64K ×
4-bit CMOS static RAMs with zero wait states using CS controlled write cycles.

 Zero Wait-State Interfacing to RAMs

4-9 Memory Interfacing

These RAMs are arranged to allow 128K 32-bit words of local memory, which
are implemented as two 64K × 32-bit banks. One bank is controlled by each
of the two sets of control signals on the local bus. To map these memory de-
vices properly in the ’C4x’s memory space, you must use the local-memory-in-
terface control register (LMICR) to define which part of the local bus’s memory
space is mapped to each of the two strobes. In this implementation with inter-
nal ROM disabled, LSTRB0 is mapped to the first 64K words of the local space
(addresses 0h through 0FFFFh), and LSTRB1 is mapped to the rest of the lo-
cal space (addresses 10000h through 7FFF FFFFh). For this memory config-
uration, the LSTRB ACTIVE field of the local-memory-interface control regis-
ter (LMICR) should be set to 011112. Also, each LSTRB requires only one
page. The PAGESIZE field of the LMICR should be set to 011112. Note that in
Figure 4–6, the LRDY inputs are tied low, selecting zero wait states for all ac-
cesses on the local bus.

Hence, through the use of the ’C4x’s four strobes (two each on the local and
global buses), four different banks of memory can be decoded. In addition,
through program control, you can change the address decoding under pro-
gram control by changing the LSTRB active field (bits 24–28) of the LMICR or
the global-memory-interface control register (GMICR). If you must decode
more than four banks of memory or if the chosen memory device cannot meet
the read cycle timing requirements for the ’C4x at zero wait states, you should
use page switching (discussed in subsection 4.5.6 on page 4-18) to add an ex-
tra cycle to read accesses outside the current bank boundary.

Zero Wait-State Interfacing to RAMs

 4-10

Figure 4–6. ’C4x Interface to Zero-Wait-State SRAMs, Two Strobes

’C4x

8 × HM6708 SRAM

A15–A0

LD(31–0)

I/O3–I/O0

LR/W0

LSTRB0

LRDY0

WE

A15–A0

32

CS

16 A15–A0

WE

CS

I/O3–I/O0

LSTRB1

LR/W1

LRDY1

8 × HM6708 SRAM

 Wait States and Ready Generation

4-11 Memory Interfacing

4.5 Wait States and Ready Generation

Using wait states can greatly increase a system’s flexibility and reduce its
hardware requirement. The ’C4x is capable of generating wait states on either
the global bus or the local bus, and both buses have independent sets of ready
control logic. The buses’ wait-state configuration is determined by the SWW
and WTCNT fields of the local and global-bus-interface control registers.

This section discusses ready generation from the perspective of the global-
bus interface; however, wait-state operation on the local bus is the same as
on the global bus, so this discussion pertains equally well to both (local and
global). Also, the local and global buses each have two sets of control signals
— R/W0, STRB0, RDY0, PAGE0, CE0 and R/W1, STRB1, RDY1, PAGE1,
CE1— with each set of control signals having its own ready signal, providing
for more flexibility in support of external devices with different speeds. Since
both strobes’ ready signals share the same electrical characteristics, the fol-
lowing discussion focuses on one of the global bus’s set of control signals.

Wait states are generated by:
� The internal wait-state generator
� The external ready inputs (RDY0 or RDY1)
� The logical AND or OR of the two ready signals

When enabled, internally generated wait states affect all external cycles, re-
gardless of the address accessed. If different numbers of wait states are re-
quired for various external devices, the external RDY input can be used to cus-
tomize wait-state generation to specific system requirements.

If either the logical OR or electrical AND (since the signals are true low) of the
external and wait-count ready signals is selected, the earlier of the two signals
will generate a ready condition and allow the cycle to be completed. It is not
required that both signals be present.

Wait States and Ready Generation

 4-12

4.5.1 ORing of the Ready Signals (STRB x SWW = 10)

You can use the OR of the two ready signals to implement wait states for de-
vices that require more wait states than internal logic can implement (up to
seven). This feature is useful, for example, if a system contains some fast and
some slow devices. In this case:

� Fast devices can generate ready externally with a minimum of logic.
When fast devices are accessed, the external hardware responds prompt-
ly with ready, which terminates the cycle.

� Slow devices can use the internal wait counter for larger numbers of wait
states. When slow devices are accessed, the external hardware does not
respond, and the cycle is appropriately terminated after the internal wait
count.

The OR of the two ready signals can also terminate the bus cycle before the
number of wait states implemented with external logic allows termination. In
this case, a shorter wait count is specified internally than the number of wait
states implemented with the external ready logic, and the bus cycle is termi-
nated after the wait count. Also, this feature can be used as a safeguard
against inadvertent accesses to nonexistent memory that would never re-
spond with ready and would, therefore, lock up the ’C4x.

If the OR of the two ready signals is used, however, and the internal wait-state
count is less than the number of wait states implemented externally, the
external ready generation logic must be able to reset its sequencing to allow
a new cycle to begin immediately following the end of the internal wait count.
Also, the consecutive cycles must be from independently decoded areas of
memory (or from different pages in memory). Otherwise, the external ready
generation logic may lose synchronization with bus cycles and generate
improperly timed wait states.

4.5.2 ANDing of the Ready Signals (STRB x SWW = 11)

If the logical AND (electrical OR) of the wait count and external ready signals
is selected, the later of the two signals will control the internal ready signal, but
both signals must be asserted. Accordingly, external ready control must be im-
plemented for each wait-state device, and the wait count ready signal must be
enabled.

This feature is useful if devices in a system are equipped to provide a ready
signal but cannot respond quickly enough to meet the ’C4x’s timing require-
ments. If these devices normally indicate a ready condition and, when ac-
cessed, respond with a wait until they become ready, the logical AND of the

 Wait States and Ready Generation

4-13 Memory Interfacing

two ready signals can be used to save hardware in the system. In this case,
the internal wait counter can provide wait states initially, and then the external
ready can provide wait states after the external device has had time to send
a not-ready indication. The internal wait counter then remains ready until the
external device also becomes ready, which terminates the cycle.

Additionally, the AND of the two ready signals can be used for extending the
number of wait states for devices that already have external ready logic imple-
mented, but require additional wait states under certain unique circumstances.

4.5.3 External Ready Generation

The optimum technique for implementing external ready generation hardware
depends on the specific characteristics of the system, including the relative
number of wait-state and nonwait-state devices in the system and the
maximum number of wait states required for any one device. The approaches
discussed here are intended to be general enough for most applications and
are easily modifiable to comprehend many different system configurations.

In general, ready generation involves the following three functions:

1) Segmentation of the address space to distinguish fast and slow devices

2) Generation of properly timed ready indications

3) Logical ORing of all the separate ready timing signals together to
 connect to the physical ready input

Segmentation of the address space is required to obtain a unique indication
of each particular area within the address space that requires wait states. This
segmentation is commonly implemented in the form of chip-select generation.
Chip-select signals can initiate wait states in many cases; however,
occasionally, chip-select decoding considerations may provide signals that do
not allow ready input timing requirements to be met. In this case, you can seg-
ment coarse address space on the basis of a small number of address lines,
where simpler gating allows signals to be generated more quickly. In either
case, the signal that indicates that a particular area of memory is being
addressed also normally initiates the ready or wait-state signal.

When address space to be accessed has been established, a timing circuit is
normally used to provide a ready indication to the processor at the appropriate
point in the cycle to satisfy each device’s unique requirements.

Finally, since indications of ready status from multiple devices are typically
present, you should logically OR the signals by using a single gate to drive the
RDY input.

Wait States and Ready Generation

 4-14

4.5.4 Ready Control Logic

You can take one of two basic approaches to implement ready control logic,
depending on the state of the ready input between accesses. If RDY is low be-
tween accesses, the processor is always ready unless a wait state is required;
if RDY is high between accesses, the processor will always enter a wait state
unless a ready indication is generated.

If RDY is low between accesses , control of devices that are zero-wait-state
at full speed is straightforward; no action is necessary, because ready is al-
ways active unless otherwise required. Devices requiring wait states, howev-
er, must drive ready high fast enough to meet the input timing requirements.
Then, after an appropriate delay, a ready indication must be generated. This
can be difficult in many circumstances because wait-state devices are in-
herently slow and often require complex select decoding.

If RDY is high between accesses , zero-wait-state devices, which tend to be
inherently fast, can usually respond immediately with a ready indication. Wait-
state devices can simply delay their select signals appropriately to generate
a ready. Typically, this approach results in the most efficient implementation
of ready control logic. Figure 4–7 shows a circuit of this type, which can be
used to generate 0, 1, or 2 wait states for multiple devices in a system.

Figure 4–7. Logic for Generation of 0, 1, or 2 Wait States for Multiple Devices

1 D

2 D

’C4x

selection
bits for device

Address bus

STRB0

RESET

3 D

4 D

5 D

6 D

7 D

8 D

CLK

4 Q

16R4 PLD

From ’C4x
RDY0

To ’C4x

H3

strb_syn_

From ’C4x

 Wait States and Ready Generation

4-15 Memory Interfacing

4.5.5 Example Circuit

Figure 4–7 shows how a single, 7-ns 16R4 programmable logic device (PLD)
can be used to generate 0, 1, and 2 wait states for multiple devices that are
interfaced to a ’C4x. In this example, distinct address bits are used to select
the different wait-state devices. Here, each of the three address lines input to
the 16R4 corresponds to a different speed device. For a single 16R4 imple-
mentation, up to nine different address bits can be used to select different
speed devices.

The single output, 4Q, of the PLD is connected directly to the RDY0 input of
the ’C4x to signal the completion of a bus access for external wait-state gen-
eration. Because RDY0 is sampled on the falling of H1, the H3 output clock is
used as the PLD clock input.

Example 4–1 shows the ready logic equations for programming the 16R4
PLD. The PLD language used is ABEL. STRB0 is an input into the PLD that
indicates that a valid ’C4x bus cycle is occurring. Also, a delayed version of
STRB0 (synchronized with H1 going high) is provided as the strb_syn_ input
signal. This delayed signal is needed to avoid problems with a race condition
that may exist between STRB0 going low and H3 rising. RESET can be used
to bring the state machine back to the idle state.

Notice that the RDY0 output of the PLD is not registered. An asynchronous
RDY0 signal is necessary to generate a ready signal for zero-wait-state de-
vices. When a zero-wait-state device is selected (ahi1 high in Example 4–1)
and STRB0 is low, the PLD asserts RDY0 low within 7 ns. Hence, RDY0 goes
active fast enough to satisfy the 20-ns setup time of RDY0 low before H1 low.

For generation of RDY0 for one and two wait states, the device select address
bits and strb_syn_ are delayed one and two cycles, respectively, by the PLD
before a RDY0 is brought active low. The one H3-cycle delay, required for one-
wait-state device ready generation, corresponds to state wait_one in
Example 4–1 and the two H3-cycle delay required for two-wait-state devices
corresponds to state wait_twoa and wait_twob.

This 16R4 PLD-based design can be used to implement different numbers of
wait states for multiple devices. More devices can be selected with ’C4x ad-
dress lines, and a higher number of wait states can be produced with a PLD
logic. Furthermore, this approach can be used in conjunction with the ’C4x’s
internal wait-state generator.

Wait States and Ready Generation

 4-16

Example 4–1.PLD Equations for Ready Generation

0001 | module ready_generation
0002 | title’ ready generation logic for 0, 1 and 2 wait state devices interfaced
0003 | to TMS320C4x’
0004 |
0005 | C40u5 device ’P16R4’;
0006 |
0007 | “inputs
0008 | h3 Pin 1;
0009 |
0010 |
0011 | “The following are TMS320C40 address bits used to
0012 | “select the different speed devices. More can be used if
0013 | “necessary. In this example, a zero wait state, a one wait
0014 | “state, and a two wait state device are decoded with these

| “three address bits
0015 |
0016 | ahi1 Pin 2; “when high selects zero wait state device
0017 | ahi2 Pin 3; “when high selects one wait state device
0018 | ahi3 Pin 4; “when high selects two wait state device
0019 | strb0_ Pin 5; “indicates valid TMS320C40 bus cycle
0020 | reset_ Pin 6; “reset signal from TMS320C40
0021 | strb_syn_ Pin 7; ”reset strb0_ synchronized with H1 rising edge.
0022 | “output
0023 | rdy0_ Pin 12; “ready signal to TMS320C40
0024 |
0025 | one_wait Pin 14; “internal flip–flop signal for 1 wait state
0026 | “device ready signal generation
0027 | two_waita Pin 15; “internal flip–flop signal for first of the two
0028 | “wait states for 2 wait state devices
0029 | two_waitb Pin 16; “internal flip–flop signal for second
0030 | “of the two wait states for 2 wait
0031 | ”state devices
0032 |
0033 | “name substitutions for test vectors
0034 | c,H,L,X = .C.,1,0,.X.;
0035 |
0036 |
0037 | “state bits
0038 | outstate = [one_wait, two_waita, two_waitb];
0039 |
0040 | idle = ^b111;
0041 | wait_one = ^b011;
0042 | wait_twoa = ^b101;
0043 | wait_twob = ^b110;
0044 |
0045 |
0046 |state_diagram outstate
0047 |
0048 |state idle:
0049 | if (reset_ & ahi2 & !strb_syn_) then wait_one
0050 | else if (reset_ & ahi3 & !strb_syn_) then wait_twoa

 Wait States and Ready Generation

4-17 Memory Interfacing

Example 4–1.PLD Equations for Ready Generation (Continued)

0051 | else idle;
0052 |
0053 |
0054 |state wait_one:
0055 | GOTO idle;
0056 |
0057 |state wait_twoa:
0058 | if (reset_) then wait_twob
0059 | else idle;
0060 |
0061 |state wait_twob:
0062 | GOTO idle;
0063 |
0064 |equations
0065 | !rdy0_ = reset_ & ((ahi1 & !strb0_) # !one_wait #

| !two_waitb) ;
0066 |
0067 |@page
0068 |“Test 1st level global arbitration logic
0069 |test_vectors
0070 |([h3,ahi1,ahi2,ahi3,strb0_, _strb_syn_ reset_] –> [outstate, rdy0_])
0071 |[c, X, X, X, X, X, L] –> [idle, H];
0072 |[c, L, H, L, L, L, H] –> [wait_one, L];
0073 |[c, X, X, X, X, X, L] –> [idle, H];
0074 |[c, L, L, H, L, L, H] –> [wait_twoa, H];
0075 |[c, X, X, X, X, X, L] –> [idle, H];
0076 |[c, L, L, H, L, L, H] –> [wait_twoa, H];
0077 |[c, L, L, H, L, L, H] –> [wait_twob, L];
0078 |[c, X, X, X, X, X, L] –> [idle, H];
0079 |[L, H, L, L, L, L, H] –> [idle, L];
0080 |[c, H, L, L, L, L, H] –> [idle, L];
0081 |[L, L, L, L, L, L, H] –> [idle, H];
0082 |[c, L, H, L, L, L, H] –> [wait_one, L];
0083 |[c, X, X, X, X, X, H] –> [idle, H];
0084 |[c, L, L, H, L, L, H] –> [wait_twoa, H];
0085 |[c, L, L, H, L, L, H] –> [wait_twob, L];
0086 |[c, H, L, L, L, L, H] –> [idle, L];
0087 |[c, X, X, X, H, H, H] –> [idle, H];
0088 |[c, X, X, X, H, H, H] –> [idle, H];
0089 |end ready_generation

Wait States and Ready Generation

 4-18

4.5.6 Page Switching Techniques

The ’C4x’s programmable page-switching feature can greatly ease system de-
sign when large amounts of memory or slow external peripheral devices are
required. This feature provides a time period for disabling all device selects.
During the interval, slow devices are allowed time to turn off before other de-
vices have the opportunity to drive the data bus, thus avoiding bus contention.

When page switching is enabled, any time a portion of the high-order address
lines changes, as defined by the contents of the STRB0 and STRB1 PAGE-
SIZE fields (in the global and local memory interface control registers), the cor-
responding STRB and PAGE go high for one full H1 cycle. Provided that STRB
is included in chip-select decodes, this causes all devices selected by that
STRB to be disabled during this period. The next page of devices is not en-
abled until STRB and PAGE go low again.

If the high-order address lines remain constant during a read cycle, the
memory access time with page switching is the same as memory access time
without page switching. In addition, page switching is not required during
writes, because these write cycles exhibit an inherent one-half H1 cycle setup
of address information before STRB goes low. Thus, when you use page
switching for read/write devices, a minimum of half of one H1 cycle of address
setup is provided for all accesses outside a page boundary. Therefore, large
amounts of memory can be implemented without wait states or extra hardware
required for isolation between pages. Also, note that access time for cycles
during page switching is the same as that of cycles without page switching,
and, accordingly, full-speed accesses may still be accomplished within each
page.

The circuit shown in Figure 4–8 illustrates page switching with the CY7B185
15-ns 8K × 8 BiCMOS static RAM. This circuit implements 32K 32-bit words
of memory with full-speed zero wait-state accesses within each page.

 Wait States and Ready Generation

4-19 Memory Interfacing

Figure 4–8. Page Switching for the CY7B185

’C4x

A30–0
R/W0

STRB0

D31–0

A13
A14
A15

’P16L8

2D
3D
4D

SEL0
Address Address Address Address
WE WE WE WE
CS2 CS2 CS2 CS2

CS1 CS1 CS1 CS1
OE OE OE OE
Data Data Data Data

Bank 1

Bank 2

Bank 3

32

32

32

8888

Bank 0 (4 × CY7B185)

32

1D

I/O1
I/O2
I/O1
I/O2

A 5-ns, 16L8 PLD decodes lines A15 – A13. These lines along with STRB0
select each of the four pages in this circuit. With the PAGESIZE field of STRB0
of the global memory interface control register set to 0Ch, the pages are
selected on even 8K-word boundaries, starting at location zero in external
memory space.

This circuit cannot be implemented without page switching, because the data
output’s turn-on and turn-off delays cause bus conflicts, and full-speed
accesses do not allow enough time for chip-select decoding for the four pages.
Here, the propagation delay of the 16L8 is involved only during page switches,
where there is sufficient time between cycles to allow new chip-selects to be
decoded.

The timing of this circuit for read operations with page switching is shown in
Figure 4–9. When a page switch occurs, the page address on address lines
A30 – A13 is updated during the extra H1 cycle while STRB0 is high. Then,
after chip-select decodes have stabilized and the previously selected page
has disabled its outputs, STRB goes low for the next read cycle. Further
accesses occur at full speed with the normal bus timings, as long as another
page switch is not necessary. Write cycles do not require page switching, be-
cause of the inherent address setup provided in their timings.

This timing is summarized in Table 4–2.

Wait States and Ready Generation

 4-20

Figure 4–9. Timing for Read Operations Using Bank Switching

t4

H1

A30–13

A12–0

STRB

SEL0

D31–0

SEL1

Bank 0 on Bus Bank 1 on Bus

t6

t5

t2

t3

Valid

Valid

t1

Table 4–2.Page Switching Interface Timing

Time
Interval Event

Time
Period

t1 H1 falling to address/STRB valid 7 ns

t2 STRB to select delay 5 ns

t3 Memory disable from select 8 ns

t4 H1 falling to STRB 7 ns

t5 STRB to select delay 5 ns

t6 Memory output enable delay 3 ns

 Parallel Processing Through Shared Memory

4-21 Memory Interfacing

4.6 Parallel Processing Through Shared Memory

The ’C4x’s two memory interfaces allow flexibility to design shared-memory
interfaces for parallel processing. Many processors can be linked together in
a wide variety of network configurations through these ports. In this section,
Figure 4–10 illustrates ’C4x shared-memory networks that you can use to fulfill
many signal processing system needs.

Figure 4–10. ’C4x Shared/Distributed-Memory Networks

Global
Bus

Local
Bus

Global
Memory

Global
Bus

Local
Bus

Global
Memory

’C4x Local
Memory

’C4x

’C4x

’C4x

Local
Memory

Shared-memory
architecture

4.6.1 Shared Global-Memory Interface

One of the most common multiprocessor configurations is the sharing of
memory by all processors in a system. Shared memory is typically
implemented by tying the processors’ data and address lines together. Howev-
er, the shared memory interface must guarantee that no more than one
processor is driving the shared bus at any one time; it must also allow all
processors sharing the bus to have a chance to access shared resources.

The ’C4x supports shared memory multiprocessing with its identical global-
and local-port interfaces. Both interfaces have four status output signals,
(L)STAT3–0, which identify what type of access is beginning on the bus. These
signals identify whether the ’C4x port is idle, a DMA read is occurring, a STRB1
write is occurring, a LOCKed access to memory is pending, etc. The signals
can be interpreted by the interface to issue single access or locked access bus
requests to a shared bus arbiter.

The (L)CE, (L)AE, and (L)DE input signals support shared address control and
data lines. When the signals are disabled (high), they put the port’s control

Parallel Processing Through Shared Memory

 4-22

signals, address lines, and data lines, respectively, in the high-impedance
state. These bus enable lines are asynchronous inputs to the ’C4x, which can
quickly turn off bus drivers when another processor is accessing a shared
resource. However, these signals asynchronously turn off the ’C4x’s local and
global buses, without memory accesses being suspended. To ensure that data
written is seen externally and data read is valid, you should use the external
(L)RDY should be used for wait-state generation in shared memory designs.
An (L)RDY signal should not be sent to the ’C4x until the processor has
regained access to the bus (CE, AE, DE enabled) and has had enough time
to complete its access. Hence, with bus enable and status signals, the ’C4x
flexible bus interfaces easily implement high-speed shared bus configura-
tions.

4.6.2 Shared-Memory Interface Design Example

For an example of a ’C4x shared-memory interface, see the TMS320C4x Par-
allel Processing Development System Technical Reference (SPRU075). In
the example in that text, four ’C4x devices share SRAM with their global buses
tied together. A bus arbitrator implemented as a programmable logic device
provides a fair scheme for processor access to the shared bus. The design
uses high-speed parts but employs a fully asynchronous handshake protocol
that allows ’C4x devices of various speeds and also processors other than
’C4x devices to be added to this bus configuration.

The shared-memory interface in the PPDS works for ’C4x devices running at
a speed of up to 32 MHz. For higher speeds, the arbitrator incorrectly takes
away bus master privileges from a ’C4x between back-to-back reads to the
same page (the page size is determined by the page size field in the global bus
control register. The default page size for the PPDS global memory is 64K).
If this occurs while two or more ’C4x devices are requesting the bus to perform
write cycles, random shared memory locations can be corrupted.

To fix this problem for higher speeds, the busenable_ signal of each ’C4x local
interface can be used to generate gmce0_ and gmce1_ to prevent these sig-
nals from going low (active) if all the processors busenable_ signals are high
(inactive). The busenable_ signal is shown in the PLD equations in the Global
Bus Interface Logic section the of the TMS320C4x Parallel Processing Devel-
opment System Technical Reference). The gmce0 and gmce1 signals are
shown in the Global Memory Control section of the same book.

5-1 Chapter Title—Attribute Reference

Programming Tips

Programming style is highly personal and reflects each individual’s prefer-
ences and experiences. The purpose of this chapter is not to impose any par-
ticular style. Instead, it emphasizes some of the features of the ’C4x that can
help in producing faster and/or shorter programs. The tips in this chapter cover
both C and assembly language programming.

Topic Page

5.1 Hints for Optimizing C Code 5-2.

5.2 Hints for Optimizing Assembly-Language Code 5-5.

Chapter 5

Hints for Optimizing C Code

 5-2

5.1 Hints for Optimizing C Code

The ’C4x’s large register file, software stack, and large memory space easily
support the ’C4x C Compiler. The C compiler translates standard ANSI C pro-
grams into assembly language source. It also increases the portability and de-
creases the porting time of applications.

The suggested methodology for developing your application follows five steps:

1) Write the application in C.

2) Debug the program.

3) Estimate if the program runs in real-time.

4) If the program does not run in real time:

� Use the –o2 or –o3 option when compiling

� Use registers to pass parameters (–mr compiling option)

� Use inlining (–x compiling option)

� Remove the –g option when compiling

� Follow some of the efficient code generation tips listed below.

5) Identify places where most of the execution time is spent and optimize
these areas by writing assembly language routines that implement the
functions.

The efficiency of the code generated by the floating point compiler depends
to a large extent on how well you take advantage of the compiler strengths de-
scribed above when writing your C code. There are specific constructs that can
vastly improve the compiler’s effectiveness:

� Use register variables for often–used variables. This is particularly true
for pointer variables. Example 5–1 shows a code fragment that ex-
changes one object in memory with another.

Example 5–1.Exchanging Objects in Memory

do
 {
 temp = *++src;
 *src = *++dest;
 *dest = temp;
 }
 while (––n);

� Pre-compute subexpressions , especially array references in loops. As-
sign commonly used expressions to register variables where possible.

 Hints for Optimizing C Code

5-3 Programming Tips

� Use *++ to step through arrays , rather than using an index to recalculate
the address each time through a loop.

As an example of the previous 2 points, consider the loops in Example 5–2:

Example 5–2.Optimizing a Loop

/* loop 1 */
 main()
 {
 float a[10], b[10];
 int i;
 for (i = 0; i < 10; ++i)
 a[i] = (a[i] * 20) + b[i];
 }

/* loop 2 */
main()
{
 float a[10], b[10];
 int i;
 register float *p = a, *q = b;
 for (i = 0; i < 10; ++i)
 *p++ = (*p * 20) + *q++;
}

Loop 1 executes in 19 cycles. Loop 2, which is the equivalent of loop 1,
executes in 12 cycles.

� Use structure assignments to copy blocks of data. The compiler gen-
erates very efficient code for structure assignments, so nest objects within
structures and use simple assignments to copy them.

� Avoid large local frames and declare the most often used local vari-
ables first. The compiler uses indirect addressing with an 8-bit offset to
access local data. To access objects on the local frame with offsets greater
than 255, the compiler must first load the offset into an index register. This
causes 1 extra instruction and incurs 2 cycles of pipeline delay.

� Avoid the large model. The large model is inefficient because the compil-
er reloads the data-page pointer (DP) before each access to a global or
static variable. If you have large array objects, use ”malloc()” to dynamical-
ly allocate them and access them via pointers rather than declaring them
globally. Example 5–3 illustrates two methods for allocating large array
objects:

Hints for Optimizing C Code

 5-4

Example 5–3.Allocating Large Array Objects

/* Bad Method */
int a[100000]; /* BAD */
...
a[i] = 10;

/* Good Method */

int *a = (int *)malloc(100000); /* GOOD */
...
a[i] = 10;

 Hints for Optimizing Assembly Language Code

5-5 Programming Tips

5.2 Hints for Optimizing Assembly-Language Code

Each program has particular requirements. Not all possible optimizations
make sense in every case. The suggestions presented in this section can be
used as a checklist of available software tools.

� Use delayed branches . Delayed branches execute in a single cycle; reg-
ular branches execute in four. The three instructions that follow the
delayed branch are executed whether the branch is taken or not. If fewer
than three instructions are used, use the delayed branch and append
NOPs. Machine cycles (time) are still being saved.

� Use delayed subroutine call and return . Regular subroutine CALL and
RETS execute in four cycles. You can implement a delayed subroutine call
by using link and jump (LAJ) and delayed branches with R11 register mode
(BUD R11) instructions. Both LAJ and BUD instructions execute in a single
cycle. Guidelines for using the LAJ instruction are the same as for delayed
branches.

� Use the repeat single/block construct . This method produces loops
with no overhead. Nesting such constructs will not normally increase effi-
ciency, so try to use the feature on the most often performed loop. The
RPTBD is a single-cycle instruction, and the RPTS and RPTB are four-
cycle instructions. RPTBD and delayed branches are used in similar ways.
Note that RPTS is not interruptible, and the executed instruction is not re-
fetched for execution. This frees the buses for operands.

� Use parallel instructions . You can have a multiply in parallel with an add
(or subtract) and stores in parallel with any multiply or ALU operation. This
increases the number of operations executed in a single cycle. For
maximum efficiency, observe the addressing modes used in parallel
instructions and arrange the data appropriately. You can have loads in
parallel with any multiply or add (or subtract). The result of a multiply by
one or an add of zero is the same as a load. Therefore, to implement paral-
lel instructions with a data load, you can substitute a multiply or an add
instruction, with one extra register containing a one or zero, in place of the
load instruction.

� Maximize the use of registers . The registers are an efficient way to
access scratch-pad memory. Extensive use of the register file facilitates
the use of parallel instructions and helps avoid pipeline conflicts when you
use register addressing.

� Use the cache . The cache speeds instruction fetches and enables sim-
ple-cycle access, even with slow external memory. The cache is transpar-
ent to the user, so make sure that it is enabled.

Hints for Optimizing Assembly Language Code

 5-6

� Use internal memory instead of external memory . The internal
memory (2K × 32 bits RAM and 4K × 32 bits ROM) is considerably faster
to access than external memory. In a single cycle, two operands can be
brought from internal memory. You can maximize performance if you use
the DMA coprocessor in parallel with the CPU to transfer data you want
to operate on to internal memory.

� Avoid pipeline conflicts . For time-critical operations, make sure that
cycles are not missed because of pipeline conflicts. If there is no problem
with program speed, ignore this suggestion.

� Plan your linker command file in advance . Memory allocation for code
and data sections can have a big impact on your algorithm performance.
One of the ’C4x’s strengths is its sustained bandwidth achieved by having
two external busses. By carefully dividing data and program between the
two busses, you can minimize pipeline conflicts. You need to apply the
same concept to minimize DMA/CPU access conflicts.

The above checklist is not exhaustive, and it does not address some features
in detail. To learn how to exploit the full power of the ’C4x, carefully study its
architecture, hardware configuration, and instruction set, which are all de-
scribed in the TMS320C4x User’s Guide (SPRU063).

6-1 Chapter Title—Attribute Reference

Applications-Oriented Operations

The ’C4x architecture and instruction set features facilitate the solution of nu-
merically intensive problems. This chapter presents examples of applications
that use these features, such as companding, filtering, matrix arithmetic, and
fast Fourier transforms (FFT).

Topic Page

6.1 Companding 6-2.

6.2 FIR, IIR, and Adaptive Filters 6-7.

6.3 Lattice Filters 6-17.

6.4 Matrix-Vector Multiplication 6-21.

6.5 Fast Fourier Transforms (FFTs) 6-24.

6.6 ’C4x Benchmarks 6-86.

Chapter 6

Companding

 6-2

6.1 Companding

In telecommunications, one of the primary concerns is to conserve the channel
bandwidth and, at the same time, to preserve high speech quality. This is
achieved by quantizing the speech samples logarithmically. It has been
demonstrated that an 8-bit logarithmic quantizer produces speech quality
equivalent to that of a 13-bit uniform quantizer. The logarithmic quantization
is achieved by companding (COMpress/exPANDing). Two international
standards have been established for companding: the µ-law (used in the
United States and Japan), and the A-law (used in Europe). Detailed
descriptions of µ-law and A-law companding are presented in an application
report on companding routines included in the book Digital Signal Processing
Applications with the TMS320 Family (literature number SPRA012A).

During transmission, logarithmically compressed data in sign-magnitude form
are transmitted along the communications channel. If any processing is
necessary, these data should be expanded to a 14-bit (for µ-law) or 13-bit (for
A-law) linear format. This operation occurs when data is received at the digital
signal processor. After processing, and in order to continue transmission, the
result is compressed back to 8-bit format and transmitted through the channel.

Example 6–1 and Example 6–2 show µ-law compression and expansion
(such as linear to µ-law and µ-law to linear conversion), while Example 6–3
and Example 6–4 show A-law compression and expansion. For expansion,
using a look-up table is an alternative approach. It trades memory space for
speed of execution. Because the compressed data is 8 bits long, a table with
256 entries can be constructed to contain the expanded data. If the
compressed data is stored in the register AR0, the following two instructions
put the expanded data in register R0:

ADDI @TABL,AR0 ; @TABL = BASE ADDRESS OF TABLE
LDI *AR0,R0 ; PUT EXPANDED NUMBER IN R0

The same look-up table approach could be used for compression, but the re-
quired table length would then be 16,384 words for µ-law or 8,192 words for
A-law. If this memory size is not acceptable, you should use the subroutines
presented in Example 6–1 or Example 6–3.

 Companding

6-3 Applications-Oriented Operations

Example 6–1.µ-Law Compression

*
* TITLE µ-LAW COMPRESSION
*
* SUBROUTINE MUCMPR
*
* TYPICAL CALLING SEQUENCE:
* LAJU MUCMPR
* LDI v, R0
* NOP <–––– can be other non-pipeline break
* NOP <–––– instructions
*
* ARGUMENT ASSIGNMENTS:
*
* ARGUMENT | FUNCTION
* ––––––––– +––––––––––––––––––––––––––––
* R0 | v = NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1
* REGISTER CONTAINING RESULT: R0
*
*
* BENCHMARKS: CYCLES: 14 (not including the BUD instruction)
* WORDS: 15 (not including the BUD instruction)
*
*

. global MUCMPR
*
MUCMPR LSH3 –6,R0,R1 ;Save sign of number

ABSI R0,R0
CMPI 1FDEH,R0 ;If R0>0x1FDE,
LDIGT 1FDEH,R0 ;saturate the result
ADDI 33,R0 ;Add bias
FLOAT R0 ;Normalize: (seg+5)0WXYZx...x
MPYF 0.03125,R0 ;Adjust segment number by 2**(–5)
LSH 1,R0 ;(seg)WXYZx...x
PUSHF R0
POP R0 ;Treat number as integer
LSH –20,R0 ;Right–justify
BUD R11 ;Delayed return
AND 080H,R1 ;Set sign bit
ADDI R1,R0 ;R0 = compressed number
NOT R0 ;Reverse all bits for transmission

Companding

 6-4

Example 6–2.µ-Law Expansion

*
*TITLE ‘ µ-LAW EXPANSION’
*
* SUBROUTINE MUXPND
*
* TYPICAL CALLING SEQUENCE:
* LAJU MUXPND
* LDI v, R0
* NOP <–––– can be other non-pipeline-break
* NOP <–––– instructions
*
* ARGUMENT ASSIGNMENTS:
*
* ARGUMENT | FUNCTION
* ––––––––– +–––––––––––––––––––––––––––––––
* R0 | v = NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1, R2
* REGISTER CONTAINING RESULT: R0
*
* BENCHMARKS: CYCLES: 11/10 (worst/best, not including subroutine overhead)
* WORDS: 11 (not including subroutine overhead)
*
*

.global MUXPND
*
MUXPND NOT R0,R0 ;Complement bits

AND3 0FH,R0,R1 ;Isolate quantization bin
LSH 1,R1
ADDI 33,R1 ;Add bias to introduce 1xxxx1
LSH3 –4,R0 ;Isolate segment code
TSTB 08H,R0 ;Test sign
BZD R11 ;If positive, delayed return
AND 7,R0
LSH3 R0,R1,R0 ;Shift and put result in R0
SUBI 33,R0 ;Subtract bias
BUD R11 ;Delayed return
NEGI R0 ;Negate if a negative number
NOP
NOP

 Companding

6-5 Applications-Oriented Operations

Example 6–3.A-Law Compression

*
* TITLE A-LAW COMPRESSION
*
* SUBROUTINE ACMPR
*
* TYPICAL CALLING SEQUENCE:
* LAJ ACMPR
* LDI v, R0
* NOP <–––– can be other non–pipeline–break
* NOP <–––– instructions
*
* ARGUMENT ASSIGNMENTS:
* ARGUMENT | FUNCTION
* ––––––––– +–––––––––––––––––––––––––––
* R0 | v = NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1
* REGISTER CONTAINING RESULT: R0
*
*
* BENCHMARKS: CYCLES: 16/10 (worst/best, not including subroutine overhead)
* WORDS: 16 (not including subroutine overhead)
*

.global ACMPR
*
ACMPR LSH3 –5,R0,R1 ;Save sign of number

ABSI R0,R0
CMPI 1FH,R0 ;If R0<0x20,
BLED END ;do linear coding
CMPI 0FFFH,R0 ;If R0>0xFFF,
LDIGT 0FFFH,R0 ;saturate the result
LSH –1,R0 ;Eliminate rightmost bit
FLOAT R0 ;Normalize: (seg+3)0WXYZx...x
MPYF 0.125,R0 ;Adjust segment number by 2**(–3)
LSH 1,R0 ;(seg)WXYZx...x
PUSHF R0
POP R0 ;Treat number as integer
LSH –20,R0 ;Right-justify

END BUD R11 ;Delayed return
AND 080H,R1 ;Set sign bit
ADDI R1,R0 ;R0 = compressed number
XOR 0D5H,R0 ;Invert even bits for transmission

*

Companding

 6-6

Example 6–4.A-Law Expansion

*
* TITLE A-LAW EXPANSION
*
* SUBROUTINE AXPND
*
* TYPICAL CALLING SEQUENCE:
* LAJU AXPND
* LDI v, R0
* NOP <–––– can be other non-pipeline-break
* NOP <–––– instructions
*
* ARGUMENT ASSIGNMENTS:
*
* ARGUMENT | FUNCTION
* ––––––––– +––––––––––––––––––––––––––––––
* R0 | v = NUMBER TO BE CONVERTED
*
* REGISTERS USED AS INPUT: R0
* REGISTERS MODIFIED: R0, R1, R2
* REGISTER CONTAINING RESULT: R0
*
* BENCHMARKS: CYCLES: 15/13 (worst/best – not including subroutine overhead)
* WORDS: 15 (not including subroutine overhead)
*
*

.global AXPND
*
AXPND XOR 0D5H,R0,R2 ;Invert even bits

ASH3 –4,R2,R0 ;Store for bit sign
AND 7,R0 ;Isolate segment code
BZD SKIP1
AND3 0FH,R2,R1 ;Isolate quantization bin
LSH 1,R1
ADDI 1,R1 ;Create 0xxxx1
ADDI 32,R1 ;Or 1xxxx1
SUBI 1,R0

SKIP1 LSH3 R0,R1,R0 ;Shift and put result in R0
TSTB 80H,R2 ;Test sign bit
BZAT R11 ;If positive, delayed return and

;annul next three instructions
NEGI R0 ;Negate if a negative number
NOP
NOP
BU R11 ;Return

 FIR, IIR, and Adaptive Filters

6-7 Applications-Oriented Operations

6.2 FIR, IIR, and Adaptive Filters

Digital filters are a common requirement for digital signal processing systems.
There are two types of digital filters: finite impulse response (FIR) and infinite
impulse response (IIR). Each of these types can have either fixed or adaptable
coefficients. In this section, the fixed-coefficient filters are presented first, and
then the adaptive filters are discussed.

6.2.1 FIR Filters

If the FIR filter has an impulse response h[0], h[1],..., h[N–1], and x[n] repre-
sents the input of the filter at time n, the output y[n] at time n is given by this
equation:

y[n] = h[0] x[n] + h[1] x[n–1] + ... + h[N–1] x[n–(N–1)]

Two features of the ’C4x that facilitate the implementation of the FIR filters are
parallel multiply/add operations and circular addressing. The first permits the
performance of a multiplication and an addition in a single machine cycle, while
the second makes a finite buffer of length N sufficient for the data x.

Figure 6–1 shows the arrangement of the memory locations to implement cir-
cular addressing, while Example 6–5 presents the ’C4x assembly code for an
FIR filter.

Figure 6–1. Data Memory Organization for an FIR Filter

•
•
•

•
•
•

•
•
•

impulse
response

initial
input samples

final
input samples

oldest input

newest input

low
address

high
address

circular
queue

x(n)
x[n – (N –1)]x[n – (N –2)]

x(n – 2)
x(n –1)

x(n –1)
x(n)

h(N –1)
h(N – 2)

h(1)
h(0)

x[n – (N –1)]

To set up circular addressing, initialize the block-size register BK to block
length N. Also, the locations for signal x should start from a memory location
whose address is a multiple of the smallest power of 2 that is greater than N.
For instance, if N = 24, the first address for x should be a multiple of 32 (the
lower 5 bits of the beginning address should be zero). To understand see Cir-
cular Addressing in the TMS320C4x User’s Guide.

In Example 6–5, the pointer to the input sequence x is incremented and as-
sumed to be moving from an older input to a newer input. At the end of the sub-
routine, AR1 will point to the position for the next input sample.

FIR, IIR, and Adaptive Filters

 6-8

Example 6–5.FIR Filter

*
* TITLE FIR FILTER
*
*
* SUBROUTINE FIR
*
* EQUATION: y(n) = h(0) * x(n) + h(1) * x(n-1) +
* ... + h(N-1) * x(n-(N-1))
*
* TYPICAL CALLING SEQUENCE:
*
* LOAD AR0
* LAJU FIR
* LOAD AR1
* LOAD RC
* LOAD BK
*
*
* ARGUMENT ASSIGNMENTS:
*
* ARGUMENT | FUNCTION
* –––––––– +–––––––––––––––––––––––––––––
* AR0 | ADDRESS OF h(N–1)
* AR1 | ADDRESS OF x(N–1)
* RC | LENGTH OF FILTER – 2 (N–2)
* BK | LENGTH OF FILTER (N)
*
* REGISTERS USED AS INPUT: AR0, AR1, RC, BK
* REGISTERS MODIFIED: R0, R2, AR0, AR1, RC
* REGISTER CONTAINING RESULT: R0
*

*
* BENCHMARKS: CYCLES: 3 + N (not including subroutine overhead)
* WORDS: 6 (not including subroutine overhead)
*
*
FIR .global FIR
*

RPTBD CONV ;Set up the repeat cycle
* Initialize R0:

MPYF3 *AR0++(1),*AR1++(1)%,R0 ;h(N–1) *x(n–(N–1)) –>R0
LDF 0.0,R2 ;Initialize R2
NOP

*
* FILTER (1 <= i < N)
*
CONV MPYF3 *AR0++(1),*AR1++(1)%,R0 ;h(N–1–i)*x(n–(N–1–i))–>R0
|| ADDF3 R0,R2,R2 ;Multiply and add operation
*

BUD R11 ;Delayed return
ADDF R0,R2,R0 ;Add last product
NOP
NOP

*
* end
*

.end

 FIR, IIR, and Adaptive Filters

6-9 Applications-Oriented Operations

6.2.2 IIR Filters

The transfer function of the IIR filters has both poles and zeros. Its output de-
pends on both the input and the past output. As a rule, the filters need less
computation than an FIR with similar frequency response, but the filters have
the drawback of being sensitive to coefficient quantization. Most often, the IIR
filters are implemented as a cascade of second-order sections called biquads.
Example 6–6 and Example 6–7 show the implementation for one biquad and
for any number of biquads, respectively.

y[n] = a1 y[n–1] + a2 y[n–2] + b0 x[n] + b1 x[n–1] + b2 x[n–2]

However, the following two equations are more convenient and have smaller
storage requirements:

d[n] = a2 d[n–2] + a1 d[n–1] + x[n]
y[n] = b2 d[n–2] + b1 d[n–1] + b0 d[n]

Figure 6–2 shows the memory organization for this two-equation approach to
the implementation of a single biquad on the ’C4x.

Figure 6–2. Data Memory Organization for a Single Biquad

newest delay
low

address

high
address

newest delay newest delay
node values node values

filter
coefficients

a2
b2

a1

b1

b0

oldest delay

d(n)

d(n –1)

d(n – 2) d(n)
circular queue

d(n –1)

d(n – 2)

As in the case of FIR filters, the address for the start of the values d must be
a multiple of 4; that is, the last two bits of the beginning address must be zero.
The block-size register BK must be initialized to 3.

FIR, IIR, and Adaptive Filters

 6-10

Example 6–6.IIR Filter (One Biquad)

* TITLE IIR FILTER
*
* SUBROUTINE IIR1
*
* IIR1 == IIR FILTER (ONE BIQUAD)
*
* EQUATIONS: d(n) = a2 * d(n–2) + a1 * d(n–1) + x(n)
* y(n) = b2 * d(n–2) + b1 * d(n–1) + b0 * d(n)
*
* OR y(n) = a1*y(n–1) + a2*y(n–2) + b0*x(n) + b1*x(n–1)
* + b2*x(n–2)
*
*
* TYPICAL CALLING SEQUENCE:
*
* load R2
* LAJU IIR1
* load AR0
* load AR1
* load BK
*
*
* ARGUMENT ASSIGNMENTS:
* ARGUMENT | FUNCTION
* –––––––––––––– +––
* R2 | INPUT SAMPLE X(N)
* AR0 | ADDRESS OF FILTER COEFFICIENTS (A2)
* AR1 | ADDRESS OF DELAY MODE VALUES (D(N–2))
* BK | BK = 3
*
* REGISTERS USED AS INPUT: R2, AR0, AR1, BK
* REGISTERS MODIFIED: R0, R1, R2, AR0, AR1
* REGISTER CONTAINING RESULT: R0
*
* BENCHMARKS: CYCLES: 7 (not including subroutine overhead)
* WORDS: 7 (not including subroutine overhead)
*
*

.global IIR1
*
IIR1 MPYF3 *AR0,*AR1,R0 ;a2 * d(n–2) –> R0

MPYF3 *++AR0(1),*AR1– –(1)%,R1 ;b2 * d(n–2) –> R1
*

MPYF3 *++AR0(1),*AR1,R0 ;a1 * d(n–1) –> R0
|| ADDF3 R0,R2,R2 ;a2*d(n–2)+x(n) –> R2
*

MPYF3 *++AR0(1),*AR1––(1)%,R0 ;b1 * d(n–1) –> R0
|| ADDF3 R0,R2,R2 ;a1*d(n–1)+a2*d(n–2)

;+x(n) –> R2
*

BUD R11 ;Delayed return
*

MPYF3 *++AR0(1),R2,R2 ;b0 * d(n) –> R2
|| STF R2,*AR1++(1)% ;Store d(n) and point to d(n–1)
*

ADDF R0,R2 ;b1*d(n–1)+b0*d(n) –> R2
ADDF R1,R2,R0 ;b2*d(n–2)+b1*d(n–1)

;+b0*d(n) –> R0
*
* end
*

.end

 FIR, IIR, and Adaptive Filters

6-11 Applications-Oriented Operations

Generally, the IIR filter contains N>1 biquads. The equations for its implemen-
tation are given by the following pseudo-C language code:

y[0,n] = x[n]
for (i=0; i<N; i++){

d[i,n] = a2[i] d[i,n–2] + a1[i] d[i,n–1] + y[i–1,n]
y[i,n] = b2[i] d[i–2] + b1[i] d[i,n–1] + b0[i] d[i,n]

}
y[n] = y[N–1,n]

Figure 6–3 shows the memory organization, and Example 6–7 shows the cor-
responding ’C4x assembly-language code.

Figure 6–3. Data Memory Organization for N Biquads

newest delay
low

address

high
address

initial delay final delay
node values node values

filter
coefficients

a2(0)

b2(0)

a1(0)

b1(0)

b0(0)

oldest delay

d(0, n)

d(0, n –1)
d(0, n – 2)

d(0, n – 2)

d(0, n –1)

d(0, n)
circular queue

b2(N –1)

a1(N –1)

b1(N –1)

b0(N –1)

empty empty

•
•
•

•
•
•

•
•
•

d(N –1, n)
d(N –1, n –1)

d(N –1, n – 2)

d(N –1, n – 2)
d(N –1, n –1)

d(N –1, n)

empty empty

circular queue
a2(N –1)

The block size register BK should be initialized to 3, and each set of d values
(i.e., d[i,n], i = 0...N–1) should begin at an address that is a multiple of 4 (the
last two bits zero), as stated in the case of a single biquad.

FIR, IIR, and Adaptive Filters

 6-12

Example 6–7.IIR Filter (N > 1 Biquads)

*
* TITLE IIR FILTER (N > BIQUADS)
*
* SUBROUTINE IIR2
*
* EQUATIONS: y(0,n) = x(n)
*
* FOR (i = 0; i < N; i++)
* {
* d(i,n) = a2(i) * d(i,n–2) + a1(i) * d(i,n–1) * y(i–1,n)
* y(i,n) = b2(i) * d(i,n–2) + b1(i) * d(i,n–1) * b0(i) * d(i,n)
* }
* y(n) = y(N–1,n)
*
* TYPICAL CALLING SEQUENCE:
*
* load R2
* load AR0
* load AR1
* load IR0
* LAJU IIR2
* load IR1
* load BK
* load RC
*
* ARGUMENT ASSIGNMENT:
* ARGUMENT | FUNCTION*
* –– ––––––– +––
* R2 | INPUT SAMPLE x(n)
* ARO | ADDRESS OF FILTER COEFFICIENTS (a2(0))
* AR1 | ADDRESS OF DELAY NODE VALUES (d(0,n–2))
* BK | BK = 3
* IR0 | IR0 = 4
* IR1 | IR1 = 4*N–4
* RC | NUMBER OF BIQUADS (N) –2
*
* REGISTERS USED AS INPUT; R2, AR0, AR1, IR0, IR1, BK, RC
* REGISTERS MODIFIED; R0, R1, R2, AR0, AR1, RC
* REGISTERS CONTAINING RESULT: R0
*
* BENCHMARKS: CYCLES: 2 + 6N (not including subroutine overhead)
* WORDS: 15 (not including subroutine overhead)
*
*

.global IIR2
*
IIR2 MPYF3 *AR0,*AR1,R0 ;a2(0) * d(0,n–2) –> R0

MPYF3 *AR0++(1),*AR1— –(1)%,R1;b2(0) * d(0,n–2) –> R1
*

RPTBD LOOP ;Set loop for 1 <= i < n
*

MPYF3 *++AR0(1),*AR1,R0 ;a1(0) * D(0,n–1) –> R0
|| ADDF R0,R2,R2 ;First sum term of d(0,n).
*

 FIR, IIR, and Adaptive Filters

6-13 Applications-Oriented Operations

Example 6–7.IIR Filter (N > 1 Biquads) (Continued)
MPYF3 *++AR0(1),*AR1— –(1)%,R0 ;b1(0) * d(0,n–1) –> R0

|| ADDF3 R0,R2,R2 ;Second sum term of d(0,n)
MPYF3 *++AR0(1),R2,R2 ;b0(0) * d(0,n) –> R2

|| STF R2,*AR1– –(1)% ;Store d(0,n) point to d(0,n–2)
** LOOP STARTS HERE
*

MPYF3 *++AR0(1),*++AR1(IR0),R0 ;a2(i)* d(i,n–2) –> R0
|| ADDF3 R0,R2,R2 ;First sum term of y(i–1,n)
* ;Pipeline hit on previous

;instruction
*

MPYF3 *++AR0(1),*AR1— –(1)%,R1;b2(i) * D(i,n–2) –> R1
|| ADDF3 R1,R2,R2 ;Second sum term of y(i–1,n).

MPYF3 *++AR0(1),*AR1,R0 ;a1(i) * d(i,n–1) –> R0
|| ADDF3 R0,R2,R2 ;First sum term of d(i,n)
*

MPYF3 *++AR0(1),*AR1— –(1)%,R0;b1(i) * d(i,n–1) –> R0
|| ADDF3 R0,R2,R2 ;Second sum term of d(i,n).
*
LOOP MPYF3 *++AR0(1),R2,R2 ;b0(i) * d(i,n) –> R2
|| STF R2, *AR1— –(1)% ;Store d(i,n) point to d(i,n–2)
*
* FINAL SUMMATION
*

ADDF3 R1,R2,R0 ;Second sum term of y(n–1,n
BRD R11 ;Delayed return

*

ADDF R0,R2 ;First sum term of y(n–1,n)
NOP *AR1– –(IR1) ;Return to first biquad
NOP *AR1– –(1)% ;Point to d(0,n–1)

*
* end
*

.end

6.2.3 Adaptive Filters (LMS Algorithm)

In some applications in digital signal processing, a filter must be adapted over
time to keep track of changing conditions. The book Theory and Design of
Adaptive Filters by Treichler, Johnson, and Larimore (Wiley-Interscience,
1987) presents the theory of adaptive filters. Although in theory, both FIR and
IIR structures can be used as adaptive filters, the stability problems and the
local optimum points that the IIR filters exhibit make them less attractive for
such an application. Hence, until further research makes IIR filters a better
choice, only the FIR filters are used in adaptive algorithms of practical applica-
tions.

In an adaptive FIR filter, the filtering equation takes this form:

y[n] = h[n,0] x[n] + h[n,1]x[n–1] +...+ h[n,N–1]x[n–(N–1)]

The filter coefficients are time-dependent. In a least-mean-squares (LMS) al-
gorithm, the coefficients are updated by an equation in this form:

FIR, IIR, and Adaptive Filters

 6-14

h[n+1,i] = h[n,1] + b x[n–i], i = 0, 1, ..., N–1

b is a constant for the computation. The updating of the filter coefficients can
be interleaved with the computation of the filter output so that it takes 3 cycles
per filter tap to do both. The updated coefficients are written over the old filter
coefficients. Example 6–8 shows the implementation of an adaptive FIR filter
on the ’C4x. The memory organization and the positioning of the data in
memory should follow the same rules as the above FIR filter with fixed coeffi-
cients.

 FIR, IIR, and Adaptive Filters

6-15 Applications-Oriented Operations

Example 6–8.Adaptive FIR Filter (LMS Algorithm)

* TITLE ADAPTIVE FIR FILTER (LMS ALGORITHM)
*
* SUBROUTINE LMS
*
* LMS == LMS ADAPTIVE FILTER
*
* EQUATIONS: y(n) = h(n,0)*x(n) + h(n,1)*x(n–1) + ...
* + h(n,N–1)*x(n–(N–1))
* FOR (i = 0; i < N; i++) h(n+1,i) = h(n,i)
* + tmuerr * x(n–i)
*
* TYPICAL CALLING SEQUENCE:
*
* load R4
* load AR0
* LAJU LMS
* load AR1
* load RC
* load BK
*
*
* ARGUMENT ASSIGNMENTS:
* ARGUMENT | FUNCTION
* ––––––––––––––– +–––––––––––––––––––––––––––––––––
* R4 | SCALE FACTOR (2 * mu * err)
* AR0 | ADDRESS OF h(n,N–1)
* AR1 | ADDRESS OF x(n–(N–1))
* RC | LENGTH OF FILTER – 2 (N–2)
* BK | LENGTH OF FILTER (N)*
* REGISTERS USED AS INPUT: R4, AR0, AR1, RC, BK
* REGISTERS MODIFIED: R0, R1, R2, AR0, AR1, RC
* REGISTER CONTAINING RESULT: R0
*
* BENCHMARKS: CYCLES: 4 + 3N (not including subroutine overhead)
* PROGRAM SIZE: 9 words (not including subroutine overhead)
*
* SETUP (i = 0)
*

.global LMS
LMS RPTBD LOOP ;Setup the delayed repeat block
* Initialize R0:

MPYF3 *AR0,*AR1,R0 ;h(n,N–1) * x(n–(N–1)) –> R0
|| SUBF3 R2, R2, R2 ;Initialize R2
*
* Initialize R1:

MPYF3 *AR1++(1)%,R4,R1 ;x(n–(N–1)) * tmuerr –> R1
ADDF3 *AR0++(1),R1,R1 ;h(n,N–1) + x(n–(N–1)) *

;tmuerr –> R1
*
* FILTER AND UPDATE (1 <= I < N)
* Filter:

MPYF3 *AR0– –(1),*AR1,R0 ;h(n,N–1–i) * x(n–(N–1–i)) –> R0
|| ADDF3 R0,R2,R2 ;Multiply and add operation.
*
* UPDATE:

MPYF3 *AR1++(1)%,R4,R1 ;x(n,N–(N–1–i)) * tmuerr –> R1
|| STF R1,*AR0++(1) ;R1 –> h(n+1,N–1–(i–1))
*

FIR, IIR, and Adaptive Filters

 6-16

Example 6–8.Adaptive FIR Filter (LMS Algorithm) (Continued)

LOOP ADDF3 *AR0++(1),R1,R1 ;h(n,N–1–i) + x(n–(N–1–i))
;*tmuerr –> R1

*
BUD R11 ;Delayed return

*
ADDF3 R0,R2,R0 ;Add last product.
STF R1,*–AR0(1) ;h(n,0) + x(n)* tmuerr –>

;h(n+1 , 0)
NOP

*
* end
*

.end

 Lattice Filters

6-17 Applications-Oriented Operations

6.3 Lattice Filters

The lattice form is an alternative way of implementing digital filters; it has appli-
cations in speech processing, spectral estimation, and other areas. In this dis-
cussion, the notation and terminology from speech processing applications
are used.

If H(z) is the transfer function of a digital filter that has only poles, A(z) = 1/H(z)
will be a filter having only zeros, and it will be called the inverse filter. The in-
verse lattice filter is shown in Figure 6–4. These equations describe the filter
in mathematical terms:

f(i,n) = f(i–1,n) + k(i) b(i–1,n–1)
b(i,n) = b(i–1,n–1) + k(i) f(i–1,n)

Initial conditions:

f(0,n) = b(0,n) = x(n)

Final conditions:

y(n) = f(p,n)

In the above equation, f(i,n) is the forward error, b(i,n) is the backward error,
k(i) is the i-h reflection coefficient, x(n) is the input, and y(n) is the output signal.
The order of the filter (that is, the number of stages) is p. In the linear predictive
coding (LPC) method of speech processing, the inverse lattice filter is used
during analysis, and the (forward) lattice filter is used during speech synthesis.

Figure 6–4. Structure of the Inverse Lattice Filter

x(n) f(0, n) f(1, n) f(p –1, n) f(p, n) = y(n)

K1 K2 Kp

K1 K2 Kp

b(0, n) b(1, n) b(p–1, n)
z –1 z –1 z –1

Figure 6–5 shows the data memory organization of the inverse lattice filter on
the ’C40.

Lattice Filters

 6-18

Figure 6–5. Data Memory Organization for Inverse Lattice Filters

•
•
•

•
•
•

coefficients
backward

propagation terms
low

address

high
address

b(0, n –1)

b(1, n –1)

b(p –1, n –1)

k(1)

k(2)

k(p)

reflection

Example 6–9.Inverse Lattice Filter

* TITLE INVERSE LATTICE FILTER
*
* SUBROUTINE LATINV
*
* LATINV == LATTICE FILTER (LPC INVERSE FILTER – ANALYSIS)
*
* TYPICAL CALLING SEQUENCE:
*
* load R2
* LAJU LATINV
* load AR0
* load AR1
* load RC
*
*
* ARGUMENT ASSIGNMENTS:
* ARGUMENT | FUNCTION
* ––––––––– +–––
* R2 | f(0,n) = x(n)
* AR0 | ADDRESS OF FILTER COEFFICIENTS (k(1))
* AR1 | ADDRESS OF BACKWARD PROPAGATION VALUES (b(0,n–1))
* RC | RC = p – 2
*
* REGISTERS USED AS INPUT: R2, AR0, AR1, RC
* REGISTERS MODIFIED: R0, R1, R2, R3, RS, RE, RC, AR0, AR1
* REGISTER CONTAINING RESULT: R2 (f(p,n))
*

BENCHMARKS: CYCLES: 3 + 3p (not including subroutine overhead)
PROGRAM SIZE: 9 WORDS (not including subroutine overhead)

*
*
*
*

.global LATINV
*
* i = 1
*
LATINV RPTBD LOOP ;Setup the delayed repeat block loop

MPYF3 *AR0,*AR1,R0 ;k(1) * b(0,n–1) –> R0
;Assume f(0,n) –> R2.

LDF R2,R3 ;Put b(0,n) = f(0,n) –> R3.
MPYF3 *AR0++(1),R2,R1 ;k(1) * f(0,n) –> R1

 Lattice Filters

6-19 Applications-Oriented Operations

Example 6–9.Inverse Lattice Filter (Continued)
*
* 2 <= i <= p (Repeat block loop start here)
*

MPYF3 *AR0,*++AR1(1),R0 ;k(i) * b(i–1,n–1) –> R0
|| ADDF3 R2,R0,R2 ;f(i–1–1,n) + k(i–1) *b(i–1–1,n–1)

;= f(i–1,n) –> R2
*

;b(i–1–1,n–1) + k(i–1)*f(i–1–1,n)
ADDF3 *–AR1(1),R1,R3 ;= b(i–1,n) –> R3

|| STF R3,*–AR1(1) ;b(i–1–1,n) –> b(i–1–1,n–1)
*
LOOP MPYF3 *AR0++(1),R2,R1 ;k(i) * f(i–1,n) –> R1
*
* I = P + 1 (CLEANUP)
*

BUD R11 ;Delayed return
ADDF3 R2,R0,R2 ;f(p–1,n) + k(p)*b(p–1,n–1)

;= f(p,n) –> R2
*

ADDF3 *AR1,R1,R3 ;b(p–1,n–1) + k(p)*f(p–1,n)
;= b(p,n) –> R3

|| STF R3,*AR1 ;b(p–1,n) –> b(p–1,n–1)
NOP

*
* end
*

.end

The structure of the forward lattice filter, shown in Figure 6–6, is similar to that
of the inverse filter (also shown in the figure). These corresponding equations
describe the lattice filter:

f(i–1,n) = f(i,n) – k(i) b(i–1,n–1)
b(i,n) = b(i–1,n–1) + k(i) f(i–1,n)

Initial conditions:

f(p,n) = x(n), b(i,n–1) = 0 for i = 1, ..., p

Final conditions:

 y(n) = f(0,n).

The data memory organization is identical to that of the inverse filter shown in
Figure 6–5. Example 6–10 shows the implementation of the lattice filter on the
’C4x.

Figure 6–6. Structure of the Forward Lattice Filter
y(n)f(1, n)f(2, n)x(n) = f(p, n)

– K1– K2– Kp

K1K2Kp

b(1, n)b(2, n)
z –1 z –1 z –1

b(p, n)

Lattice Filters

 6-20

Example 6–10. Lattice Filter

* TITLE LATTICE FILTER
*
* SUBROUTINE LATTICE
*
* LAJU LATTICE
* LOAD AR0
* LOAD AR1
* LOA RC
*
* ARGUMENT ASSIGNMENTS:
* ARGUMENT | FUNCTION
* ––––––––– +–––––––––––––––––––––––––––––––––––––
* R2 | F(P,N) = E(N) = EXCITATION
* AR0 | ADDRESS OF FILTER COEFFICIENTS (K(P))
* AR1 | ADDRESS OF BACKWARD PROPAGATION
* | VALUES (B(P–1,N–1))
* RC | RC = P – 2
*
* REGISTERS USED AS INPUT: R2, AR0, AR1, RC
* REGISTERS MODIFIED: R0, R1, R2, R3, RS, RE, RC, AR0, AR1
* REGISTER CONTAINING RESULT: R2 (f(0,n))
*
* BENCHMARKS: CYCLES: 1 + 5P (not including subroutine overhead)
* PROGRAM SIZE: 11 words (not including subroutine overhead)
*

.global LATTICE
*
LATTICE RPTBD LOOP ;Setup the delayed repeat block loop

MPYF3 *AR0,*AR1,R0 ;K(P) * B(P–1,N–1) –> R0
SUBF3 R0,R2,R2 ;Assume F(P,N) –> R2
NOP ;F(P,N)–K(P)*B(P–1,N–1)

;= F(P–1,N) –> R2
*
* 2 <= I <= P (Repeat block loop start here)
*

MPYF3 *AR0,R2,R1 ;K(I) * F(I–1,N) –> R1
MPYF3 *––AR0(1),*–AR1(1),R0 ;K(I–1) *

;B(I–1–1,N–1) –> R0
ADDF3 *AR1––(1),R1,R3 ;B(I–1,N–1) + K(I)*F(I–1,N)

* ;= B(I,N) –> R3
STF R3,*+AR1(2) ;B(I,N) –> B(I,N–1)

LOOP SUBF3 R0,R2,R2 ;F(I–1,N)–K(I–1)
;*B(I–1–1,N–1)

* ;= F(I–1–1,N) –> R2
*
* I = 1 (CLEANUP)
*

BUD R11 ;Delayed return
MPYF *AR0,R2,R1 ;K(1) * F(0,N) –> R1
ADDF3 *AR1,R1,R3 ;B(0,N–1) + K(1)*F(0,N)

* ;= B(1,N) –> R3
STF R3,*+AR1(1) ;B(1,N) –> B(1,N–1)

|| STF R2,*AR1 ;F(0,N) –> B(0,N–1)
*
* end
*

.end

 Matrix-Vector Multiplication

6-21 Applications-Oriented Operations

6.4 Matrix-Vector Multiplication

In matrix-vector multiplication, a K × N matrix of elements m(i,j), having K rows
and N columns, is multiplied by an N × 1 vector to produce a K × 1 result. The
multiplier vector has elements v(j), and the product vector has elements p(i).
Each one of the product-vector elements is computed by the following expres-
sion:

p(i) = m(i,0) v(0) + m(i,1) v(1) +...+ m(i,N-1) v(N–1) i = 0,1,...,K-1

This is essentially a dot product, and the matrix-vector multiplication contains,
as a special case, the dot product presented in Example 2–1 on page 2-3 and
Example 2–2 on page 2-5. In pseudo-C format, the computation of the matrix
multiplication is expressed by

for (i = 0; i < K; i++) {
p(i) = 0
for (j = 0; j < N; j++)

p(i) = p(i) + m(i,j) * v(j)
}

Figure 6–7 shows the data memory organization for matrix-vector multiplica-
tion, and Example 6–11 shows the ’C4x assembly code that implements it.
Note that in Example 6–11, K (number of rows) should be greater than 0, and
N (number of columns) should be greater than 1.

Figure 6–7. Data Memory Organization for Matrix-Vector Multiplication

•
•
•

•
•
•

•
•
•

matrix storage
input

vector storage
result

vector storage
low

address

high
address

p(0)
p(1)

v(0)
v(1)

p(K – 1)
v(N – 1)

m(0, 0)

m(0, 1)

m(0, N – 1)
m(1, 0)
m(1, 1)

•
•
•

Matrix-Vector Multiplication

 6-22

Example 6–11. Matrix Times a Vector Multiplication

*
* TITLE MATRIX TIMES A VECTOR MULTIPLICATION
*
* SUBROUTINE MAT
*
* MAT == MATRIX TIMES A VECTOR OPERATION
*
* TYPICAL CALLING SEQUENCE:
*
* load AR0
* load AR1
* load AR2
* load AR3
* load R1
* CALL MAT
*
* ARGUMENT ASSIGNMENTS:
*
* ARGUMENT| FUNCTION
* ––––––––––––––– +––––––––––––––––––––––––––––––––
* AR0 | ADDRESS OF M(0,0)
* AR1 | ADDRESS OF V(0)
* AR2 | ADDRESS OF P(0)
* AR3 | NUMBER OF ROWS – 1 (K–1)
* RC | NUMBER OF COLUMNS – 2 (N–2)
*
* REGISTERS USED AS INPUT: AR0, AR1, AR2, AR3, RC
* REGISTERS MODIFIED: R0, R2, AR0, AR1, AR2, AR3, IR0, RC
*
*
* MATRIX -VECTOR BENCHMARKS: CYCLES: 1 + 7K + KN = 1 + K (N + 7)
* (not including subroutine overhead)
* PROGRAM SIZE: 10 words (not including subroutine

overhead)
*
*

.global MAT
*
* SETUP
*
MAT ADDI3 RC,2,IR0 ;IR0 = N
*
* FOR (i = 0; i < K; i++) LOOP OVER THE ROWS.
*
ROWS RPTBD DOT ;Setup multiply a row by a column

;Set loop counter
LDF 0.0,R2 ;Initialize R2
MPYF3 *AR0++(1),*AR1++(1),R0 ;m(i,0) * v(0) –> R0
NOP

* FOR (j = 1; j < N; j++) DO DOT PRODUCT OVER COLUMNS
*
DOT MPYF3 *AR0++(1),*AR1++(1),R0 ;m(i,j) * v(j) –> R0
|| ADDF3 R0,R2,R2 ;m(i,j–1) * v(j–1) +

;R2 –> R2
*

DBD AR3,ROWS ;counts the number of rows left
*

 Matrix-Vector Multiplication

6-23 Applications-Oriented Operations

Example 6–11. Matrix Times a Vector Multiplication (Continued)

*
ADDF R0,R2 ;last accumulate
STF R2,*AR2++(1) ;result –> p(i)
NOP *– –AR1(IR0) ;set AR1 to point to v(0)

* !!! DELAYED BRANCH HAPPENS HERE !!!
*
* RETURN SEQUENCE
*

RETS ;return
*
* end
*

.end

Fast Fourier Transforms (FFTs)

 6-24

6.5 Fast Fourier Transforms (FFTs)

Fourier transforms are an important tool often used in digital signal processing
systems. The transform converts information from the time domain to the fre-
quency domain. The inverse Fourier transform converts information back to
the time domain from the frequency domain. Implementation of Fourier trans-
forms that are computationally efficient are known as fast Fourier transforms
(FFTs). The theory of FFTs can be found in books such as DFT/FFT and Con-
volution Algorithms by C.S. Burrus and T.W. Parks (John Wiley, 1985) and Dig-
ital Signal Processing Applications With the TMS320 Family.

’C4x features that increase efficient implementation of numerically intensive
algorithms are particularly well-suited for FFTs. The high speed of the ’C4x
(40-ns cycle time) makes the implementation of real-time algorithms easier,
while the floating-point capability eliminates the problems associated with dy-
namic range. The powerful indexing scheme in indirect addressing facilitates
the access of FFT butterfly legs that have different spans. The repeat block
implemented by the RPTB or RPTBD instruction reduces the looping over-
head in algorithms heavily dependent on loops (such as the FFTs). This gives
the efficiency of in-line coding with the form of a loop. Since the output of the
FFT is in scrambled (bit-reversed) order when the input is in regular order, it
must be restored to the proper order. This rearrangement does not require ex-
tra cycles. The device has a special form of indirect addressing (bit-reversed
addressing mode) that can be used when the FFT output is needed.

The ’C4x can implement the bit-reversed addressing mode on either the CPU
or DMA. This mode makes it possible to access the FFT output in the proper
order. If the DMA transfer with bit-reversed addressing mode is used, there is
no overhead for data input and output.

There are several types of FFT examples in this section:

� Radix-2 and radix-4 algorithms, depending on the size of the FFT
butterfly

� Decimation in time or frequency (DIT or DIF)

� Complex or real FFTs

� FFTs of different lengths, etc.

The following C-callable FFT code examples are provided in this section:

� Complex radix-2 DIF FFT: subsection 6.5.1

� Complex radix-4 DIF FFT: subsection 6.5.2

� Faster Complex radix-2 DIT FFT: subsection 6.5.3

� Real radix-2 DIF FFT: subsection 6.5.4

 Fast Fourier Transforms (FFTs)

6-25 Applications-Oriented Operations

Code for these different FFTs can be found in the DSP Bulletin Board Service
(under the filename: C40FFT.EXE). This file includes code, input data and sine
table examples, and batch files for compiling and linking. For instructions on
how to access the BBS, see subsection 10.1.3, The Bulletin Board Service
(BBS). To use these FFT codes, you need to perform two steps:

� Provide a sine table in the format required by the program. This sine table
 is FFT size specific, with the exception of the sine table required for
 Complex radix-2 DIT and the real radix-2 DIF FFT programs (as noted in
Example 6–18)

� Align the input data buffer on a n+1 memory boundary, i.e the n+1 LSBs
of the input buffer base address must be zero. (n = log FFT_SIZE).

For most applications, the ’C4x quickly executes FFT lengths of up to 1024
points (complex) or 2048 points (real) because it can do so almost entirely in
on-chip memory.

For FFTs larger than 1024 (complex), see the application report, Parallel 1-D
FFT Implementation with the TMS320C4x DSPs, in the book Parallel Proces-
sing Applications with the TMS320C4x DSP (literature number SPRA031).
This application note covers unprocessed partitioned FFT implementation for
large FFTs. The source code is also available on the TI DSP Bulletin Board (un-
der the filename: C40PFFT.EXE).

Fast Fourier Transforms (FFTs)

 6-26

6.5.1 Complex Radix-2 DIF FFT

Example 6–12 shows a simple implementation of a complex radix-2, DIF FFT
on the ’C4x. The code is generic and can be used with any length number.
However, for the complete implementation of an FFT, a table of twiddle factors
(sines/cosines) is needed, and this table depends on the size of the transform.
To retain the generic form of Example 6–12, the table with the twiddle factors
(containing 1-1/4 complete cycles of a sine) is presented separately in
Example 6–13 for the case of a 64-point FFT. A full cycle of a sine should have
a number of points equal to the FFT size. If the table with the twiddle factors
and the FFT code are kept in separate files, they should be connected at link
time.

 Fast Fourier Transforms (FFTs)

6-27 Applications-Oriented Operations

Example 6–12. Complex Radix-2 DIF FFT

**
*
* FILENAME : CR2DIF.ASM
* DESCRIPTION : COMPLEX, RADIX–2 DIF FFT FOR TMS320C40 (C callable)
* DATE : 6/29/93
* VERSION : 4.0
*
**
*
* VERSION DATE COMMENTS
* ––––––– –––– ––––––––
* 1.0 10/87 PANNOS PAPAMICHALIS (TI Houston) Original Release
* 2.0 1/91 DANIEL CHEN (TI Houston): C40 porting
* 3.0 7/1/92 ROSEMARIE PIEDRA (TI Houston): made it C–callable
* 4.0 6/29/93 ROSEMARIE PIEDRA (TI Houston): added support for
* in-place bit reversing
*
**
*
* SYNOPSIS: int cr2dif(SOURCE_ADDR,FFT_SIZE,LOGFFT,DST_ADDR)
* ar2 r2 r3 rc
*
* float *SOURCE_ADDR ; input address
* int FFT_SIZE ;64, 128, 256, 512, 1024, ...
* int LOGFFT ;log (base 2) of FFT_SIZE
* float *DST_ADDR ;destination address
*
* – The computation is done in–place.
* – Sections to be allocated in linker command file: .ffttxt : FFT code
* .fftdat : FFT data
* If SOURCE_ADDR=DST_ADDR, then in-place bit reversing is performed
*
**
*
* DESCRIPTION:
*
* Generic program for a radix–2 DIF FFT computation using the TMS320C4x family.
* The computation is done in–place and the result is bit–reversed. The program
* is from the Burrus and Parks book, p. 111. The input data array is 2*FFT_SIZE–
* long with real and imaginary data in consecutive memory locations: Re–Im– Re–Im
*
* The twiddle factors are supplied in a table put in a section with a global
* label _SINE pointing to the beginning of the table. This data is included in a
* separate file to preserve the generic nature of the program. The sine table
* size is (5*FFT_SIZE)/4.
*
* Note: Sections needed in the linker command file: .ffttxt : FFT code
* .fftdat : FFT data
*

Fast Fourier Transforms (FFTs)

 6-28

Example 6–12. Complex Radix-2 DIF FFT (Continued)

**
* +
* AR + j AI –– AR’ + j AI’
* \ / +
* \ /
* \ /
* / \
* / \
* / \ +
* BR + j BI –––––––––––––––––––––––– COS – j SIN –––– BR’ + j BI’
* –
*
* AR’= AR + BR
* AI’= AI + BI
* BR’= (AR–BR)*COS + (AI–BI)*SIN
* BI’= (AI–BI)*COS – (AR–BR)*SIN
*
**
*
*
 .globl _SINE ;Address of sine/cosine table
 .globl _cr2dif ;Entry point for execution
 .globl STARTB,ENDB ;starting/ending point for benchmarks
 .sect ”.fftdat”
SINTAB .word _SINE
OUTPUTP .space 1
FFTSIZE .space 1
 .sect ”.ffttxt”

_cr2dif:
 LDI SP,AR0
 PUSH DP
 PUSH R4 ;Save dedicated registers
 PUSH R5
 PUSH R6 ;lower 32 bits
 PUSHF R6 ;upper 32 bits
 PUSH AR4
 PUSH AR5
 PUSH AR6
 PUSH R8
 LDP SINTAB
 .if .REGPARM == 0 ;stack is used for parameter passing
 LDI *–AR0(1),AR2 ;points input data
 LDI *–AR0(2),R10 ;R10=N
 LDI *–AR0(3),R9 ;R9 holds the remain stage number
 LDI *–AR0(4),RC ;points where FFT result should move to
 .else ;registers are used for parameter passing
 LDI R2,R10
 LDI R3,R9
 .endif
 STI RC, @OUTPUTP
 STI R10,@FFTSIZE

 Fast Fourier Transforms (FFTs)

6-29 Applications-Oriented Operations

Example 6–12. Complex Radix-2 DIF FFT (Continued)

STARTB:
 LDI 1,R8 ;Initialize repeat counter of first loop
 LSH3 1,R10,IR0 ;IR0=2*N1 (because of real/imag)
 LSH3 –2,R10,IR1 ;IR1=N/4, pointer for SIN/COS table
 LDI 1,AR5 ;Initialize IE index (AR5=IE)
 LSH 1,R10
 SUBI3 1,R8,RC ;RC should be one less than desired #
* Outer loop
LOOP:
 RPTBD BLK1 ;Setup for first loop
 LSH –1,R10 ;N2=N2/2
 LDI AR2,AR0 ;AR0 points to X(I)
 ADDI R10,AR0,AR6 ;AR6 points to X(L)
*
*
* First loop
*
 ADDF *AR0,*AR6,R0 ;R0=X(I)+X(L)
 SUBF *AR6++,*AR0++,R1 ;R1=X(I)–X(L)
 ADDF *AR6,*AR0,R2 ;R2=Y(I)+Y(L)
 SUBF *AR6,*AR0,R3 ;R3=Y(I)–Y(L)
 STF R2,*AR0–– ;Y(I)=R2 and...
|| STF R3,*AR6–– ;Y(L)=R3
BLK1 STF R0,*AR0++(IR0) ;X(I)=R0 and...
|| STF R1,*AR6++(IR0) ;X(L)=R1 and AR0,2 = AR0,2 + 2*n
* If this is the last stage, you are done
 SUBI 1,R9
 BZD ENDB
* main inner loop
 LDI 2,AR1 ;Init loop counter for inner loop
 LDI @SINTAB,AR4 ;Initialize IA index (AR4=IA)
 ADDI AR5,AR4 ;IA=IA+IE;AR4 points to cosine
 ADDI AR2,AR1,AR0 ;(X(I),Y(I)) pointer
 SUBI 1,R8,RC ;RC should be one less than desired #
INLOP:
 RPTBD BLK2 ;Setup for second loop
 ADDI R10,AR0,AR6 ;(X(L),Y(L)) pointer
 ADDI 2,AR1
 LDF *AR4,R6 ;R6=SIN*
*
* Second loop
*
 SUBF *AR6,*AR0,R2 ;R2=X(I)–X(L)
 SUBF *+AR6,*+AR0,R1 ;R1=Y(I)–Y(L)
 MPYF R2,R6,R0 ;R0=R2*SIN and...
|| ADDF *+AR6,*+AR0,R3 ;R3=Y(I)+Y(L)
 MPYF R1,*+AR4(IR1),R3 ;R3 = R1 * COS and ...
|| STF R3,*+AR0 ;Y(I)=Y(I)+Y(L)
 SUBF R0,R3,R4 ;R4=R1*COS–R2*SIN
 MPYF R1,R6,R0 ;R0=R1*SIN and...
|| ADDF *AR6,*AR0,R3 ;R3=X(I)+X(L)
 MPYF R2,*+AR4(IR1),R3 ;R3 = R2 * COS and...
|| STF R3,*AR0++(IR0) ;X(I)=X(I)+X(L) and AR0=AR0+2*N1
 ADDF R0,R3,R5 ;R5=R2*COS+R1*SIN
BLK2 STF R5,*AR6++(IR0) ;X(L)=R2*COS+R1*SIN, incr AR6 and...

Fast Fourier Transforms (FFTs)

 6-30

Example 6–12. Complex Radix-2 DIF FFT (Continued)

|| STF R4,*+AR6 ;Y(L)=R1*COS–R2*SIN
 CMPI R10,AR1
 BNEAF INLOP ;Loop back to the inner loop
 ADDI AR5,AR4 ;IA=IA+IE;AR4 points to cosine
 ADDI AR2,AR1,AR0 ;(X(I),Y(I)) pointer
 SUBI 1,R8,RC
 LSH 1,R8 ;Increment loop counter for next time
 BRD LOOP ;Next FFT stage (delayed)
 LSH 1,AR5 ;IE=2*IE
 LDI R10,IR0 ;N1=N2
 SUBI3 1,R8,RC
ENDB:
*
*

––––––––––––– BITREVERSAL –––
* This bit–reversal section assume input and output in Re–Im–Re–Im format *

 cmpi @OUTPUTP,ar2
 beqd INPLACE
 nop
 ldi @FFTSIZE,ir0 ;ir0 = FFT_SIZE
 subi 2,ir0,rc ;rc = FFT_SIZE–2
 ;SRC different from DST
 ;ar2 = SRC_ADDR
 rptbd BITRV
 ldi 2,ir1 ;ir1 = 2
 ldi @OUTPUTP,ar1 ;ar1 = DST_ADDR
 ldf *+ar2(1),r0 ;read first Im value
 ldf *ar2++(ir0)b,r1
|| stf r0,*+ar1(1)
BITRV ldf *+ar2(1),r0
|| stf r1,*ar1++(ir1)
 bud END
 ldf *ar2++(ir0)b,r1
|| stf r0,*+ar1(1)
 nop
 stf r1,*ar1
INPLACE
 rptbd BITRV2 ;in place bit reversing
 ldi ar2,ar1
 nop *++ar1(2)
 nop *ar2++(ir0)b
 cmpi ar1,ar2
 bgeat CONT
 ldf *ar1,r0
|| ldf *ar2,r1
 stf r0,*ar2
|| stf r1,*ar1
 ldf *+ar1(1),r0
|| ldf *+ar2(1),r1

 Fast Fourier Transforms (FFTs)

6-31 Applications-Oriented Operations

Example 6–12. Complex Radix-2 DIF FFT (Continued)

 stf r0,*+ar2(1)
|| stf r1,*+ar1(1)
CONT nop *++ar1(2)
BITRV2 nop *ar2++(ir0)b
;
;Return to C environment.
;
END: POP R8
 POP AR6 ;Restore the register values and return
 POP AR5
 POP AR4
 POPF R6
 POP R6
 POP R5
 POP R4
 POP DP
 RETS
 .end

Fast Fourier Transforms (FFTs)

 6-32

Example 6–13. Table With Twiddle Factors for a 64-Point FFT

**
*
* TITLE TABLE WITH TWIDDLE FACTORS FOR A 64–POINT FFT
*
* FILE TO BE LINKED WITH THE SOURCE CODE FOR A 64–POINT,
* RADIX–2 DIF COMPLEX FFT OR A RADIX–4 DIF COMPLEX FFT.
*
* SINE TABLE LENGTH = 5*FFTSIZE/4
*
**

.globl _SINE

.sect ”.sintab”
_SINE

.float 0.000000

.float 0.098017

.float 0.195090

.float 0.290285

.float 0.382683

.float 0.471397

.float 0.555570

.float 0.634393

.float 0.707107

.float 0.773010

.float 0.831470

.float 0.881921

.float 0.923880

.float 0.956940

.float 0.980785

.float 0.995185
_COSINE

.float 1.000000

.float 0.995185

.float 0.980785

.float 0.956940
 .float 0.923880

.float 0.881921

.float 0.831470

.float 0.773010

.float 0.707107

.float 0.634393

.float 0.555570

.float 0.471397

.float 0.382683

.float 0.290285

.float 0.195090

.float 0.098017

.float 0.000000

.float –0.098017
 .float –0.195090

.float –0.290285

.float –0.382683

.float –0.471397

.float –0.555570

.float –0.634393

.float –0.707107

.float –0.773010

.float –0.831470

.float –0.881921

.float –0.923880

 Fast Fourier Transforms (FFTs)

6-33 Applications-Oriented Operations

Example 6–13. Table With Twiddle Factors for a 64-Point FFT (Continued)

.float –0.956940

.float –0.980785

.float –0.995185

.float –1.000000

.float –0.995185

.float –0.980785

.float –0.956940

.float –0.923880

.float –0.881921

.float –0.831470

.float –0.773010

.float –0.707107

.float –0.634393

.float –0.555570

.float –0.471397

.float –0.382683

.float –0.290285

.float –0.195090

.float –0.098017

.float 0.000000

.float 0.098017

.float 0.195090

.float 0.290285

.float 0.382683

.float 0.471397

.float 0.555570

.float 0.634393

.float 0.707107

.float 0.773010

.float 0.831470

.float 0.881921
 .float 0.923880
 .float 0.956940

.float 0.980785
 .float 0.995185

6.5.2 Complex Radix-4 DIF FFT

The radix-2 algorithm has tutorial value because it is relatively easy to under-
stand how the FFT algorithm functions. However, radix-4 implementations can
increase the speed of the execution by reducing the overall arithmetic re-
quired. Example 6–14 shows the generic implementation of a complex, DIF
FFT in radix-4. A companion table like the one Example 6–13 should be used
to provide the twiddle factor.

Fast Fourier Transforms (FFTs)

 6-34

Example 6–14. Complex Radix-4 DIF FFT

**
*
* FILENAME : CR4DIF.ASM
* DESCRIPTION : COMPLEX, RADIX–4 DIF FFT FOR TMS320C40 (C callable)
* DATE : 6/29/93
* VERSION : 4.0
*
**
*
* VERSION DATE COMMENTS
* ––––––– –––– ––––––––
* 1.0 10/87 PANNOS PAPAMICHALIS (TI Houston)
* Original Release
* 2.0 1/91 DANIEL CHEN (TI Houston): C40 porting
* 3.0 7/1/91 ROSEMARIE PIEDRA (TI Houston): made it C–callable
* 4.0 6/29/93 ROSEMARIE PIEDRA (TI Houston):added support for
* in–place bit reversing.
*
**
*
* SYNOPSIS: int cr4dif(SOURCE_ADDR,FFT_SIZE,LOGFFT,DST_ADDR)
* ar2 r2 r3 rc
*
* float *SOURCE_ADDR ;input address
* int FFT_SIZE ;64, 256, 1024, ...
* int LOGFFT ;log (base 4) of FFT_SIZE
* float *DST_ADDR ;destination address
*
* – The computation is done in–place.
* – Sections to be allocated in linker command file: .ffttxt : FFT code
* .fftdat : FFT data
* If SOURCE_ADDR=DST_ADDR, then in-place bit reversing is performed
*
**
*
* DESCRIPTION:
*
* Generic program for a radix–4 DIF FFT computation using the TMS320C4x
* family. The computation is done in–place and the result is bit–reversed.
* The program is taken from the Burrus and Parks book, p. 117.
* The input data array is 2*FFT_SIZE–long with real and imaginary data
* in consecutive memory locations: Re–Im–Re–Im
*
* The twiddle factors are supplied in a table put in a section
* with a global label _SINE pointing to the beginning of the table
* This data is included in a separate file to preserve the generic
* nature of the program. The sine table size is (5*FFT_SIZE)/4.
*
* In order to have the final results in bit–reversed order, the two
* middle branches of the radix–4 butterfly are interchanged during
* storage. Note the difference when comparing with the program in p.117
* of the Burrus and Parks book.
*

 Fast Fourier Transforms (FFTs)

6-35 Applications-Oriented Operations

Example 6–14. Complex Radix-4 DIF FFT (Continued)

* Note: Sections needed in the linker command file: .ffttxt : FFT code
* .fftdat : FFT data
*
**
*
* WARNING:
*
* For optimization purposes, LDF *+AR1,R0 (see **1**) will fetch memory outside
* the input buffer range during the ”first loop” execution (RC=0). Even though
* the read value (R0) is not used in the code, this could cause a halt situa
* tion if AR1 points to a no-ready external memory
*
**

.globl _SINE ;Address of sine/cosine table

.globl _cr4dif ;Entry point for execution

.globl STARTB,ENDB ;starting/ending point for benchmarks

.sect ”.fftdat”
FFTSIZ .space 1
SINTAB .word _SINE
SINTAB1 .word _SINE–1
INPUTP .space 1
OUTPUTP .space 1

.sect ”.ffttxt”
_cr4dif:

LDI SP,AR0
PUSH DP
PUSH R4 ;Save dedicated registers

PUSH R5
PUSH R6 ;lower 32 bits
PUSHF R6 ;upper 32 bits
PUSH R7 ;lower 32 bits
PUSHF R7 ;upper 32 bits
PUSH AR3
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH R8
.if .REGPARM == 0
LDI *–AR0(1),AR2 ;points to input data
LDI *–AR0(2),R10 ;R10=N
LDI *–AR0(3),R9 ;R9 holds the remain stage number
LDI *–AR0(4),RC ;points to where FFT result should move to
.else
LDI R2,R10
LDI R3,R9
.endif
LDP FFTSIZ ;Command to load data page pointer
STI AR2, @INPUTP
STI RC, @OUTPUTP
STI R10,@FFTSIZ

Fast Fourier Transforms (FFTs)

 6-36

Example 6–14. Complex Radix-4 DIF FFT (Continued)

STARTB:
LDI @FFTSIZ,BK
LSH3 1,BK,IR0 ;IR0=2*N1 (because of real/imag)
LSH3 –2,BK,IR1 ;IR1=N/4, pointer for SIN/COS table
LDI 1,AR7 ;Initialize IE index
LDI 1,R8 ;Initialize repeat counter of first loop
ADDI 2,IR1,R9 ;R9=JT
LSH –1,BK ;BK=N2

* OUTER LOOP
LOOP: LDI @INPUTP,AR0 ;AR0 points to X(I)

SUBI3 1,R8,RC ;RC should be one less than desired #
ADDI BK,AR0,AR1 ;AR1 points to X(I1)
RPTBD BLK1 ;Setup loop BLK1
ADDI BK,AR1,AR2 ;AR2 points to X(I2)
ADDI BK,AR2,AR3 ;AR3 points to X(I3)
LDF *+AR1,R0 ;R0=Y(I1)

* FIRST LOOP: BLK1
ADDF R0,*+AR3,R3;R3=Y(I1)+Y(I3)
ADDF *+AR0,*+AR2,R1 ;R1=Y(I)+Y(I2)
ADDF R3,R1,R6 ;R6=R1+R3
SUBF *+AR2,*+AR0,R4 ;R4=Y(I)–Y(I2)
LDF *AR2,R5 ;R5=X(I2)

|| STF R6,*+AR0 ;Y(I)=R1+R3
SUBF R3,R1 ;R1=R1–R3
ADDF *AR3,*AR1,R3 ;R3=X(I1)+X(I3)
ADDF R5,*AR0,R1 ;R1=X(I)+X(I2)

|| STF R1,*+AR1 ;Y(I1)=R1–R3
ADDF R3,R1,R6 ;R6=R1+R3
SUBF R5,*AR0,R2 ;R2=X(I)–X(I2)

|| STF R6,*AR0++(IR0) ;X(I)=R1+R3
SUBF R3,R1 ;R1=R1–R3
SUBF *AR3,*AR1,R6 ;R6=X(I1)–X(I3)
SUBF R0,*+AR3,R3 ;–R3=Y(I1)–Y(I3)

|| STF R1,*AR1++(IR0) ;X(I1)=R1–R3
SUBF R6,R4,R5 ;R5=R4–R6
ADDF R6,R4 ;R4=R4+R6
STF R5,*+AR2 ;Y(I2)=R4–R6

|| STF R4,*+AR3 ;Y(I3)=R4+R6
SUBF R3,R2,R5 ;R5=R2+R3
ADDF R3,R2 ;R2=R2–R3
STF R2,*AR3++(IR0) ;X(I3)=R2+R3

BLK1 STF R5,*AR2++(IR0) ;X(I2)=R2–R3
|| LDF *+AR1,R0 ;R0=Y(I1) ; **1**

* IF THIS IS THE LAST STAGE, YOU ARE DONE
CMPI IR1,R8
BZD ENDB

 Fast Fourier Transforms (FFTs)

6-37 Applications-Oriented Operations

Example 6–14. Complex Radix-4 DIF FFT (Continued)

*
* MAIN INNER LOOP
*

LDI 1,R10 ;Init IA1 index
LDI 2,R11 ;Init loop counter for inner loop
LDI R11,AR0
ADDI @INPUTP,AR0 ;(X(I),Y(I)) pointer
ADDI 2,R11 ;Increment inner loop counter

INLOP: ADDI AR7,R10 ;IA1=IA1+IE
ADDI BK,AR0,AR1 ;(X(I1),Y(I1)) pointer
CMPI R9,R11 ;If LPCNT=JT, go to
BZD SPCL ;special butterfly
ADDI BK,AR1,AR2 ;(X(I2),Y(I2)) pointer
ADDI BK,AR2,AR3 ;(X(I3),Y(I3)) pointer
SUBI3 1,R8,RC ;RC should be one less than desired #
LDI R10,AR4
ADDI @SINTAB1,AR4 ;Create cosine index AR4
ADDI AR4,R10,AR5
SUBI 1,AR5 ;IA2=IA1+IA1–1
RPTBD BLK2 ;Setup loop BLK2
ADDI R10,AR5,AR6
SUBI 1,AR6 ;IA3=IA2+IA1–1
LDF *+AR2,R7 ;R7=Y(I2)

*
* SECOND LOOP: BLK2
*

ADDF R7,*+AR0,R3 ;R3=Y(I)+Y(I2)
ADDF *+AR3,*+AR1,R5 ;R5=Y(I1)+Y(I3)
ADDF R5,R3,R6 ;R6=R3+R5
SUBF R7,*+AR0,R4 ;R4=Y(I)–Y(I2)
SUBF R5,R3 ;R3=R3–R5
ADDF *AR2,*AR0,R1 ;R1=X(I)+X(I2)
ADDF *AR3,*AR1,R5 ;R5=X(I1)+X(I3)
MPYF R3,*+AR5(IR1),R6 ;R6=R3*CO2

|| STF R6,*+AR0 ;Y(I)=R3+R5
ADDF R5,R1,R0 ;R0=R1+R5
SUBF *AR2,*AR0,R2 ;R2=X(I)–X(I2)
SUBF R5,R1 ;R1=R1–R5
MPYF R1,*AR5,R0 ;R0=R1*SI2

|| STF R0,*AR0++(IR0) ;X(I)=R1+R5
SUBF R0,R6 ;R6=R3*CO2–R1*SI2
SUBF *+AR3,*+AR1,R5 ;R5=Y(I1)–Y(I3)
MPYF R1,*+AR5(IR1),R0 ;R0=R1*C02

|| STF R6,*+AR1 ;Y(I1)=R3*CO2–R1*SI2
MPYF R3,*AR5,R6 ;R6=R3*SI2
ADDF R0,R6 ;R6=R1*CO2+R3*SI2
ADDF R5,R2,R1 ;R1=R2+R5
SUBF R5,R2 ;R2=R2–R5
SUBF *AR3,*AR1,R5 ;R5=X(I1)–X(I3)
SUBF R5,R4,R3 ;R3=R4–R5
ADDF R5,R4 ;R4=R4+R5
MPYF R3,*+AR4(IR1),R6 ;R6=R3*CO1

|| STF R6,*AR1++(IR0) ;X(I1)=R1*CO2+R3*SI2
MPYF R1,*AR4,R0 ;R0=R1*SI1
SUBF R0,R6 ;R6=R3*CO1+R1*SI1
MPYF R1,*+AR4(IR1),R6 ;R6=R1*CO1

|| STF R6,*+AR2 ;Y(I2)=R3*CO1–R1*SI1

Fast Fourier Transforms (FFTs)

 6-38

Example 6–14. Complex Radix-4 DIF FFT (Continued)

MPYF R3,*AR4,R0 ;R0=R3*SI1
ADDF R0,R6 ;R6=R1*CO1+R3*SI1
MPYF R4,*+AR6(IR1),R6 ;R6=R4*CO3

|| STF R6,*AR2++(IR0) ;X(I2)=R1*CO1+R3*SI1
MPYF R2,*AR6,R0 ;R0=R2*SI3
SUBF R0,R6 ;R6=R1*CO3–R2*SI3
MPYF R2,*+AR6(IR1),R6 ;R6=R2*CO3

|| STF R6,*+AR3 ;Y(I3)=R4*CO3–R2*SI3
MPYF R4,*AR6,R0 ;R0=R4*SI3
ADDF R0,R6 ;R6=R2*CO3+R4*SI3

BLK2 STF R6,*AR3++(IR0) ;x(i3)=R2*CO3+R4*SI3
|| LDF *+AR2,R7 ;Load next Y(I2)

CMPI R11,BK
BPD INLOP ;LOOP BACK TO THE INNER LOOP
LDI R11,AR0
ADDI @INPUTP,AR0 ;(X(I),Y(I)) pointer
ADDI 2,R11 ;Increment inner loop counter
BRD CONT
LSH 2,R8 ;Increment repeat counter for next time
LSH 2,AR7 ;IE=4*IE
LDI BK,IR0 ;N1=N2

* SPECIAL BUTTERFLY FOR W=J
SPCL RPTBD BLK3 ;Setup loop BLK3

LSH –1,IR1,AR4 ;Point to SIN(45)
ADDI @SINTAB,AR4 ;Create cosine index AR4=CO21
LDF *AR2,R7 ;R7=X(I2)

* SPCL LOOP: BLK3
ADDF R7,*AR0,R1 ;R1=X(I)+X(I2)
ADDF *+AR2,*+AR0,R3 ;R3=Y(I)+Y(I2)
SUBF *+AR2,*+AR0,R4 ;R4=Y(I)–Y(I2)
ADDF *AR3,*AR1,R5 ;R5=X(I1)+X(I3)
SUBF R1,R5,R6 ;R6=R5–R1
ADDF R5,R1 ;R1=R1+R5
ADDF *+AR3,*+AR1,R5 ;R5=Y(I1)+Y(I3)
SUBF R5,R3,R0 ;R0=R3–R5
ADDF R5,R3 ;R3=R3+R5
SUBF R7,*AR0,R2 ;R2=X(I)–X(I2)

|| STF R3,*+AR0 ;Y(I)=R3+R5
LDF *AR3,R7 ;R7=X(I3)

|| STF R1,*AR0++(IR0) ;X(I)=R1+R5
SUBF *+AR3,*+AR1,R3 ;R3=Y(I1)–Y(I3)
SUBF R7,*AR1,R1 ;R1=X(I1)–X(I3)

|| STF R6,*+AR1 ;Y(I1)=R5–R1
ADDF R3,R2,R5 ;R5=R2+R3
SUBF R2,R3,R2 ;R2=–R2+R3
SUBF R1,R4,R3 ;R3=R4–R1
ADDF R1,R4 ;R4=R4+R1
SUBF R5,R3,R1 ;R1=R3–R5
MPYF R1,*AR4,R1 ;R1=R1*CO21

|| STF R0,*AR1++(IR0) ;X(I1)=R3–R5
ADDF R5,R3 ;R3=R3+R5
MPYF R3,*AR4,R3 ;R3=R3*CO21

|| STF R1,*+AR2 ;Y(I2)=(R3–R5)*CO21
SUBF R4,R2,R1 ;R1=R2–R4
MPYF R1,*AR4,R1 ;R1=R1*CO21

 Fast Fourier Transforms (FFTs)

6-39 Applications-Oriented Operations

Example 6–14. Complex Radix-4 DIF FFT (Continued)

|| STF R3,*AR2++(IR0) ;X(I2)=(R3+R5)*CO21
ADDF R4,R2 ;R2=R2+R4
MPYF3 R2,*AR4,R2 ;R2=R2*CO21

|| STF R1,*+AR3 ;Y(I3)=–(R4–R2)*CO21
BLK3 LDF *AR2,R7 ;Load next X(I2)
|| STF R2,*AR3++(IR0) ;X(I3)=(R4+R2)*CO21

CMPI R11,BK
BPD INLOP ;Loop back to the inner loop
LDI R11,AR0
ADDI @INPUTP,AR0 ;(X(I),Y(I)) pointer
ADDI 2,R11 ;Increment inner loop counter
LSH 2,R8 ;Increment repeat counter for next time
LSH 2,AR7 ;IE=4*IE
LDI BK,IR0 ;N1=N2

CONT BRD LOOP ;Next FFT stage (delayed)
LSH –2,BK ;N2=N2/4
LSH3 –1,BK,R9
ADDI 2,R9 ;JT=N2/2+2

ENDB:
**
––––––––––––– BIT REVERSAL –––
* This bit–reversal section assumes input and output in Re–Im–Re–Im format *
**

LDI @INPUTP,ar0
CMPI @OUTPUTP,ar0
BEQD INPLACE
LDI @OUTPUTP,ar1 ;ar1=DST_ADDR
LDI @FFTSIZ,ir0 ;ir0=FFT_SIZE
SUBI 2,ir0,rc ;rc=FFT_SIZE–2

RPTBD bitrv1
LDI 2,ir1 ;ir1=2
LDF *+ar0(1),r0 ;read first Im value
NOP LDF *ar0++(ir0)b,r1

|| STF r0,*+ar1(1)
bitrv1 LDF *+ar0(1),r0
|| STF r1,*ar1++(ir1) BUD END

LDF *ar0++(ir0)b,r1
|| STF r0,*+ar1(1)

NOP
STF r1,*ar1INPLACE
RPTBD BITRV2
NOP *++ar1(2)
NOP *ar0++(ir0)b
NOP CMPI ar1,ar0
BGEAT CONT2

Fast Fourier Transforms (FFTs)

 6-40

Example 6–14. Complex Radix-4 DIF FFT (Continued)

LDF *ar1,r0
|| LDF *ar0,r1

STF r0,*ar0
|| STF r1,*ar1

LDF *+ar1(1),r0
|| LDF *+ar0(1),r1

STF r0,*+ar0(1)
|| STF r1,*+ar1(1)
CONT2 NOP *++ar1(2)
BITRV2 NOP *ar0++(ir0)b
END: POP R8 ;Restore the register values and return

POP AR7
POP AR6
POP AR5
POP AR4
POP AR3
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
POP DP
RETS
.end

 Fast Fourier Transforms (FFTs)

6-41 Applications-Oriented Operations

6.5.3 Faster Complex Radix-2 DIT FFT

Example 6–12 and Example 6–14 provide an easy understanding of the FFT
algorithm functions. However, those examples are not optimized for fast ex-
ecution of the FFT. Example 6–15 shows a faster version of a radix-2 DIT FFT
algorithm. This program uses a different twiddle factor table than the previous
examples. The twiddle factors are stored in bit-reversed order and with a table
length of N/2 (N = FFT length) as shown in Example 6–16. For instance, if the
FFT length is 32, the twiddle factor table should be:

Address Coefficient

0 R{WN(0)} = COS(2*PI*0/32) = 1
1 –I{WN(0)} = SIN(2*PI*0/32) = 0
2 R{WN(4)} = COS(2*PI*4/32) = 0.707
3 –I{WN(4)} = SIN(2*PI*4/32) = 0.707

.

.

.
12 R{WN(3)} = COS(2*PI*3/32) = 0.831
13 –I{WN(3)} = SIN(2*PI*3/32) = 0.556
14 R{WN(7)} = COS(2*PI*7/32) = 0.195
15 –I{WN(7)} = SIN(2*PI*7/32) = 0.981

Fast Fourier Transforms (FFTs)

 6-42

Example 6–15. Faster Version Complex Radix-2 DIT FFT

**
*
* FILENAME : CR2DIT.ASM
*
* DESCRIPTION : COMPLEX, RADIX–2 DIT FFT FOR TMS320C40
*
* DATE : 6/29/93
*
* VERSION : 4.0
*
**
* VERSION DATE COMMENTS
* ––––––– –––– ––––––––
* 1.0 7/89 Original version
* RAIMUND MEYER, KARL SCHWARZ
* LEHRSTUHL FUER NACHRICHTENTECHNIK
* UNIVERSITAET ERLANGEN–NUERNBERG
* CAUERSTRASSE 7, D–8520 ERLANGEN, FRG
*
* 2.0 1/91 DANIEL CHEN (TI HOUSTON): C40 porting
* 3.0 7/1/92 ROSEMARIE PIEDRA (TI HOUSTON): made it
* C–callable and implemented changes in the order
* of the operands for some mpyf instructions for
* faster execution when sine table is off–chip
* 4.0 6/29/93 ROSEMARIE PIEDRA (TI Houston): Added support
* for in–place bit reversing.
**
*
* SYNOPSIS: int cr2dit(SOURCE_ADDR,FFT_SIZE, DST_ADDR)
* ar2 r2 r3
*
* float *SOURCE_ADDR ; Points to where data is originated
* ; and operated on.
* int FFT_SIZE ; 64, 128, 256, 512, 1024, ...
*
* float *DST_ADDR ; Points to where FFT results should be
* ; moved
*
**
*
* THE COMPUTATION IS DONE IN–PLACE.
* FOR THIS PROGRAM THE MINIMUM FFT LENGTH IS 32 POINTS BECAUSE OF THE
* SEPARATE STAGES (THIS IS NOT CHECKED INSIDE THE
* FIRST TWO PASSES ARE REALIZED AS A FOUR BUTTERFLY LOOP SINCE THE
* MULTIPLIES ARE TRIVIAL. THE MULTIPLIER IS ONLY USED FOR A LOAD IN
* PARALLEL WITH AN ADDF OR SUBF.
**
* SECTIONS NEEDED IN LINKER COMMAND FILE: .ffttxt : fft code
* .fftdat : fft data
**
*
* THE TWIDDLE FACTORS ARE STORED IN BIT-REVERSED ORDER AND WITH A TABLE LENGTH
* OF N/2 (N = FFTLENGTH). THE SINE TABLE IS PROVIDED IN A SEPARATE FILE
* WITH GLOBAL LABEL _SINE POINTING TO THE BEGINNING OF THE TABLE.
*

 Fast Fourier Transforms (FFTs)

6-43 Applications-Oriented Operations

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

* 2 R{WN(4)} = COS(2*PI*4/32) = 0.707
* 3 –I{WN(4)} = SIN(2*PI*4/32) = 0.707
*
* : :
*
* 12 R{WN(3)} = COS(2*PI*3/32) = 0.831
* 13 –I{WN(3)} = SIN(2*PI*3/32) = 0.556
* 14 R{WN(7)} = COS(2*PI*7/32) = 0.195
* 15 –I{WN(7)} = SIN(2*PI*7/32) = 0.981
*
* WHEN GENERATED FOR A FFT LENGTH OF 1024, THE TABLE IS FOR ALL FFT
* LENGTH LESS OR EQUAL AVAILABLE.
* THE MISSING TWIDDLE FACTORS (WN(),WN(),....) ARE GENERATED BY USING
* THE SYMMETRY WN(N/4+n) = –j*WN(n). THIS CAN BE REALIZED VERY EASY, BY
* CHANGING REAL– AND IMAGINARY PART OF THE TWIDDLE FACTORS AND BY
* NEGATING THE NEW REAL PART.
**
**
*
* +
* AR + j AI ––– AR’ + j AI’
* \ / +
* \ /
* \ /
* / \
* / \
* / \ +
* BR + j BI –––– (COS – j SIN) –––––––––––––––––––––––––– BR’ + j BI’
* –*
* TR = BR * COS + BI * SIN
* TI = BI * COS – BR * SIN
* AR’= AR + TR
* AI’= AI + TI
* BR’= AR – TR
* BI’= AI – TI
*
**
**

.global _cr2dit ; Entry execution point.

.global _SINE ; sine table pointer

.global STARTB,ENDB ; starting/ending point for given
; benchmarks

.sect ”.fftdat”
fg .space 1 ; is FFT_SIZE
fg2 .space 1 ; is FFT_SIZE/2
fg4m2 .space 1 ; is FFT_SIZE/4 – 2
fg8m2 .space 1 ; is FFT_SIZE/8 – 2
sintab .word _SINE ; pointer to sine table
sintp2 .word _SINE+2 ; pointer to sine table +2
inputp2 .space 1 ; pointer to input +2
inputp .space 1 ; pointer to source address
outputp .space 1 ; pointer to dst address

* EXAMPLE: SHOWN FOR N=32, WN(n) = COS(2*PI*n/N) – j*SIN(2*PI*n/N)
*
* ADDRESS COEFFICIENT
* 0 R{WN(0)} = COS(2*PI*0/32) = 1
* 1 –I{WN(0)} = SIN(2*PI*0/32) = 0

Fast Fourier Transforms (FFTs)

 6-44

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

;
; Initialize C Function.
;

.sect ”.ffttxt”
_cr2dit: LDI SP,AR0

PUSH R4
PUSH R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH AR3
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH DP
.if .REGPARM == 0 ; arguments passed in stack
LDI *–AR0(1),AR2 ; src address
LDI *–AR0(2),R2 ; FFT size
LDI *–AR0(3),R3 ; dst address
.endif
LDP fg ; Initialize DP pointer.
STI R2,@fg ; fg = FFT_SIZE
LSH –1,R2 ; R2 = FFT_SIZE/2
STI AR2,@inputp ; inputp = SOURCE_ADDR
ADDI 2,AR2,R0
STI R0,@inputp2 ; inputp2= SOURCE_ADDR + 2
STI R3,@outputp ; output = DST_ADDR
STI R2,@fg2 ; fg2 = nhalb = (FFT_size/2)
LSH –1,R2
SUBI 2,R2,R0
STI R0,@fg4m2 ; fg4m2 = NVIERT–2 : (FFT_SIZE/4)–2
LSH –1,R2
SUBI 2,R2,R0
STI R0,@fg8m2

* ar0 : AR + AI
* ar1 : BR + BI
* ar2 : CR + CI + CR’ + CI’
* ar3 : DR + DI
* ar4 : AR’ + AI’
* ar5 : BR’ + BI’
* ar6 : DR’ + DI’
* ar7 : first twiddle factor = 1

 Fast Fourier Transforms (FFTs)

6-45 Applications-Oriented Operations

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

STARTB:
ldi @fg2,ir0 ; ir0 = n/2 = offset between SOURCE_ADDRs
ldi @sintab,ar7 ; ar7 points to twiddle factor 1
ldi ar2,ar0 ; ar0 points to AR
addi ir0,ar0,ar1 ; ar1 points to BR
addi ir0,ar1,ar2 ; ar2 points to CR
addi ir0,ar2,ar3 ; ar3 points to DR
ldi ar0,ar4 ; ar4 points to AR’
ldi ar1,ar5 ; ar5 points to BR’
ldi ar3,ar6 ; ar6 points to DR’
ldi 2,ir1 ; addressoffset
lsh –1,ir0 ; ir0 = n/4 = number of R4–butterflies
subi 2,ir0,rc

* –––––––––––– FIRST 2 STAGES AS RADIX–4 BUTTERFLY –––––––––––––––––––––––– *
**
fill pipeline

addf *ar2,*ar0,r4 ; r4 = AR + CR
subf *ar2,*ar0++,r5 ; r5 = AR – CR
addf *ar1,*ar3,r6 ; r6 = DR + BR
subf *ar1++,*ar3++,r7 ; r7 = DR – BR
addf r6,r4,r0 ; AR’ = r0 = r4 + r6
mpyf *ar7,*ar3++,r1 ; r1 = DI , BR’ = r3 = r4 – r6

|| subf r6,r4,r3
addf r1,*ar1,r0 ; r0 = BI + DI , AR’ = r0

|| stf r0,*ar4++
subf r1,*ar1++,r1 ; r1 = BI – DI , BR’ = r3

|| stf r3,*ar5++
addf r1,r5,r2 ; CR’ = r2 = r5 + r1
mpyf *ar7,*+ar2,r1 ; r1 = CI , DR’ = r3 = r5 – r1

|| subf r1,r5,r3
rptbd blk1 ; Setup for radix–4 butterfly loop
addf r1,*ar0,r2 ; r2 = AI + CI , CR’ = r2

|| stf r2,*ar2++(ir1)
subf r1,*ar0++,r6 ; r6 = AI – CI , DR’ = r3

|| stf r3,*ar6++
addf r0,r2,r4 ; AI’ = r4 = r2 + r0

Fast Fourier Transforms (FFTs)

 6-46

Example 6–15. Faster Version Complex, Radix-2 DIT FFT (Continued)

* radix–4 butterfly loop
*

mpyf *ar7,*ar2– –,r0 ; r0 = CR , (BI’ = r2 = r2 – r0)
|| subf r0,r2,r2

mpyf *ar7,*ar1++,r1 ; r1 = BR , (CI’ = r3 = r6 + r7)
|| addf r7,r6,r3

addf r0,*ar0,r4 ; r4 = AR + CR , (AI’ = r4)
|| stf r4,*ar4++

subf r0,*ar0++,r5 ; r5 = AR – CR , (BI’ = r2)
|| stf r2,*ar5++

subf r7,r6,r7 ; (DI’ = r7 = r6 – r7)
addf r1,*ar3,r6 ; r6 = DR + BR , (DI’ = r7)

|| stf r7,*ar6++
subf r1,*ar3++,r7 ; r7 = DR – BR , (CI’ = r3)

|| stf r3,*ar2++
addf r6,r4,r0 ; AR’ = r0 = r4 + r6
mpyf *ar7,*ar3++,r1 ; r1 = DI , BR’ = r3 = r4 – r6

|| subf r6,r4,r3
addf r1,*ar1,r0 ; r0 = BI + DI , AR’ = r0

|| stf r0,*ar4++
subf r1,*ar1++,r1 ; r1 = BI – DI , BR’ = r3

|| stf r3,*ar5++
addf r1,r5,r2 ; CR’ = r2 = r5 + r1
mpyf *+ar2,*ar7,r1 ; r1 = CI , DR’ = r3 = r5 – r1

|| subf r1,r5,r3
addf r1,*ar0,r2 ; r2 = AI + CI , CR’ = r2

|| stf r2,*ar2++(ir1)
subf r1,*ar0++,r6 ; r6 = AI – CI , DR’ = r3

|| stf r3,*ar6++
blk1 addf r0,r2,r4 ; AI’ = r4 = r2 + r0
* clear pipeline
*

subf r0,r2,r2 ; BI’ = r2 = r2 – r0
addf r7,r6,r3 ; CI’ = r3 = r6 + r7
stf r4,*ar4 ; AI’ = r4 , BI’ = r2

|| stf r2,*ar5
subf r7,r6,r7 ; DI’ = r7 = r6 – r7
stf r7,*ar6 ; DI’ = r7 , CI’ = r3

|| stf r3,*– –ar2

* –––––––––––– THIRD TO LAST–2 STAGE –––––––––––––––––––––––––––––––––––––– *

 Fast Fourier Transforms (FFTs)

6-47 Applications-Oriented Operations

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

ldi @fg2,ir1
subi 1,ir0,ar5
ldi 1,ar6
ldi @sintab,ar7 ; pointer to twiddle factor
ldi 0,ar4 ; group counter
ldi @inputp,ar0

stufe ldi ar0,ar2 ; upper real butterfly output
addi ir0,ar0,ar3 ; lower real butterfly output
ldi ar3,ar1 ; lower real butterfly input
lsh 1,ar6 ; double group count
lsh –2,ar5 ; half butterfly count
lsh 1,ar5 ; clear LSB
lsh –1,ir0 ; half step from u pper to lower real part
lsh –1,ir1
addi 1,ir1 ; step from old imaginary to new

; real value
ldf *ar1++,r6 ; dummy load, only for address update

|| ldf *ar7,r7 ; r7 = COS
gruppe
* fill pipeline
*
* ar0 = upper real butterfly input
* ar1 = lower real butterfly input
* ar2 = upper real butterfly output
* ar3 = lower real butterfly output
* the imaginary part has to follow

ldf *++ar7,r6 ; r6 = SIN
mpyf *ar1– –,r6,r1 ; r1 = BI * SIN

|| addf *++ar4,r0,r3 ; dummy addf for counter update
mpyf *ar1,r7,r0 ; r0 = BR * COS
ldi ar5,rc
rptbd bfly1 ; Setup for loop bfly1
mpyf *ar7– –,*ar1++,r0 ; r3 = TR = r0 + r1 , r0 = BR * SIN

|| addf r0,r1,r3
mpyf *ar1++,r7,r1 ; r1 = BI * COS , r2 = AR – TR

|| subf r3,*ar0,r2
addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2

|| stf r2,*ar3++
* FIRST BUTTERFLY–TYPE:
*
* TR = BR * COS + BI * SIN
* TI = BR * SIN – BI * COS
* AR’= AR + TR
* AI’= AI – TI
* BR’= AR – TR
* BI’= AI + TI
* loop bfly1

Fast Fourier Transforms (FFTs)

 6-48

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

* switch over to next group
subf r1,r0,r2 ; r2 = TI = r0 – r1
addf r2,*ar0,r3 ; r3 = AI + TI , AR’ = r5

|| stf r5,*ar2++
subf r2,*ar0++(ir1),r4 ; r4 = AI – TI , BI’ = r3

|| stf r3,*ar3++(ir1)
nop *ar1++(ir1) ; address update
mpyf *ar1– –,r7,r1 ; r1 = BI * COS , AI’ = r4

|| stf r4,*ar2++(ir1)
mpyf *ar1,r6,r0 ; r0 = BR * SIN
ldi ar5,rc
rptbd bfly2 ; Setup for loop bfly2
mpyf *ar7++,*ar1++,r0 ; r3 = TR = r1 – r0 , r0 = BR * COS

|| subf r0,r1,r3
mpyf *ar1++,r6,r1 ; r1 = BI * SIN , r2 = AR – TR

|| subf r3,*ar0,r2
addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2

|| stf r2,*ar3++
* SECOND BUTTERFLY–TYPE:
*
* TR = BI * COS – BR * SIN
* TI = BI * SIN + BR * COS
* AR’= AR + TR
* AI’= AI – TI
* BR’= AR – TR
* BI’= AI + TI
* loop bfly2

mpyf *+ar1,r7,r5 ; r5 = BI * COS , (AR’ = r5)
|| stf r5,*ar2++

addf r1,r0,r2 ; (r2 = TI = r0 + r1)
mpyf *ar1,r6,r0 ; r0 = BR * SIN , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++,r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++
subf r0,r5,r3 ; TR = r3 = r5 – r0
mpyf *ar1++,r7,r0 ; r0 = BR * COS , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++,r6,r1 ; r1 = BI * SIN , (AI’ = r4)

|| stf r4,*ar2++
bfly2 addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2
|| stf r2,*ar3++
* clear pipeline

mpyf *+ar1,r6,r5 ; r5 = BI * SIN , (AR’ = r5)
|| stf r5,*ar2++

subf r1,r0,r2 ; (r2 = TI = r0 – r1)
mpyf *ar1,r7,r0 ; r0 = BR * COS , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++,r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++
addf r0,r5,r3 ; r3 = TR = r0 + r5
mpyf *ar1++,r6,r0 ; r0 = BR * SIN , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++,r7,r1 ; r1 = BI * COS , (AI’ = r4)

|| stf r4,*ar2++
bfly1 addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2
|| stf r2,*ar3++

 Fast Fourier Transforms (FFTs)

6-49 Applications-Oriented Operations

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

addf r1,r0,r2 ; r2 = TI = r0 + r1
addf r2,*ar0,r3 ; r3 = AI + TI

|| stf r5,*ar2++ ; AR’ = r5
cmpi ar6,ar4
bned gruppe ; do following 3 instructions
subf r2,*ar0++(ir1),r4 ; r4 = AI – TI , BI’ = r3

|| stf r3,*ar3++(ir1)
ldf *++ar7,r7 ; r7 = COS

|| stf r4,*ar2++(ir1) ; AI’ = r4
nop *ar1++(ir1) ; branch here

* end of this butterflygroup
cmpi 4,ir0 ; jump out after ld(n)–3 stage
bnzaf stufe
ldi @sintab,ar7 ; pointer to twiddle factor
ldi 0,ar4 ; group counter
ldi @inputp,ar0

* –––––––––––– SECOND LAST STAGE –– *

ldi @inputp,ar0
ldi ar0,ar2 ; upper output
addi ir0,ar0,ar1 ; lower input
ldi ar1,ar3 ; lower output
ldi @sintp2,ar7 ; pointer to twiddle faktor
ldi 5,ir0 ; distance between two groups
ldi @fg8m2,rc

* fill pipeline

* 1. butterfly: w^0
addf *ar0,*ar1,r2 ; AR’ = r2 = AR + BR
subf *ar1++,*ar0++,r3 ; BR’ = r3 = AR – BR
addf *ar0,*ar1,r0 ; AI’ = r0 = AI + BI
subf *ar1++,*ar0++,r1 ; BI’ = r1 = AI – BI

* 2. butterfly: w^0

addf *ar0,*ar1,r6 ; AR’ = r6 = AR + BR
subf *ar1++,*ar0++,r7 ; BR’ = r7 = AR – BR
addf *ar0,*ar1,r4 ; AI’ = r4 = AI + BI
subf *ar1++(ir0),*ar0++(ir0),r5 ; BI’ = r5 = AI – BI
stf r2,*ar2++ ; (AR’ = r2)

|| stf r3,*ar3++ ; (BR’ = r3)
stf r0,*ar2++ ; (AI’ = r0)

|| stf r1,*ar3++ ; (BI’ = r1)
stf r6,*ar2++ ; AR’ = r6

|| stf r7,*ar3++ ; BR’ = r7
stf r4,*ar2++(ir0) ; AI’ = r4

|| stf r5,*ar3++(ir0) ; BI’ = r5

Fast Fourier Transforms (FFTs)

 6-50

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

* 3. butterfly: w^M/4
addf *ar0++,*+ar1,r5 ; AR’ = r5 = AR + BI
subf *ar1,*ar0,r4 ; AI’ = r4 = AI – BR
addf *ar1++,*ar0––,r6 ; BI’ = r6 = AI + BR
subf *ar1++,*ar0++,r7 ; BR’ = r7 = AR – BI

* 4. butterfly: w^M/4
addf *+ar1,*++ar0,r3 ; AR’ = r3 = AR + BI
ldf *–ar7,r1 ; r1 = 0 (for inner loop)

|| ldf *ar1++,r0 ; r0 = BR (for inner loop)
rptbd bf2end ; Setup for loop bf2end
subf *ar1++(ir0),*ar0++,r2 ; BR’ = r2 = AR – BI
stf r5,*ar2++ ; (AR’ = r5)

|| stf r7,*ar3++ ; (BR’ = r7)
stf r6,*ar3++ ; (BI’ = r6)

* 5. to M. butterfly:
* loop bf2end

ldf *ar7++,r7 ; r7 = COS , ((AI’ = r4))
|| stf r4,*ar2++

ldf *ar7++,r6 ; r6 = SIN , (BR’ = r2)
|| stf r2,*ar3++

mpyf *+ar1,r6,r5 ; r5 = BI * SIN , (AR’ = r3)
|| stf r3,*ar2++

addf r1,r0,r2 ; (r2 = TI = r0 + r1)
mpyf *ar1,r7,r0 ; r0 = BR * COS , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++(ir0),r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++(ir0)
addf r0,r5,r3 ; r3 = TR = r0 + r5
mpyf *ar1++,r6,r0 ; r0 = BR * SIN , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++,r7,r1 ; r1 = BI * COS , (AI’ = r4)

|| stf r4,*ar2++(ir0)
addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2

|| stf r2,*ar3++
mpyf *+ar1,r6,r5 ; r5 = BI * SIN , (AR’ = r5)

|| stf r5,*ar2++
subf r1,r0,r2 ; (r2 = TI = r0 – r1)
mpyf *ar1,r7,r0 ; r0 = BR * COS , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++,r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++
addf r0,r5,r3 ; r3 = TR = r0 + r5
mpyf *ar1++,r6,r0 ; r0 = BR * SIN , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++(ir0),r7,r1 ; r1 = BI * COS , (AI’ = r4)

|| stf r4,*ar2++
addf *ar0++,r3,r3 ; r3 = AR + TR , BR’ = r2

|| stf r2,*ar3++

 Fast Fourier Transforms (FFTs)

6-51 Applications-Oriented Operations

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

mpyf *+ar1,r7,r5 ; r5 = BI * COS , (AR’ = r3)
|| stf r3,*ar2++

subf r1,r0,r2 ; (r2 = TI = r0 – r1)
mpyf *ar1,r6,r0 ; r0 = BR * SIN , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++(ir0),r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++(ir0)
subf r0,r5,r3 ; r3 = TR = r5 – r0
mpyf *ar1++,r7,r0 ; r0 = BR * COS , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++,r6,r1 ; r1 = BI * SIN , (AI’ = r4)

|| stf r4,*ar2++(ir0)
addf *ar0++,r3,r5 ; r5 = AR + TR , BR’ = r2

|| stf r2,*ar3++
mpyf *+ar1,r7,r5 ; r5 = BI * COS , (AR’ = r5)

|| stf r5,*ar2++
addf r1,r0,r2 ; (r2 = TI = r0 + r1)
mpyf *ar1,r6,r0 ; r0 = BR * SIN , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++,r4 ; (r4 = AI – TI , y(L) = BI’ =

r3)
|| stf r3,*ar3++

subf r0,r5,r3 ; r3 = TR = r5 – r0
mpyf *ar1++,r7,r0 ; r0 = BR * COS , r2 = AR – TR

|| subf r3,*ar0,r2
bf2end mpyf *ar1++(ir0),r6,r1 ; r1 = BI * SIN , r3 = AR + TR
|| addf *ar0++,r3,r3
* clear pipeline

stf r2,*ar3++ ; BR’ = r2 , AI’ = r4
|| stf r4,*ar2++

addf r1,r0,r2 ; r2 = TI = r0 + r1
addf r2,*ar0,r3 ; r3 = AI + TI , AR’ = r3

|| stf r3,*ar2++
subf r2,*ar0,r4 ; r4 = AI – TI , BI’ = r3

|| stf r3,*ar3
stf r4,*ar2 ; AI’ = r4

––––––––––––– LAST STAGE ––

ldi @inputp,ar0
ldi ar0,ar2 ; upper output
ldi @inputp2,ar1
ldi ar1,ar3 ; lower output
ldi @sintp2,ar7 ; pointer to twiddle factors
ldi 3,ir0 ; group offset
ldi @fg4m2,rc

* fill pipeline

Fast Fourier Transforms (FFTs)

 6-52

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

* 1. butterfly: w^0
addf *ar0,*ar1,r6 ; AR’ = r6 = AR + BR
subf *ar1++,*ar0++,r7 ; BR’ = r7 = AR – BR
addf *ar0,*ar1,r4 ; AI’ = r4 = AI + BI
subf *ar1++(ir0),*ar0++(ir0),r5; BI’ = r5 = AI – BI

* 2. butterfly: w^M/4
addf *+ar1,*ar0,r3 ; AR’ = r3 = AR + BI
ldf *–ar7,r1 ; r1 = 0 (for inner loop)

|| ldf *ar1++,r0 ; r0 = BR (for inner loop)
rptbd bflend ; Setup for loop bflend
subf *ar1++(ir0),*ar0++,r2 ; BR’ = r2 = AR – BI
stf r6,*ar2++ ; (AR’ = r6)

|| stf r7,*ar3++ ; (BR’ = r7)
stf r5,*ar3++(ir0) ; (BI’ = r5)

* 3. to M. butterfly:
* loop bflend

ldf *ar7++,r7 ; r7 = COS , ((AI’ = r4))
|| stf r4,*ar2++(ir0)

ldf *ar7++,r6 ; r6 = SIN , (BR’ = r2)
|| stf r2,*ar3++

mpyf *+ar1,r6,r5 ; r5 = BI * SIN, (AR’ = r3)
|| stf r3,*ar2++

addf r1,r0,r2 ; (r2 = TI = r0 + r1)
mpyf *ar1,r7,r0 ; r0 = BR * COS , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++(ir0),r4 ; (r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++(ir0)
addf r0,r5,r3 ; r3 = TR = r0 + r5
mpyf *ar1++,r6,r0 ; r0 = BR * SIN , r2 = AR – TR

|| subf r3,*ar0,r2
mpyf *ar1++(ir0),r7,r1 ; r1 = BI * COS , (AI’ = r4)

|| stf r4,*ar2++(ir0)
addf *ar0++,r3,r3 ; r3 = AR + TR , BR’ = r2

|| stf r2,*ar3++
mpyf *+ar1,r7,r5 ;r5 = BI * COS , (AR’ = r3)

|| stf r3,*ar2++
subf r1,r0,r2 ;(r2 = TI = r0 – r1)
mpyf *ar1,r6,r0 ;r0 = BR * SIN , (r3 = AI + TI)

|| addf r2,*ar0,r3
subf r2,*ar0++(ir0),r4 ;(r4 = AI – TI , BI’ = r3)

|| stf r3,*ar3++(ir0)
subf r0,r5,r3 ;r3 = TR = r0 – r5
mpyf *ar1++,r7,r0 ;r0 = BR * COS , r2 = AR – TR

|| subf r3,*ar0,r2
bflend mpyf *ar1++(ir0),r6,r1 ;r1 = BI * SIN , r3 = AR + TR
|| addf *ar0++,r3,r3
* clear pipeline

 Fast Fourier Transforms (FFTs)

6-53 Applications-Oriented Operations

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

stf r2,*ar3++ ;BR’ = r2 , (AI’ = r4)
|| stf r4,*ar2++(ir0)

addf r1,r0,r2 ;r2 = TI = r0 + r1
addf r2,*ar0,r3 ;r3 = AI + TI , AR’ = r3

|| stf r3,*ar2++
subf r2,*ar0,r4 ;r4 = AI – TI , BI’ = r3

|| stf r3,*ar3
stf r4,*ar2 ;AI’ = r4

––––––––––––– END OF FFT ––

ENDB:

––––––––––––– BITREVERSAL –––
* This bit–reversal section assume input and output in Re–Im–Re–Im format *

ldi @inputp,ar0
cmpi @outputp,ar0
beqd INPLACE
ldi @outputp,ar1 ;ar1=DSR_ADDR
ldi @fg,ir0 ;ir0=FFT_SIZE
subi 2,ir0,rc ;rc=FFT_SIZE–2
rptbd bitrv1
ldi 2,ir1 ;ir1=2
ldf *+ar0(1),r0 ;read first Im value
nop
ldf *ar0++(ir0)b,r1

|| stf r0,*+ar1(1)
bitrv1 ldf *+ar0(1),r0
|| stf r1,*ar1++(ir1)

bud end
ldf *ar0++(ir0)b,r1

|| stf r0,*+ar1(1)
nop
stf r1,*ar1

;
; Return to C environment.
;
INPLACE

rptbd BITRV2
nop *++ar1(2)
nop *ar0++(ir0)b
nop

Fast Fourier Transforms (FFTs)

 6-54

Example 6–15. Faster Version Complex Radix-2 DIT FFT (Continued)

cmpi ar1,ar0
bgeat CONT
ldf *ar1,r0

|| ldf *ar0,r1
stf r0,*ar0

|| stf r1,*ar1
ldf *+ar1(1),r0

|| ldf *+ar0(1),r1
stf r0,*+ar0(1)

|| stf r1,*+ar1(1)
CONT nop *++ar1(2)
BITRV2 nop *ar0++(ir0)b
; Return to C environment
end: POP DP

POP AR7
POP AR6
POP AR5
POP AR4
POP AR3
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
RETS
.end

 Fast Fourier Transforms (FFTs)

6-55 Applications-Oriented Operations

Example 6–16. Bit-Reversed Sine Table

**
*
* SINTAB.ASM : Bit–reversed sine table for a 64–point
* File to be linked with the source code for a
* 64–point radix–2 DIT FFT
* Sine table length = FFT size / 2
*
**

.global _SINE

.sect ”.sintab”
_SINE

.float 1.000000

.float 0.000000

.float 0.707107

.float 0.707107

.float 0.923880

.float 0.382683

.float 0.382683

.float 0.923880

.float 0.980785

.float 0.195090

.float 0.555570

.float 0.831470

.float 0.831470

.float 0.555570

.float 0.195090

.float 0.980785

.float 0.995185

.float 0.098017

.float 0.634393

.float 0.773010

.float 0.881921

.float 0.471397

.float 0.290285

.float 0.956940

.float 0.956940

.float 0.290285

.float 0.471397

.float 0.881921

.float 0.773010

.float 0.634393

.float 0.098017

.float 0.995185

.end

Fast Fourier Transforms (FFTs)

 6-56

6.5.4 Real Radix-2 FFT

Most often, the data to be transformed is a sequence of real numbers. In this
case, the FFT demonstrates certain symmetries that permit the reduction of
the computational load even further. Example 6–17 and Example 6–18 show
the generic implementation of a real-valued radix-2 FFT (forward and inverse).
For such an FFT, the total storage required for a length-N transform is only N
locations; in a complex FFT, 2N are necessary. Recovery of the rest of the
points is based on the symmetry conditions. A companion table
(Example 6–13) should be used to provide the twiddle factors.

Example 6–17. Real Forward Radix-2 FFT

**
*
* FILENAME : FFFT_RL.ASM
* DESCRIPTION : REAL, RADIX–2 DIF FFT FOR TMS320C40
* DATE : 1/19/93
* VERSION : 3.0
*
**
*
* VERSION DATE COMMENTS
* ––––––– –––– ––––––––
* 1.0 7/18/91 ALEX TESSAROLO(TI Australia):
* Original Release (C30 version)
* 2.0 7/23/92 ALEX TESSAROLO(TI Australia):
* Most Stages Modified (C30 version).
* Minimum FFT Size increased from 32 to 64.
* Faster in place bit reversing algorithm.
* Program size increased by about 100 words.
* One extra data word required.
* 3.0 1/19/93 ROSEMARIE PIEDRA(TI Houston):
* C40 porting started from C30 forward real FFT
* version 2.0. Expanded calling conventions to the use
* of registers for parameter passing.
*

*
* SYNOPSIS:
*
* int ffft_rl (FFT_SIZE,LOG_SIZE,SOURCE_ADDR,DEST_ADDR,SINE_TABLE,BIT_REVERSE)
* ar2 r2 r3 rc rs re
*
* int FFT_SIZE ; 64, 128, 256, 512, 1024, ...
* int LOG_SIZE ; 6, 7, 8, 9, 10, ...
* float *SOURCE_ADDR ; Points to location of source data.
* float *DEST_ADDR ; Points to where data will be
* ; operated on and stored.
* float *SINE_TABLE ; Points to the SIN/COS table.
* int BIT_REVERSE ; = 0, Bit Reversing is disabled.
* ; <> 0, Bit Reversing is enabled.
*
* NOTE: 1) If SOURCE_ADDR = DEST_ADDR, then in place bit reversing
* is performed, if enabled (more processor intensive).
* 2) FFT_SIZE must be >= 64 (this is not checked).

 Fast Fourier Transforms (FFTs)

6-57 Applications-Oriented Operations

Example 6–17. Real Forward Radix-2 FFT (Continued)

*

*
* DESCRIPTION:
*
* Generic function to do a radix–2 FFT computation on the C40.
* The input data array is FFT_SIZE–long with only real data. The output is
* stored in the same locations (in–place) with real and imaginary
* points R and I as follows:
*
* DEST_ADDR[0] –> R(0)
* R(1)
* R(2)
* R(3)
* .
* .
* R(FFT_SIZE/2)
* I(FFT_SIZE/2 – 1)
* .
* .
* I(2)
* DEST_ADDR[FFT_SIZE – 1] –> I(1)
*
* The program is based on the FORTRAN program in the paper by Sorensen et al.,
* June 1987 issue of Trans. on ASSP.
*
* Bit reversal is optionally implemented at the beginning of the function.
*
* The sine/cosine table for the twiddle factors is expected to be supplied in
* the following format:
*
* SINE_TABLE[0] –> sin(0*2*pi/FFT_SIZE)
* sin(1*2*pi/FFT_SIZE)
* .
* .
* sin((FFT_SIZE/2–2)*2*pi/FFT_SIZE)
* SINE_TABLE[FFT_SIZE/2–1] –> sin((FFT_SIZE/2–1)*2*pi/FFT_SIZE)
*
* NOTE: The table is the first half period of a sine wave.
*

*
* NOTES: 1. Calling C program can be compiled with large or small model. Both
* calling conventions methods: stack or register for parameter
* passing are supported.
*
* 2. Sections needed in linker command file: .ffttxt : fft code
* .fftdat : fft data
*
* 3. The DEST_ADDR must be aligned such that the first LOG_SIZE bits
* are zero (this is not checked by the program)
*
* Caution: DP initialized only once in the program. Be wary with interrupt
* service routines. Make sure interrupt service routines save the DP
* pointer.
*

Fast Fourier Transforms (FFTs)

 6-58

Example 6–17. Real Forward Radix-2 FFT (Continued)

*
* REGISTERS USED: R0, R1, R2, R3, R4, R5, R6, R7
* AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
* IR0, IR1
* RC, RS, RE
* DP
*
*
* MEMORY REQUIREMENTS: Program = 405 Words (approximately)
* Data = 7 Words
* Stack = 12 Words
*

*
* BENCHMARKS: Assumptions – Program in RAM0
* – Reserved data in RAM0
* – Stack on Local/Global Bus RAM
* – Sine/Cosine tables in RAM0
* – Processing and data destination in RAM1.
* – Local/Global Bus RAM, 0 wait state.
*
* FFT Size Bit Reversing Data Source Cycles(C40)
* –––––––– ––––––––––––– ––––––––––– –––––––––––
* 1024 OFF RAM1 19404 approx.
*
* Note: This number does not include the C callable overheads.
* This benchmark is the number of cycles between labels STARTB and ENDB.
*
* NOTE:
* – If .ffttxt is located off–chip, enable cache for faster performance
*

*
FP .set AR3

.global _ffft_rl ; Entry execution point.

.global STARTB,ENDB
FFT_SIZE: .usect ”.fftdat”,1 ; Reserve memory for arguments.
LOG_SIZE: .usect ”.fftdat”,1
SOURCE_ADDR: .usect ”.fftdat”,1
DEST_ADDR: .usect ”.fftdat”,1
SINE_TABLE: .usect ”.fftdat”,1
BIT_REVERSE: .usect ”.fftdat”,1
SEPARATION: .usect ”.fftdat”,1
*
* Initialize C Function
*

.sect ”.ffttxt”
_ffft_rl: PUSH FP ; Preserve C environment.

 Fast Fourier Transforms (FFTs)

6-59 Applications-Oriented Operations

Example 6–17. Real Forward Radix-2 FFT (Continued)

LDI SP,FP
PUSH R4
PUSH R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH DP
LDP FFT_SIZE ; Initialize DP pointer.
.if .REGPARM==0 ; arguments passed in stack
LDA *–FP(2),AR2
LDI *–FP(3),R2
LDI *–FP(4),R3
LDI *–FP(5),RC
LDI *–FP(6),RS
LDI *–FP(7),RE
.endif
STI AR2,@FFT_SIZE
STI R2,@LOG_SIZE
STI R3,@SOURCE_ADDR
STI RC,@DEST_ADDR
STI RS,@SINE_TABLE
STI RE,@BIT_REVERSE

;
; Check Bit Reversing Mode (on or off).
;
; BIT_REVERSING = 0, then OFF (no bit reversing).
; BIT_REVERSING <> 0, Then ON.
;

LDI @BIT_REVERSE,R0
BZ MOVE_DATA

;
; Check Bit Reversing Type.
;
; If SourceAddr = DestAddr, Then In Place Bit Reversing.
; If SourceAddr <> DestAddr, Then Standard Bit Reversing.
;

LDI @SOURCE_ADDR,R0
CMPI @DEST_ADDR,R0
BEQ IN_PLACE

;
; Bit reversing Type 1 (From Source to Destination).
;
; NOTE: abs(SOURCE_ADDR – DEST_ADDR) must be > FFT_SIZE, this is not checked.
;

Fast Fourier Transforms (FFTs)

 6-60

Example 6–17. Real Forward Radix-2 FFT (Continued)

LDI @FFT_SIZE,R0
SUBI 2,R0
LDA @FFT_SIZE,IR0
LSH –1,IR0 ;IRO = Half FFT size.
LDA @SOURCE_ADDR,AR0
LDA @DEST_ADDR,AR1
LDF *AR0++,R1
RPTS R0

 LDF *AR0++,R1
|| STF R1,*AR1++(IR0)B

STF R1,*AR1++(IR0)B
BR STARTB

;
; In Place Bit Reversing.
; Bit Reversing On Even Locations, 1st Half Only.
IN_PLACE: LDA @FFT_SIZE,IR0

LSH –2,IR0 ;IRO = Quarter FFT size.
LDA 2,IR1
LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 3,RC
LDA @DEST_ADDR,AR0
LDA AR0,AR1
LDA AR0,AR2
NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
RPTBD BITRV1
CMPI AR1,AR0 ;Xchange Locations only if AR0<AR1.
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV1: LDFGT *AR1++(IR0)B,R0
STF R0,*AR0
STF R1,*AR2

;
;Perform Bit Reversing, Odd Locations, 2nd Half Only
;

 Fast Fourier Transforms (FFTs)

6-61 Applications-Oriented Operations

Example 6–17. Real Forward Radix-2 FFT (Continued)

LDI @FFT_SIZE,RC
LSH –1,RC
LDA @DEST_ADDR,AR0
ADDI RC,AR0
ADDI 1,AR0
LDA AR0,AR1
LDA AR0,AR2
LSH –1,RC
SUBI 3,RC
NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
RPTBD BITRV2
CMPI AR1,AR0 ;Xchange Locations only if AR0<AR1
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV2: LDFGT *AR1++(IR0)B,R0
STF R0,*AR0
STF R1,*AR2

;Perform Bit Reversing, Odd Locations, 1st Half Only
LDI @FFT_SIZE,RC
LSH –1,RC
LDA RC,IR0
LDA @DEST_ADDR,AR0
LDA AR0,AR1
ADDI 1,AR0
ADDI IR0,AR1
LSH –1,RC
LDA RC,IR0
SUBI 2,RC
RPTBD BITRV3
NOP ;Note: could be instruction
LDF *AR0,R0
LDF *AR1,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR1++(IR0)B
BITRV3: LDF *AR1,R1
|| STF R1,*–AR0(IR1)

STF R0,*AR1
|| STF R1,*AR0

BR STARTB

Fast Fourier Transforms (FFTs)

 6-62

Example 6–17. Real Forward Radix-2 FFT (Continued)

;
; Check Data Source Locations.
;
; If SourceAddr = DestAddr, Then do nothing.
; If SourceAddr <> DestAddr, Then move data.
;
MOVE_DATA: LDI @SOURCE_ADDR,R0

CMPI @DEST_ADDR,R0
BEQ STARTB
LDI @FFT_SIZE,R0
SUBI 2,R0
LDA @SOURCE_ADDR,AR0
LDA @DEST_ADDR,AR1
LDF *AR0++,R1
RPTS R0
LDF *AR0++,R1

|| STF R1,*AR1++
STF R1,*AR1

;
; Perform first and second FFT loops.
;
; | AR1 –> |__I1__| 0 <– [X(I1) + X(I2)] + [X(I3) + X(I4)]
; | AR2 –> |__I2__| 1 <– [X(I1) – X(I2)]
; | AR3 –> |__I3__| 2 <– [X(I1) + X(I2)] – [X(I3) + X(I4)]
; |_ AR4 –> |__I4__| 3 <– –[X(I3) – X(I4)]
; AR1 –> |______| 4
; | . |
; .
; .
; \|/
;
STARTB: LDA @DEST_ADDR,AR1

LDA AR1,AR2
LDA AR1,AR3
LDA AR1,AR4
ADDI 1,AR2
ADDI 2,AR3
ADDI 3,AR4
LDA 4,IR0
LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 2,RC
LDF *AR2,R0 ; R0 = X(I2)

|| LDF *AR3,R1 ; R1 = X(I3)
ADDF3 R1,*AR4,R4 ; R4 = X(I3) + X(I4)
SUBF3 R1,*AR4++(IR0),R5 ; R5 = –[X(I3) – X(I4)] ––+
SUBF3 R0,*AR1,R6 ; R6 = X(I1) – X(I2) ––+ |

 Fast Fourier Transforms (FFTs)

6-63 Applications-Oriented Operations

Example 6–17. Real Forward Radix-2 FFT (Continued)

; | |
RPTBD LOOP1_2 ; | |
ADDF3 R0,*AR1++(IR0),R7 ; R7 = X(I1) + X(I2) | |
ADDF3 R7,R4,R2 ; R2 = R7 + R4 –––––+ | |
SUBF3 R4,R7,R3 ; R3 = R7 – R4 ––+ | | |

; | | | |
LDF *+AR2(IR0),R0 ; | | | |

|| LDF *+AR3(IR0),R1 ; | | | |
ADDF3 R1,*AR4,R4 ; | | | |

|| STF R3,*AR3++(IR0) ; X(I3) <––––––––+ | | |
SUBF3 R1,*AR4++(IR0),R5 ; | | |

|| STF R5,*–AR4(IR0) ; X(I4) <–––––––––––|––|––+
SUBF3 R0,*AR1,R6 ; | |

|| STF R6,*AR2++(IR0) ; X(I2) <–––––––––––|––+
ADDF3 R0,*AR1++(IR0),R7 ; |

|| STF R2,*–AR1(IR0) ; X(I1) <–––––––––––+
ADDF3 R7,R4,R2

LOOP1_2: SUBF3 R4,R7,R3
STF R3,*AR3

|| STF R5,*–AR4(IR0)
STF R6,*AR2

|| STF R2,*–AR1(IR0)
;
; Perform Third FFT Loop.
;
; Part A:
; _ ______
; | AR1 –> |__I1__| 0 <– X(I1) + X(I3)
; | |______| 1
; | |__I2__| 2
; | |______| 3
; | AR2 –> |__I3__| 4 <– X(I1) – X(I3)
; | |______| 5
; | AR3 –> |__I4__| 6 <– –X(I4)
; |_ |______| 7
; AR1 –> |______| 8
; |______| 9
; | . |
; .
; .
; \|/

LDA @DEST_ADDR,AR1
LDA AR1,AR2
LDA AR1,AR3
ADDI 4,AR2
ADDI 6,AR3
LDA 8,IR0
LDI @FFT_SIZE,RC
LSH –3,RC
SUBI 2,RC
RPTBD LOOP3_A
SUBF3 *AR2,*AR1,R1
ADDF3 *AR2,*AR1,R2
NEGF *AR3,R3
LDF *+AR2(IR0),R0 ; R0 = X(I3)

Fast Fourier Transforms (FFTs)

 6-64

Example 6–17. Real Forward Radix-2 FFT (Continued)

|| STF R2,*AR1++(IR0)
SUBF3 R0,*AR1,R1 ; R1 = X(I1) – X(I3) –––––+

|| STF R1,*AR2++(IR0) ; |
ADDF3 R0,*AR1,R2 ; R2 = X(I1) + X(I3) ––+ |

|| STF R3,*AR3++(IR0) ; | |
LOOP3_A: NEGF *AR3,R3 ; R3 = –X(I4) ––+ | |

; | | |
STF R2,*AR1 ; X(I1) <–––––––|–––––––+ |

|| STF R1,*AR2 ; X(I3) <–––––––|––––––––––+
STF R3,*AR3 ; X(I4) <–––––––+

;
; Part B:
; _ ______
; | |______| 0
; | AR0 –> |__I1__| 1 <– X(I1) + [X(I3)*COS + X(I4)*COS]
; | |______| 2
; | AR1 –> |__I2__| 3 <– X(I1) – [X(I3)*COS + X(I4)*COS]
; | |______| 4
; | AR2 –> |__I3__| 5 <– –X(I2) – [X(I3)*COS – X(I4)*COS]
; | |______| 6
; |_AR3 –> |__I4__| 7 <– X(I2) – [X(I3)*COS – X(I4)*COS]
; |______| 8
; AR0 –> |______| 9 NOTE: COS(2*pi/8) = SIN(2*pi/8)
; | . |
; .
; .
; \|/
;

LDI @FFT_SIZE,RC
LSH –3,RC
LDA RC,IR1
SUBI 3,RC
LDA 8,IR0
LDA @DEST_ADDR,AR0
LDA AR0,AR1
LDA AR0,AR2
LDA AR0,AR3
ADDI 1,AR0
ADDI 3,AR1
ADDI 5,AR2
ADDI 7,AR3
LDA @SINE_TABLE,AR7 ; Initialize table pointers.
LDF *++AR7(IR1),R7 ; R7 = COS(2*pi/8)

; *AR7 = COS(2*pi/8)
MPYF3 *AR7,*AR2,R0 ; R0 = X(I3)*COS
MPYF3 *AR3,R7,R1 ; R5 = X(I4)*COS
ADDF3 R0,R1,R2 ; R2 = [X(I3)*COS + X(I4)*COS]
MPYF3 *AR7,*+AR2(IR0),R0

 Fast Fourier Transforms (FFTs)

6-65 Applications-Oriented Operations

Example 6–17. Real Forward Radix-2 FFT (Continued)

|| SUBF3 R0,R1,R3 ; R3 = –[X(I3)*COS – X(I4)*COS]
SUBF3 *AR1,R3,R4 ; R4 = –X(I2) + R3 ––+

; |
RPTBD LOOP3_B ; |
ADDF3 *AR1,R3,R4 ; R4 = X(I2) + R3 ––|––+

|| STF R4,*AR2++(IR0) ; X(I3) <––––––––––––+ |
SUBF3 R2,*AR0,R4 ; R4 = X(I1) – R2 ––+ |

|| STF R4,*AR3++(IR0) ; X(I4) <––––––––––––|––+
ADDF3 *AR0,R2,R4 ; R4 = X(I1) + R2 ––|––+

|| STF R4,*AR1++(IR0) ; X(I2) <––––––––––––+ |
MPYF3 *AR3,R7,R1 ; |

|| STF R4,*AR0++(IR0) ; X(I1) <–––––––––––––––+
ADDF3 R0,R1,R2
MPYF3 *AR7,*+AR2(IR0),R0

|| SUBF3 R0,R1,R3
SUBF3 *AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2++(IR0)
SUBF3 R2,*AR0,R4

|| STF R4,*AR3++(IR0)
LOOP3_B: ADDF3 *AR0,R2,R4
|| STF R4,*AR1++(IR0)

MPYF3 *AR3,R7,R1
|| STF R4,*AR0++(IR0)

ADDF3 R0,R1,R2
SUBF3 R0,R1,R3
SUBF3 *AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
STF R4,*AR0

;
; Perform Fourth FFT Loop.
;
; Part A:
; _ ______
; | AR1–> |__I1__| 0 <– X(I1) + X(I3)
; | |______| 1
; | |______| 2
; | |______| 3
; | |__I2__| 4
; | |______| 5
; | |______| 6
; | |______| 7
; | AR2–> |__I3__| 8 <– X(I1) – X(I3)
; | |______| 9
; | |______| 10
; | |______| 11
; | AR3–> |__I4__| 12 <– –X(I4)
; | |______| 13
; | |______| 14
; |_ |______| 15

Fast Fourier Transforms (FFTs)

 6-66

Example 6–17. Real Forward Radix-2 FFT (Continued)

; AR1–> |__I5__| 16
; |______| 17
; | . |
; .
; .
; \|/

LDA @DEST_ADDR,AR1
LDA AR1,AR2
LDA AR1,AR3
ADDI 8,AR2
ADDI 12,AR3
LDA 16,IR0
LDI @FFT_SIZE,RC
LSH –4,RC
SUBI 2,RC
RPTBD LOOP4_A
SUBF3 *AR2,*AR1,R1
ADDF3 *AR2,*AR1,R2
NEGF *AR3,R3
LDF *+AR2(IR0),R0 ;R0 = X(I3)

|| STF R2,*AR1++(IR0)
SUBF3 R0,*AR1,R1 ;R1 = X(I1) – X(I3) –––––+

|| STF R1,*AR2++(IR0) ; |
ADDF3 R0,*AR1,R2 ;R2 = X(I1) + X(I3) ––+ |

|| STF R3,*AR3++(IR0) ; | |
LOOP4_A: NEGF *AR3,R3 ;R3 = –X(I4) ––+ | |
 ; | | |

STF R2,*AR1 ;X(I1) <–––––––|–––––––+ |
|| STF R1,*AR2 ;X(I3) <–––––––|––––––––––+

STF R3,*AR3 ;X(I4) <–––––––+
;
; Part B:
; _ ___________
; | |___________| 0
; | AR0 –> |__I1_(3rd)_| 1 <– X(I1) + [X(I3)*COS + X(I4)*SIN]
; | |__I1_(2nd)_| 2 .
; | |__I1_(1st)_| 3 .
; | |___________| 4
; | |__I2_(1st)_| 5 .
; | |__I2_(2nd)_| 6 .
; | AR1 –> |__I2_(3rd)_| 7 <– X(I1) – [X(I3)*COS + X(I4)*SIN]
; | |___________| 8
; | AR2 –> |__I3_(3rd)_| 9 <– –X(I2) – [X(I3)*SIN – X(I4)*COS]
; | |__I3_(2nd)_| 10 .
; | AR4 –> |__I3_(1st)_| 11 .
; | |___________| 12
; | |__I4_(1st)_| 13 .
; | |__I4_(2nd)_| 14 .
; |_ AR3 –> |__I4_(3rd)_| 15 <– X(I2) – [X(I3)*SIN – X(I4)*COS]
; |___________| 16
; AR0 –> |___________| 17
; | . |
; .
; .
; \|/

 Fast Fourier Transforms (FFTs)

6-67 Applications-Oriented Operations

Example 6–17. Real Forward Radix-2 FFT (Continued)

LDI @FFT_SIZE,RC
LSH –4,RC
LDA RC,IR1
LDA 2,IR0
SUBI 3,RC
LDA @DEST_ADDR,AR0
LDA AR0,AR1
LDA AR0,AR2
LDA AR0,AR3
LDA AR0,AR4
ADDI 1,AR0
ADDI 7,AR1
ADDI 9,AR2
ADDI 15,AR3
ADDI 11,AR4
LDA @SINE_TABLE,AR7
LDF *++AR7(IR1),R7 ;R7 = SIN(1*[2*pi/16])

;*AR7 = COS(3*[2*pi/16])
LDA AR7,AR6
LDF *++AR6(IR1),R6 ;R6 = SIN(2*[2*pi/16])

;*AR6 = COS(2*[2*pi/16])
LDA AR6,AR5
LDF *++AR5(IR1),R5 ;R5 = SIN(3*[2*pi/16])

;*AR5 = COS(1*[2*pi/16])
LDA 16,IR1
MPYF3 *AR7,*AR4,R0 ;R0 = X(I3)*COS(3)
MPYF3 *++AR2(IR0),R5,R4 ;R4 = X(I3)*SIN(3)
MPYF3 *––AR3(IR0),R5,R1 ;R1 = X(I4)*SIN(3)
MPYF3 *AR7,*AR3,R0 ;R0 = X(I4)*COS(3)

|| ADDF3 R0,R1,R2 ;R2 = [X(I3)*COS + X(I4)*SIN]
MPYF3 *AR6,*–AR4,R0

|| SUBF3 R4,R0,R3 ;R3 = –[X(I3)*SIN – X(I4)*COS]
SUBF3 *––AR1(IR0),R3,R4 ;R4 = –X(I2) + R3 ––+
ADDF3 *AR1,R3,R4 ;R4 = X(I2) + R3 ––|––+

|| STF R4,*AR2–– ;X(I3) <––––––––––––+ |
SUBF3 R2,*++AR0(IR0),R4 ;R4 = X(I1) – R2 ––+ |

|| STF R4,*AR3 ;X(I4) <––––––––––––|––+
ADDF3 *AR0,R2,R4 ;R4 = X(I1) + R2 ––|–––+

|| STF R4,*AR1 ;X(I2) <––––––––––––+ |
 ; |

MPYF3 *++AR3,R6,R1 ; |
|| STF R4,*AR0 ;X(I1) <––––––––––––––––+

ADDF3 R0,R1,R2
MPYF3 *AR5,*–AR4(IR0),R0

|| SUBF3 R0,R1,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
MPYF3 *––AR2,R7,R4

|| STF R4,*AR0
MPYF3 *++AR3,R7,R1
MPYF3 *AR5,*AR3,R0

Fast Fourier Transforms (FFTs)

 6-68

Example 6–17. Real Forward Radix-2 FFT (Continued)

|| ADDF3 R0,R1,R2
MPYF3 *AR7,*++AR4(IR1),R0

|| SUBF3 R4,R0,R3
SUBF3 *++AR1,R3,R4
RPTBD LOOP4_B
ADDF3 *AR1,R3,R4

|| STF R4,*AR2++(IR1)
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3++(IR1)
ADDF3 *AR0,R2,R4

|| STF R4,*AR1++(IR1)
MPYF3 *++AR2(IR0),R5,R4

|| STF R4,*AR0++(IR1)
MPYF3 *––AR3(IR0),R5,R1
MPYF3 *AR7,*AR3,R0

|| ADDF3 R0,R1,R2
MPYF3 *AR6,*–AR4,R0

|| SUBF3 R4,R0,R3
SUBF3 *––AR1(IR0),R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2––
SUBF3 R2,*++AR0(IR0),R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
MPYF3 *++AR3,R6,R1

|| STF R4,*AR0
ADDF3 R0,R1,R2
MPYF3 *AR5,*–AR4(IR0),R0

|| SUBF3 R0,R1,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
MPYF3 *––AR2,R7,R4

|| STF R4,*AR0
MPYF3 *++AR3,R7,R1
MPYF3 *AR5,*AR3,R0

|| ADDF3 R0,R1,R2
MPYF3 *AR7,*++AR4(IR1),R0

|| SUBF3 R4,R0,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2++(IR1)
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3++(IR1)
LOOP4_B: ADDF3 *AR0,R2,R4
|| STF R4,*AR1++(IR1)

MPYF3 *++AR2(IR0),R5,R4
|| STF R4,*AR0++(IR1)

MPYF3 *––AR3(IR0),R5,R1
MPYF3 *AR7,*AR3,R0

|| ADDF3 R0,R1,R2
MPYF3 *AR6,*–AR4,R0

 Fast Fourier Transforms (FFTs)

6-69 Applications-Oriented Operations

Example 6–17. Real Forward Radix-2 FFT (Continued)

|| SUBF3 R4,R0,R3
SUBF3 *––AR1(IR0),R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2––
SUBF3 R2,*++AR0(IR0),R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
MPYF3 *++AR3,R6,R1

|| STF R4,*AR0
ADDF3 R0,R1,R2
MPYF3 *AR5,*–AR4(IR0),R0

|| SUBF3 R0,R1,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
MPYF3 *––AR2,R7,R4

|| STF R4,*AR0
MPYF3 *++AR3,R7,R1
MPYF3 *AR5,*AR3,R0

|| ADDF3 R0,R1,R2
SUBF3 R4,R0,R3
SUBF3 *++AR1,R3,R4
ADDF3 *AR1,R3,R4

|| STF R4,*AR2
SUBF3 R2,*––AR0,R4

|| STF R4,*AR3
ADDF3 *AR0,R2,R4

|| STF R4,*AR1
STF R4,*AR0

;
; Perform Remaining FFT loops (loop 4 onwards).
;
; LOOP
; 1st 2nd
; _ ______________ \/ \/
; | |____X’(I1)____| 0 0 <– X’(I1) + X’(I3)
; | AR1–> |__X(I1)_(1st)_| 1 1 <– X(I1) + [X(I3)*COS + X(I4)*SIN]
; | |__X(I1)_(2nd)_| 2 2 .
; | |__x(I1)_(3rd)_| 3 3 .
; | | . |
; | .
; | A –> |______________|
; | |____X’(I2)____| 8 16
; | B –> | . |
; | .
; | |______________|
; | |__X(I2)_(3rd)_| 13 29 .
; | |__X(I2)_(2nd)_| 14 30 .
; | AR2–> |__X(I2)_(1st)_| 15 31 <– X(I1) – [X(I3)*COS + X(I4)*SIN]
; | |____X’(I3)____| 16 32 <– X’(I1) – X’(I3)
; | AR3–> |__X(I3)_(1st)_| 17 33 <– –X(I2) – [X(I3)*SIN – X(I4)*COS]

Fast Fourier Transforms (FFTs)

 6-70

Example 6–17. Real Forward Radix-2 FFT (Continued)

; | |__X(I3)_(2nd)_| 18 34 .
; | |__X(I3)_(3rd)_| 19 35 .
; | | . |
; | .
; | C –> |______________|
; | |____X’(I4)____| 24 48 <– –X’(I4)
; | D –> | . |
; | .
; | |______________|
; | |__X(I4)_(3rd)_| 29 61 .
; | |__X(I4)_(2nd)_| 30 62 .
; |_ AR4–> |__X(I4)_(1st)_| 31 63 <– X(I2) – [X(I3)*SIN – X(I4)*COS]
; |______________| 32 64
; AR1–> |______________| 33 65
; | . |
; .
; .
; \|/
;

LDA @FFT_SIZE,IR0
LSH –2,IR0
STI IR0,@SEPARATION
LSH –2,IR0
LDI 5,R5
LDI 3,R7
LDI 16,R6
LDA @DEST_ADDR,AR5
LDA @DEST_ADDR,AR1
LSH –1,IR0
LSH 1,R7

LOOP: ADDI 1,R7
LSH 1,R6
LDA AR1,AR4
ADDI R7,AR1 ;AR1 points at A.
LDA AR1,AR2
ADDI 2,AR2 ;AR2 points at B.
ADDI R6,AR4
SUBI R7,AR4 ;AR4 points at D.
LDA AR4,AR3
SUBI 2,AR3 ;AR3 points at C.
LDA @SINE_TABLE,AR0 ;AR0 points at SIN/COS table.
LDA R7,IR1
LDI R7,RC

INLOP: ADDF3 *––AR1(IR1),*++AR2(IR1),R0 ;R0 = X’(I1) + X’(I3) ––+
SUBF3 *– –AR3(IR1),*AR1++,R1 ;R1 = X’(I1) – X’(I3) –+|
NEGF *––AR4,R2 ;R2 = –X’(I4) ––+ ||

|| STF R0,*–AR1 ;X’(I1) <–––––––|––––––|+
STF R1,*AR2–– ;X’(I3) <–––––––|––––––+

|| STF R2,*AR4++(IR1) ;X’(I4) <–––––––+
LDA @SEPARATION,IR1 ;IR1=SEPARATION BETWEEN SIN/COS

 TABLES
SUBI 3,RC

 Fast Fourier Transforms (FFTs)

6-71 Applications-Oriented Operations

Example 6–17. Real Forward Radix-2 FFT (Continued)

MPYF3 *++AR0(IR0),*AR4,R4 ;R4 = X(I4)*SIN
MPYF3 *AR0,*++AR3,R1 ;R1 = X(I3)*SIN
MPYF3 *++AR0(IR1),*AR4,R0 ;R0 = X(I4)*COS
MPYF3 *AR0,*AR3,R0 ;R0 = X(I3)*COS

|| SUBF3 R1,R0,R3 ;R3 = –[X(I3)*SIN – X(I4)*COS]
MPYF3 *++AR0(IR0),*–AR4,R0

|| ADDF3 R0,R4,R2 ;R2 = X(I3)*COS + X(I4)*SIN
SUBF3 *AR2,R3,R4 ;R4 = R3 – X(I2) ––*

 ; |
RPTBD IN_BLK ; |
ADDF3 *AR2,R3,R4 ;R4 = R3 + X(I2) ––|––*

|| STF R4,*AR3++ ;X(I3) <–––––––––––* |
SUBF3 R2,*AR1,R4 ;R4 = X(I1) – R2 ––* |

|| STF R4,*AR4– – ;X(I4) <–––––––––––|––*
ADDF3 *AR1,R2,R4 ;R4 = X(I1) + R2 ––|––*

|| STF R4,*AR2–– ;X(I2) <–––––––––––* |
LDF *–AR0(IR1),R3 ; |
MPYF3 *AR4,R3,R4 ; |

|| STF R4,*AR1++ ;X(I1) <––––––––––––––*
MPYF3 *AR3,R3,R1
MPYF3 *AR0,*AR3,R0

|| SUBF3 R1,R0,R3
MPYF3 *++AR0(IR0),*–AR4,R0

|| ADDF3 R0,R4,R2
SUBF3 *AR2,R3,R4
ADDF3 *AR2,R3,R4

|| STF R4,*AR3++
SUBF3 R2,*AR1,R4

|| STF R4,*AR4– –
IN_BLK: ADDF3 *AR1,R2,R4
|| STF R4,*AR2– –

LDF *–AR0(IR1),R3
MPYF3 *AR4,R3,R4

|| STF R4,*AR1++
MPYF3 *AR3,R3,R1
MPYF3 *AR0,*AR3,R0

|| SUBF3 R1,R0,R3
LDA R6,IR1
ADDF3 R0,R4,R2
SUBF3 *AR2,R3,R4
ADDF3 *AR2,R3,R4

|| STF R4,*AR3++(IR1)
SUBF3 R2,*AR1,R4

|| STF R4,*AR4++(IR1)
ADDF3 *AR1,R2,R4

|| STF R4,*AR2++(IR1)
STF R4,*AR1++(IR1)
SUBI3 AR5,AR1,R0
CMPI @FFT_SIZE,R0
BLTD INLOP ;LOOP BACK TO THE INNER LOOP
LDA @SINE_TABLE,AR0 ;AR0 POINTS TO SIN/COS TABLE

Fast Fourier Transforms (FFTs)

 6-72

Example 6–17. Real Forward Radix-2 FFT (Continued)

LDA R7,IR1
LDI R7,RC
ADDI 1,R5
CMPI @LOG_SIZE,R5
BLED LOOP
LDA @DEST_ADDR,AR1
LSH –1,IR0
LSH 1,R7

;
; Return to C environment.
;
ENDB: POP DP ;Restore C environment variables.

POP AR7
POP AR6
POP AR5
POP AR4
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
POP FP
RETS
.end

*
* No more.
*

 Fast Fourier Transforms (FFTs)

6-73 Applications-Oriented Operations

Example 6–18. Real Inverse Radix-2 FFT

*
* FILENAME : IFFT_RL.ASM
* DESCRIPTION : INVERSE FFT FOR TMS320C40
* DATE : 1/19/93
* VERSION : 2.0
*

*
* VERSION DATE COMMENTS
* ––––––– –––– ––––––––
* 1.0 2/18/92 DANIEL MAZZOCCO(TI Houston):
* Original Release (C30 version)
* Started from forward real FFT routine written by Alex
* Tessarolo, rev 2.0 .
* 2.0 1/19/93 ROSEMARIE PIEDRA(TI Houston): C40 porting started from
* C30 inverse real FFT version 1.0 (C30). Expanded calling
* conventions to registers for parameter passing.
*

*
* SYNOPSIS:
*
* int ifft_rl(FFT_SIZE,LOG_SIZE,SOURCE_ADDR,DEST_ADDR,SINE_TABLE,BIT_REVERSE);
* ar2 r2 r3 rc rs re
*
* int FFT_SIZE ; 64, 128, 256, 512, 1024, ...
* int LOG_SIZE ; 6, 7, 8, 9, 10, ...
* float *SOURCE_ADDR ; Points to where data is originated
* ; and operated on.
* float *DEST_ADDR ; Points to where data will be stored.
* float *SINE_TABLE ; Points to the SIN/COS table.
* int BIT_REVERSE ; = 0, Bit Reversing is disabled.
* ; <> 0, Bit Reversing is enabled.
*
* NOTE: 1) If SOURCE_ADDR = DEST_ADDR, then in place bit reversing is
* performed, if enabled (more processor intensive).
* 2) FFT_SIZE must be >= 64 (this is not checked).
*

*
* DESCRIPTION:
*
* Generic function to do an inverse radix–2 FFT computation on the C40.
* The input data array is FFT_SIZE–long with real and imaginary points R and
* I as follows:

Fast Fourier Transforms (FFTs)

 6-74

Example 6–18. Real Inverse Radix-2 FFT (Continued)

*
* SOURCE_ADDR[0] –> R(0)
* R(1)
* R(2)
* R(3)
* .
* .
* R(FFT_SIZE/2)
* I(FFT_SIZE/2 – 1)
* .
* .
* I(2)
* SOURCE_ADDR[FFT_SIZE – 1] –> I(1)
* The output data array will contain only real values. Bit reversal is
* optionally implemented at the end of the function.
*
* The sine/cosine table for the twiddle factors is expected to be supplied in
* the following format:
*
* SINE_TABLE[0] –> sin(0*2*pi/FFT_SIZE)
* sin(1*2*pi/FFT_SIZE)
* .
* .
* sin((FFT_SIZE/2–2)*2*pi/FFT_SIZE)
* SINE_TABLE[FFT_SIZE/2–1] –> sin((FFT_SIZE/2–1)*2*pi/FFT_SIZE)
*
* NOTE: The table is the first half period of a sine wave.
*

*
* NOTE: 1.Calling C program can be compiled using either large or small model.
* Both calling conventions methods: stack or register for parameter
* passing are supported.
*
* 2. Sections needed in linker command file: .ffttxt : fft code
* .fftdat : fft data
*
* 3.The SOURCE_ADDR must be aligned such that the first LOG_SIZE bits
* are zero (this is not checked by the program).
*
* CAUTION: DP initialized only once in the program. Be wary with interrupt
* service routines.Ensure interrupt service routines save DP pointer.
*

*
* REGISTERS USED: R0, R1, R2, R3, R4, R5, R6, R7
* AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
* IR0, IR1
* RC, RS, RE
* DP
*
* MEMORY REQUIREMENTS: Program = 322 Words (approximately)
* Data = 7 Words

 Fast Fourier Transforms (FFTs)

6-75 Applications-Oriented Operations

Example 6–18. Real Inverse Radix-2 FFT (Continued)

* Stack = 12 Words
*

*
* BENCHMARKS: Assumptions – Program in RAM0
* – Reserved data in RAM0
* – Stack on Local/Global Bus RAM
* – Sine/Cosine tables in RAM0
* – Processing and data destination in RAM1.
* – Local/Global Bus RAM, 0 wait state.
*
* FFT Size Bit Reversing Data Source Cycles(C30)
* –––––––– ––––––––––––– ––––––––––– –––––––––––
* 1024 OFF RAM1 25120 approx.
*
* Note: This number does not include the C callable overheads.
* This benchmark is the number of cycles between labels STARTB and ENDB
*
* NOTE: If .ffttxt is located in external SRAM, enable cache for faster
* performance
*

FP .set AR3
.global ifft_rl ;Entry execution point.
.global STARTB,ENDB

FFT_SIZE: .usect ”.ifftdat”,1 ;Reserve memory for arguments.
LOG_SIZE: .usect ”.ifftdat”,1
SOURCE_ADDR: .usect ”.ifftdat”,1
DEST_ADDR: .usect ”.ifftdat”,1
SINE_TABLE: .usect ”.ifftdat”,1
BIT_REVERSE: .usect ”.ifftdat”,1
SEPARATION: .usect ”.ifftdat”,1

;
; Initialize C Function.
;

.sect ”.iffttxt”
_ifft_rl: PUSH FP ;Preserve C environment.

LDI SP,FP
PUSH R4
PUSH R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH DP
LDP FFT_SIZE ;Initialize DP pointer.
.if .REGPARM == 0 ;arguments passed in stack

Fast Fourier Transforms (FFTs)

 6-76

Example 6–18. Real Inverse Radix-2 FFT (Continued)

LDA *–FP(2),AR2
LDI *–FP(3),R2
LDI *–FP(4),R3
LDI *–FP(5),RC
LDI *–FP(6),RS
LDI *–FP(7),RE
.endif
STI AR2,@FFT_SIZE
STI R2,@LOG_SIZE
STI R3,@SOURCE_ADDR
STI RC,@DEST_ADDR
STI RS,@SINE_TABLE
STI RE,@BIT_REVERSE

;
; Perform Last FFT loops first (loop 2 onwards).
;
; LOOP
; 1st 2nd
; _ ______________ \/ \/
; | |____X’(I1)____| 0 0 <– X’(I1) + X’(I3)
; | AR1–> |__X(I1)_(1st)_| 1 1 <– X(I1) + X(I2)
; | |__X(I1)_(2nd)_| 2 2 .
; | |__x(I1)_(3rd)_| 3 3 .
; | | . |
; | .
; | A –> |______________|
; | |____X’(I2)____| 8 16 <– X’(I2) * 2
; | B –> | . |
; | .
; | |______________|
; | |__X(I2)_(3rd)_| 13 29 .
; | |__X(I2)_(2nd)_| 14 30 .
; | AR2–> |__X(I2)_(1st)_| 15 31 <– X(I4) – X(I3)
; | |____X’(I3)____| 16 32 <– X’(I1) – X’(I3)
; | AR3–> |__X(I3)_(1st)_| 17 33 <–
[X(I1)–X(I2)]*COS–[X(I3)+X(I4)]*SIN
; | |__X(I3)_(2nd)_| 18 34 .
; | |__X(I3)_(3rd)_| 19 35 .
; | | . |
; | .
; | C –> |______________|
; | |____X’(I4)____| 24 48 <– –X’(I4) * 2
; | D –> | . |
; | .
; | |______________|
; | |__X(I4)_(3rd)_| 29 61 .
; | |__X(I4)_(2nd)_| 30 62 .
; |_ AR4–> |__X(I4)_(1st)_| 31 63 <–
[X(I1)–X(I2)]*SIN+[X(I3)+X(I4)]*COS
; |______________| 32 64
; AR1–> |______________| 33 65
; | . |
; .
; .
; \|/

 Fast Fourier Transforms (FFTs)

6-77 Applications-Oriented Operations

Example 6–18. Real Inverse Radix-2 FFT (Continued)

STARTB: LDA 1,IR0 ;step between two consecutive sines
LDI 4,R5 ;stage number from 4 to M.
LDI @FFT_SIZE,R7
LSH –2,R7 ;R7 is F FT_SIZE/4–1 (ie 15 for 64

;pts)
SUBI 1,R7 ;and will be used to point at A & D.
LDI @FFT_SIZE,R6 ;R6 will be used to point at D.
LSH 1,R6
LDA @SOURCE_ADDR,AR5
LDA @SOURCE_ADDR,AR1

LOOP: LSH –1,R6 ;R6 is FFT_SIZE at the 1st loop
LDA AR1,AR4
ADDI R7,AR1 ;AR1 points at A.
LDA AR1,AR2
ADDI 2,AR2 ;AR2 points at B.
ADDI R6,AR4
SUBI R7,AR4 ;AR4 points at D.
LDA AR4,AR3
SUBI 2,AR3 ;AR3 points at C.
LDA R7,IR1
LDI R7,RC

INLOP: ADDF3 *––AR1(IR1),*– –AR3(IR1),R0; R0 = X’(I1) + X’(I3) –––+
SUBF3 *AR3,*AR1,R1 ; R1 = X’(I1) – X’(I3) –+ |
LDF *––AR4,R2 ; | |

|| STF R0,*AR1++ ; X’(I1) <––––––––––––––|–+
MPYF –2.0,R2 ; R2 = –2*X’(I4) ––+ |
LDF *– –AR2,R3 ; | |

|| STF R1,*AR3++ ; X’(I3) <–––––––––|––––+
MPYF 2.0,R3 ; R3 = 2*X’(I2) –, |
STF R3,*AR2++(IR1) ; X’(I2) <–––––––’ |

|| STF R2,*AR4++(IR1) ; X’(I4) <–––––––––+
LDA @FFT_SIZE,IR1 ; I R1=SEPARATION BETWEEN SIN/COS TBLS
LDA @SINE_TABLE,AR0 ; AR0 points at SIN/COS table
LSH –2,IR1
SUBI 3,RC
SUBF3 *AR2,*AR1,R3 ; R3 = X(I1)–X(I2)
ADDF3 *AR1,*AR2,R2 ; R2 = X(I1)+X(I2) –––+
MPYF3 R3,*++AR0(IR0),R1 ; R1 = R3*SIN |
LDF *AR4,R4 ; R4 = X(I4) |
MPYF3 R3,*++AR0(IR1),R0 ; R0 = R3*COS |

|| SUBF3 *AR3,R4,R3 ; R3 = X(I4)–X(I3) ––|––+
ADDF3 R4,*AR3,R2 ; R2 = X(I3)+X(I4) | |

|| STF R2,*AR1++ ; X(I1) <–––––––––––––+ |
MPYF3 R2,*AR0––(IR1),R4 ; R4 = R2*COS |

|| STF R3,*AR2–– ; X(I2) <––––––––––––––––+
RPTBD IN_BLK
ADDF3 R4,R1,R3 ; R3 = R3*SIN + R2*COS –––––+
MPYF3 R2,*AR0,R1 ; R1 = R2*SIN |

|| STF R3,*AR4– – ; X(I4) <–––––––––––––––––––+
SUBF3 R1,R0,R4 ; R4 = R3*COS – R2*SIN
SUBF3 *AR2,*AR1,R3 ; R3 = X(I1)–X(I2)
ADDF3 *AR1,*AR2,R2 ; R2 = X(I1)+X(I2) –––+
MPYF3 R3,*++AR0(IR0),R1 ; R1 = R3*SIN |

|| STF R4,*AR3++ ; X(I3) |
LDF *AR4,R4 ; R4 = X(I4) |
MPYF3 R3,*++AR0(IR1),R0 ; R0 = R3*COS |

Fast Fourier Transforms (FFTs)

 6-78

Example 6–18. Real Inverse Radix-2 FFT (Continued)

|| SUBF3 *AR3,R4,R3 ; R3 = X(I4)–X(I3) ––|––+
ADDF3 R4,*AR3,R2 ; R2 = X(I3)+X(I4) | |

|| STF R2,*AR1++ ; X(I1) <–––––––––––––+ |
MPYF3 R2,*AR0– –(IR1),R4 ; R4 = R2*COS |

|| STF R3,*AR2– – ; X(I2) <––––––––––––––––+
ADDF3 R4,R1,R3 ; R3 = R3*SIN + R2*COS –––––+
MPYF3 R2,*AR0,R1 ; R1 = R2*SIN |

|| STF R3,*AR4– – ; X(I4) <–––––––––––––––––––+
IN_BLK: SUBF3 R1,R0,R4 ; R4 = R3*COS – R2*SIN

SUBF3 *AR2,*AR1,R3 ; R3 = X(I1)–X(I2)
ADDF3 *AR1,*AR2,R2 ; R2 = X(I1)+X(I2) –––+
MPYF3 R3,*++AR0(IR0),R1 ; R1 = R3*SIN |

|| STF R4,*AR3++ ; X(I3) |
LDF *AR4,R4 ; R4 = X(I4) |
MPYF3 R3,*++AR0(IR1),R0 ; R0 = R3*COS |

|| SUBF3 *AR3,R4,R3 ; R3 = X(I4)–X(I3) ––|––+
ADDF3 R4,*AR3,R2 ; R2 = X(I3)+X(I4) | |

|| STF R2,*AR1 ; X(I1) <–––––––––––––+ |
MPYF3 R2,*AR0– –(IR1),R4 ; R4 = R2*COS |

|| STF R3,*AR2 ; X(I2) <––––––––––––––––+
LDA R6,IR1 ; Get prepared for the next
ADDF3 R4,R1,R3 ; R3 = R3*SIN + R2*COS –––––+
MPYF3 R2,*AR0,R1 ; R1 = R2*SIN |

|| STF R3,*AR4++(IR1) ; X(I4) <–––––––––––––––––––+
SUBF3 R1,R0,R4 ; R4 = R3*COS – R2*SIN
NEGF *AR1++(IR1),R2 ; DUMMY

|| STF R4,*AR3++(IR1) ; X(I3) |
SUBI3 AR5,AR1,R0
CMPI @FFT_SIZE,R0
BLTD INLOP ; LOOP BACK TO THE INNER LOOP
NOP *AR2++(IR1) ; DUMMY
LDA R7,IR1
LDI R7,RC
ADDI 1,R5
CMPI @LOG_SIZE,R5 ; next stage if any left
BLED LOOP
LDA @SOURCE_ADDR,AR1
LSH 1,IR0 ; double step in sine table
LSH –1,R7

;
; Perform Third FFT loop .
;
;

 Fast Fourier Transforms (FFTs)

6-79 Applications-Oriented Operations

Example 6–18. Real Inverse Radix-2 FFT (Continued)

; Part A:
; _ ______
; | AR1–> |__I1__| 0 <– X(I1) + X(I3)
; | |______| 1
; | AR2 |__I2__| 2 <– 2 * X(I2)
; | |______| 3
; | AR3–> |__I3__| 4 <– X(I1) – X(I3)
; | |______| 5
; | AR4–> |__I4__| 6 <– –2 * X(I4)
; |_ |______| 7
; AR1–> |______| 8
; |______| 9
; | . |
; .
; .
; \|/

LDA @SOURCE_ADDR,AR1
LDA AR1,AR2
LDA AR1,AR3
LDA AR1,AR4
ADDI 2,AR2
ADDI 4,AR3
LDI @FFT_SIZE,RC
LSH –3,RC
SUBI 1,RC
RPTBD LOOP3_A
ADDI 6,AR4
LDA 8,IR0
LDA @SINE_TABLE,AR0 ; AR0 points at SIN/COS table
LDF *AR3,R3
ADDF3 R3,*AR1,R0 ; R0 = X’(I1) + X’(I3) –––+
SUBF3 R3,*AR1,R1 ; R1 = X’(I1) – X’(I3) –+ |
LDF *AR4,R2 ; | |

|| STF R0,*AR1++(IR0) ; X’(I1) <––––––––––––––|–+
MPYF –2.0,R2 ; R2 = –2*X’(I4) ––+ |
LDF *AR2,R3 ; | |

|| STF R1,*AR3++(IR0) ; X’(I3) <–––––––––|––––+
MPYF 2.0,R3 ; R3 = 2*X’(I2) –, |

LOOP3_A: STF R3,*AR2++(IR0) ; X’(I2) <–––––––’ |
|| STF R2,*AR4++(IR0) ; X’(I4) <–––––––––+
;
; Part B:
; _ ______
; | |______| 0
; | AR1–> |__I1__| 1 <– X(I1) + X(I2)
; | |______| 2
; | AR2–> |__I2__| 3 <– X(I4) – X(I3)
; | |______| 4
; | AR3–> |__I3__| 5 <– [X(I1)–X(I2)]*COS–[X(I3)+X(I4)]*SIN
; | |______| 6
; |_AR4 –> |__I4__| 7 <– [X(I1)–X(I2)]*SIN+[X(I3)+X(I4)]*COS
; |______| 8
; AR1–> |______| 9 NOTE: COS(2*pi/8) = SIN(2*pi/8)

Fast Fourier Transforms (FFTs)

 6-80

Example 6–18. Real Inverse Radix-2 FFT (Continued)

; | . |
; .
; .
; \|/
; LDA @SOURCE_ADDR,AR1

LDA AR1,AR2
LDA AR1,AR3
LDA AR1,AR4
ADDI 1,AR1
ADDI 3,AR2
ADDI 5,AR3
ADDI 7,AR4
LDA @SINE_TABLE,AR7 ; AR7 points at SIN/COS table
LDI @FFT_SIZE,RC
LSH –3,RC
LDA RC,IR1
SUBI 2,RC
LDF *AR2,R6 ; R6 = X(I2)
LDF *AR3,R0 ; R0 = X(I3)
ADDF3 R6,*AR1,R5 ; R5 = X(I1)+X(I2) –––––––––+
SUBF3 R6,*AR1,R4 ; R4 = X(I1)–X(I2) |
SUBF3 R0,R4,R3 ; R3 = X(I1)–X(I2)–X(I3) |
ADDF3 R0,R4,R2 ; R2 = X(I1)–X(I2)+X(I3) |
SUBF3 R0,*AR4,R1 ; R1 = X(I4)–X(I3) –––––––––|–+

|| STF R5,*AR1++(IR0) ; X(I1) <–––––––––––––––––––+ |
; |

RPTBD LOOP3_B ; |
ADDF3 R2,*AR4,R5 ; R5 = X(I1)–X(I2)+X(I3)+X(I4)|

|| STF R1,*AR2++(IR0) ; X(I2) <–––––––––––––––––––––+
MPYF3 R5,*++AR7(IR1),R1 ; R1 = R5*SIN ––––––––––––––+

|| SUBF3 *AR4,R3,R2 ; R2 = X(I1)–X(I2)–X(I3)–X(I4) |
MPYF3 R2,*AR7,R0 ; R0 = R2*SIN –––+ |

|| STF R1,*AR4++(IR0) ; X(I4) <–––––––––––|––––––––––+
 ; |

LDF *AR2,R6 ; R6 = X(I2) |
|| STF R0,*AR3++(IR0) ; X(I3) <–––––––––––+

ADDF3 R6,*AR1,R5 ; R5 = X(I1)+X(I2) –––––––––+
LDF *AR3,R0 ; R0 = X(I3) |
SUBF3 R6,*AR1,R4 ; R4 = X(I1)–X(I2) |
SUBF3 R0,R4,R3 ; R3 = X(I1)–X(I2)–X(I3) |
ADDF3 R0,R4,R2 ; R2 = X(I1)–X(I2)+X(I3) |
SUBF3 R0,*AR4,R1 ; R1 = X(I4)–X(I3) –––––––––|–+

|| STF R5,*AR1++(IR0) ; X(I1) <–––––––––––––––––––+ |
ADDF3 R2,*AR4,R5 ; R5 = X(I1)–X(I2)+X(I3)+X(I4)|

|| STF R1,*AR2++(IR0) ; X(I2) <–––––––––––––––––––––+
MPYF3 R5,*AR7,R1 ; R1 = R5*SIN <–––––––––––––––+

|| SUBF3 *AR4,R3,R2 ; R2 = X(I1)–X(I2)–X(I3)–X(I4) |
LOOP3_B: MPYF3 R2,*AR7,R0 ; R0 = R2*SIN |
|| STF R1,*AR4++(IR0) ; X(I4) <––––––––––––––––––––––+

STF R0,*AR3 ;X(I3)

 Fast Fourier Transforms (FFTs)

6-81 Applications-Oriented Operations

Example 6–18. Real Inverse Radix-2 FFT (Continued)

;
; Perform first and second FFT loops.
; _ ______
; | AR1 –> |__I1__| 0 <– X(I1) + X(I3) + 2*X(I2)
; | AR2 –> |__I2__| 1 <– X(I1) + X(I3) – 2*X(I2)
; | AR3 –> |__I3__| 2 <– X(I1) – X(I3) – 2*X(I4)
; |_ AR4 –> |__I4__| 3 <– X(I1) – X(I3) + 2*X(I4)
; AR1 –> |______| 4
; | . |
; .
; .
; \|/
; LDA @SOURCE_ADDR,AR1

LDA AR1,AR2
LDA AR1,AR3
LDA AR1,AR4
ADDI 1,AR2
ADDI 2,AR3
ADDI 3,AR4
LDA 4,IR0
LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 2,RC
LDF *AR4,R6 ; R6 = X(I4)
LDF *AR2,R7 ; R7 = X(I2)

|| LDF *AR1,R1 ; R1 = X(I1)
MPYF 2.0,R6 ; R6 = 2 * X(I4)
MPYF 2.0,R7 ; R7 = 2 * X(I2)
SUBF3 R6,*AR3,R5 ; R5 = X(I3) – 2*X(I4)
SUBF3 R5,R1,R4 ; R4 = X(I1)–X(I3)+2X(I4) ––+
SUBF3 R7,*AR3,R5 ; R5 = X(I3) – 2*X(I2) |

|| STF R4,*AR4++(IR0) ; X(I4) <––––––––––––––––––+
ADDF3 R5,R1,R3 ; R3 = X(I1)+X(I3)–2X(I2) ––+
ADDF3 R6,*AR3,R4 ; R4 = X(I3) + 2*X(I4) |

|| STF R3,*AR2++(IR0) ; X(I2) <––––––––––––––––––+
; |

RPTBD LOOP1_2 ; |
SUBF3 R4,R1,R4 ; R4 = X(I1)–X(I3)–2X(I4) ––+
ADDF3 R7,*AR3,R0 ; R0 = X(I3) + 2*X(I2) |

|| STF R4,*AR3++(IR0) ; X(I3) <––––––––––––––––––+
ADDF3 R0,R1,R0 ; R0 = X(I1)+X(I3)+2X(I2) ––+

; |
LDF *AR4,R6 ; R6 = X(I4) |

|| STF R0,*AR1++(IR0) ; X(I1) <––––––––––––––––––+
MPYF 2.0,R6 ; R6 = 2 * X(I4)
LDF *AR2,R7 ; R7 = X(I2)

|| LDF *AR1,R1 ; R1 = X(I1)
MPYF 2.0,R7 ; R7 = 2 * X(I2)
SUBF3 R6,*AR3,R5 ; R5 = X(I3) – 2*X(I4)
SUBF3 R5,R1,R4 ; R4 = X(I1)–X(I3)+2X(I4) ––+
SUBF3 R7,*AR3,R5 ; R5 = X(I3) – 2*X(I2) |

|| STF R4,*AR4++(IR0) ; X(I4) <––––––––––––––––––+
ADDF3 R5,R1,R3 ; R3 = X(I1)+X(I3)–2X(I2) ––+
ADDF3 R6,*AR3,R4 ; R4 = X(I3) + 2*X(I4) |

Fast Fourier Transforms (FFTs)

 6-82

Example 6–18. Real Inverse Radix-2 FFT (Continued)

|| STF R3,*AR2++(IR0) ; X(I2) <––––––––––––––––––+
SUBF3 R4,R1,R4 ; R4 = X(I1)–X(I3)–2X(I4) ––+
ADDF3 R7,*AR3,R0 ; R0 = X(I3) + 2*X(I2) |

|| STF R4,*AR3++(IR0) ; X(I3) <––––––––––––––––––+
LOOP1_2: ADDF3 R0,R1,R0 ; R0 = X(I1)+X(I3)+2X(I2) ––+

; |
STF R0,*AR1 ; LAST X(I1) <––––––––––––––+

;
; Check Bit Reversing Mode (on or off)
;
; BIT_REVERSING = 0, then OFF (no bit reversing)
; BIT_REVERSING <> 0, Then ON
;
ENDB: LDI @BIT_REVERSE,R0

BZ MOVE_DATA
;
; Check Bit Reversing Type.
;
; If SourceAddr = DestAddr, Then In Place Bit Reversing
; If SourceAddr <> DestAddr, Then Standard Bit Reversing
;

LDI @SOURCE_ADDR,R0
CMPI @DEST_ADDR,R0
BEQ IN_PLACE

;
; Bit reversing Type 1 (From Source to Destination).
;
; NOTE: abs(SOURCE_ADDR – DEST_ADDR) must be > FFT_SIZE, this is not checked.
;

LDI @FFT_SIZE,R0
SUBI 2,R0
LDA @FFT_SIZE,IR0
LSH –1,IR0 ; IRO = Half FFT size.
LDA @SOURCE_ADDR,AR0
LDA @DEST_ADDR,AR1
LDF *AR0++,R1
RPTS R0

 LDF *AR0++,R1
|| STF R1,*AR1++(IR0)B

STF R1,*AR1++(IR0)B
BR DIVISION;

; In Place Bit Reversing.
;
; Bit Reversing On Even Locations, 1st Half Only.
IN_PLACE: LDA @FFT_SIZE,IR0

 Fast Fourier Transforms (FFTs)

6-83 Applications-Oriented Operations

Example 6–18. Real Inverse Radix-2 FFT (Continued)

LSH –2,IR0 ; IRO = Quarter FFT size.
LDA 2,IR1
LDI @FFT_SIZE,RC
LSH –2,RC
SUBI 3,RC
LDA @DEST_ADDR,AR0
LDA AR0,AR1
LDA AR0,AR2
NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
RPTBD BITRV1
CMPI AR1,AR0 ; Xchange Locations only if AR0<AR1.
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV1: LDFGT *AR1++(IR0)B,R0
STF R0,*AR0
STF R1,*AR2

;Perform Bit Reversing Odd Locations, 2nd Half Only
LDI @FFT_SIZE,RC
LSH –1,RC
LDA @DEST_ADDR,AR0
ADDI RC,AR0
ADDI 1,AR0
LDA AR0,AR1
LDA AR0,AR2
LSH –1,RC
SUBI 3,RC
NOP *AR1++(IR0)B
NOP *AR2++(IR0)B
LDF *++AR0(IR1),R0
LDF *AR1,R1
RPTBD BITRV2
CMPI AR1,AR0 ; Xchange Locations only if AR0<AR1.
LDFGT R0,R1
LDFGT *AR1++(IR0)B,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR0
LDF *AR1,R1

|| STF R1,*AR2++(IR0)B
CMPI AR1,AR0
LDFGT R0,R1

BITRV2: LDFGT *AR1++(IR0)B,R0
STF R0,*AR0 ; STF R1,*AR2 later

Fast Fourier Transforms (FFTs)

 6-84

Example 6–18. Real Inverse Radix-2 FFT (Continued)

; Perform Bit Reversing On Odd Locations, 1st Half Only.
LDI @FFT_SIZE,RC
LSH –1,RC
LDA RC,IR0
LDA @DEST_ADDR,AR0
LDA AR0,AR1
ADDI 1,AR0
ADDI IR0,AR1
LSH –1,RC
LDA RC,IR0
SUBI 2,RC
RPTBD BITRV3
STF R1,*AR2
LDF *AR0,R0
LDF *AR1,R1
LDF *++AR0(IR1),R0

|| STF R0,*AR1++(IR0)B
BITRV3: LDF *AR1,R1
|| STF R1,*–AR0(IR1)

STF R0,*AR1
STF R1,*AR0
BR DIVISION

;
; Check Data Source Locations.
;
; If SourceAddr = DestAddr, Then do nothing.
; If SourceAddr <> DestAddr, Then move data.
;
MOVE_DATA: LDI @SOURCE_ADDR,R0

CMPI @DEST_ADDR,R0
BEQ DIVISION
LDI @FFT_SIZE,R0
SUBI 2,R0
LDA @SOURCE_ADDR,AR0
LDA @DEST_ADDR,AR1
LDF *AR0++,R1
RPTS R0
LDF *AR0++,R1

|| STF R1,*AR1++
STF R1,*AR1

DIVISION: LDA 2,IR0
LDI @FFT_SIZE,R0
FLOAT R0 ; exp = LOG_SIZE
PUSHF R0 ; 32 MSB’S saved
POP R0
NEGI R0 ; Neg exponent
PUSH R0
POPF R0 ; R0 = 1/FFT_SIZE
LDA @DEST_ADDR,AR1
LDI @FFT_SIZE,RC
LSH –1,RC
SUBI 2,RC
RPTBD LAST_LOOP
LDA @DEST_ADDR,AR2
NOP *AR2++

 Fast Fourier Transforms (FFTs)

6-85 Applications-Oriented Operations

Example 6–18. Real Inverse Radix-2 FFT (Continued)

MPYF3 R0,*AR1,R1 ; 1st location
MPYF3 R0,*AR2,R2 ; 2nd,4th,6th,... location

|| STF R1,*AR1++(IR0)
LAST_LOOP:MPYF3 R0,*AR1,R1 ; 3rd,5th,7th,... location
|| STF R2,*AR2++(IR0)

MPYF3 R0,*AR2,R2 ; last location
|| STF R1,*AR1

STF R2,*AR2
; Return to C environment

POP DP ; Restore C environment variables.
POP AR7
POP AR6
POP AR5
POP AR4
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
POP FP
RETS
.end

*
* No more.
*

’C4x Benchmarks

 6-86

6.6 ’C4x Benchmarks

Table 6–1 provides benchmarks for common DSP operations. Table 6–2 sum-
marizes the FFT execution time required for FFT lengths between 64 and 1024
points for the four algorithms in Example 6–12, Example 6–14,
Example 6–17, Example 6–18, and Example 6–15.

The benchmarks are given in cycles (the H1 internal processor cycle). To get
the benchmark (time), multiply the number of cycles by the processor’s inter-
nal clock period. For example, for a 50 MHz ’C4x, multiply by 40 ns.

Table 6–1. ’C4x Application Benchmarks

Application Words Cycles

Inverse of a float (32-bit mantissa accuracy) 7 7

Double-precision integer multiply 2 2

Square root (32-bit mantissa accuracy) 11 11

Vector dot product† 6 N + 4

Matrix Times a Vector 10 1 + R (C + 7)

FIR Filter 6 3+N

IIR Filter (One Biquad) 7 7

IIR Filter (N>1 Biquads) 15 2 + 6N

LMS Lattice Filter 11 1 + 5P

Inverse LPC Lattice Filter 9 3 + 3P

Mu–law (A–law) Compression 15 (16) 14 (16 / 10)

Mu–law (A–law) Expansion 11 (15) 11/10 (15/13)

† Based on a modification of the matrix times a vector benchmark

 ’C4x Benchmarks

6-87 Applications-Oriented Operations

Table 6–2.FFT Timing Benchmarks (Cycles)

Complex Real

Points
Radix-2

Example 6–12
Radix-4

Example 6–14
Radix-2

Example 6–15
Forward

Example 6–17
Inverse

Example 6–18

64 2290† 1745† 1425† 752† 1012†

128 5179† –––– 3336† 1683† 2269†

256 11588† 9216† 7655† 3814† 5086†

512 25677† –––– 17302† 8633† 11343†

1024 56411‡ 47237‡ 38945‡ 19404† 25120†

Assumptions:
† The data is in on-chip RAM1. Program (.fftxt) and reserved data (.fftdat) are in on-chip RAM0. The sine/Cosine table is in on-chip

RAM0. Bit-reversing is not considered. The cache is enabled
‡ The data is in on-chip RAM. Program (.ffttxt) and reserved data (.fftdat) are a in local(global) bus RAM with 0-wait states. Bit

reversing is not considered. The sine/cosine table is on the global(local) bus. The cache is enabled

 6-88

7-1 Chapter Title—Attribute Reference

Programming the DMA Coprocessor

The ’C4x DMA (Direct Memory Access) coprocessor is a ’C4x peripheral mod-
ule. With its six channels, the DMA maximizes sustained CPU performance by
alleviating the CPU of burdensome I/O. Any of the six DMA channels can
transfer data to and from anywhere in the ’C4x’s memory map for maximum
flexibility.

Topic Page

7.1 Hints for DMA Programming 7-2.

7.2 When a DMA Channel Finishes a Transfer 7-3.

7.3 DMA Assembly Programming Examples 7-4.

7.4 DMA C-Programming Examples 7-9.

Chapter 7

Hints for DMA Programming

 7-2

7.1 Hints for DMA Programming

The following hints will help you improve your DMA programming and also help
you avoid unexpected results:

� Reset the DMA register before starting it. This clears any previously
latched interrupt that may no longer exist. Also, set the DIE register (enab-
ling interrupts for sync transfer) after starting the DMA channel.

� Take care in selecting the priority used to arbitrate between the CPU and
DMA and also between DMA channels. If a DMA channel fails to finish a
block transfer, it may have lower priority in a conflicting environment and
and not be granted access to the resource. CPU/DMA rotating priority is
considered a safe first choice. Depending on CPU/DMA execution load,
selection of other priority schemes could result in faster code. Fine tuning
may be needed.

� Ensure that each interrupt is received when you use interrupt synchroniza-
tion; otherwise, the DMA will never complete the block transfer.

� For faster execution, avoid memory/resource access conflicts between
the CPU and DMA. Carefully allocate the different sections of the program
in memory. Use the same care with DMA autoinitialization values in
memory.

� Try to use read/write synchronization when reading from or writing to com-
munication ports. This avoids a peripheral-bus halt during a read from an
empty-input FIFO or a write to a full-output FIFO.

Choose between DMA read and write synchronization when using a DMA
channel to transfer from one communication port to another. The ’C4x
does not allow synchronization of DMA channel reads/writes with ICRDYi/
OCRDYj signals coming from two different communication ports (i�j)

� When your application requires initializing the primary (or auxiliary) DMA
channel while the auxiliary (or primary) channel may still be running, halt
the running channel by writing a halt signal to the START or AUX START
bits. Before proceeding, check the STATUS or AUX STATUS bits of the
running channel to ensure it has halted. This is necessary because the
DMA halt takes place in read/write boundaries (depending on the type of
halt issued), and the channel must wait for any ongoing read or write
cycles to complete. When reinitializing this channel, be especially careful
to restore its previous status exactly. For an example of how to deal with
this situation, refer to the Designer Notebook Page, split-mode DMA re-ini-
tialization, available through the DSP hotline.

 When a DMA Channel Finishes a Transfer

7-3 Programming the DMA Coprocessor

7.2 When a DMA Channel Finishes a Transfer

Many applications require that you perform certain tasks after a DMA channel
has finished a block transfer.

You can program the DMA to interrupt the CPU when this happens (TCC or
AUX TCC bits). You can also achieve this by polling if:

� The corresponding IIF (DMA INTx) bit is set to 1 (interrupt polling).
This requires that the DMA control register TCC (or AUX TCC) bit be set
first. This method does not cause any extra CPU/DMA access conflict. But
its drawback, when using split mode, is that you cannot differentiate
whether the primary or auxiliary channel has finished.

� The transfer counter has a zero value. This option is sometimes not reli-
able, because the DMA channel could be in the middle of an autoinitializa-
tion sequence.

� The TCINT (or AUX TCINT flag) is set to 1. This option is reliable, but the
CPU is polled via the peripheral bus, potentially causing CPU/DMA ac-
cess conflict if the DMA is operating to/from the peripheral bus. This is a
good option if you do not foresee any problem with the additional access
delay.

� The START (AUX START) bits in the DMA channel control register are
set to 10 2. This option can also cause a CPU/DMA access conflict.

DMA Assembly Programming Examples

 7-4

7.3 DMA Assembly Programming Examples

The DMA coprocessor is a memory-mapped peripheral that you can easily
program from C as well as from assembly. Example 7–1 through Example 7–5
provide examples on programming the DMA coprocessor using assembly lan-
guage. Example 7–6 through Example 7–11 provide examples on program-
ming the DMA coprocessor from C. The source code for examples
Example 7–6 through Example 7–11 can be found in the TI BBS (self-extract-
ing file: C4xdmaex.exe).

Example 7–1 shows one way for setting up DMA channel 2 to initialize an array
to zero. This DMA transfer is set up to have priority over a CPU operation and
to generate an interrupt flag, DMA INT2, after the transfer is completed. The
DMA control register is set to 00C4 0007h.

Example 7–1.Array initialization With DMA

*
* TITLE ARRAY INITIALIZATION WITH DMA
*
* THIS EXAMPLE INITIALIZES A 128 ELEMENTS ARRAY TO ZERO. THE DMA
* TRANSFER IS SET UP TO HAVE HIGHER PRIORITY OVER CPU OPERATION.
* THE DMA INT2 INTERRUPT FLAG IS SET TO 1 AFTER THE TRANSFER IS
* COMPLETED.
*

.data
DMA2 .word 001000C0H ;DMA channel 2 map address
CONTROL .word 00C40007H ;DMA register initialization data
SOURCE .word ZERO
SRC_IDX .word 0
COUNT .word 128
DESTIN .word ARRAY
DES_IDX .word 1
ZERO .float 0.0 ;Array initialization value 0.0

.bss ARRAY,128

.text
START LDP @DMA2 ;Load data page pointer

LDA @DMA2,AR0 ;Point to DMA channel 2 registers
LDI @SOURCE,R0 ;Initialize DMA source register
STI R0,*+AR0(1)
LDI @SRC_IDX,R0 ;Initialize DMA source index register
STI R0,*+AR0(2)
LDI @COUNT,R0 ;Initialize DMA count register
STI R0,*+AR0(3)

 LDI @DESTIN,R0 ;Initialize DMA destination register
STI R0,*+AR0(4)
LDI @DES_IDX,R0 ;Initialize DMA destination index register
STI R0,*+AR0(5)
LDI @CONTROL,R0 ;Start DMA channel 2 transfer
STI R0,*AR0
.end

The DMA transfer can be synchronized with external interrupts, communica-
tion-port ICRDY/OCRDY signals, and timer interrupts. In order to enable this
feature, the SYNCH MODE field, bits 6–7, of the DMA-control register must be

 DMA Assembly Programming Examples

7-5 Programming the DMA Coprocessor

configured to a proper value, and the corresponding bits of the DMA-interrupt
enable (DIE) register must be set. Example 7–2 sets up DMA channel 4 read
synchronization with the communication-port 4 ICRDY signal. The DMA con-
tinuously transfers data from the communication-port input register until the
START field, bits 22–23 of the DMA control register, is changed by the CPU.

Example 7–2.DMA Transfer With Communication-Port ICRDY Synchronization
*
* TITLE DMA TRANSFER WITH COMMUNICATION PORT ICRDY
* SYNCHRONIZATION
*
* THIS EXAMPLE SETS UP DMA CHANNEL 4 TO TRANSFER DATA FROM
* COMMUNICATION PORT INPUT REGISTER TO INTERNAL RAM WITH ICRDY
* SIGNAL READ SYNCHRONIZATION. THE TRANSFER MODE OF THE DMA IS
* SET TO 00. THEREFORE THE TRANSFER WON’T STOP UNTIL THE START
* BITS OF THE DMA CONTROL REGISTER IS CHANGED.
* .data
DMA4 .word 001000E0H ;DMA channel 4 map address
CONTROL .word 00C00040H ;DMA register initialization data
SOURCE .word 00100081H
SRC_IDX .word 0
COUNT .word 0 ;Transfer counter is set to largest value
DESTIN .word 002FF800H
DES_IDX .word 1

.text
START LDP @DMA4 ;Load data page pointer

LDA @DMA4,AR0 ;Point to DAM channel 4 registers
LDI @SOURCE,R0 ;Initialize DMA source register
STI R0,*+AR0(1)
LDI @SRC_IDX,R0 ;Initialize DMA source index register
STI R0,*+AR0(2)
LDI @COUNT,R0 ;Initialize DMA count register
STI R0,*+AR0(3)
LDI @DESTIN,R0 ;Initialize DMA destination register
STI R0,*+AR0(4)
LDI @DES_IDX,R0 ;Initialize DMA destination index register
STI R0,*+AR0(5)
LDI @CONTROL,R0 ;Start DMA channel 4 transfer
STI R0,*AR0
LDHI 010H,DIE ;Enable ICRDY 4 read sync.
.end

If external interrupt signals are used for DMA transfer synchronization, then
pins IIOF0-3 must be configured as interrupt pins.

The ’C4x DMA split mode is another way besides memory-map address to
transfer data from/to the communication port. When the split-mode bit of the
DMA control register is set, the DMA is separated into primary and auxiliary
channels. The primary channel transfers data from memory to the commu-
nication-port output register, and the auxiliary channel transfers data from the
communication port to memory. The communication-port number is selected
in bits15–17 of the DMA control register.

Example 7–3 shows how to set up DMA channel 1 into split mode. The DMA
primary channel transfers data from internal RAM to communication port 3

DMA Assembly Programming Examples

 7-6

through external interrupt INT2 synchronization and bit-reversed addressing.
The DMA auxiliary channel transfers data from communication port 3 to inter-
nal RAM via external interrupt INT3 synchronization and linear addressing.

Example 7–3.DMA Split-Mode Transfer With External-Interrupt Synchronization

*
* TITLE DMA SPLIT-MODE TRANSFER WITH EXTERNAL INTERRUPT SYNCHRONIZATION
*
* THIS EXAMPLE SETS UP DMA CHANNEL 1 TO SPLIT-MODE. THE PRIMARY CHANNEL TRANSFERS
* DATA FROM INTERNAL RAM TO COMM PORT 3 OUTPUT REGISTER WITH EXTERNAL INTERRUPT
* INT2 SYNCHRONIZATION AND BIT-REVERSED ADDRESSING. THE AUXILIARY CHANNEL TRANSFERS
* DATA FROM COMMUNICATION PORT 3 INPUT REGISTER TO INTERNAL RAM WITH EXTERNAL
* INTERRUPT INT3 SYNCHRONIZATION AND LINEAR ADDRESSING.
*

.data
DMA1 .word 001000B0H ;DMA channel 1 map address
CONTROL .word 03CDD0D4H ;DMA register initialization data
SOURCE .word 002FFC00H
SRC_IDX .word 08H ;The same value as IR0 for bit-reversed
COUNT .word 8
DESTIN .word 002FF800H
DES_IDX .word 1
AUX_CNT .word 8 .text
STAR LDP @DMA1 ;Load data page pointer

LDA @DMA1,AR0 ;Point to DAM channel 1 registers
LDI @SOURCE,R0 ;Initialize DMA primary source register
STI R0,*+AR0(1)
LDI @SRC_IDX,R0 ;Initialize DMA primary source index register
STI R0,*+AR0(2)
LDI @COUNT,R0 ;Initialize DMA primary count register
STI R0,*+AR0(3)
LDI @DESTIN,R0 ;Initialize DMA aux destination register
STI R0,*+AR0(4)
LDI @DES_IDX,R0 ;Initialize DMA aux destination index register
STI R0,*+AR0(5)
LDI @AUC_CNT,R0 ;Initialize DMA auxiliary count register
STI R0,*+AR0(7)
LDI @CONTROL,R0 ;Start DMA channel 1 transfer
STI R0,*AR0
LDI 01100H,IIF ;Configure INT2 and INT3 as interrupt pins
LDI 0A0H,DIE ;Enable INT2 read and INT3 write sync.
.end

An advantage of the ’C4x DMA is the autoinitialization feature. This allows you
to set up the DMA transfer in advance and makes the DMA operation com-
pletely independent from the CPU. When the DMA operates in autoinitializa-
tion mode, the link pointer and auxiliary link pointer initialize the registers that
control the DMA operation. The link pointer can be incremented (AUTOINIT
STATIC = 0) during autoinitialization or held constant (AUTOINIT STATIC = 1)
during autoinitialization. This option allows autoinitialization values to be
stored in sequential memory locations or in stream-oriented devices such as
the on-chip communication ports or external FIFOs. When DMA SYNC MODE
is enabled, The DMA autoinitialization operation can be configured to synchro-
nize with the same signal. Example 7–4 sets up DMA channel 0 to wait for the
communication port to input the initialization value. After DMA autoinitializa-

 DMA Assembly Programming Examples

7-7 Programming the DMA Coprocessor

tion is complete, the DMA channel starts transferring data from the communi-
cation port input register to internal RAM.

Example 7–4.DMA Autoinitialization With Communication Port ICRDY

*
* TITLE DMA AUTOINITIALIZATION WITH COMMUNICATION PORT ICRDY
*
* THIS EXAMPLE SETS UP DMA CHANNEL 0 TO WAIT FOR COMMUNICATION
* PORT TO INPUT THE INITIALIZATION VALUE. THE DMA AUTOINITIAL–
* IZATION AND TRANSFER ARE BOTH DRIVEN BY ICRDY 0 FLAG. AFTER
* DMA AUTOINIT IS COMPLETED, THE DMA CHANNEL STARTS TRANSFERRING
* DATA FROM COMM PORT INPUT REGISTER TO INTERNAL RAM WITH ICRDY
* 0 READ SYNCHRONIZATION. THE VALUES IN COMM PORT 0 INPUT FIFO
* SHOULD BE:
*
* SEQUENCE | VALUE
* ––––––––– +––
* 1 | 00C40047H (STOP AFTER TRANSFER COMPLETED)
* | OR 00C4054BH (REPEAT AFTER TRANSFER COMPLETED)
* 2 | 00100041H
* 3 | 0H
* 4 | 20H
* 5 | 002FF800H
* 6 | 1H
* 7 | 00100041H
*

.data
DMA0 .word 001000A0H ;DMA channel 0 map address
DMA_INIT .word 0004054BH ;DMA initialization control word
LINK .word 00100041H ;Comm port input register address
DMA_START .word 00C4054BH ;DMA start control word

.text
START LDP @DMA0 ;Load data page pointer

LDA @DMA0,AR0 ;Point to DMA channel 0 registers
LDI @DMA_INIT,R0 ;Initialize DMA control register
STI R0,*AR0
LDI @LINK,R0 ;Initialize DMA link pointer
STI R0,*+AR0(6)
LDI @DMA_START,R0 ;Start DMA channel 0 transfer
STI R0,*AR0
LDI 01H,DIE ;Enable ICRDY 0 read sync.
.end

The DMA autoinitialization and transfer continues executing if the DMA autoin-
itialization is still enabled. Therefore, a DMA setup like the one in Example 7–4
can make it possible for an external device to control the DMA operation
through the communication port.

With the autoinitialization feature, the ’C4x DMA coprocessor can support a
variety of DMA operations without slowing down CPU computation. A good ex-
ample is a DMA transfer triggered by one interrupt signal. Usually, this is imple-
mented by starting a DMA activity with a CPU interrupt service routine, but this
utilizes CPU time. However, as shown in Example 7–5, you can set up a single
interrupt-driven dummy DMA transfer with autoinitialization. When the inter-

DMA Assembly Programming Examples

 7-8

rupt signal is set, the DMA will complete the dummy DMA transfer and start
the autoinitialization for the desired DMA transfer.

Example 7–5.Single-Interrupt-Driven DMA Transfer

*
* TITLE SINGLE INTERRUPT-DRIVEN DMA TRANSFER
*
* THIS EXAMPLE SETS UP A DUMMY DMA TRANSFER FROM INTERNAL RAM
* TO THE SAME MEMORY WITH EXTERNAL INT 0 SYNCHRONIZATION AND
* AUTOINITIALIZATION FOR TRANSFERRING 64 DATA FROM LOCAL MEMORY
* TO INTERNAL RAM. AFTER THE SECOND TRANSFER IS COMPLETED, THE
* DMA IS RE-INITIALIZED TO FIRST DMA TRANSFER SETUP.
*

.data
DMA5 .word 001000F0H ;DMA channel 5 map address
DMA_INIT .word 0000004BH ;DMA initialization control word
LINK .word DMA1 ;1st DMA link list address
DMA_START .word 00C0004BH ;DMA start control word
DMA1 .word 00C0004BH ;1st dummy DMA transfer link list

.word 002FF800H

.word 00000000H

.word 00000001H

.word 002FF800H

.word 00000000H

.word DMA2
DMA2 .word 00C4000BH ;The desired DMA transfer link

.word 00400000H ;list

.word 00000001H

.word 00000040H

.word 002FF800H

.word 00000001H

.word DMA1

.text
START LDP @DMA5 ;Load data page pointer

LDA @DMA5,AR0 ;Point to DMA channel 5 registers
LDI @DMA_INIT,R0 ;Initialize DMA control register
STI R0,*AR0
LDI @LINK,R0 ;Initialize DMA link pointer
STI R0,*+AR0(6)
LDI @DMA_START,R0 ;Start DMA channel 5 transfer
STI R0,*AR0
LDI 01H,IIF ;Configure INT0 as interrupt pins
LDHI 0800H,DIE ;Enable INT 0 read sync. for

;DMA channel 5
.end

 DMA C-Programming Examples

7-9 Programming the DMA Coprocessor

7.4 DMA C-Programming Examples

Example 7–6 to Example 7–11 includes DMA programing examples from C.
These examples cover unified and Split mode, DMA autoinitialization and
DMA synchronization operations. Descriptions of the examples presented are
as follows:

� Example 7–6: Unified-mode DMA transfers data between commports us-
ing read sync.

� Example 7–7: Unified-mode DMA uses autoinitialization (method 1) to
transfer 2 data blocks.

� Example 7–8: Unified-mode DMA uses autoinitialization (method 2) to
transfer 2 data blocks.

� Example 7–9: Split-mode auxiliary DMA transfers data between comm-
ports using read sync.

� Example 7–10: Split-mode auxiliary and primary channel send/receive
data to and from commport

� Example 7–11: Split-mode DMA autoinitializes both auxiliary and primary
channels (auxiliary transfers 1 block and primary transfers 2 blocks)

Example 7–12 is the include file for all examples (dma.h).

DMA C-Programming Examples

 7-10

Example 7–6.Unified-Mode DMA Using Read Sync

/***
 EXAMPLE: Unified–mode
 Commport–to–commport transfer:
 DMA3 in unified mode transfers 8 words from commport 3 to commport 0.
 DMA3 source sync with ICRDY3 is used.
 Note: Writes cannot be synchronized with OCRDY0, because a DMA i can
 only be synchronized with signals coming commport i. You could sync
 on ICRDY3 or on OCRDY0, not both (the choice depends on the specific
 application to avoid deadlock).
 In this program, DMA3 expects data in commport 3 being sent by
 another processor/device. Otherwise no transfer will occur.
***/
#include ”dma.h”
#define DMAADDR 0x001000d0
#define CTRLREG 0x00c40045 /* DMA sends interrupt to CPU when transfer
 finishes(TC=1),DMA–CPU rotating priority */
#define SRC 0x00100071 /* src = commport 0 input fifo */
#define SRC_IDX 0x0 /* src address does not increment */
#define COUNTER 0x08 /* number of words to transfer */
#define DST 0x00100042 /* dst = commport 3 output fifo */
#define DST_IDX 0x0 /* dst address does not increment */
#define DIEVAL 0x4000 /* set ICRDY3 read sync */
DMAUNIF *dma = (DMAUNIF *)DMAADDR;
int dieval = DIEVAL;

main() {

dma–>src = (void *)SRC;
dma–>src_idx = SRC_IDX;
dma–>counter = COUNTER;
dma–>dst = (void *)DST;
dma–>dst_idx = DST_IDX;
dma–>ctrl = (void *)CTRLREG;
asm(” ldi @_dieval,die”);
PRIM_WAIT_DMA((volatile int *)dma);
}

 DMA C-Programming Examples

7-11 Programming the DMA Coprocessor

Example 7–7.Unified-Mode DMA Using Autoinitialization (Method 1)

/***
EXAMPLE: Unified Mode
 Autoinitialization method 1:
 DMA0 in unified mode transfers 8 words from 0x02ffC00 (index 1) to
 0x02ffd00 (index 1) and then it transfer 4 words from 0x02ffe00 (index 4)
 to to 0x02fff00 (index 1). No DMA sync transfer is used.
 Autoinitialization method 1 requires N autoinitialization memory blocks
 to transfer N blocks and starts with a DMA transfer counter equals to 0.
***/
#include ”dma.h”
#define DMAADDR 0x001000a0

/* 1st transfer settings */
#define CTRLREG1 0x00c00009 /* DMA–CPU rotating priority and DMA
 autoinitializes when transfer counter = 0 */
#define SRC1 0x002ffc00 /* src address */
#define SRC1_IDX 0x1 /* src address increment */
#define COUNTER1 0x08 /* number of words to transfer */
#define DST1 0x002ffd00 /* dst address rt 3 output fifo */
#define DST1_IDX 0x1 /* dst address increment */

/* 2nd transfer settings */
#define CTRLREG2 0x00c40005 /* DMA sends interrupt to CPU when transfer
 finishes(TC=1),DMA–CPU rotating priority
 and DMA stops after transfer completes */
#define SRC2 0x002ffe00 /* src address */
#define SRC2_IDX 0x4 /* src address increment */
#define COUNTER2 0x4 /* number of words to transfer */
#define DST2 0x002fff00 /* dst address */
#define DST2_IDX 0x1 /* dst address increment */
DMAUNIF *dma = (DMAUNIF *)DMAADDR;
DMAUNIF autoini1;
DMAUNIF autoini2;

main() {

/* initialize 1st set of autoinitialization values */
autoini1.src = (void *)SRC1;
autoini1.src_idx = SRC1_IDX;
autoini1.counter = COUNTER1;
autoini1.dst = (void *)DST1;
autoini1.dst_idx = DST1_IDX;
autoini1.linkp = &autoini2;
autoini1.ctrl = (void *)CTRLREG1;

/* initialize 2nd set of autoinitialization values */
autoini2.src = (void *)SRC2;
autoini2.src_idx = SRC2_IDX;
autoini2.counter = COUNTER2;
autoini2.dst = (void *)DST2;
autoini2.dst_idx = DST2_IDX;
autoini2.ctrl = (void *)CTRLREG2;

/* initialize DMA (link pointer pointing to 1st set of autoinit. values */
dma–>linkp = &autoini1;
dma–>counter = 0;
dma–>ctrl = (volatile void *)CTRLREG1;

/* wait for DMA to finish transfer */
PRIM_WAIT_DMA((volatile int *)dma); }

DMA C-Programming Examples

 7-12

Example 7–8.Unified-Mode DMA Using Autoinitialization (Method 2)

/**
EXAMPLE: Unified Mode
 Autoinitialization method 2:
 DMA0 in unified mode transfers 8 words from 0x02ffC00 (index 1)
 to 0x02ffd00 (index 1) and then it transfer 4 words from 0x02ffe00
 (index 4) to to 0x02fff00 (index 1). No DMA sync transfer is used
 Autonitialization method 2 requires (N–1) autoinitialization memory
 blocks to transfer N blocks and starts with a DMA transfer counter
 different from 0.
***/
#include ”dma.h”
#define DMAADDR 0x001000a0

/* 1st transfer settings */
#define CTRLREG1 0x00c00009 /* DMA–CPU rotating priority and DMA
 autoinitializes when transfer counter = 0 */
#define SRC1 0x002ffc00 /* src address */
#define SRC1_IDX 0x1 /* src address increment */
#define COUNTER1 0x08 /* number of words to transfer */
#define DST1 0x002ffd00 /* dst address rt 3 output fifo */
#define DST1_IDX 0x1 /* dst address increment */

/* 2nd transfer settings */
#define CTRLREG2 0x00c40005 /* DMA sends interrupt to CPU when transfer
 finishes(TC=1),DMA–CPU rotating priority
 and DMA stops after transfer completes */
#define SRC2 0x002ffe00 /* src address */
#define SRC2_IDX 0x4 /* src address increment */
#define COUNTER2 0x4 /* number of words to transfer */
#define DST2 0x002fff00 /* dst address */
#define DST2_IDX 0x1 /* dst address increment */
DMAUNIF *dma = (DMAUNIF *)DMAADDR;
DMAUNIF autoini2;

main() {

/* initialize 2nd set of autoinitialization values */
autoini2.src = (void *)SRC2;
autoini2.src_idx = SRC2_IDX;
autoini2.counter = COUNTER2;
autoini2.dst = (void *)DST2;
autoini2.dst_idx = DST2_IDX;
autoini2.ctrl = (void *)CTRLREG2;

/* initialize DMA with 1st set of autoinitialization values */
dma–>src = (void *)SRC1;
dma–>src_idx = SRC1_IDX;
dma–>counter = COUNTER1;
dma–>dst = (void *)DST1;
dma–>dst_idx = DST1_IDX;
dma–>linkp = &autoini2;
dma–>ctrl = (void *)CTRLREG1;

/* wait for DMA to finish transfer */
PRIM_WAIT_DMA((volatile int *)dma);
}

 DMA C-Programming Examples

7-13 Programming the DMA Coprocessor

Example 7–9.Split-Mode Auxiliary DMA Using Read Sync

/**
EXAMPLE: Split–mode (AUX only)
 Commport–to–commport transfer:
 DMA 3 Auxiliary channel transfers 8 words from commport 3 to
 commport 0. DMA3 source sync with ICRDY3 is used.
 This example is functionally equivalent to Example 7–7.
 In this program, DMA3 expects data in commport 3 being sent by
 another processor/device. Otherwise no transfer will occur.

/
#include ”dma.h”
#define DMAADDR 0x001000d0
#define CTRLREG 0x0309c091 /* DMA Aux sends interrupt to CPU when
 transfer finishes(TC=1),DMA–CPU rotating
 priority */
#define DST 0x00100042 /* dst = commport 3 output fifo */
#define DST_IDX 0x0 /* dst address does not increment */
#define DIEVAL 0x4000 /* set ICRDY3 Auxiliar read sync */
#define ACOUNTER 0x08 /* auxiliar channle counter */
DMASPLIT *dma = (DMASPLIT *)DMAADDR;
int dieval = DIEVAL;

main() {

dma–>dst = (void *)DST;
dma–>dst_idx = DST_IDX;
dma–>acounter = ACOUNTER;
dma–>ctrl = (void *)CTRLREG;
asm(” ldi @_dieval,die”);
AUX_WAIT_DMA((volatile int *)dma);
}

DMA C-Programming Examples

 7-14

Example 7–10. Split-Mode Auxiliary and Primary Channel DMA

/**
EXAMPLE: Split–mode (AUX and PRIMARY both running)
 Commport–to–commport transfer:
 DMA3 prim. channel sends 4 words from memory (0x02ffc00) to
 commport 3 (output FIFO).
 DMA3 aux.channel receives 8 words from commport 3 (input FIFO)
 to memory (0x02ffd00)
 DMA3 prim. channel uses OCRDY3 write sync.
 DMA3 aux. channel uses ICRDY3 read sync.
 In this program, DMA3 aux channel expects data in commport 3 being
 sent by another processor/device. Otherwise no aux channel transfer
 will occur.
***/
#include ”dma.h”
#define DMAADDR 0x001000d0
#define CTRLREG 0x03cdc0d5 /* DMA Aux/prim send interrupt to CPU when
 transfer finishes(TC=1),DMA–CPU rotating
 priority, read/write sync transfer */
#define DIEVAL 0x24000 /* set ICRDY3/OCRDY read/write sync */
#define DST 0x02ffd00 /* auxiliary channel settings */
#define DST_IDX 0x1
#define ACOUNTER 0x08
#define SRC 0x02ffc00 /* primary channel settings */
#define SRC_IDX 0x1
#define COUNTER 0x04
DMASPLIT *dma = (DMASPLIT *)DMAADDR;
int dieval = DIEVAL;

main() {

dma–>src = (void *)SRC; /* primary channel */
dma–>src_idx = SRC_IDX;
dma–>counter = COUNTER;
dma–>dst = (void *)DST; /* auxiliary channel */
dma–>dst_idx = DST_IDX;
dma–>acounter = ACOUNTER;
dma–>ctrl = (void *)CTRLREG;
asm(” ldi @_dieval,die”);
SPLIT_WAIT_DMA((volatile int *)dma);
}

 DMA C-Programming Examples

7-15 Programming the DMA Coprocessor

Example 7–11. Split-Mode DMA Using Autoinitialization

/**
EXAMPLE : Split–mode (AUX and PRIMARY both running)
 Autoinitialization example:
 DMA3 aux .channel autoinitializes and THEN receives 4 words from
 commport 3 (input FIFO) to memory (0x02ffd00).
 DMA3 pri.channel sends 4 words from memory (0x02ffc00) to
 commport 3 (output FIFO) and THEN other 2 words from memory
 (0x02ffc10) with index=2 to commport 3 (output FIFO).
 DMA3 prim. channel uses OCRDY3 write sync.
 DMA3 aux. channel uses ICRDY3 read sync.
 Autoinitialization method 1 is used in all cases.
 In this program, DMA3 aux channel expects data in commport 3 being
 sent by another processor/device. Otherwise no aux channel transfer
 will occur.
***/
#include ”dma.h”
#define DMAADDR 0x001000d0
#define CTRLREG1 0x03cdc0e9 /* DMA aux/prim send interrupt to CPU when
 transfer finishes(TC=1),DMA–CPU rotating
 priority, read/write sync transfer */
#define CTRLREG2 0x03cdc0d5 /* same as above but transfer finishes */
#define DIEVAL 0x24000 /* set ICRDY3/OCRDY read/write sync */

/* Primary Channel */
#define SRC1 0x02ffc00 /* autoinitialization 1 */
#define SRC1_IDX 0x1
#define COUNTER1 0x04
#define SRC2 0x02ffc10 /* autoinitialization 2 */
#define SRC2_IDX 0x2
#define COUNTER2 0x02

/* Auxiliary channel */
#define DST1 0x02ffd00 /* autoinitialization 1 */
#define DST1_IDX 0x1
#define ACOUNTER1 0x04

DMASPLIT *dma = (DMASPLIT *)DMAADDR;
int dieval = DIEVAL;
DMAPRIM autoini1, autoini2;
DMAAUX autoiniaux;

main() {

/* PRIMARY CHANNEL : 1st autoinitialization values */
autoini1.ctrl = (void *)CTRLREG1;
autoini1.src = (void *)SRC1;
autoini1.src_idx = SRC1_IDX;
autoini1.counter = COUNTER1;
autoini1.linkp = &autoini2;

DMA C-Programming Examples

 7-16

Example 7–11. Split-Mode DMA Using Autoinitialization (Continued)

/* PRIMARY CHANNEL : 2nd autoinitialization values */
autoini2.ctrl = (void *)CTRLREG2;
autoini2.src = (void *)SRC2;
autoini2.src_idx = SRC2_IDX;
autoini2.counter = COUNTER2;

/* AUXILIARY CHANNEL : 1st autoinitialization values */
autoiniaux.ctrl = (void *)CTRLREG2;
autoiniaux.dst = (void *)DST1;
autoiniaux.dst_idx = DST1_IDX;
autoiniaux.acounter = ACOUNTER1;

/* initialize DMA */
dma–>linkp = &autoini1;
dma–>alinkp = &autoiniaux;
dma–>counter = 0;
dma–>acounter = 0;
dma–>ctrl = (void *)CTRLREG1;
asm(” ldi @_dieval,die”);

/* wait for DMA to finish transfer */
SPLIT_WAIT_DMA((volatile int *)dma);
}

 DMA C-Programming Examples

7-17 Programming the DMA Coprocessor

Example 7–12. Include File for All C Examples (dma.h)

typedef struct dmaunif{
 volatile void *ctrl; /* control register */
 volatile void *src; /* source address */
 volatile int src_idx; /* source address index */
 volatile int counter; /* transfer counter */
 volatile void *dst; /* dest. address */
 volatile int dst_idx; /* dest. address index */
 struct dmaunif *linkp; /* link pointer */
 }DMAUNIF;
typedef struct dmaprim{
 volatile void *ctrl; /* control register */
 volatile void *src; /* prim. src address */
 volatile int src_idx; /* prim. index */
 volatile int counter; /* prim transfer counter*/
 struct dmaprim *linkp; /* link pointer */
 }DMAPRIM;
typedef struct dmaaux{
 volatile void *ctrl; /* control register */
 volatile void *dst; /* aux. dst address */
 volatile int dst_idx; /* aux. index */
 volatile int acounter; /* aux. transfer counter*/
 struct dmaaux *alinkp; /* aux. link pointer */
 }DMAAUX;
typedef struct {
 volatile void *ctrl; /* control register */
 volatile void *src; /* prim. src address */
 volatile int src_idx; /* prim. index */
 volatile int counter; /* prim transfer counter*/
 volatile void *dst; /* aux. dst address */
 volatile int dst_idx; /* aux. index */
 struct dmaprim *linkp; /* link pointer */
 volatile int acounter; /* aux. transfer counter*/
 struct dmaaux *alinkp; /* aux. link pointer */
 } DMASPLIT;
#define PRIM_WAIT_DMA(x) while ((0x00c00000 & *x)!=0x00800000)
#define AUX_WAIT_DMA(x) while ((0x03000000 & *x)!=0x02000000)
#define SPLIT_WAIT_DMA(x) while ((0x03c00000 & *x)!=0x02800000)

 7-18

8-1 Chapter Title—Attribute Reference

Using the Communication Ports

The ’C4x communication ports are very high-speed data transmission circuits.
Their speed and the close proximity of multiple data lines create special chal-
lenges. General design rules that are applicable to high-speed (<10ns)
memory interface design are appropriate for ’C4x communication-port inter-
connections. This chapter provides guidelines for designing communication-
port interfaces.

Topic Page

8.1 Communication Ports 8-2.

8.2 Signal Considerations 8-5.

8.3 Interfacing With a Non-’C4x Device 8-7.

8.4 Terminating Unused Communication Ports 8-8.

8.5 Design Tips 8-9.

8.6 Commport to Host Interface 8-10.

8.7 An I/O Coprocessor ’C4x Interface 8-14.

8.8 Implementing a Token Forcer 8-15.

8.9 Implementing a CSTRB Shortener Circuit 8-17.

8.10 Parallel Processing Through Communication Ports 8-18.

8.11 Broadcasting Messages From One ’C4x to Many ’C4x Devices 8-20. . .

Chapter 8

Communication Ports

 8-2

8.1 Communication Ports

To provide simple processor-to-processor communication, the ’C4x has six
parallel bidirectional communication ports. Because these ports have port ar-
bitration units to handle the ownership of the communication-port data bus be-
tween the processors, you should concentrate only on the internal operation
of the communication ports. For software, these communication ports can be
treated as 32-bit on-chip data I/O FIFO buffers. Processor read data from/write
data to communication is simple:

LDI @comm_port0_input,R0 ;Read data from comm. port 0

or

STI R0,@comm_port0_output ;Write data to comm. port 1

If the CPU or DMA reads from or writes to the communication-port I/O FIFO
and the I/O-FIFO is either empty (on a read) or full (on a write), the read/write
execution will be extended either until the data is available in the input FIFO
for a read, or until the space is available in the output FIFO for a write. Some-
times, you can use this feature to synchronize the devices. However, this can
slow down the processing speed and even hang up the processor. Avoid such
situations by synchronizing the CPU/DMA accesses with the following flags
that indicate the status of the port:

ICRDY (input channel ready)
= 0, the input channel is empty and not ready to be read.
= 1, the input channel contains data and is ready to read.

ICFULL (input channel full)
= 0, the input channel is not full.
= 1, the input channel is full.

OCRDY (output channel ready)
= 0, the output channel is full and not ready to be written.
= 1, the output channel is not full and ready to be written.

OCEMPTY (output channel empty)
= 0, the output channel is not empty.
= 1, the output channel is empty.

Example 8–1 shows the reading of data from the communication port, eight
data at a time using the CPU ICFULL interrupt. Example 8–2 shows the writing
of data to a communication port, one datum at a time using the polling method.
Both examples show DMA reads/writes. (DMA is discussed in subsection 7.3,
DMA Assembly Programming Examples on page 7-4.

 Communication Ports

8-3 Using the Communication Ports

Example 8–1.Read Data from Communication Port With CPU ICFULL Interrupt

*
* TITLE READ DATA FROM COMMUNICATION PORT WITH CPU
* ICFULL INTERRUPT
*
* THIS EXAMPLE ASSUMES THE ICFULL 0 INTERRUPT VECTOR IS SET IN THE CPU
* INTERRUPT VECTOR TABLE. THE EIGHT DATA WORDS ARE READ IN
* WHENEVER THE DATA IS FULL IN COMM PORT 0 INPUT FIFO.
*

.

.

.
LDA @COMM_PORT0_CTL,AR2 ;Load comm port 0 control Reg. address
LDA @COMM_PORT0_INPUT,AR0 ;Load comm port 0 input FIFO address
LDA @INTERNAL_RAM,AR1 ;Load internal RAM address
AND3 0F7H,*AR2,R9 ;Unhalt comm port 0 input channel
STI R9,*AR2
OR 04H,IIE ;Enable ICRDY 0 interrupt
OR 02000H,ST ;Enable CPU global interrupt
.
.
.

ICFULL0 PUSH ST
PUSH RS
PUSH RE
PUSH RC
LDI *AR0,R10 ;Read data from comm port 0 input
RPTS 6 ;Setup for loop READ

READ LDI *AR0,R10 ;Read data from comm port 0 input
|| STI R10,*AR1++(1) ;Store data into internal RAM

STI R10,*AR1++(1) ;Store data into internal RAM
POP RC
POP RE
POP RS
POP ST
RETI

Communication Ports

 8-4

Example 8–2.Write Data to Communication Port With Polling Method

*
* TITLE WRITE DATA TO COMMUNICATION PORT WITH POLLING METHOD
*
* THE BIT 8 OF COMMUNICATION PORT 0 CONTROL REGISTER WILL BE
* SET ONLY WHEN THE OUTPUT FIFO IS FULL. THIS EXAMPLE CHECKS
* THIS BIT TO MAKE SURE THERE IS SPACE AVAILABLE IN
* OUTPUT FIFO.
*

.

.

.
LDA @COMM_PORT0_CTL,AR2 ;Load comm port 0 control reg address
LDA @COMM_PORT0_OUTPUT,AR0 ;Load comm port 0 output FIFO address
LDA @INTERNAL_RAM,AR1 ;Load internal RAM address
AND3 0EFH,*AR2,R9 ;Unhalt comm port 0 output channel
STI R9,*AR2
LDI 0100H,R9 ;Load mask for bit 8

WAIT: TSTB *AR2,R9 ;Check if output FIFO is full
BZD WAIT ;If yes, check again

WRITE_COMM LDI *AR1++(1),R10 ;Read data from internal RAM
STI R10,*ARO ;Store data into comm port 0 output
NOP
.
.

 Signal Considerations

8-5 Using the Communication Ports

8.2 Signal Considerations

Because of the bidirectional high-speed protocol used in the ’C4x communica-
tion ports, signal quality is extremely important. Poor quality signals can poten-
tially cause both ends of a communication-port link to become a master. If this
occurs and one communication port drives a signal request, no response is
received from the other communication port, and the link hangs. This condition
remains until both ’C4x devices are reset. If this is not corrected, the commu-
nication-port drivers can be damaged.

If poor quality signals are a problem, use circuits to improve impedance match-
ing. Because the ’C4x communication-port output buffer impedance can
change during signal switching, a conventional parallel termination does not
help. Serial matching resistors can be added at each end of all communication
port lines (see Figure 8–1). Serial resistors help match the output buffer im-
pedance to the line impedance and protect against signal contention caused
by any potential fault condition. The resistor value, plus buffer output imped-
ance, should match the line impedance. Results have shown that a lower than
optimal serial resistor value provides better performance. A resistor value of
22–33 Ω is usually a reasonable start. Some experimentation may be needed
to reduce ringing effects. A good received signal should have an undershoot
of 0.5 to 1.0 V or less. A resistor value that is too high results in an under-
damped falling edge that does not cross the zero logic level and should be
avoided.

Figure 8–1. Impedance Matching for ’C4x Communication-Port Design

Pin as an Output Pin as an Input

Rb Rs
22–33 Ω
(Lower than
optimum)

Z0=50–100 Ω
Rs

VCC

10 kΩ

VCC

10 kΩ

Even though pullup resistors do not help for impedance matching, they are
recommended at each end to avoid unintended triggering after reset, when
RESET going low is not received on all ’C4x devices at the same time.

A pulldown resistor is not desirable, because it increases power consumption,
does not protect the device from a fault condition, and can cause token loss
and byte slippage on reset.

Signal Considerations

 8-6

For jumps to other boards or for long distances, a unidirectional data flow with
buffering is the preferred method. In this case, use buffers with hysteresis for
CSTRB and CRDY at each end with delays greater than those in the data bus.
This has two advantages: it cleans up the signals and helps eliminate glitches
that can be erroneously perceived as valid control; it also allows the data bits
to settle before the receiver sees CSTRB going low.

 Interfacing With a Non-’C4x Device

8-7 Using the Communication Ports

8.3 Interfacing With a Non-’C4x Device
To guarantee a correct word transfer operation between a ’C4x communica-
tion port and a non-’C4x device, the non-’C4x device should mimic the hand-
shaking operation between CSTRB and CRDY (word transfer), CREQ and
CACK (token transfer). The token transfer operation is more complex than the
word transfer operation. It requires tri-stating of pins after different events.
Sections 8.6 and 8.7 offer examples on how to handle token transfers with
non-’C4x devices. The word transfer operation is much simpler. The following
sequence describes the word transfer operation:

Word transfer operation

CASE I: The non-’C4x has the token and transmits data. The ’C4x receives data.

1) The non-’C4x device drives the first byte (byte 0) into the CD data lines and
then drops CSTRB low, indicating new data. There is no need to meet the
maximum timing requirements, but the data should be valid before
CSTRB goes low.

2) The non-’C4x device waits for the ’C4x to respond with CRDY low and then
can immediately drive the next data byte and bring CSTRB high.

3) The non-’C4x device waits for CRDY to be high; then, steps 1, 2, and 3
repeat for bytes 1 – 3.

4) After byte 3 is transmitted, the non-’C4x device can leave the byte 3 value
in the CD lines until a new word is sent.

5) In ’C4x device revisions lower than 3.0, CSTRB should go high after re-
ceiving CRDY low no later than one ’C4x H1/H3 cycle between word
boundaries. See Section 8.9, Implementing a CSTRB Shortener Circuit on
page 8-17, for an implementation of a CSTRB shortener circuit. In ’C4x de-
vice revisions 3.0 or higher, no CSTRB width restriction exists.

6) The non-’C4x device can drive CSTRB low for the next word at any time
after receiving CRDY high from the last byte. There is no reason to wait
for the internal ’C4x synchronizer between CRDY low and CSTRB low for
the next word to finish.

CASE II: The ’C4x has the token and transmits data. The non-’C4x device re-
ceives data.

1) After receiving CRSTB low from the ’C4x, indicating new data valid, the
non-’C4x device can immediately read the data byte and then drive CRDY
low, indicating that the byte has been read. There is no maximum time limit
between these two events.

2) The non-’C4x device then waits to receive CSTRB high and can immedi-
ately drive CRDY high, ending the byte transfer operation.

Terminating Unused Communication Ports

 8-8

8.4 Terminating Unused Communication Ports

To avoid unintended communication port triggering, you can terminate unused
communication-port control lines in one of the following ways:

� Use pullup resistors in all the communication-port control lines. Pullups in
data lines of input communication ports are optional, but they lower power
consumption. Pullups in data lines of output communication ports are not
required; if used, they increase power consumption.

� Tie the control lines together on the same communication port, that is,
CSTRB to CRDY and CREQ to CACK. This holds the control inputs high
without using external pullup resistors.

 Design Tips

8-9 Using the Communication Ports

8.5 Design Tips

� Be careful with different voltage levels when running multiple ’C4x devices
(or any other CMOS device) from different power supplies. This can create
a CMOS latch-up that can permanently damage your device. Adding serial
resistors to ’C4x communication ports connecting devices in different
boards marginally helps to protect communication-port drivers. It is rec-
ommended that all ’C4x devices in the system remain in reset until power
supplies are stable.

� Sometimes, it is beneficial to keep the line impedance as high as possible.
This helps when interfacing to external cables. Typical ribbon cable im-
pedance is about 100 Ω.

Because it is sometimes difficult to route high-impedance lines (especially
long ones) in a circuit board, use an external ribbon cable to jump over the
length of a board. In this case, only two headers should be installed in the
circuit board.

� Use an alternating signal and ground scheme. This helps control differen-
tial signal coupling and impedance variation. For quality signals, use a
26-wire ribbon ((4 control + 8 data + 1 shield) * 2 = 26). The shield is need-
ed for the signal that is otherwise on the edge.

Do not route signals on top of each other. When it is necessary to cross
traces on adjacent layers, cross them at right angles to reduce coupling.

Note:

Because the ’C4x communication ports are very high-speed data transmis-
sion circuits, signal quality is very important. A poor quality signal can cause
the missing or slipping of a byte. If this happens, the only solution is a ’C4x
reset. Because at reset communication ports 0,1, and 2 are transmitters and
3, 4, and 5 are receivers, a safe reset requires resetting of every ’C4x con-
nected to the ’C4x with the faulty condition. Global reset becomes a neces-
sity.

Commport to Host Interface

 8-10

8.6 Commport to Host Interface

A host interface between a ’C4x comport and a PC’s bidirectional printer port
has many advantages including freeing up the DSP bus and treating the host
PC as a virtual ’C4x node within a system of ’C4x devices.

This interface uses a bidirectional PC printer port interface. Logic circuits, buff-
ers and resistors convert logic control levels driven from the printer port into
’C4x commport control signals. Signals driven from the ’C4x are converted into
status signals, which can be polled in software by the PC. In addition, the PC’s
printer port provides the byte-wide data path into and out of the PC.

You can use this I/O interface for host-data communication, bootloading, and
debug operations. With proper buffering and software control, it is also pos-
sible to build long and reliable links. The speed is primarily dependent on the
speed of the host. When using a PC as the host, the speed is limited by the
PC’s I/O channel speed. If higher rates are needed, use a memory-mapped
version of the printer port in the PC.

The printer port used to test this circuit was the DSP-550 from STB Systems,
but there are other bidirectional printer ports on the market. Using the STB card
in the bidirectional mode requires that a jumper be set (see your manual).
Then, if a 1 is written to bits 5 or 7 of the control register (this depends on your
printer port), data can be read back from the data register.

8.6.1 Simplified Hardware Interface for ’C40 PG � 3.3, or ’C44 devices

Figure 8–2 shows a simplified commport signal splitter that splits each comm-
port control signal into a simple drive and sense pair of signals. Simplified, in
this case, means that, though the circuit is easy to follow functionally and will
operate, it is not the preferred solution (see the improved driver in Figure 8–3).
The signals in this circuit can be easily buffered without risk of driver conflicts.
However, keep a few things in mind about the simplified design:

� Due to commport-control signal restrictions in earlier silicon revisions this
circuit will not work with the TMS320C40 PG 3.0 or lower.

� This circuit requires a bidirectional printer port.

� Standard printer-port cables often do not provide ’clean’ signals

� A high value is needed for the isolation resistor in order to keep the current
levels during signal opposition to a minimum. But, a low value is needed
for the isolation resistor in order to insure reasonably fast rise and fall times
of the commport control signals when they are inputs. This conflict can be
overcome by carefully picking the correct resistor values or by adding
additional biasing.

 Commport to Host Interface

8-11 Using the Communication Ports

Figure 8–2. Better Commport Signal Splitter

Rx

Rx

Rx

Rx

Ry

Rp

Rs

LS32

CREQ_sns

CREQ_drv

CACK_sns

CACK_drv

CSTRB_sns

CSTRB_drv

CRDY_sns

CRDY_drv

Rs

Rs

Rs

Vcc

ACK

SLCTIN

Busy

INIT

PAPER

AUTOFD

SLCT

STROBE

D0

Legend: Rp = 470 ohms Rx = 180 ohms
Rs = 47 ohms Ry = 220 ohms

RESET

CREQ

CACK

CSTRB

CRDY

D7

PC
Parallel

Port

’C4x
Comm Port

D7

D0

.

.

.

.

.

.

Commport to Host Interface

 8-12

8.6.2 Improved Drive and Sense Amplifiers

Two improvements are suggested for the interface described above. The
improvements are described in Figure 8–3.

Figure 8–3. Improved Interface Circuit

R3

Vcc

RS–232
driver

R2

C1

QD

<

DQ

< Clock

R1

R1

Vcc

Rp

Cxxx

sense

drive

Legend: Rp = 470 ohms R2 = 10 K ohms C1 = 100 pF
R1 = 1 K ohms R3 = 50 ohms

PC
Parallel

Port

’C4x
comm port

sense

drive

The first improvement is that the signals going to and from the printer port are
synchronized using a clock and a simple data latch. By taking samples in time,
noise which may be able to corrupt the first sample of a transistion will probably
not be enough to corrupt the next sample. By adding a hysteris loop made from
resistors R1 and R2, the noise immunity is improved more. Capacitor C1 is an
additional analog filter that rejects high-frequency noise.

The next major improvement is the use of a current driver in place of the isola-
tion resistor. In this case, an RS232 driver is used; this driver can drive beyond
the supply rails of the DSP and has a built-in current limit of about 20mA.
Diodes D1 and D2, along with R3, clamp the resulting signal to the supply rails
of the DSP and latch to prevent excessive overdrive. The DSP and latch both
have internal clamping diodes, but it is not recommended that you rely on them
as the internal clamp diodes are not intended for this purpose.

 Commport to Host Interface

8-13 Using the Communication Ports

8.6.3 How the Circuit Works

The PC can drive any value on the control lines, independent from the returned
status. If a logic 1 is driven into the drive side of the isolation resistor and a logic
0 is observed on the sense side, the ’C4x commport signal under question is
without a doubt an output.

By then driving levels and polling the returned status, it is possible to synchro-
nize a host processor to the state machine of the ’C4x commport. The advan-
tage of this design is that it can be easily ported to any smart processor with
any basic I/O capability. For example, TMS320C31/32 devices have been
used as slave devices that are bootloaded from a commport and then used as
serial ports with internal memory and additional processing capabilities. Com-
plicated and risky ASIC designs are not required and the solution is fully pro-
grammable.

You must include current limiting circuitry when designing any
’C4x interface. If the current is not limited, it can exceed 100 mA per
pin, which can damage a device.

8.6.4 The Interface Software

The interface software for this host interface is available through the TI BBS
(filename: M4x_2.exe). This file contains not only the low-level software driv-
ers, but also extra code for the M4x (a multiprocessor ’C4x communication ker-
nel) applications note. The following files are contained in this application:

� M4X Debugger (no source code)
� MEMVIEW memory and communications matrix view and edit utility
� MANDEL40 multiprocessor Mandelbrot demonstration program
� M4X.ASM multiprocessor TMS320C4x communications kernel
� DRIVER.CPP higher level system functions
� TARGET.CPP getmem, putmem, run, stop and singlestep commands
� OBJECT.CPP source code for using the printer port interface

An I/O Coprocessor–’C4x Interface

 8-14

8.7 An I/O Coprocessor–’C4x Interface

This section presents a software-based interface that provides a ’C4x with a
flexible bidirectional interface to a TMS320C32. The ’C32 acts as a smart I/O
coprocessor that can provide AIC interfacing and data preprocessing among
others. The ’C32 is an inexpensive and flexible solution.

Some of the advantages of using an I/O coprocessor include:

� An I/O coprocessor can provide with data-processing.

� An I/O coprocessor allows for error correction and recovery from ’C4x
commport interface problems.

� An I/O coprocessor can buffer data, allowing faster ’C4x data throughput.

Figure 8–4 shows the ’C32-to-’C4x interface. Through the interface, a ’C4x
commport is memory-mapped to the ’C32 external memory bus. The interface
uses four ’C32 I/O pins to drive the commport control signals.

Figure 8–4. A ’C32 to ’C4x Interface

D0

D7

.

.

.

.

.

.

D7

D0

CREQ

CACK

CSTRB

’C32

XF1

TCLK1

TCLK0

XF0 CRDY

’C4x output
comm port

AIC Serial
port

Rp

Vcc

Rs

Pullup resistors in the XF0, XF1, TCLK0 and TCLK1 lines are used to prevent
undesired glitches due to temporary high-impedance conditions. Serial resis-
tors are also used on the same pins for better impedance matching.

The interface software drivers and a more detailed explanation of the interface
can be obtained from our TI BBS (filename 4xaic.exe). Token transfer and
word transfer drivers are included with the software.

 Implementing a Token Forcer

8-15 Using the Communication Ports

8.8 Implementing a Token Forcer

After system reset, half of the communication channels associated with a par-
ticular ’C4x have token ownership (communication ports 0, 1, 2), and the other
half (communication ports 3, 4, 5) do not.

If, because of system configuration requirements, communication port direc-
tion must to be changed, the circuits shown in Figure 8–5 and Figure 8–6 can
be used. The circuits force the token to be passed and communication port
direction to remain changed.

Even though these circuits are intended to force a change of the original com-
munication port direction after reset, they can be used also to maintain the orig-
inal direction. However, this can be more conveniently achieved using pullups
in CACK and CREQ. The pullups prevent any damage to the communication
ports in the event of a program error that writes into a port configured as an
input.

Forcing a communication port to become an output port

Figure 8–5 shows a circuit that forces a communication port to become an out-
put port. In this circuit, driving the CACK line with the CREQ line reconfigures
an input port as an output port. When a word is written to the FIFO, CREQ is
driven low, indicating a token request. After a synchronizer delay of 1 to 2
cycles (U1 and U2), CACK is driven low, indicating a token acknowledge.
CREQ then goes active high and then is held high by RP as the line switches
to an input. The CLK signal can be any clock with a frequency equal to or lower
than the H1/H3 clock.

The synchronizer delay is important. If no delay is provided, the CREQ line will
not be ready to change to an input high condition. As a result, the CACK line,
which, at this point, is a delayed version of CREQ, is inverted and applied to
the CREQ line. This results in an oscillation until the synchronizer period has
timed out.

Figure 8–5. A Token Forcer Circuit (Output)

CREQ

CACK

VCC

RP
10 kΩ

D Q D Q

CLK

RS
470 Ω

U1 U2

Implementing a Token Forcer

 8-16

Forcing a communication port to become an input port

Figure 8–6 shows a circuit that forces a communication port to become an in-
put port. In this circuit, driving the CREQ line with an inverted CACK reconfi-
gures an input port as an output. If CREQ is an input, it is held low through RS
whenever CACK is high or floating high because of RP. The port then responds
to this request by driving CACK low, which, in turn, drives CREQ high, finishing
the token acknowledge. As in Figure 8–5, synchronizer delays mimic the re-
sponse of another ’C4x communication port to prevent oscillation.

Figure 8–6. Communication-Port Driver Circuit (Input)

CREQ

CACK

VCC

RP
10 kΩ

D Q D Q

RS 470 Ω

CLK

Inverter

Note that after the port has been reconfigured as an input port, the CREQ line
is active high while the output of the inverter is low. This causes a constant cur-
rent flow from CREQ to the inverter.

 Implementing a CSTRB Shortener Circuit

8-17 Using the Communication Ports

8.9 Implementing a CSTRB Shortener Circuit

In ’C40 device revisions lower than 3.0, the width of the CSTRB low pulse be-
tween word boundaries should not exceed 1.0 H1/H3 at the receiving end. A
CSTRB low beyond the synchronization period on a word boundary can be
recognized as a new valid CSTRB, resulting in an extra byte reception (byte
slippage). For a short distance between two communicating ’C4x devices,
byte slippage is not a problem. In ’C40 device revisions 3.0 or higher, or in any
revision of the ’C44, no CSTRB width restriction exists.

The circuit shown in Figure 8–7 can reduce the width of CSTRB for very long
distances when you are using ’C4x device revisions lower than 3.0. The circuit
has buffers for CSTRB and CRDY on the transmitting end and two S-R flip-
flops on the receiving end. On the receiving end, a low STRB incoming signal
causes the Q signal of S-R flip-flop U1 to go low, forcing the CSTRB pin to go
low. When CRDY responds with a low signal, S-R flip-flop U2 drives the RDY
signal low. Because RDY is also tied to the S input of U1, and S has prece-
dence over R in an S-R flip-flop, Q in U1 goes high. Also, STRB is inverted and
drives the S input of U2. In this way, the width of the local CSTRB is shortened,
regardless of the channel length. When the STRB signal goes back high, the
S-R flip-flop pair is ready to receive another CSTRB.

Figure 8–7. CSTRB Shortener Circuit

Same Circuit
on Both Sides

R

S
Q

R

S
Q

CSTRB

CRDY

’C4x Receiver

CSTRB

CRDY

’C4x Transmitter

Send Active Circuit Element Receive Active Circuit Element

U1

U2

Rp
10 kΩ

STRB

RDY

Rs
470 Ω

+5 V

+5 V

Rs
470 Ω

Rp
10 kΩ

Parallel Processing Through Communications Ports

 8-18

8.10 Parallel Processing Through Communication Ports

The ’C4x communication ports are key to parallel processing design flexibility.
Many processors can be linked together in a wide variety of network configura-
tions. In this section, Figure 8–8 illustrates ’C4x parallel processing connectiv-
ity networks that are used to fulfill many signal processing system needs.

Figure 8–8. ’C4x Parallel Connectivity Networks

’C4x

Pipelined Linear Array

For convolution and correlation and other pipelined
operations in graphics and modem applications.

’C4x

’C4x

’C4x

’C4x ’C4x

’C4x’C4x

’C4x ’C4x

’C4x ’C4x’C4x ’C4x

Communication
Port Connection

Tree Structures

Supports broadcasting and data searches for
speech and image recognition applications.

2D Array

Excellent for image processing.

’C4x ’C4x’C4x

’C4x ’C4x’C4x

’C4x ’C4x’C4x

Clockwise and counterclockwise data flow. Group
port for more I/O. Very effective for neural networks.

Parent

Children

Bidirectional Ring

’C4x ’C4x

Memory

Memory

Memory

Memory

Memory

Memory

 Parallel Processing Through Communications Ports

8-19 Using the Communication Ports

Figure 8–8. ’C4x Parallel Connectivity Networks (Continued)

’C4x

Communication
port connection

For hierarchical processing such as
image understanding and finite

element analysis.

3-D Grid

’C4x

’C4x’C4x

’C4x

’C4x’C4x

’C4x

6 nearest neighbors connection.
Useful in numerical analysis and

image processing.

Hexagonal Grid

A more general-purpose structure.
4-D Hypercube

’C4x

Communication
port connection

’C4x

’C4x

’C4x

’C4x

’C4x

’C4x

Fully-Connected Network

According to memory interface, ’C4x parallel system architecture can be clas-
sified in three basic groups:

� Shared-Memory Architecture: shares global memory among processors.

� Distributed-Memory Architecture: each processor has its own private local
memory. Interprocessor communication is via ’C4x communication ports.

� Shared- and Distributed-Memory Architecture: each processor has its
own local memory but also shares a global memory with other processors.

Figure 8–8 shows examples of these basic groups.

Broadcasting Messages From One ’C4x to Many ’C4x Devices

 8-20

8.11 Broadcasting Messages From One ’C4x to Many ’C4x Devices

Message broadcasting from one ’C4x to many ’C4x devices requires a simple
interface. However, try to avoid signal analog delays caused by distance differ-
ences between the ’C4x master and the ’C4x slave processor. These delays
could create bus contention in the CSTRB and CRDY lines. Figure 8–9 shows
the block diagram of a multiple processor system. In this design, one ’C4x is
the dedicated transmitter, and three ’C4x devices are dedicated receivers. No
reset circuitry is needed, because the transmitter is communication port 0, and
the receivers are communication ports 3, 4, and 5. At reset, ’C4x communica-
tion ports 0, 1, and 2 are output ports, and communication ports 3, 4, and 5,
are input ports.

Because the communications configuration is fixed, no token transfer is need-
ed; this allows the CREQ and CACK pins of all processors to be individually
pulled up to 5 volts through 22-kΩ resistors.

In all cases, each CSTRB should be individually buffered to ensure that line
reflections do not corrupt each received CSTRB signal. The data pins CD7–0
of intercommunicating ’C4x devices can be tied together. In general, for fewer
than three receivers and distances shorter than six inches, data skew relative
to CSTRB is not a problem, and data buffering is not needed. However, if more
than three receivers must be driven by a single transmitter or the distance is
more than six inches, both the CSTRB and CD7–0 lines must be buffered.

The CRDY signal input is generated by ORing the RDY outputs of all of the
receiver communication ports. The transmitter should not receive a RDY sig-
nal until the receiver has received all data.

In addition, to ensure that the dedicated receiver ’C4x devices do not try to arbi-
trate for the communication-port bus, you should halt the output ports of the
receiver ’C4x devices by setting bit four of their communication-port control
registers to one.

 Broadcasting Messages From One ’C4x to Many ’C4x Devices

8-21 Using the Communication Ports

Figure 8–9. Message Broadcasting by One ’C4x to Many ’C4x Devices

’C4x

+5 V

+5 V

+5 V

22 kΩ

+5 V

8

CACK3
CREQ3

C3D(7–0)

CRDY3

CSTRB3

CSTRB5

CRDY5

C5D(7–0)

CREQ5
CACK

8

C0D(7–0)

CRDY0

CSTRB0
CACK0
CREQ0

8 8

CACK4
CREQ4

C4D(7–0)

CRDY4

CSTRB4 ’C4x

’C4x

22 kΩ 22 kΩ 22 kΩ

22 kΩ 22 kΩ

22 kΩ 22 kΩ

’C4x

 8-22

9-1

’C4x Power Dissipation

The power-supply current requirement (IDD) of the ’C4x vary with the specific
application and the device program activity. The maximum power dissipation
of a device can be calculated by multiplying IDD with VDD (power supply volt-
age requirement). Both parameters are provided in the ’C4x data sheet. Addi-
tionally, due to the inherent characteristics of CMOS technology, the current
requirements depend on clock rates, output loadings, and data patterns.

This chapter presents the information you need to determine power-supply
current requirements for the ’C4x under various operating conditions. After
you make this determination, you can then calculate the device power dissipa-
tion, and, in turn, thermal management requirements.

Topic Page

9.1 Capacitive and Resistive Loading 9-2.

9.2 Basic Current Consumption 9-4.

9.3 Current Requirement of Internal Components 9-7.

9.4 Current Requirement of Output Driver Components 9-12.

9.5 Calculation of Total Supply Current 9-20.

9.6 Example Supply Current Considerations 9-27.

9.7 Design Considerations 9-29.

Chapter 9

Capacitive and Resistive Loading

 9-2

9.1 Capacitive and Resistive Loading

In CMOS devices, the internal gates swing completely from one supply rail to
the other. The voltage change on the gate capacitance requires a charge
transfer, and therefore causes power consumption.

The required charge for a gate’s capacitance is calculated by the following
equation:

Qgate = VDD � Cgate (coulombs)

where:

Qgate is the gate’s charge,

VDD is the supply voltage, and

Cgate is the gate’s capacitance.

Since current is coulombs per second, the current can then be obtained from:

I = coul / s = VDD � Cgate � Frequency

where:

I is the current.

For example, the current consumed by an 80-pF capacitor being driven by a
10-MHz CMOS level square wave is calculated as follows:

I = 5 (volts) � 80 � 10–12(farads) � 10 � 106(charges/s)

 = 4 mA @ 10 MHz

Furthermore, if the total number of gates in a device is known, the effective
total capacitance can be used to calculate the current for any voltage and fre-
quency. For a given CMOS device, the total number of gates is probably not
known, but you can solve for a current at a particular frequency and supply volt-
age and later use this current to calculate for any supply voltage and operating
frequency.

Idevice = VDD � Ctotal � fCLK

where:

Idevice is the current consumed by the device,

Ctotal is the total capacitance, and

fCLK is the clock cycle.

 Capacitive and Resistive Loading

9-3 ’C4x Power Dissipation

Solving for power (P = V x I), the equation becomes:

Pdevice = VDD 2 � Ctotal � fCLK

where:

Pdevice is the power consumed by the device.

In this case, Ctotal includes both internal and external capacitances. Ctotal can
be effectively reduced by minimizing power-consuming internal operation and
external bus cycles. Bipolar devices, pullup resistors and other devices con-
sume DC power that adds a constant offset unaffected by fCLK. The effect of
these DC losses depends on data, not frequency. This document assumes an
all-CMOS approach in which these effects are minimal.

Another source of power consumption is the current consumed by a CMOS
gate when it is biased in the linear region. Typically, if a gate is allowed to float,
it can consume current. Pullups and pulldowns of unused pins are therefore
recommended.

Basic Current Consumption

 9-4

9.2 Basic Current Consumption

Generally, power supply current requirements are related to the system—for
example, operating frequency, supply voltage, temperature, and output load.
In addition, because the current requirement for a CMOS device depends on
the charging and discharging of node capacitance, factors such as clocking
rate, output load capacitance, and data values can be important.

9.2.1 Current Components

The power supply current has four basic components:
� Quiescent
� Internal operations
� Internal bus operations
� External bus operations

9.2.2 Current Dependency

The power supply current consumption depends on many factors. Four are
system related:
� Operation frequency
� Supply voltage
� Operating temperature
� Output load

Several others are related to TMS320C4x operation:
� Duty cycle of operations
� Number of buses used
� Wait states
� Cache usage
� Data value

You can calculate the total power supply current requirement for a ’C4x device
by using the equation below, which comprises the four basic power supply cur-
rent components and three system-related dependencies described above.

Itotal = (Iq + Iiops + Iibus + Ixbus) � F � V � T

where:

Itotal is the total supply current,

Iq is the quiescent current component,

Iiops is the current component due to internal operations,

Iibus is the current component due to internal bus usage, including data value
and cycle time dependency,

 Basic Current Consumption

9-5 ’C4x Power Dissipation

Ixbus is the current component due to external bus usage, including data value
wait state, cycle time, and capacitive load dependency,

F is a scale factor for frequency,

V is a scale factor for supply voltage, and

T is a scale factor for operating temperature.

This report describes in detail the application of this equation and determina-
tion of all the dependencies. The power dissipation measurements in this re-
port were taken using a ’C40 PG 3.X running at speeds up to 50 MHz and at
a voltage level of 5 V.

The minimum power supply current requirement is 130 mA. The typical current
consumption for most algorithms is 350 mA, as described in the TMS320C4x
data sheet, unless excessive data output is being performed.

The maximum current requirement for a ’C4x running at 50 MHz is
850 mA and occurs only under worst case conditions: writing
alternating data (AAAA AAAA to 5555 5555) out of both external
buses simultaneously, every cycle, with 80 pF loads.

9.2.3 Algorithm Partitioning

Each part of an algorithm has its own pattern with respect to internal and exter-
nal bus usage. To analyze the power supply current requirement, you must
partition an algorithm into segments with distinct concentrations of internal or
external bus usage. Analyze each program segment to determine its power-
supply current requirement. You can then calculate the average power supply
current requirement from the requirements of each segment of the algorithm.

9.2.4 Test Setup Description

All TMS320C4x supply current measurements were performed on the test
setup shown in Figure 9–1. The test setup consists of a TMS320C40, capaci-
tive loads on all data and address lines, but no resistive loads. A Tektronix digi-
tal multimeter measures the power supply current. Unless otherwise specified,
all measurements are made at a supply voltage of 5 V, an input clock frequency
of 50 MHz, a capacitive load of 80 pF, and an operating temperature of 25°C.
Note that the current consumed by the oscillator and pullup resistors does not
flow through the current meter. This current is considered part of the system’s
resistive loss (see section 9.1, Capacitive and Resistive Loading).

Basic Current Consumption

 9-6

Figure 9–1. Test Setup

RP

CLOAD

Current Meter

CLK

CLOAD

A

CLK

32 D32 LD

Control Pins

31 A31 LA

VDD

TMS320C40

 Current Requirement of Internal Components

9-7 ’C4x Power Dissipation

9.3 Current Requirement of Internal Components

The power-supply current requirement for internal circuitry consists of three
components: quiescent, internal operations, and internal bus operations.
Quiescent and internal operations are constants, whereas the internal bus
operations component varies with the rate of internal bus usage and the data
values being transferred.

9.3.1 Quiescent

The quiescent requirement for the TMS320C4x is 130 mA while in IDLE.
Quiescent refers to the baseline supply current drawn by the TMS320C4x dur-
ing minimal internal activity. Examples of quiescent current include:

� Maintaining timer and oscillator

� Executing the IDLE instruction

� Holding the TMS320C4x in reset

9.3.2 Internal Operations

Internal operations include register-to-register multiplication, ALU operations,
and branches, but not external bus usage or significant internal bus usage. In-
ternal operations add a constant 60 mA above the quiescent requirement, so
that the total contribution of quiescent and internal operation is 190 mA. Note,
however, that internal and/or external program operations executed via an
RPTS instruction do not contribute an internal operations power supply current
component. During an RPTS instruction, program fetch activity other than the
instruction being repeated is suspended; therefore, power-supply current is
related only to the data operations performed by the instruction being
executed.

Current Requirement of Internal Components

 9-8

Figure 9–2. Internal and Quiescent Current Components

210

180

150

120

90

60

30

0

0 5 10 15 20 25 30 35 40 45 50

IDLE

Branch

fclk (MHz)

In
cr

em
en

ta
l I

D
D

(m
A

)

9.3.3 Internal Bus Operations

The internal bus operations include all operations that utilize the internal buses
extensively, such as internal RAM accesses every cycle. No distinction is
made between internal reads or writes, such as instruction or operand fetches
from internal memory, because internally they are equal. Significant use of
internal buses adds a data-dependent term to the equation for the power sup-
ply current requirement. Recall that switching requires more current. Hence,
changing data at high rates requires higher power-supply current.

Pipeline conflicts, use of cache, fetches from external wait-state memory, and
writes to external wait-state memory all affect the internal and external bus
cycles of an algorithm executing on the TMS320C4x. Therefore, you must
determine the algorithm’s internal bus usage in order to accurately calculate
power supply current requirements. The TMS320C4x software simulator and
XDS emulator both provide benchmarking and timing capabilities that help you
determine bus usage.

 Current Requirement of Internal Components

9-9 ’C4x Power Dissipation

Figure 9–3. Internal Bus Current Versus Transfer Rate

280

240

200

160

120

80

40

0

0 5 10 15 20 25 30 35 40 45 50

Transfer Rate (MHz)

In
cr

em
en

ta
l I

D
D

(m
A

)

The current resulting from internal bus usage varies linearly with transfer rates.
Figure 9–3 shows internal bus-current requirements for transferring alternat-
ing data (AAAA AAAAh to 5555 5555h) at several frequencies. Note that trans-
fer rates greater than the TMS320C4x’s MIPS rating are possible because of
internal parallelism.

The data set AAAA AAAAh to 5555 5555h exhibits the maximum internal bus
current for data transfer operations. The current required for transferring other
data patterns may be derated accordingly, as described later in this subsec-
tion.

As the transfer rate decreases (that is, transfer-cycle time increases) the incre-
mental IDD approaches 0 mA. This figure represents the incremental IDD due
to internal bus operations and is added to quiescent and internal operations
current values.

For example, the maximum transfer rate corresponds to three accesses every
cycle (one program fetch and two data transfers) or an effective one-third H1
transfer cycle time. At this rate, 178 mA is added to the quiescent (130 mA)
and internal operation (60 mA) current values for a total of 368 mA.

Current Requirement of Internal Components

 9-10

Figure 9–3 shows the internal bus current requirement when transferring As
followed by 5s for various transfer rates. Figure 9–4 shows the data depen-
dence of the internal bus-current requirement when the data is other than As
followed by 5s. The trapezoidal region bounds all possible data values trans-
ferred. The lower line represents the scale factor for transferring the same
data. The upper line represents the scale factor for transferring alternating
data (all 0s to all Fs or all As to all 5s, etc.).

The possible permutation of data values is quite large. The term relative data
complexity refers to a relative measure of the extent to which data values are
changing and the extent to which the number of bits are changing state. There-
fore, relative data complexity ranges from 0, signifying minimal variation of
data, to a normalized value of 1, signifying greatest data variation.

Figure 9–4. Internal Bus Current Versus Data Complexity Derating Curve

1.4

1.2

1.0

.8

.6

.4

.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Operation Complexity

D
D

N
or

m
al

iz
ed

 I

Same Data �����

As–5s0s–Fs

0s–0s

Alternating Data

If a statistical knowledge of the data exists, Figure 9–4 can be used to deter-
mine the exact power supply requirement on the basis of internal bus usage.
For example, Figure 9–4 indicates a 89.5% scale factor when all Fs
(FFFF FFFFh) are moved internally every cycle with two accesses per cycle
(80 Mbytes per second). Multiplying this scale factor by 178 mA (from

 Current Requirement of Internal Components

9-11 ’C4x Power Dissipation

Figure 9–3) yields 159 mA due to internal bus usage. Therefore, an algorithm
running under these conditions requires about 349 mA of power supply current
(130 + 60 + 159).

Since a statistical knowledge of the data may not be readily available, a nomi-
nal scale factor may be used. The median between the minimum and maxi-
mum values at 50% relative data complexity yields a value of 0.93 and can be
used as an estimate of a nominal scale factor. Therefore, this nominal data
scale factor of 93% can be used for internal bus data dependency, adding
165.5 mA to 130 mA (quiescent) and 60 mA (internal operations) to yield 355.5
mA. As an upper bound, assume worst case conditions of three accesses of
alternating data every cycle, adding 178 mA to 130 mA (quiescent) and 60 mA
(internal operations) to yield 368 mA.

Current Requirement of Output Driver Components

 9-12

9.4 Current Requirement of Output Driver Components

The output driver circuits on the TMS320C4x are required to drive significantly
higher DC and capacitive loads than internal device logic drivers. Because of
this, output drivers impose higher supply current requirements than other sec-
tions of circuitry in the device.

Accordingly, the highest values of supply current are exhibited when external
writes are being performed at high speed. During read cycles, or when the
external buses are not being used, the TMS320C4x is not driving the data bus;
this eliminates a significant component of the output buffer current. Further-
more, in many typical cases, only a few address lines are changing, or the
whole address bus is static. Under these conditions, an insignificant amount
of supply current is consumed. Therefore, when no external writes are being
performed or when writes are performed infrequently, current due to output
buffer circuitry can be ignored.

When external writes are being performed, the current required to supply the
output buffers depends on several considerations:

� Data pattern being transferred

� Rate at which transfers are being made

� Number of wait states implemented (because wait states affect rates at
which bus signals switch)

� External bus DC and capacitive loading

External bus operations involve external writes to the device and constitute a
major power-supply current component. The power supply current for the
external buses, made up of four components, is summarized in the following
equation:

Ixbus = (Ibase local + Ilocal) + (Ibase global + Iglobal)

where:

Ibase local/global is the current consumed by the internal driver and pin capaci-
tance,

Ilocal is the local bus current component, and

Iglobal is the global bus current component.

The remainder of this section describes in detail the calculation of external bus
current requirements.

 Current Requirement of Output Driver Components

9-13 ’C4x Power Dissipation

Note:

The DMA current component (IDMA) and communication port current compo-
nent (ICP) should be included in the calculation of Ixbus if they are used in the
operations.

9.4.1 Local or Global Bus

The current due to bus writes varies with write cycle time. As discussed in the
previous section, to obtain accurate current values, you must first determine
the rate and timing for write cycles to external buses by analyzing program
activity, including any pipeline conflicts that may exist. To do this, you can use
information from the TMS320C4x emulator or simulator as well as the
TMS320C4x User’s Guide. In your analysis, you must account for effects from
the use of cache, because use of cache can affect whether or not instructions
are fetched from external memory.

When evaluating external write activity in a given program segment, you must
consider whether or not a particular level of external write activity constitutes
significant activity. If writes are being performed at a slow enough rate, they
do not impact supply current requirements significantly and can be ignored.
This is the case, however, only if writes are being performed at very slow rates
on either the local or global bus.

When bus-write cycle timing has been established, Figure 9–5 can be used
to determine the contribution to supply current due to bus activity. Figure 9–5
shows values of current contribution from the local or global bus for various
transfer rates. This data was gathered when alternating values of 555555555h
and AAAAAAAAh were written at a capacitive load of 80 pF per output signal
line. This condition exhibits the highest current values on the device. The val-
ues presented in the figure represent the incremental current contributed by
the local or global bus output driver circuitry under the given conditions. Cur-
rent values obtained from this graph are later scaled and added to several
other current terms to calculate the total current for the device. As indicated
in the figure, the lower limit Ibase = Iq + Iiops + Iibus is essentially Itotal for transfer
rates less than 1 Mword/second.

Current Requirement of Output Driver Components

 9-14

Figure 9–5. Local/Global Bus Current Versus Transfer Rate and Wait States

0 1 2 3 4 5 6 7 8 9 10 11 12

Transfer Rate (Mword/second)

420

380

340

300

260

220

180

140

D
D

(m
A

)

STI ||STI is dominated
by execution of internal NOP s

STI ||STI is internally stalled
 while waiting for bus ready.

EXT WS = MAX

NOTE: Upper line is caused by execution of internal NOPs

EXT WS = 0

Cload = 80 pF with maximum data complexity

Figure 9–5 demonstrates a feature of the ’C4x’s external bus architecture
known as a posted write. In general, data is written to a latch (or a one deep
FIFO) and held by the bus until the bus cycle is complete. Since the CPU may
not require that bus again for some time, the CPU is free to perform operations
on other buses until a conflict occurs. Conflicts include DMA, a second write,
or a read to the bus.

In Figure 9–5, the upper line is applicable when STI || STI is not dominated by
execution of internal NOPs and the external wait state is equal to zero. The
lower line shows when STI || STI is internally stalled while waiting for the exter-
nal bus to go ready because of wait states. The addition of NOPs between
successive STI || STI operations contributes to internal bus current and there-
fore does not result in the lowest possible current.

 Current Requirement of Output Driver Components

9-15 ’C4x Power Dissipation

Figure 9–6. Local/Global Bus Current Versus Transfer Rate at Zero Wait States

0 1 2 3 4 5 6 7 8 9 10 11 12

Transfer Rate (Mword/second)

420

380

340

300

260

220

180

140

D
D

(m
A

)

To further illustrate the relationship of current and write cycle time, Figure 9–6
shows the characteristics of current for various numbers of cycles between
writes for zero wait states. The information on this graph can be used to obtain
more precise values of current whenever zero wait states are used. Table 9–1
lists the number of cycles used for software generated wait states.

Table 9–1.Wait State Timing Table

Wait State Read Cycles Write Cycles

0 1 2

1 2 3

2 3 4

3 4 5

Once a current value has been obtained from Figure 9–5 or Figure 9–6, this
value can be scaled by a data dependency factor if necessary, as described
on page 9-16. This scaled value is then summed along with several other cur-
rent terms to determine the total supply current.

Current Requirement of Output Driver Components

 9-16

9.4.2 DMA

Using DMA to transfer data consumes power that is data dependent. The cur-
rent resulting from DMA bus usage (IDMA) varies linearly with the transfer rate.
Figure 9–7 shows DMA bus current requirements for transferring alternating
data (AAAA AAAAh to 5555 5555h) at several transfer rates; it also shows that
current consumption increases when more DMA channels are used. However,
as more DMA channels are used, the incremental change in current dimi-
nishes as the internal DMA bus becomes saturated. Note that DMA current is
superimposed over Iibus (internal bus) value.

Figure 9–7. DMA Bus Current Versus Clock Rate

350

300

250

200

150

100

50

0

0 5 10 15 20 25 30 35 40 45 50

fclk (MHz)

Iibus

In
cr

em
en

ta
l I

D
D

(m
A

)

DMA1

DMA2

DMA3

9.4.3 Communication Port

Communication port operations add a data-dependent term to the equation for
the current requirement. The current resulting from communication port opera-
tion (ICP) varies linearly with the transfer rate. Figure 9–8 shows communica-
tion port operation current requirements for transferring alternating data
(AAAA AAAAh to 5555 5555h) at several transfer rates; it also shows that cur-
rent consumption increases when more communication port channels are

 Current Requirement of Output Driver Components

9-17 ’C4x Power Dissipation

used. Similar to the DMA bus current consumption, adding communication
ports eventually saturates the peripheral bus as more channels are added.

Figure 9–8. Communication Port Current Versus Clock Rate

280

240

200

160

120

80

40

0

0 5 10 15 20 25 30 35 40 45 50

fclk (MHz)

Iibus

In
cr

em
en

ta
l I

D
D

(m
A

)

CP 1

CP 2

CP 3

Note that since the communication ports are intended to communicate with
other TMS320C4x communication ports over short distances, no additional
capacitive loading was added. In this case, the transmission distance is about
6 inches without additional 80-pF loads. Note that communication port current
is superimposed over Iibus value.

9.4.4 Data Dependency

Data dependency of the current for the local and global buses is expressed as
a scale factor that is a percentage of the maximum current exhibited by either
of the two buses.

Current Requirement of Output Driver Components

 9-18

Figure 9–9. Local/Global Bus Current Versus Data Complexity

1.4

1.2

1.0

.8

.6

.4

.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relative Operation Complexity

D
D

N
or

m
al

iz
ed

 I

Fs–Fs0s–0s Same Data

Alternating Data
0s–Fs

As–5s

Figure 9–9 shows normalized weighting factors that can be used to scale cur-
rent requirements on the basis of patterns in data being written on the external
buses. The range of possible weighting factors forms a trapezoidal pattern
bounded by extremes of data values. As the figure shows, the minimum cur-
rent occurs when all zeros are written, while the maximum current occurs when
alternating 5555 5555h and AAAA AAAAh are written. This condition results
in a weighting factor of 1, which corresponds to using the values from
Figure 9–5 and/or Figure 9–6 directly.

As with internal bus operations, data dependencies for the external buses are
well defined, but accurate prediction of data patterns is often either impossible
or impractical. Therefore, unless you have precise knowledge of data patterns,
you should use an estimate of a median or average value for the scale factor.
Assuming that data will be neither 5s and As nor all 0s and will be varying ran-
domly, then a value of 0.80 is appropriate. Otherwise, if you prefer a conserva-
tive approach, you can use a value of 1.0 as an upper bound.

Regardless of the approach taken for scaling, once you determine the scale
factor for the buses, apply this factor to the current values you determined with
the graphs in section 9.4.1, Local or Global Bus.

 Current Requirement of Output Driver Components

9-19 ’C4x Power Dissipation

For example, if a nominal scale factor of 0.80 for the buses is assumed, the
current contribution from the two buses is as follows:

Local or Global : 0.80 � 133 mA = 106.4 mA

9.4.5 Capacitive Loading Dependence

Once cycle timing and data dependencies have been accounted for, capaci-
tive loading effects should be calculated and applied. Figure 9–10 shows the
current values obtained above as a function of actual load capacitance if the
load capacitance presented to the buses is less than 80 pF.

In the previous example, if the load capacitance is 20 pF instead of 80 pF, the
actual pin current would be 1.66 mA.

While the slope of the line in Figure 9–10 can be used to interpolate scale fac-
tors for loads greater than 80 pF, the TMS320C4x is specified to drive output
loads less than 80 pF; interface timings cannot be guaranteed at higher loads.
With data dependency and capacitive load scale factors applied to the current
values for local and global buses, the total supply current required for the
device for a particular application can be calculated, as described in the next
section.

Figure 9–10. Pin Current Versus Output Load Capacitance (10 MHz)

5

4

3

2

1

0

0 10 20 30 40 50 60 70 80

Output Load Capacitance (pF)

Ibase=.66 mA

In
cr

em
en

ta
l I

D
D

(m
A

)

Calculation of Total Supply Current

 9-20

9.5 Calculation of Total Supply Current

The previous sections have discussed currents contributed by different
sources on the TMS320C4x. Because determinations of actual current values
are unique and independent for each source, each current source was dis-
cussed separately. In an actual application, however, the sum of the indepen-
dent contributions determines the total current requirement for the device. This
total current value is exhibited as the total current supplied to the device
through all of the VDD inputs and returned through the VSS connections.

Note that numerous VDD and VSS pins on the device are routed to a variety of
internal connections, not all of which are common. Externally, however, all of
these pins should be connected in parallel to 5 V and ground planes, providing
very low impedance.

As mentioned previously, because of the inherent differences in operations
between program segments, it is usually appropriate to consider current for
each of the segments independently. In this way, peak current requirements
are readily obtained. Further, you can make average current calculations to
use in determining heating effects of power dissipation. These effects, in turn,
can be used to determine thermal management considerations.

9.5.1 Combining Supply Current Due to All Components

To determine the total supply current requirements for any given program
activity, calculate each of the appropriate components and combine them in
the following sequence:

1) Start with 130 mA quiescent current requirement.

2) Add 60 mA for internal operations unless the device is dormant, such as
when executing IDLE or using an RPTS instruction to perform internal
and/or external bus operations (see Internal Operations section on page
9-7). Internal or external bus operations executed via RPTS do not con-
tribute an internal operations power supply current component. Therefore,
current components in the next two steps may still be required, even
though the 60 mA is omitted.

3) If significant internal bus operations are being performed (see subsection
9.3.2, Internal Bus Operations on page 9-8), add the calculated current
value.

4) If external writes are being performed at high speed (see Section 9.4,
Current Requirements of Output Driver Components on page 9-12), then
add the values calculated for local and global bus current components.

5) Add DMA and communication port current requirements if they are used.

 Calculation of Total Supply Current

9-21 ’C4x Power Dissipation

The current value resulting from summing these components is the total
device current requirement for a given program activity.

9.5.2 Supply Voltage, Operating Frequency, and Temperature Dependencies

Three additional factors that affect current requirements are supply voltage
level, operating temperature, and operating frequency. However, these con-
siderations affect total supply current, not specific components (that is, internal
or external bus operations). Note that supply voltages, operating temperature,
and operating frequency must be maintained within required device specifica-
tions.

The scale factor for these dependencies is applied in the same manner as dis-
cussed in previous sections, once the total current for a particular program
segment has been determined. Figure 9–11 shows the relative scale factors
to be applied to the supply current values as a function of both VDD and operat-
ing frequency.

Figure 9–11. Current Versus Frequency and Supply Voltage

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0 5 10 15 20 25 30 35 40 45 50

Operating Frequency (MHz)

VDD=5.5 V
VDD=5.25 V

VDD=5.0 V
VDD=4.75 V
VDD=4.5 V

In
cr

em
en

ta
l I

D
D

(m
A

)

Power-supply current consumption does not vary significantly with operating
temperature. However, you can use a scale factor of 2% normalized IDD per
50°C change in operating temperature to derate current within the specified
range noted in the TMS320C4x data sheet.

Calculation of Total Supply Current

 9-22

Figure 9–12. Change in Operating Temperature (°C)

1.3

1.02

1.01

1

.99

.98

.97

.96

–20 –10 0 10 20 30 40 50 60 70 80

Operating Temperature (°C)

D
D

N
or

m
al

iz
ed

 I

This temperature dependence is shown graphically in Figure 9–12. Note that
a temperature scale factor of 1.0 corresponds to current values at 25°C, which
is the temperature at which all other references in the document are made.

9.5.3 Design Equation

The procedure for determining the power-supply current requirement can be
summarized in the following equation:

Itotal = (Iqidle + Iiops + Iibus + Ixbusglobal + Ixbuslocal + IDMA + Icp) � F � V � T

where:

F is a scale factor for frequency

V is a scale factor for supply voltage

T is a scale factor for operating temperature

Table 9–2 describes the symbols used in the power-supply current equation
and gives the value and the number from which the value is obtained.

 Calculation of Total Supply Current

9-23 ’C4x Power Dissipation

Table 9–2.Current Equation Typical Values (FCLK = 40 MHz)

Value

Symbol Min Typical Max Note Reference

Iqidle2 – 20 �A 50 �A Idle2 shutdown Figure 9–2

Iqidle 130 mA 130 mA 130 mA Internal idle Figure 9–2

Iiops 60 mA 60 mA 60 mA Branch to self internal Figure 9–2

Iibus 0 mA 50 mA 190 mA Data dependent Figure 9–3, Figure 9–4

Ixbusglobal (max) 0 mA 50 mA 280 mA Data and Cload
dependent

Figure 9–5, Figure 9–6,
Figure 9–9

Ixbuslocal (max) 0 mA 50 mA 280 mA Data and Cload
dependent

Figure 9–5, Figure 9–6,
Figure 9–9

IDMA 0 mA 50 mA 300 mA Data and source/
destination dependent

Figure 9–7

ICP 0 mA 50 mA 250 mA Data dependent Figure 9–8

Notes: 1) All values are scaled by frequency and supply voltage. The nominal tested frequency is 40 MHz.

2) Externally-driven signals are capacitive-load dependent.

3) It is unrealistic to add all of the maximum values, since it is impossible to run at those levels.

9.5.4 Average Current

Over the course of an entire program, some segments typically exhibit signifi-
cantly different levels of current for different durations. For example, a program
may spend 80% of its time performing internal operations and draw a current
of 250 mA; it may spend the remaining 20% of its time performing writes at full
speed to both buses and drawing 790 mA.

While knowledge of peak current levels is important in order to establish power
supply requirements, some applications require information about average
current. This is particularly significant if periods o
f high peak current are short in duration. You can obtain average current by
performing a weighted sum of the current due to the various independent pro-
gram segments over time. You can calculate the average current for the exam-
ple in the previous paragraph as follows:

I = 0.8 � 250 mA + 0.2 � 790 mA = 358 mA

Using this approach, you can calculate average current for any number of pro-
gram segments.

9.5.5 Thermal Management Considerations

Heating characteristics of the TMS320C4x are dependent upon power dis-
sipation, which, in turn, is dependent upon power supply current. When mak-

Calculation of Total Supply Current

 9-24

ing thermal management calculations, you must consider the manner in which
power supply current contributes to power dissipation and to the TMS320C4x
package thermal characteristics’ time constant.

Depending on the sources and destinations of current on the device, some
current contributions to IDD do not constitute a component of power dissipation
at 5 volts. That is to say, the TMS320C4x may be acting only as a switch, in
which case, the voltage drop is across a load and not across the ’C4x. If the
total current flowing into VDD is used to calculate power dissipation at 5 volts,
erroneously large values for package power dissipation will be obtained. The
error occurs because the current resulting from driving a logic high level into
a DC load appears only as a portion of the current used to calculate system
power dissipation due to VDD at 5 volts. Power dissipation is defined as:

P = V � I

where P is power, V is voltage, and I is current. If device outputs are driving
any DC load to a logic high level, only a minor contribution is made to power
dissipation because CMOS outputs typically drive to a level within a few tenths
of a volt of the power supply rails. If this is the case, subtract these current com-
ponents out of the TMS320C4x supply current value and calculate their con-
tribution to system power dissipation separately (see Figure 9–13).

 Calculation of Total Supply Current

9-25 ’C4x Power Dissipation

Figure 9–13. Load Currents

IDD IOUT

VDD

Device Output Driven High

TMS320C4x

ISS = 0

IDD IOUT

VDD

Device Output Driven Low

TMS320C4x

IDD = IOUT

IDD = 0

ISS = IOUT

Furthermore, external loads draw supply current (IDD) only when outputs are
driven high, because when outputs are in the logic zero state, the device is
sinking current through VSS, which is supplied from an external source. There-
fore, the power dissipation due to this component will not contribute through
IDD but will contribute to power dissipation with a magnitude of:

P = VOL � IOL

where VOL is the low-level output voltage and IOL is the current being sunk by
the output, as shown in Figure 9–13. The power dissipation component due
to outputs being driven low should be calculated and added to the total power
dissipation.

When outputs with DC loads are being switched, the power dissipation compo-
nents from outputs being driven high and outputs being driven low should be
averaged and added to the total device power dissipation. Power components
due to DC loading of the outputs should be calculated separately for each pro-
gram segment before average power is calculated.

Note that unused inputs that are left unconnected may float to a voltage level
that will cause the input buffer circuits to remain in the linear region, and there-
fore contribute a significant component to power supply current. Accordingly,
if you want absolute minimum power dissipation, you should make any unused
inputs inactive by either grounding or pulling them high. If several unused
inputs must be pulled high, they can be pulled high together through one resis-
tor to minimize component count and board space.

Calculation of Total Supply Current

 9-26

When you use power dissipation values to determine thermal management
considerations, use the average power unless the time duration of individual
program segments is long. The thermal characteristics of the TMS320C40 in
the 325-pin PGA package are exponential in nature with a time constant on
the order of minutes. Therefore, when subjected to a change in power, the tem-
perature of the device package will require several minutes or more to reach
thermal equilibrium.

If the duration of program segments exhibiting high power dissipation values
is short (on the order of a few seconds) in comparison to the package thermal
characteristics’ time constant, use average power calculated in the same man-
ner as average current described in the previous section. Otherwise, calculate
maximum device temperature on the basis of the actual time required for the
program segments involved. For example, if a particular program segment
lasts for 7 minutes, the device essentially reaches thermal equilibrium due to
the total power dissipation during the period of device activity.

Note that the average power should be determined by calculating the power
for each program segment (including all considerations described above) and
performing a time average of these values, rather than simply multiplying the
average current by VDD, as determined in the previous subsection.

Calculate specific device temperature by using the TMS320C4x thermal
impedance characteristics included in the TMS320C4x data sheet.

 Example Supply Current Calculations

9-27 ’C4x Power Dissipation

9.6 Example Supply Current Calculations

An FFT represents a typical DSP algorithm. The FFT code used in this calcula-
tion processes data in the RAM blocks. The entire algorithm consists mainly
of internal bus operations and hence includes quiescent and, in general, inter-
nal operations. At the end of the processing, the results are written out on the
global and local bus. Therefore, the algorithm exhibits a higher current require-
ment during the write portion where the external bus is being used significantly.

9.6.1 Processing

The processing portion of the algorithm is 95% of the total algorithm. During
this portion, the power-supply current is required for the internal circuitry only.
Data is processed in several loops that make up the majority of the algorithm.
During these loops, two operands are transferred on every cycle. The current
required for internal bus usage, then, is 60 mA (from Figure 9–3). The data is
assumed to be random. A data value scale factor of 0.93 is used (from
Figure 9–4). This value scales 60 mA, yielding 55.8 mA for internal bus opera-
tions. Adding 55.8 mA to the quiescent current requirement and internal opera-
tions current requirement yields a current requirement of 245.8 mA for the
major portion of the algorithm.

I = Iq + Iiops + Iibus
I = 130 mA + 60 mA + (60 mA) (0.93)
 = 245.8 mA

9.6.2 Data Output
The portion of the algorithm corresponding to writing out data is approximately
5% of the total algorithm. Again, the data that is being written is assumed to
be random. From Figure 9–4 and Figure 9–10, scale factors of 0.93 and 0.8
are used for derating due to data value dependency for internal and local
buses, respectively. During the data dump portion of the code, a load and a
store are performed every cycle; however, the parallel load/store instruction
is in an RPTS loop. Therefore, there is no contribution due to internal opera-
tions, because the instruction is fetched only once. The only internal contribu-
tions are due to quiescent and internal bus operations. Figure 9–5 indicates
a 23-mA current contribution due to writes every available cycle. Therefore,
the total contribution due to this portion of the code is:

I = Iq + Iibus + Ixbus

or

I = 130 mA + (60 mA) (0.93) + 85 mA + (23 mA) (0.8)

 = 289.2 mA

Example Supply Current Calculations

 9-28

9.6.3 Average Current

The average current is derived from the two portions of the algorithm. The pro-
cessing portion took 95% of the time and required about 245.8 mA; the data
dump portion took the other 5% and required about 411.6 mA. The average
is calculated as:

Iavg = (0.95) (245.8 mA) + (0.05) (289.2 mA)

 = 247.97 mA

From the thermal characteristics specified in the TMS320C4x User’s Guide,
it can be shown that this current level corresponds to a case temperature of
28°C. This temperature meets the maximum device specification of 85°C and
hence requires no forced air cooling.

9.6.4 Experimental Results

A photograph of the power-supply current for the FFT, using a 40-MHz system
clock, is shown in Appendix A. During the FFT processing, the current varied
between 190 and 220 mA. The current during external writes had a peak of 230
mA, and the average current requirement as measured on a digital multimeter
was 205 mA. Scaling those results to the 50-MHz calculations yielded results
that were close to the actual measured power-supply current.

 Design Considerations

9-29 ’C4x Power Dissipation

9.7 Design Considerations

Designing systems for minimum power dissipation involves reducing device
operating current requirements due to signal switching rate, capacitive load-
ing, and other effects. Selective consideration of these effects makes it pos-
sible to optimize system performance while minimizing power consumption.
This section describes current reduction techniques based on operating cur-
rent dependencies of the device as discussed in previous sections of this doc-
ument.

9.7.1 System Clock and Signal Switching Rates

Since current (and therefore, power) requirements of CMOS devices are
directly proportional to switching frequency, one potential approach to mini-
mizing operating power is to minimize system clock frequency and signal
switching rates. Although performance is often directly proportional to system
clock and signal switching rates, tradeoffs can be made in both areas to
achieve an optimal balance between power usage and performance in the
design of a system.

If reducing power is a primary goal, and a given system design does not have
particularly demanding performance requirements, the system clock rate can
be reduced with the corresponding savings in power. Minimum power is real-
ized when system clock rates are only as fast as necessary to achieve required
system performance. Additionally, if overall system clock rates cannot be
reduced, an alternative approach to power reduction is to reduce clock speed
wherever possible during periods of inactivity.

Also, the appropriate choice of clock generation approach will ensure mini-
mum system power dissipation. The use of an external oscillator rather than
the on-chip oscillator can result in lower power device and system power dis-
sipation levels. As described previously, the internal oscillator can require as
much as 10 mA when operating at 40 MHz. If you use an external oscillator
that requires less than 10 mA for clock generation, overall system power is
reduced.

When considering switching rates of signals other than the system clock, the
main consideration is to minimize switching. Specifically, any unnecessary
switching should be avoided. Outputs or inputs that are unused should either
be disabled, tied high, or grounded, whichever is appropriate. Additionally, out-
puts connected to external circuitry should drive other power dissipation ele-
ments only when absolutely necessary.

Design Considerations

 9-30

9.7.2 Capacitive Loading of Signals

Current requirements are also directly proportional to capacitive loading.
Therefore, all capacitive loading should be minimized. This is especially signif-
icant for device outputs.

The approaches to minimize capacitive loading are consistent with efficient PC
board layout and construction practices. Specifically, signal runs should be as
short as possible, especially for signals with high switching rates. Also, signals
should not run long distances across PC boards to edge connectors unless
absolutely necessary.

Note that the buffering of device outputs that must drive high capacitive loads
reduces supply current for the TMS320C40, but this current is translated to the
buffering device. Whether or not this is a valid tradeoff must be determined at
the system level. The two main considerations are: 1) whether the power
required by the buffers is more or less than the power required from the ’C40
to drive the load in question, and 2) whether or not off-loading the power to the
buffers has any implications with respect to system power-down modes. It may
be desirable to use buffers to drive high capacitive loads, even though they
may require more current than the TMS320C40, especially in cases where
part of the system may be powered down but the TMS320C40 is still required
to interface to other low capacitance loads.

9.7.3 DC Component of Signal Loading

In order to achieve lowest device current requirements, the internal and exter-
nal DC load component of device input and output signal loading must also be
minimized .

Any device inputs that are unused and left floating may cause excessively high
DC current to be drawn by their input buffer circuitry. This occurs because if
an input is left unconnected, the voltage on the input may float to a level that
causes the input buffer to be biased at a point within its range of linear opera-
tion. This can cause the input buffer circuit to draw a significant DC current
directly from VDD to ground. Therefore, any unused device inputs should be
pulled up to VDD via a resistor pullup of nominally 20 kΩ, or driven high with
an unused gate. Input-only pins that are not used can be pulled up in parallel
with other inputs of the same type with a single gate or resistor to minimize sys-
tem component count. In this case, up to 15 or more standard device inputs
can be pulled up with a single resistor.

Any device I/O pins that are unused should be selected as outputs. This avoids
the requirement for pull-ups (to ensure that the I/O input stage is not biased
in the linear region) and therefore eliminates an unnecessary current compo-
nent.

 Design Considerations

9-31 ’C4x Power Dissipation

For any device output, any DC load present is directly reflected in the system’s
power-supply current. Therefore, DC loading of outputs should be reduced to
a minimum. If DC currents are being sourced from the address bus outputs,
the address bus should be set to a level that minimizes the current through the
external load. This can be accomplished by performing a dummy read from an
external address.

For I/O pins that must be used in both the input and output modes, individual
pullup resistors of nominally 20 kΩ should be used to ensure minimum power
dissipation if these pins are not always driven to a valid logic state. This is par-
ticularly true of the data-bus pins. When the bus is not being driven explicitly,
it is left floating, which can cause excessively high currents to be drawn on the
input buffer section of all 64 bits of the bus. In this case, because all 64 data
bus bits are normally used independently in most applications, each data-bus
pin should be pulled up with a separate resistor for minimum power.

 9-32

10-1 Chapter Title—Attribute Reference

Development Support and Part Order Information

This chapter provides development support information, socket descriptions,
device part numbers, and support tool ordering information for the ’C4x.

Each ’C4x support product is described in the TMS320 Family Development
Support Reference Guide (literature number SPRU011). In addition, more
than 100 third-party developers offer products that support the TI TMS320
family. For more information, refer to the TMS320 Third-Party Reference
Guide (literature number SPRU052).

For information on pricing and availability, contact the nearest TI Field Sales
Office or authorized distributor. See the list at the back of this book.

Topic Page

10.1 Development Support 10-2.

10.2 Sockets 10-6.

10.3 Part Order Information 10-9.

Chapter 10

Development Support

 10-2

10.1 Development Support

Texas Instruments offers an extensive line of development tools for the
TMS320C4x generation of DSPs, including tools to evaluate the performance
of the processors, generate code, develop algorithm implementations, and ful-
ly integrate and debug software and hardware modules.

The following products support the development of ’C4x applications:

Code Generation Tools

� The optimizing ANSI C compiler translates ANSI C language directly into
highly optimized assembly code. You can then assemble and link this code
with the TI assembler/ linker, which is shipped with the compiler. It sup-
ports both ’C3x and ’C4x assembly code. This product is currently avail-
able for PCs (DOS, DOS extended memory, OS/2), VAX/VMS and SPARC
workstations. See the TMS320 Floating-Point DSP Optimizing C Compiler
User’s Guide (SPRU034) for detailed information about this tool.

� The assembler/linker converts source mnemonics to executable object
code. It supports both ’C3x and ’C4x assembly code. This product is cur-
rently available for PCs (DOS, DOS extended memory, OS/2). The
’C3x/’C4x assembler for the VAX/VMS and SPARC workstations is only
available as part of the optimizing ’C3x/’C4x compiler. See the TMS320
Floating-Point DSP Assembly Language Tools User’s Guide (SPRU035)
for detailed information about available assembly-language tools.

� The digital filter design package helps you design digital filters.

System Integration and Debug Tools

� The simulator simulates (via software) the operation of the ’C4x and can
be used in C and assembly software development. This product is current-
ly available for PCs (DOS, Windows) and SPARC workstations. See the
TMS320C4x C Source Debugger User’s Guide (SPRU054) for detailed in-
formation about the debugger.

� The XDS510 emulator performs full-speed in-circuit emulation with the
’C4x, providing access to all registers as well as to internal and external
memory of the device. It can be used in C and assembly software develop-
ment and has the capability to debug multiple processors. This product is
currently available for PCs (DOS, Windows, OS/2) and SPARC worksta-
tions. This product includes the emulator board (emulator box, power sup-
ply, and SCSI connector cables in the SPARC version), the ’C4x C Source
Debugger and the JTAG cable.

Because ’C3x and ’C5x XDS510 emulators also come with the same emu-
lator board (or box) as the ’C4x, you can buy the ’C4x C Source Debugger

 Development Support

10-3 Development Support and Part Order Information

Software as a separate product called ’C4x C Source Debugger Conver-
sion Software. This enables you to debug ’C3x/’C4x applications with the
same emulator board. The emulator cable that comes with the ’C3x
XDS510 emulator cannot be used with the ’C4x. A JTAG emulation con-
version cable (see Section 10.3) is needed instead. The emulator cable
that comes with the ’C5x XDS510 emulator can also be used for the ’C4x
without any restriction. See the TMS320C4x C Source Debugger User’s
Guide (SPRU054) for detailed information about the ’C4x emulator.

� The parallel processing development system (PPDS) is a stand-alone
board with four ’C4xs directly connected to each other via their commu-
nication ports. Each ’C4x has 64K-words SRAM and 8K-byte EPROM as
local memory, and they all share a 128K-word global SRAM. See the
TMS320C4x Parallel Processing Development System Technical Refer-
ence (SPRU075) for detailed information about the PPDS.

� The emulation porting kit (EPK) enables you to integrate emulation
technology directly into your system without the need of an XDS510
board. This product is intended to be used by third parties and high-vol-
ume board manufacturers and requires a licensing agreement with Texas
Instruments.

10.1.1 Third-Party Support

The TMS320 family is supported by products and services from more than 100
independent third-party vendors and consultants. These support products
take various forms (both as software and hardware), from cross-assemblers,
simulators, and DSP utility packages to logic analyzers and emulators. The ex-
pertise of those involved in support services ranges from speech encoding and
vector quantization to software/hardware design and system analysis.

See the TMS320 Third-Party Support Reference Guide (literature number
SPRU052) for a more detailed description of services and products offered by
third parties.

10.1.2 The DSP Hotline

For answers to TMS320 technical questions on device problems, develop-
ment tools, documentation, upgrades, and new products, you can contact the
DSP hotline via:

� Phone : (713)274–2320 Monday through Friday from 8:30 a.m. to 5:00
p.m. central time

� Fax: (713)274–2324. (US DSP Hotline), +33–1–3070–1032 (European
DSP hotline)

Development Support

 10-4

� Electronic Mail : 4389750@mcimail.com

To ask about third-party applications and algorithm development packages,
contact the third party directly. Refer to the TMS320 Third-Party Support Ref-
erence Guide (SPRU052) for addresses and phone numbers.

Extensive DSP documentation is available; this includes data sheets, user’s
guides, and application reports. Contact the hotline for information on litera-
ture that you can request from the Literature Response Center,
(800)477–8924.

The DSP hotline does not provide pricing information. Contact the nearest
TI Field Sales Office for prices and availability of TMS320 devices and support
tools.

10.1.3 The Bulletin Board Service (BBS)

The TMS320 DSP Bulletin Board Service (BBS) is a telephone-line computer
service that provides information on TMS320 devices, specification updates
for current or new devices and development tools, silicon and development
tool revisions and enhancements, new DSP application software as it be-
comes available, and source code for programs from any TMS320 user’s
guide.

You can access the BBS via:

� Modem : (300-, 1200-, or 2400-bps) dial (713)274–2323. Set your modem
to 8 data bits,1 stop bit, no parity.

To find out more about the BBS, refer to the TMS320 Family Development
Support Reference Guide (literature number SPRU011).

10.1.4 Internet Services

Texas Instruments offers two Internet-accessible services for DSP support: an
ftp site, and a www site.

� World-wide web : Point your browser at http://www.ti.com to access TI’s
web site. At the site, you can follow links to find product information, online
literature, an online lab, and the 320 Hotline online.

� FTP: Use anonymous ftp to ti.com (Internet port address 192.94.94.1) to
access copies of the files found on the BBS. The BBS files are located in
the subdirectory called mirrors.

 Development Support

10-5 Development Support and Part Order Information

10.1.5 Technical Training Organization (TTO) TMS320 Workshops

’C4x DSP Design Workshop. This workshop is tailored for hardware and soft-
ware design engineers and decision-makers who will be designing and utiliz-
ing the ’C4x generation of DSP devices. Hands-on exercises throughout the
course give participants a rapid start in developing ’C4x design skills. Micro-
processor/assembly language experience is required. Experience with digital
design techniques and C language programming experience is desirable.

These topics are covered in the ’C4x workshop:

� ’C4x architecture/instruction set
� Use of the PC-based software simulator
� Use of the ’C3x/’C4x assembler/linker
� C programming environment
� System architecture considerations
� Memory and I/O interfacing
� Development support

For registration information, pricing, or to enroll, call (800)336–5236, ext.
3904.

Sockets

 10-6

10.2 Sockets

Table 10–1 contains available sockets that accept the 325-pin ’C40 pin grid
array (PGA) and the 304–pin ’C44 Plastic Quad Flatpack (PQF). Table 10–2
lists the phone numbers of the manufacturers listed in Table 10–1.

Table 10–1. Sockets that Accept the 325-pin ’C40 and the 304-pin ’C44

Manufacturer Type Part Number

Advanced Interconnections C40-wire-wrap socket 3919

AMP C40-tool-activated ZIF socket AMP 382533–9

AMP Actuation tool for AMP382533–9 AMP 854234–1

AMP C40-handle-activated ZIF socket AMP 382320–9

AMP C40-PGA ZIF AMP 55291–2

Emulation Technology C40-logic analyzer socket BZ6–325–H6A35–TMS320C40Z

Emulation Technology C40-wire-wrap socket AB–325–H6A35Z–P13–M

Mark Eyelet C40-wire-wrap socket MP325–73311D16

Yamaichi TMS320C44 PDB Socket (304 pins) ic201–3044–004

Table 10–2. Manufacturer Phone Numbers

Manufacturer Phone Number

AMP (717) 564–0100

Advanced Interconnections (401) 823–5200

Emulation Technology (408) 982–0660

Mark Eyelet (203) 756–8847

Yamaichi (408) 456–0797

The remainder of this section describes two available sockets that accept the
’C4x pin grid array (PGA). Both sockets feature zero insertion force (ZIF):

� A tool-activated ZIF socket (TAZ)
� A handle-activated ZIF socket (HAZ)

The sockets described herein are manufactured by AMP Incorporated.

 Sockets

10-7 Development Support and Part Order Information

10.2.1 Tool-Activated ZIF PGA Socket (TAZ)

Figure 10–1. Tool-Activated ZIF Socket

2.260 in. Max. 2.061 in. Max.

0.350 in. Max.

Description :

AMP part number: 382533–9

Pin positions: 325

Soldertail length: 0.170 in. for PC boards 0.125 in.
thick (other tail lengths available)

Actuator tool 354234–1

Features :

� Slightly larger than a PGA device
� Easy package loading because of large funnel entry
� Zero insertion force
� Contact wiping action during insertion ensures clean contact points
� Spring-loaded cover ensures proper loading
� Can be used with robotic insertion and removal
� Horizontal vs. vertical socket forces prevent damage to the device

Sockets

 10-8

10.2.2 Handle-Activated ZIF PGA Socket (HAZ)

Figure 10–2. Handle-Activated ZIF Socket

0.350 in. Max.

0.650 in. Max.

2.700 in. Max.
2.875 in. Max.

Description :

AMP part number: 382320–9

Pin positions: 325

Solder tail length: 0.170 in. for PC boards 0.125 in.
thick (other tail lengths available)

Features:

� Can be used for test and burn-in
� Spring contacts are normally closed
� Easy package loading because of large funnel entry
� Zero insertion force
� Contact wiping action during socket closing ensures clean contact points
� Maximum Operating temperature is 160° C (to allow burn-in capability)

 Part Order Information

10-9 Development Support and Part Order Information

10.3 Part Order Information

This section describes the part numbers of ’C4x devices, development support
hardware, and software tools.

10.3.1 Nomenclature

To designate the stages in the product development cycle, Texas Instruments
assigns prefixes to the part numbers of all TMS320 devices and support tools.
Each TMS320 device has one of three prefixes: TMX, TMP, or TMS. Each sup-
port tool has one of two possible prefix designators: TMDX or TMDS. These
prefixes represent evolutionary stages of product development from engineer-
ing prototypes (TMX/TMDX) through fully qualified production devices and
tools (TMS/TMDS). This development flow is defined below.

Device Development Evolutionary Flow:

TMX The part is an experimental device that is not necessarily representa-
tive of the final device’s electrical specifications.

TMP The part is a device from a final silicon die that conforms to the device’s
electrical specifications but has not completed quality and reliability
verification.

TMS The part is a fully qualified production device.

Support Tool Development Evolutionary Flow:

TMDX The development-support product that has not yet completed Texas
Instruments internal qualification testing.

TMDS The development-support product is a fully qualified development
support product.

TMX and TMP devices and TMDX development support tools are shipped with
the following disclaimer:

“Developmental product is intended for internal evaluation purposes.”

TMS devices and TMDS development support tools have been fully character-
ized, and the quality and reliability of the device has been fully demonstrated.
Texas Instruments standard warranty applies to these products.

Note:

It is expected that prototype devices (TMX or TMP) have a greater failure rate
than standard production devices. Texas Instruments recommends that
these devices not be used in any production system, because their expected
end-use failure rate is still undefined. Only qualified production devices
should be used.

Part Order Information

 10-10

TI device nomenclature also includes the device family name and a suffix. This
suffix indicates the package type (for example, N, FN, or GB) and temperature
range (for example, L). Figure 10–3 provides a legend for reading the com-
plete device name for any TMS320 family member.

Figure 10–3. Device Nomenclature

PREFIX

TEMPERATURE RANGE
(AMBIENT)

TMS 320 C 40 GF L

SMJ = Ceramic QML
TMX = experimental device
TMP = prototype device
TMS = qualified device
SMQ = Plastic QML

DEVICE FAMILY
320 = TMS320 Family

TECHNOLOGY

E = CMOS EPROM

A = -40 to 85°C
H = 0 to 50°C
L = 0 to 70°C
M = -55 to 125°C
S = -55 to 100°C

PACKAGE TYPE
FD = ceramic leadless CC
FN = plastic leaded CC
FZ = ceramic CER-QUAD
GB = 181-pin ceramic PGA
GE = 181-pin ceramic PGA
GF = 325-pin ceramic PGA
HFH = 352-leaded CER-QFP
J = ceramic DIP
JD = ceramic DIP, side-brazed
N = plastic DIP
TA = tape automated bonding

 (encapsulated)
TB = tape automated bonding

 (bare die)
KGD = known good die
PDB = 304-pin plastic quad

 flatpack

C = CMOS

C1x DSP:
10 14
15 16
17

C2x DSP:
25 26
28

C3x DSP:
30 31
32

C4x DSP:
40
44

C5x DSP:
50 51
52 53

DEVICE

10.3.2 Device and Development Support Tools

Table 10–3 lists ’C4x device part numbers. Table 10–4 lists the development
support tools available for the ’C4x DSP, their part numbers, and the platform
on which they run.

 Part Order Information

10-11 Development Support and Part Order Information

Table 10–3. Device Part Numbers

Device Part Number Voltage Operating
Frequency

Comm
Ports

Package

TMS320C40GFL 5V 50 MHz/40 ns 6 325-pin ceramic PGA

TMS320C40GFL60 5V 60 MHz/33 ns 6 325-pin ceramic PGA

TMS320C44PDB50 5V 50 MHz/40 ns 4 304-pin PQFP

TMS320C44PDB60 5V 60 MHz/33 ns 4 304-pin PQFP

SMJ320C40GFM40 5V 40MHz/50 ns 6 325-pin ceramic PGA

SMJ320C40GFM50 5V 50MHz/40 ns 6 325-pin ceramic PGA

SMJ320C40HFHM40 5V 40MHz/50 ns 6 352-lead ceramic PGA

SMJ320C40HFHM50 5V 50MHz/40 ns 6 352-lead ceramic PGA

SMJ320C40TAM40 5V 40MHz/50ns 6 324 pad TAB tape (encapsulated)

SMJ320C40TBM40 5V 40MHz/50ns 6 324 pad TAB tape (bare die)

TMS320C40TAL50 5V 50MHz/40ns 6 324 pad TAB tape (encapsulated)

SMJ320C40TAM50 5V 50MHz/40ns 6 324 pad TAB tape (encapsulated)

SMJ320C40TBM50 5V 50MHz/40ns 6 324 pad TAB tape (bare die)

TMS320C40TAL60 5V 60MHz/33ns 6 324 pad TAB tape (encapsulated)

SMJ320C40KGDM40 5V 40MHz/50ns 6 Known Good Die

SMJ320C40KGDM50 5V 50MHz/40ns 6 Known Good Die

TMS320C40KGDL50 5V 50MHz/40ns 6 Known Good Die

TMS320C40KGDL60 5V 60MHz/33ns 6 Known Good Die

Part Order Information

 10-12

Table 10–4. Development Support Tools Part Numbers

Development Tool Part Number Platform

C Compiler/Assembler/Linker TMDS3243855-02 PC (DOS, OS/2)

C Compiler/Assembler/Linker TMDS3243255-08 VAX (VMS)

C Compiler/Assembler/Linker TMDS3243555-08 SPARC (Sun OS)

Assembler/Linker TMDS3243850-02 PC (DOS)

Simulator (C language) TMDS3244851-02 PC (DOS, Windows)

Simulator (C language) TMDS3244551-09 SPARC (Sun OS)

Tartan Floating Point Library 320FLO-PC-C40 PC (DOS)

Tartan Floating Point Library 320FLO-SUN-C40 SPARC (Sun OS)

Digital Filter Design Package DFDP PC (DOS)

C Source Debugger Conversion Software TMDS3240140 PC (XDS510)

C Source Debugger Conversion Software TMDS3240640 Sun (XDS510WS)

Emulation Porting Kit TMDX3240040† ––

’C3x/’C4x Tartan C/C++ Compiler/Assembler/Linker TAR–CCM–PC PC (DOS)

’C3x/’C4x Tartan C/C++ Compiler/Assembler/Linker TAR–CCM–SP SPARC

’C3x/’C4x Tartan C/C++ Compiler/Assembler/Linker/
Simulator

TAR–SIM–PC PC (DOS)

’C3x/’C4x Tartan C/C++ Compiler/Assembler/Linker/
Simulator

TAR–SIM–SP SPARC

’C3x/’C4x Tartan C/C++ XDS510 Debugger TAR–DEG–XDS–PC PC (DOS, Windows)

’C3x/’C4x Tartan C/C++ XDS510 Debugger TAR–DEG–XDS–SP SPARC (Sun OS)

XDS510 Emulator‡ TMDS3260140 PC (DOS, OS/2, Windows)

XDS510WS Emulator§ TMDS3260640 Sun (SPARC SCSI)

PC/Sparc JTAG Emulation Cable TMDS3080001 XDS510/XDS510WS

Parallel Processing Development System TMDX3261040 XDS510/XDS510WS

† Requires licensing agreement.
‡ Includes XDS510WS box, SCSI cable, power supply, and JTAG cable. TMDS3240640 C-source debugger software not

included.
§ Includes XDS510 board and JTAG cable. TMDS3240140 C-source debugger software not included.

 Running Title—Attribute Reference

11-1 Chapter Title—Attribute Reference

XDS510 Emulator Design Considerations

This chapter explains the design requirements of the XDS510 emulator with
respect to JTAG designs, and discusses the XDS510 cable (manufacturing
part number 2617698-0001). This cable is identified by a label on the cable pod
marked JTAG 3/5V and supports both standard 3-volt and 5-volt target system
power inputs.

The term JTAG, as used in this book, refers to TI scan-based emulation, which
is based on the IEEE 1149.1 standard.

Topic Page

11.1 Designing Your Target System’s 11-2.
Emulator Connector (14-Pin Header)

11.2 Bus Protocol 11-3.

11.3 IEEE 1149.1 Standard 11-3.

11.4 JTAG Emulator Cable Pod Logic 11-4.

11.5 JTAG Emulator Cable Pod Signal Timing 11-5.

11.6 Emulation Timing Calculations 11-6.

11.7 Connections Between the Emulator and the Target System 11-8.

11.8 Mechanical Dimensions for the 14-Pin Emulator Connector 11-12. . . .

11.9 Emulation Design Considerations 11-14.

Chapter 11

Designing Your Target System’s Emulator Connector (14-Pin Header)

 11-2

11.1 Designing Your Target System’s Emulator Connector (14-Pin Header)
JTAG target devices support emulation through a dedicated emulation port.
This port is a superset of the IEEE 1149.1 standard and is accessed by the
emulator. To communicate with the emulator, your target system must have a
14-pin header (two rows of seven pins) with the connections that are shown
in Figure 11–1. Table 11–1 describes the emulation signals.

Figure 11–1. 14-Pin Header Signals and Header Dimensions

TDI 3 4 GND

TDO 7 8 GND

TMS 1 2 TRST

TCK_RET 9 10 GND

TCK 11 12 GND

Header Dimensions:
Pin-to-pin spacing, 0.100 in. (X,Y)
Pin width, 0.025-in. square post
Pin length, 0.235-in. nominal

PD (VCC) 5 6 no pin (key)†

EMU0 13 14 EMU1
† While the corresponding female position on the cable connector is plugged to prevent improper

connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the sche-
matics and wiring diagrams in this document.

Table 11–1. 14-Pin Header Signal Descriptions

Signal Description
Emulator †

State
Target †

State
TMS Test mode select O I

TDI Test data input O I

TDO Test data output I O

TCK Test clock. TCK is a 10.368-MHz clock
source from the emulation cable pod. This
signal can be used to drive the system test
clock

O I

TRST‡ Test reset O I

EMU0 Emulation pin 0 I I/O

EMU1 Emulation pin 1 I I/O

PD(VCC) Presence detect. Indicates that the emula-
tion cable is connected and that the target is
powered up. PD should be tied to VCC in the
target system.

I O

TCK_RET Test clock return. Test clock input to the
emulator. May be a buffered or unbuffered
version of TCK.

I O

GND Ground

† I = input; O = output
‡ Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise

environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current
considerations.)

 Designing Your Target System’s Emulator Connector (14-Pin Header)

11-3 XDS510 Emulator Design Considerations

Although you can use other headers, recommended parts include:

straight header, unshrouded DuPont Connector Systems
part numbers: 65610–114

 65611–114

 67996–114

 67997–114

11.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for the test access port
(TAP) bus slave devices and provides certain rules, summarized as follows:

� The TMS/TDI inputs are sampled on the rising edge of the TCK signal of
the device.

� The TDO output is clocked from the falling edge of the TCK signal of the
device.

When these devices are daisy-chained together, the TDO of one device has
approximately a half TCK cycle setup to the next device’s TDI signal. This type
of timing scheme minimizes race conditions that would occur if both TDO and
TDI were timed from the same TCK edge. The penalty for this timing scheme
is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for bus master (emula-
tor) devices. Instead, it states that it expects a bus master to provide bus slave
compatible timings. The XDS510 provides timings that meet the bus slave
rules.

11.3 IEEE 1149.1 Standard

For more information concerning the IEEE 1149.1 standard, contact IEEE
Customer Service:

Address: IEEE Customer Service
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331

Phone: (800) 678–IEEE in the US and Canada
(908) 981–1393 outside the US and Canada

FAX: (908) 981–9667 Telex: 833233

JTAG Emulator Cable Pod Logic

 11-4

11.4 JTAG Emulator Cable Pod Logic

Figure 11–2 shows a portion of the emulator cable pod. These are the function-
al features of the pod:

� Signals TDO and TCK_RET can be parallel-terminated inside the pod if
required by the application. By default, these signals are not terminated.

� Signal TCK is driven with a 74LVT240 device. Because of the high-current
drive (32 mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied
to TCK_RET, then you can use the parallel terminator in the pod.

� Signals TMS and TDI can be generated from the falling edge of TCK_RET,
according to the IEEE 1149.1 bus slave device timing rules.

� Signals TMS and TDI are series-terminated to reduce signal reflections.

� A 10.368-MHz test clock source is provided. You may also provide your
own test clock for greater flexibility.

Figure 11–2. JTAG Emulator Cable Pod Interface

100 Ω

TL7705A
RESIN

270 Ω

JP2

180 Ω

TCK_RET (Pin 9)�

EMU1 (Pin 14)

EMU0 (Pin 13)
74AS1034

GND (Pins 4,6,8,10,12)

TRST (Pin 2)

TCK (Pin 11)�

10.368 MHz

33 Ω

33 Ω

TDI (Pin 3)

TMS (Pin 1)

TDO (Pin 7)

74LVT240

180 Ω

JP1

270 Ω
74F175

Q

Q

D

PD(VCC) (Pin 5)

+5 V

+5 V

74AS1004

Y

Y

Y

Y

A

† The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided
as an optional target system test clock source.

 JTAG Emulator Cable Pod Signal Timing

11-5 XDS510 Emulator Design Considerations

11.5 JTAG Emulator Cable Pod Signal Timing

Figure 11–3 shows the signal timings for the emulator cable pod. Table 11–2
defines the timing parameters. These timing parameters are calculated from
values specified in the standard data sheets for the emulator and cable pod
and are for reference only. Texas Instruments does not test or guarantee these
timings.

The emulator pod uses TCK_RET as its clock source for internal synchroni-
zation. TCK is provided as an optional target system test clock source.

Figure 11–3. JTAG Emulator Cable Pod Timings

TDO

TMS/TDI

TCK_RET

6
5

4

3
2

1

1.5 V

Table 11–2. Emulator Cable Pod Timing Parameters

No. Reference Description Min Max Units

1 tc(TCK) TCK_RET period 35 200 ns

2 tw(TCKH) TCK_RET high-pulse duration 15 ns

3 tw(TCKL) TCK_RET low-pulse duration 15 ns

4 td(TMS) Delay time, TMS/TDI valid from TCK_RET low 6 20 ns

5 tsu(TDO) TDO setup time to TCK_RET high 3 ns

6 th(TDO) TDO hold time from TCK_RET high 12 ns

Emulation Timing Calculations

 11-6

11.6 Emulation Timing Calculations

The following examples help you calculate emulation timings in your system.
For actual target timing parameters, see the appropriate device data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay, maximum 10 ns

td(bufmin) Target buffer delay, minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Assume a 40/60 duty cycle clock 0.4
(40%)

Given in Table 11–2 (on page 11-5):

td(TMSmax) Emulator TMS/TDI delay from TCK_RET
low, maximum

20 ns

tsu(TDOmin) TDO setup time to emulator TCK_RET
high, minimum

3 ns

There are two key timing paths to consider in the emulation design:

� The TCK_RET-to-TMS/TDI path, called tpd(TCK_RET–TMS/TDI)
� The TCK_RET-to-TDO path, called tpd(TCK_RET–TDO)

Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Case 1: Single processor, direct connection, TMS/TDI timed from TCK_RET low.

t
pd �TCK_RET–TMS�TDI� �

�td �TMSmax� � tsu �TTMS��
t�TCKfactor�

�
[20ns � 10ns]

0.4
� 75ns (13.3 MHz)

tpd �TCK_RET–TDO� �
�td �TTDO� � tsu �TDOmin��

t�TCKfactor�

�
[15ns � 3ns]

0.4
� 45ns (22.2 MHz)

In this case, the TCK_RET-to-TMS/TDI path is the limiting factor.

 Emulation Timing Calculations

11-7 XDS510 Emulator Design Considerations

Case 2: Single/multiprocessor, TMS/TDI/TCK buffered input, TDO buffered output,

TMS/TDI timed from TCK_RET low.

tpd (TCK_RET–TMS�TDI) �
�td (TMSmax)

� tsu (TTMS)
� t (bufskew)

�
t�TCKfactor�

�
�20ns � 10ns � 1.35ns�

0.4

� 78.4ns (12.7 MHz)

tpd (TCK_RET–TDO) �
�td (TTDO)

� tsu (TDOmin) � td (bufmax)
�

t �TCKfactor�

� 70ns (14.3 MHz)

�
[15ns � 3ns � 10ns]

0.4

In this case, the TCK_RET-to-TMS/TDI path is the limiting factor.

In a multiprocessor application, it is necessary to ensure that the EMU0–1 lines

can go from a logic low level to a logic high level in less than 10 µs. This can be

calculated as follows:

tr = 5(Rpullup × Ndevices × Cload_per_device)

= 5(4.7 k� ×16 × 15 pF)

= 5.64 µs

Connections Between the Emulator and the Target System

 11-8

11.7 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the JTAG target system. Depending upon the situation, you must supply
the correct signal buffering, test clock inputs, and multiple processor intercon-
nections to ensure proper emulator and target system operation.

Signals applied to the EMU0 and EMU1 pins on the JTAG target device can
be either input or output (I/O). In general, these two pins are used as both input
and output in multiprocessor systems to handle global run/stop operations.
EMU0 and EMU1 signals are applied only as inputs to the XDS510 emulator
header.

11.7.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is
greater than six inches, the emulation signals must be buffered. If the distance
is less than six inches, no buffering is necessary. The following illustrations
depict these two situations.

� No signal buffering. In this situation, the distance between the header
and the JTAG target device should be no more than six inches.

VCC

Emulator Header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

6 Inches or Less

The EMU0 and EMU1 signals must have pullup resistors connected to VCC to
provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested for
most applications.

 Connections Between the Emulator and the Target System

11-9 XDS510 Emulator Design Considerations

� Buffered transmission signals. In this situation, the distance between
the emulation header and the processor is greater than six inches. Emula-
tion signals TMS, TDI, TDO, and TCK_RET are buffered through the same
package.

VCC

Emulator Header
VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater Than
6 Inches

� The EMU0 and EMU1 signals must have pullup resistors connected to
VCC to provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is
suggested for most applications.

� The input buffers for TMS and TDI should have pullup resistors con-
nected to VCC to hold these signals at a known value when the emula-
tor is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� To have high-quality signals (especially the processor TCK and the
emulator TCK_RET signals), you may have to employ special care
when routing the PWB trace. You also may have to use termination
resistors to match the trace impedance. The emulator pod provides
optional internal parallel terminators on the TCK_RET and TDO. TMS
and TDI provide fixed series termination.

� Since TRST is an asynchronous signal, it should be buffered as
needed to insure sufficient current to all target devices.

Connections Between the Emulator and the Target System

 11-10

11.7.2 Using a Target-System Clock

Figure 11–4 shows an application with the system test clock generated in the
target system. In this application, the TCK signal is left unconnected.

Figure 11–4. Target-System-Generated Test Clock

NC

System Test Clock

VCC

Emulator Header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater Than
6 Inches

VCC

Note: When the TMS/TDI lines are buffered, pullup resistors should be used to hold the buffer
inputs at a known level when the emulator cable is not connected.

There are two benefits to having the target system generate the test clock:

� The emulator provides only a single 10.368-MHz test clock. If you allow
the target system to generate your test clock, you can set the frequency
to match your system requirements.

� In some cases, you may have other devices in your system that require
a test clock when the emulator is not connected. The system test clock
also serves this purpose.

 Connections Between the Emulator and the Target System

11-11 XDS510 Emulator Design Considerations

11.7.3 Configuring Multiple Processors

Figure 11–5 shows a typical daisy-chained multiprocessor configuration,
which meets the minimum requirements of the IEEE 1149.1 specification. The
emulation signals in this example are buffered to isolate the processors from
the emulator and provide adequate signal drive for the target system. One of
the benefits of this type of interface is that you can generally slow down the test
clock to eliminate timing problems. You should follow these guidelines for
multiprocessor support:

� The processor TMS, TDI, TDO, and TCK signals should be buffered
through the same physical package for better control of timing skew.

� The input buffers for TMS, TDI, and TCK should have pullup resistors con-
nected to VCC to hold these signals at a known value when the emulator
is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide
isolation. These are not critical signals and do not have to be buffered
through the same physical package as TMS, TCK, TDI, and TDO. Unbuf-
fered and buffered signals are shown in this section (page 11-8 and page
11-9).

Figure 11–5. Multiprocessor Connections

TDITDI TDOTDO

JTAG DeviceJTAG Device

VCC

Emulator Header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1 VCC

Mechanical Dimensions for the 14-Pin Emulator Connector

 11-12

11.8 Mechanical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable,
an active cable pod, and a short section of jacketed cable that connects to the
target system. The overall cable length is approximately 3 feet 10 inches.
Figure 11–6 and Figure 11–7 (page 11-13) show the mechanical dimensions
for the target cable pod and short cable. Note that the pin-to-pin spacing on
the connector is 0.100 inches in both the X and Y planes. The cable pod box
is nonconductive plastic with four recessed metal screws.

Figure 11–6. Pod/Connector Dimensions

0.90

2.70

4.50

9.50

Refer to Figure 11–7.

Emulator Cable Pod

Short, Jacketed Cable

Connector

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.

 Mechanical Dimensions for the 14-Pin Emulator Connector

11-13 XDS510 Emulator Design Considerations

Figure 11–7. 14-Pin Connector Dimensions

0.100
Key, Pin 6

0.100

0.87

0.66

0.20

Pins 2, 4, 6, 8, 10, 12, 14Pins 1, 3, 5, 7, 9, 11, 13

Cable

Connector, Side View

Connector, Front View

Cable

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.

Emulation Design Considerations

 11-14

11.9 Emulation Design Considerations

This section describes the scan path linker (SPL), which can simultaneously
add all four secondary JTAG scan paths to the main scan path. It also de-
scribes how to use the emulation pins and configure multiple processors.

11.9.1 Using Scan Path Linkers

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG
emulation scan path into smaller, logically connected groups of 4 to 16
devices. As described in the Advanced Logic and Bus Interface Logic Data
Book (literature number SCYD001), the SPL is compatible with the JTAG
emulation scanning. The SPL is capable of adding any combination of its four
secondary scan paths into the main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance
and isolation than a single scan path. Since an SPL has the capability of adding
all secondary scan paths to the main scan path simultaneously, it can support
global emulation operations, such as starting or stopping a selected group of
processors.

TI emulators do not support the nesting of SPLs (for example, an SPL
connected to the secondary scan path of another SPL). However, you can
have multiple SPLs on the main scan path.

Although the ACT8999 scan path selector is similar to the SPL, it can add only
one of its secondary scan paths at a time to the main JTAG scan path. Thus,
global emulation operations are not assured with the scan path selector. For
this reason, scan path selectors are not supported.

You can insert an SPL on a backplane so that you can add up to four device
boards to the system without the jumper wiring required with nonbackplane
devices. You connect an SPL to the main JTAG scan path in the same way you
connect any other device. Figure 11–8 shows you how to connect a secondary
scan path to an SPL.

 Emulation Design Considerations

11-15 XDS510 Emulator Design Considerations

Figure 11–8. Connecting a Secondary JTAG Scan Path to an SPL

TDI

TCK

TDO

TRST

TMS

TDO

TRST

TCK

TMS

TDI

DTDI0

DTMS0

DTDO0

DTCK

TDO

TRST

TCK

TMS

TDI

SPL

JTAG 0

JTAG N
DTDI1

DTMS1

DTDO1

DTDI2

DTMS2

DTDO2

DTDI3

DTMS3

DTDO3

. .
 .

The TRST signal from the main scan path drives all devices, even those on
the secondary scan paths of the SPL. The TCK signal on each target device
on the secondary scan path of an SPL is driven by the SPL’s DTCK signal. The
TMS signal on each device on the secondary scan path is driven by the respec-
tive DTMS signals on the SPL.

DTDO on the SPL is connected to the TDI signal of the first device on the sec-
ondary scan path. DTDI on the SPL is connected to the TDO signal of the last
device in the secondary scan path. Within each secondary scan path, the TDI
signal of a device is connected to the TDO signal of the device before it. If the
SPL is on a backplane, its secondary JTAG scan paths are on add-on boards;
if signal degradation is a problem, you may need to buffer both the TRST and
DTCK signals. Although less likely, you may also need to buffer the DTMSn
signals for the same reasons.

Emulation Design Considerations

 11-16

11.9.2 Emulation Timing Calculations for SPL

The following examples help you to calculate the emulation timings in the SPL
secondary scan path of your system. For actual target timing parameters, see
the appropriate device data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay, maximum 10 ns

td(bufmin) Target buffer delay, minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Assume a 40/60 duty cycle clock 0.4
(40%)

Given in the SPL data sheet:

td(DTMSmax) SPL DTMS/DTDO delay from TCK
low, maximum

31 ns

tsu(DTDLmin) DTDI setup time to SPL TCK
high, minimum

7 ns

td(DTCKHmin) SPL DTCK delay from TCK
high, minimum

2 ns

td(DTCKLmax) SPL DTCK delay from TCK
low, maximum

16 ns

There are two key timing paths to consider in the emulation design:

� The TCK-to-DTMS/DTDO path, called tpd(TCK–DTMS)
� The TCK-to-DTDI path, called tpd(TCK–DTDI)

 Emulation Design Considerations

11-17 XDS510 Emulator Design Considerations

Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Case 1: Single processor, direct connection, DTMS/DTDO timed from TCK low.

tpd �TCK–DTMS� �

�td �DTMSmax� � td �DTCKHmin� � tsu �TTMS�
�

t�TCKfactor�

�
[31ns � 2ns � 10ns]

0.4

� 107.5ns (9.3 MHz)

t
pd �TCK–DTDI�

�
�t

d �TTDO�� t
d �DTCKLmax�

� t
su �DTDLmin�

�
t�TCKfactor�

�
[15ns � 16ns � 7ns]

0.4

� 9.5ns (10.5 MHz)

In this case, the TCK-to-DTMS/DTDL path is the limiting factor.

Case 2: Single/multiprocessor, DTMS/DTDO/TCK buffered input, DTDI buffered out-

put, DTMS/DTDO timed from TCK low.

tpd (TCK–TDMS) �

�td (DTMSmax) � t�DTCKHmin� � tsu (TTMS) � t(bufskew)�
t�TCKfactor�

�
[31ns � 2ns � 10ns � 1.35ns]

0.4

� 110.9ns (9.0 MHz)

tpd (TCK–DTDI) �

�td (TTDO) � td �DTCKLmax� � tsu (DTDLmin)
� td (bufskew)�

t�TCKfactor�

� 120ns (8.3 MHz)

�
[15ns � 15ns � 7ns � 10ns]

0.4

In this case, the TCK-to-DTDI path is the limiting factor.

Emulation Design Considerations

 11-18

11.9.3 Using Emulation Pins

The EMU0/1 pins of TI devices are bidirectional, three-state output pins. When
in an inactive state, these pins are at high impedance. When the pins are
active, they function in one of the two following output modes:

� Signal Event
The EMU0/1 pins can be configured via software to signal internal events.
In this mode, driving one of these pins low can cause devices to signal
such events. To enable this operation, the EMU0/1 pins function as open-
collector sources. External devices such as logic analyzers can also be
connected to the EMU0/1 signals in this manner. If such an external
source is used, it must also be connected via an open-collector source.

� External Count
The EMU0/1 pins can be configured via software as totem-pole outputs
for driving an external counter. These devices can be damaged if the out-
put of more than one device is configured for totem-pole operation. The
emulation software detects and prevents this condition. However, the
emulation software has no control over external sources on the EMU0/1
signal. Therefore, all external sources must be inactive when any device
is in the external count mode.

TI devices can be configured by software to halt processing if their EMU0/1
pins are driven low. This feature, in combination with the use of the signal event
output mode, allows one TI device to halt all other TI devices on a given event
for system-level debugging.

If you route the EMU0/1 signals between boards, they require special handling
because these signals are more complex than normal emulation signals.
Figure 11–9 shows an example configuration that allows any processor in the
system to stop any other processor in the system. Do not tie the EMU0/1 pins
of more than 16 processors together in a single group without using buffers.
Buffers provide the crisp signals that are required during a RUNB (run bench-
mark) debugger command or when the external analysis counter feature is
used.

 Emulation Design Considerations

11-19 XDS510 Emulator Design Considerations

Figure 11–9. EMU0/1 Configuration

Open
Collector

Drivers

EMU0/1-IN

Backplane

Target Board m

TCK

XCNT_ENABLE

Pullup Resistor

To Emulator EMU0

PAL
Pullup
Resistor

Open
Collector

Drivers

Target Board 1

EMU0/1

Pullup Resistor

EMU0/1-OUT

. . .Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Notes: 1) The low time on EMUx-IN should be at least one TCK cycle and less than 10 �s. Software will set the EMUx-OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rising/falling edges of less than 25 ns,
the modification shown in this figure is suggested. Rising edges slower than 25 ns can cause the emulator to detect
false edges during the RUNB command or when the external counter selected from the debugger analysis menu
is used.

These seven important points apply to the circuitry shown in Figure 11–9 and
the timing shown in Figure 11–10:

� Open-collector drivers isolate each board. The EMU0/1 pins are tied to-
gether on each board.

� At the board edge, the EMU0/1 signals are split to provide IN/OUT. This
is required to prevent the open-collector drivers from acting as a latch that
can be set only once.

� The EMU0/1 signals are bused down the backplane. Pullup resistors are
installed as required.

� The bused EMU0/1 signals go into a PAL� device whose function is to
generate a low pulse on the EMU0/1-IN signal when a low level is detected

Emulation Design Considerations

 11-20

on the EMU0/1-OUT signal. This pulse must be longer than one TCK
period to affect the devices, but less than 10 µs to avoid possible conflicts
or retriggering, once the emulation software clears the device’s pins.

� During a RUNB debugger command or other external analysis count, the
EMU0/1 pins on the target device become totem-pole outputs. The EMU1
pin is a ripple carry-out of the internal counter. EMU0 becomes a
processor-halted signal. During a RUNB or other external analysis count,
the EMU0/1-IN signal to all boards must remain in the high (disabled)
state. You must provide some type of external input (XCNT_ENABLE) to
the PAL to disable the PAL from driving EMU0/1-IN to a low state.

� If sources other than TI processors (such as logic analyzers) are used to
drive EMU0/1, their signal lines must be isolated by open-collector drivers
and be inactive during RUNB and other external analysis counts.

� You must connect the EMU0/1-OUT signals to the emulation header or di-
rectly to a test bus controller.

 Emulation Design Considerations

11-21 XDS510 Emulator Design Considerations

Figure 11–10.Suggested Timings for the EMU0 and EMU1 Signals

EMU0/1-IN

EMU0/1-OUT

TCK

Figure 11–11.EMU0/1 Configuration With Additional AND Gate to Meet Timing
Requirements

Open
Collector

Drivers

EMU0/1-IN

Backplane

Target Board m

TCK

XCNT_ENABLE

Pullup Resistor

To Emulator EMU0

PAL
Pullup
Resistor

Open
Collector

Drivers

Target Board 1

EMU0/1

Pullup Resistor

EMU1 signal from other boards

EMU1AND

To Emulator EMU1

Circuitry required for >25-ns rising/
falling edge modification

EMU0/1-OUT

. . .Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Up to
m boards

Notes: 1) The low time on EMUx–IN should be at least one TCK cycle and less than 10 �s. Software will set the EMUx–OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rising/falling edges of less than 25 ns,
the modification shown in this figure is suggested. Rising edges slower than 25 ns can cause the emulator to detect
false edges during the RUNB command or when the external counter selected from the debugger analysis menu
is used.

Emulation Design Considerations

 11-22

If it is not important that the devices on one target board are stopped by devices
on another target board via the EM0/1, then the circuit in Figure 11–12 can be
used. In this configuration, the global-stop capability is lost. It is important not
to overload EMU0/1 with more than 16 devices.

Figure 11–12.EMU0/1 Configuration Without Global Stop

EMU0/1

To Emulator

Pullup Resistor

. . .

EMU0/1

. . .Device Device

EMU0/1

. . .

. . .

. . .

1 n

Device Device
1 n

. . .

Target Board m

Target Board 1

Pullup Resistor

Pullup Resistor

Note: The open-collector driver and pullup resistor on EMU1 must be able to provide rising/falling edges of less than 25 ns.
Rising edges slower than 25 ns can cause the emulator to detect false edges during the RUNB command or when the
external counter selected from the debugger analysis menu is used. If this condition cannot be met, then the EMU0/1
signals from the individual boards should be ANDed together (as shown in Figure 1-11) to produce an EMU0/1 signal for
the emulator.

 Emulation Design Considerations

11-23 XDS510 Emulator Design Considerations

11.9.4 Performing Diagnostic Applications

For systems that require built-in diagnostics, it is possible to connect the
emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead
of the emulation header. The TBC is described in the Texas Instruments Ad-
vanced Logic and Bus Interface Logic Data Book (literature number
SCYD001). Figure 11–13 shows the scan path connections of n devices to the
TBC.

Figure 11–13.TBC Emulation Connections for n JTAG Scan Paths

JTAG0

JTAGN
TDI

EMU1

TMS

TDO

EMU0

TRST

TCK

TDO

TCK

TRST

EMU1

EMU0

TMS

TDI

Clock

TDI1

TDI0

TCKO

TMS5/EVNT3

TMS4/EVNT2

TMS3/EVNT1

TMS2/EVNT0

TMS1

TMS0

TDO

TCKI

VCC

TBC

In the system design shown in Figure 1–13, the TBC emulation signals TCKI,
TDO, TMS0, TMS2/EVNT0, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDI0
are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected. The target
devices’ EMU0 and EMU1 signals are connected to VCC through pullup resis-
tors and tied to the TBC’s TMS2/EVNT0 and TMS3/EVNT1 pins, respectively.
The TBC’s TCKI pin is connected to a clock generator. The TCK signal for the
main JTAG scan path is driven by the TBC’s TCKO pin.

Emulation Design Considerations

 11-24

On the TBC, the TMS0 pin drives the TMS pins on each device on the main
JTAG scan path. TDO on the TBC connects to TDI on the first device on the
main JTAG scan path. TDI0 on the TBC is connected to the TDO signal of the
last device on the main JTAG scan path. Within the main JTAG scan path, the
TDI signal of a device is connected to the TDO signal of the device before it.
TRST for the devices can be generated either by inverting the TBC’s
TMS5/EVNT3 signal for software control or by logic on the board itself.

A-1

Appendix A

Glossary

A

A0–A30: External address pins for data/program memory or I/O devices.
These pins are on the global bus. See also LA0–LA30.

address: The location of program code or data stored in memory.

addressing mode: The method by which an instruction interprets its oper-
ands to acquire the data it needs.

ALU: See Arithmetic logic unit.

analog-to-digital (A/D) converter: A successive-approximation converter
with internal sample-and-hold circuitry used to translate an analog signal
to a digital signal.

ARAU: See auxiliary register arithmetic unit.

arithmetic logic unit (ALU): The part of the CPU that performs arithmetic
and logic operations.

auxiliary registers (ARn): A set of registers used primarily in address gen-
eration.

auxiliary register arithmetic unit (ARAU): Auxiliary register arithmetic
unit. A16-bit arithmetic logic unit (ALU) used to calculate indirect ad-
dresses using the auxiliary registers as inputs and outputs.

B

bit-reversed addressing: Addressing in which several bits of an address
are reversed in order to speed processing of algorithms, such as Fourier
transforms.

BK: See block-size register.

Appendix A

Glossary

A-2

block-size register: A register used for defining the length of a program
block to be repeated in repeat mode.

bootloader: A built-in segment of code that transfers code from an external
memory or from a communication port to RAM at power-up.

C

carry bit: A bit in status register ST1 used by the ALU for extended arithme-
tic operations and accumulator shifts and rotates. The carry bit can be
tested by conditional instructions.

circular addressing: An addressing mode in which an auxiliary register is
used to cycle through a range of addresses to create a circular buffer in
memory.

context save/restore : A save/restore of system status (status registers, ac-
cumulator, product register, temporary register, hardware stack, and
auxiliary registers, etc.) when the device enters/exits a subroutine such
as an interrupt service routine.

CPU: Central processing unit. The unit that coordinates the functions of a
processor.

CPU cycle: The time it takes the CPU to go through one logic phase (during
which internal values are changed) and one latch phase (during which
the values are held constant).

cycle: See CPU cycle.

D

D0–D31: External data bus pins that transfer data between the processor
and external data/program memory or I/O devices. See also LD0–LD31.

data-address generation logic: Logic circuitry that generates the address-
es for data memory reads and writes. This circuitry can generate one ad-
dress per machine cycle. See also program-address generation logic.

data-page pointer: A seven-bit register used as the seven MSBs in ad-
dresses generated using direct addressing.

decode phase: The phase of the pipeline in which the instruction is de-
coded.

DIE: See DMA interrupt enable register.

 Glossary

A-3 Glossary

DMA coprocessor: A peripheral that transfers the contents of memory loca-
tions independently of the processor (except for initialization).

DMA controller: See DMA coprocessor.

DMA interrupt enable register (DIE): A register (in the CPU register file)
that controls which interrupts the DMA coprocessor responds to.

DP: See data-page pointer.

dual-access RAM : Memory that can be accessed twice in a single clock
cycle. For example, your code can read from and write to a dual-access
RAM in one clock cycle.

E

external interrupt: A hardware interrupt triggered by a pin.

extended-precision floating-point format: A 40-bit representation of a
floating-point number with a 32-bit mantissa and an 8-bit exponent.

extended-precision register: A 40-bit register used primarily for extended-
precision floating-point calculations. Floating-point operations use bits
39–0 of an extended-precision register. Integer operations, however, use
only bits 31–0.

F

FIFO buffer: First-in, first-out buffer. A portion of memory in which data is
stored and then retrieved in the same order in which it was stored. Thus,
the first word stored in this buffer is retrieved first. The ’C4x’s communica-
tion ports each have two FIFOs: one for transmit operations and one for
receive operations.

H

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

hit: A condition in which, when the processor fetches an instruction, the
instruction is available in the cache.

I

Glossary

A-4

IACK: Interrupt acknowledge signal. An output signal that indicates that an
interrupt has been received and that the program counter is fetching the
interrupt vector that will force the processor into an interrupt service rou-
tine.

IIE: See internal interrupt enable register.

IIF: See IIOF flag register.

IIOF flag register (IIF): Controls the function (general-purpose I/O or inter-
rupt) of the four external pins (IIOF0 to IIOF3). It also contains timer/DMA
interrupt flags.

index registers: Two registers (IR0 and IR1) that are used by the ARAU for
indexing an address.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

internal interrupt enable register: A register (in the CPU register file) that
determines whether or not the CPU will respond to interrupts from the
communication ports, the timers, and the DMA coprocessor.

interrupt: A signal sent to the CPU that (when not masked) forces the CPU
into a subroutine called an interrupt service routine. This signal can be
triggered by an external device, an on-chip peripheral, or an instruction
(TRAP, for example).

interrupt acknowledge (IACK): A signal that indicates that an interrupt has
been received, and that the program counter is fetching the interrupt vec-
tor location.

interrupt vector table (IVT): An ordered list of addresses which each corre-
spond to an interrupt; when an interrupt occurs and is enabled, the pro-
cessor executes a branch to the address stored in the corresponding
location in the interrupt vector table.

interrupt vector table pointer (IVTP): A register (in the CPU expansion
register file) that contains the address of the beginning of the interrupt
vector table.

ISR: Interrupt service routine. A module of code that is executed in
response to a hardware or software interrupt.

IVTP: See interrupt vector table pointer.

L

 Glossary

A-5 Glossary

LA0–LA30: External address pins for data/program memory or I/O devices.
These pins are on the local bus. See also A0–A30.

LD0–LD31: External data-bus pins that transfer data between the processor
and external data/program memory or I/O devices. See also D0–D31.

LSB : Least significant bit. The lowest order bit in a word.

M

machine cycle: See CPU cycle.

mantissa: A component of a floating-point number consisting of a fraction
and a sign bit. The mantissa represents a normalized fraction whose
binary point is shifted by the exponent.

maskable interrupt : A hardware interrupt that can be enabled or disabled
through software.

memory-mapped register: One of the on-chip registers mapped to ad-
dresses in memory. Some of the memory-mapped registers are mapped
to data memory, and some are mapped to input/output memory.

MFLOPS: Millions of floating-point operations per second. A measure of
floating-point processor speed that counts of the number of floating-point
operations made per second.

microcomputer mode: A mode in which the on-chip ROM is enabled. This
mode is selected via the MP/MC pin. See also MP/MC pin; microproces-
sor mode.

microprocessor mode: A mode in which the on-chip ROM is disabled. This
mode is selected via the MP/MC pin. See also MP/MC pin; microcomput-
er mode.

MIPS: Million instructions-per-second.

miss: A condition in which, when the processor fetches an instruction, it is
not available in the cache.

MSB: Most significant bit. The highest order bit in a word.

multiplier: A device that generates the product of two numbers.

N

NMI: See Nonmaskable interrupt.

Glossary

A-6

nonmaskable interrupt (NMI): A hardware interrupt that uses the same
logic as the maskable interrupts, but cannot be masked. It is often used
as a soft reset.

O

overflow flag (OV) bit: A status bit that indicates whether or not an arithme-
tic operation has exceeded the capacity of the corresponding register.

P

PC: See program counter.

peripheral bus: A bus that the CPU uses to communicate the DMA copro-
cessor, communication ports, and timers.

pipeline : A method of executing instructions in an assembly-line fashion.

program counter: A register that contains the address of the next instruc-
tion to be fetched.

R

RC: See repeat counter register.

read/write (R/W) pin: This memory-control signal indicates the direction of
transfer when communicating to an external device.

register file: A bank of registers.

repeat counter register: A register (in the CPU register file) that specifies
the number of times minus one that a block of code is to be repeated
when a block repeat is performed.

repeat mode: A zero-overhead method for repeating the execution of a
block of code.

reset: A means to bring the central processing unit (CPU) to a known state
by setting the registers and control bits to predetermined values and
signaling execution to fetch the reset vector.

reset pin: This pin causes the device to reset.

ROMEN: ROM enable. An external pin that determines whether or not the
the on-chip ROM is enabled.

 Glossary

A-7 Glossary

R/W: See read/write pin.

S
short-floating-point format: A 16-bit representation of a floating-point

number with a 12-bit mantissa and a 4-bit exponent.

short-integer format: A twos-complement 16-bit format for integer data.

short-unsigned-integer format: A 16-bit unsigned format for integer data.

sign extend: Fill the high order bits of a number with the sign bit.

single-access RAM: SARAM. Memory that can be read from or written to
only once in a single CPU cycle.

single-precision floating-point format: A 32-bit representation of a float-
ing point number with a 24-bit mantissa and an 8-bit exponent.

single-precision integer format: A twos-complement 32-bit format for in-
teger data.

single-precision unsigned-integer format: A 32-bit unsigned format for
integer data.

software interrupt: An interrupt caused by the execution of a TRAP instruc-
tion.

split mode: A mode of operation of the DMA coprocessor. This mode allows
one DMA channel to service both the receive and transmit portions of a
communication port.

ST: See status register.

stack: A block of memory reserved for storing and retrieving data on a first-in
last-out basis. It is usually used for storing return addresses and for pre-
serving register values.

status register: A register (in the CPU register file) that contains global in-
formation related to the CPU.

T
Timer: A programmable peripheral that can be used to generate pulses or

to time events.

Timer-Period Register: Timer-period register. A 32-bit memory-mapped
register that specifies the period for the on-chip timer.

Glossary

A-8

trap vector table (TVT): An ordered list of addresses which each corre-
spond to an interrupt; when a trap is executed, the processor executes
a branch to the address stored in the corresponding location in the trap
vector table.

trap vector table pointer (TVTP): A register (in the CPU expansion-register
file) that contains the address of the beginning of the trap vector table.

TVTP: See trap vector table pointer.

U

unified mode: A mode of operation of the DMA coprocessor. The mode is
used mainly for memory-to-memory transfers. This is the default mode
of operation for a DMA channel. See also split mode.

W

wait state : A period of time that the CPU must wait for external program,
data, or I/O memory to respond when reading from or writing to that ex-
ternal memory. The CPU waits one extra cycle for every wait state.

wait-state generator : A program that can be modified to generate a limited
number of wait states for a given off-chip memory space (lower program,
upper program, data, or I/O).

Z

zero fill: Fill the low or high order bits with zeros when loading a number into
a larger field.

Index

Index-1

Index

14-pin connector, dimensions 11-13

14-pin header
header signals 11-2
JTAG 11-2

2D array 8-18

3-D grid 8-19

4-D hypercube 8-19

64-bit addition, example 3-17

A
A-law compression, expansion 6-2

A/D converter, definition A-1

A0-A30, definition A-1

adaptive filters 6-13

ADDC instruction 3-17

ADDI instruction 3-17

address
definition A-1
generation 3-6

address pins, external A-5

addressing mode, definition A-1

algorithm, LMS 6-13

ALU. See arithmetic logic unit

ANSI, C programs 5-2

applications, hardware 4-1

applications-oriented operations, introduction 6-1

ARAU. See auxiliary register arithmetic unit

architecture
distributed memory 8-19
shared and distributed memory 8-19
shared memory 8-19

arithmetic logic unit (ALU), definition A-1

array initialization, example 7-4

array objects, allocation 5-4

arrays 2-20
assembly language 1-6, 7-4
auxiliary register arithmetic unit (ARAU), defini-

tion A-1
auxiliary registers (ARn), definition A-1

B
BBS 10-4
Bcond instruction 2-4
benchmarks

A-law compression 6-5
A-law expansion 6-6
adaptive FIR filter 6-15
fast Fourier transforms (FFT) 6-87
FIR filter 6-8
floating-point inverse 3-14
IIR filter 6-12 to 6-15
inverse lattice filter 6-18
lattice filter 6-20
matrix-vector multiplication 6-21, 6-22
mu-law compression 6-3
mu-law expansion 6-4

bidirectional ring 8-18
biquads 6-9

data-memory organization 6-9
example 6-11, 6-12 to 6-15
single 6-9

bit copying, example 3-2
bit manipulation 3-2
bit -reversed addressing, example 3-7
bit-reversed addressing 3-6, 3-7, 3-8

CPU 3-6
definition A-1

bit-reversed sine, table 6-55
BK. See block size register
block move, example 3-3
block moves 3-3

Index

Index-2

block repeat
delayed, example 2-19
example 2-18
single instruction 2-20

block repeats, delayed 2-19
block size (BK) register 6-7
block size register, definition A-2
block transfers 3-7
bootloader, definition A-2
BUD instruction 5-5
buffered signals, JTAG 11-9
buffering 11-8
bulletin board 10-4
bus, control signals 4-4
bus devices 11-3
bus protocol 11-3
byte manipulation 3-4

C
C code compiler, efficient usage 5-2
C compiler 10-2
C examples, include file 7-17
cable, target system to emulator 11-1 to 11-24
cable pod 11-4, 11-5
cache

enabling 1-9
optimization of code 5-5

CALL instruction 2-7
CALLcond instruction 2-2, 2-21
calls

example code 2-2
zero overhead 2-4

carry bit, definition A-2
central processing unit (CPU), definition A-2
chip-enable (CE) controls 4-5
circular addressing, definition A-2
code generation tools 10-2
code optimization 5-5

BUD instruction 5-5

delayed branches 5-5
internal memory 5-6
LAJ instruction 5-5
parallel instruction set 5-5
pipeline conflicts 5-6
registers 5-5
RPTB and RPTBD instructions 5-5
RPTS instruction 5-5

communication port, ICRDY synchronization 7-5

communication ports 8-1, 8-18
CSTRB shortener 8-17
hardware design guidelines 8-9
impedance matching 8-5
message broadcasting 8-20
software applications 8-2
termination 8-8
token forcer 8-15
word transfer 8-7

companding 6-2

companding standards 6-2

compiler 10-2
constructs 5-2 to 5-5

computed GOTO, example 2-21

computed GOTOs 2-21

configuration, multiprocessor 11-11

connector
14-pin header 11-2
dimensions, mechanical 11-12
DuPont 11-3

consecutive reads 4-6

consecutive writes, diagram 4-7

context restore, example 2-15 to 2-18

context save, example 2-15 to 2-18

context save/restore, definition A-2

context switching 2-14

conversion of format, IEEE to/from ’C4x instructions.
See TOIEEE and FRIEEE instructions

CPU cycle, definition A-2

CPU registers, stack pointer (SP) 2-7

CSTRB shortener 8-17

cycle. See CPU cycle

Index

Index-3

D
D0-D31, definition. See LD0-LD31
data-address generation logic, definition. See pro-

gram address generation logic
data-page pointer, definition A-2
debugger. See emulation
decode phase, definition A-2
dequeues (stack) 2-9
development tools 10-2
device

nomenclature 10-10
part numbers 10-11

diagnostic applications 11-23
DIE. See DMA interrupt enable register
digital filters

FIR 6-7
IIR. See IIR filters
lattice 6-17

dimensions
12-pin header 11-18
14-pin header 11-12
mechanical, 14-pin header 11-12

division
floating point 3-9
integer 3-9

DMA 3-3, 3-6, 7-13, 7-14, 8-2
autoinitialization 7-6
C-programming, examples 7-9
example 7-11, 7-12
interrupts, example 7-8
split mode, autoinitialization 7-15
split-mode 7-6
unified mode 7-10

DMA autoinitialization 7-7
DMA channel, finished transfer 7-3
DMA controller. See DMA coprocessor
DMA coprocessor

array initialization 7-4
autoinitialization 7-7

example 7-8
definition A-3
interrupts 7-4
link-pointer register, example 7-7
operation examples 7-4

programming 7-4
programming hints 7-2
split mode example 7-5
transfer description 7-4

DMA interrupt enable register (DIE), definition A-3
DMA programming 7-2
DMA transfer 7-4

communication port 7-5
documentation 10-3
double precision, fixed point 3-17
DP. See data-page pointer
dual-access RAM, definition A-3
DuPont connector 11-3

E
EMU0/1

configuration 11-19, 11-21, 11-22
emulation pins 11-18
IN signals 11-18
rising edge modification 11-21

EMU0/1 signals 11-2, 11-5, 11-6, 11-11, 11-16
emulation

JTAG cable 11-1
timing calculations 11-6 to 11-7, 11-16 to 11-24

emulator
connection to target system, JTAG mechanical

dimensions 11-12 to 11-24
designing the JTAG cable 11-1
emulation pins 11-18
signal buffering 11-8 to 11-11
target cable, header design 11-2 to 11-3

emulator pod, JTAG timings 11-5
extended precision registers 3-17
extended-precision floating-point format, defini-

tion A-3
extended-precision register 2-2

definition A-3
external flag pins 4-3
external interfacing 4-3

example 4-3
external interrupt, definition A-3
external logic 4-12
external ready generation 4-13

Index

Index-4

F
fast devices, OR 4-12
fast Fourier transforms 3-6, 6-56

DIF (decimation in frequency) 6-24
DIT (decimation in time) 6-24, 6-42 to 6-54
inverse 6-73

fast Fourier transforms (FFT) 6-24
benchmarks 6-87
complex radix-2 DIF 6-26
DIF (decimation in frequency) 6-27 to 6-31,

6-33, 6-34 to 6-41
DIT (decimation in time) 6-55
DIT (decimations in time) 6-41
DMA 6-24
real radix-2 6-56
theories, references 6-24
twiddle factors 6-32
twiddle table 6-41
types of 6-24

FFT. See fast Fourier transforms
FIFO buffer, definition A-3
filters

adaptive 6-7
digital. See digital filters
example 6-10
FIR 6-14

See also FIR filters
IIR 6-12 to 6-15

See also IIR filters
FIR filter

adaptive 6-15
benchmarks 6-8

FIR filters 6-7, 6-14
circular addressing 6-7
example 6-7
features 6-7

FIX instruction 3-9
FLOAT instruction 3-9
floating point

conversion (to/from IEEE) 3-19
formats 3-19

IEEE 3-20
pop and push 2-8

floating-point, reciprocal 3-12
example 3-16

floating-point division 3-12
floating-point number, inverse, example 3-14

formats, floating point 3-19
forward lattice filter, example 6-19
FRIEEE instruction 3-19
fully-connected network 8-19

G
GIE 2-11, 2-13
global bus 4-3

control signals 4-11
global memory interface. See memory interface

H
half-word manipulation 3-4
hardware interrupt, definition A-3
header

14-pin 11-2
dimensions, 14-pin 11-2

hexagonal grid 8-19
hit, definition A-3
hotline 10-3

I
IACK, definition A-4
ICFULL interrupt, example 8-2
ICRDY communication port 7-7
ICRDY interrupt, example 8-2
IEEE 1149.1 specification, bus slave device

rules 11-3
IEEE Customer Service, address 11-3
IEEE standard 11-3
IIE. See internal interrupt enable register
IIF. See IIOF flag register
IIOF flag register (IIF) 7-5

definition A-4
IIR filters 6-7, 6-9, 6-9

benchmarks 6-10, 6-12 to 6-15
index registers, definition A-4
initialization, boot.asm 1-9
initialization routine 1-6
input port 8-16
integer division 3-9

example 3-11
interface, SRAM 4-8

two strobes 4-10

Index

Index-5

interfaces
external. See external interfacing
parallel processing 8-18
shared bus 4-22

internal interrupt, definition A-4
internal interrupt enable register, definition A-4
interrupt, definition A-4
interrupt acknowledge (IACK), definition A-4
interrupt flag register 2-11
interrupt programming, procedure 2-11
interrupt service routine, INT2 2-13
interrupt service routine (ISR), definition A-4
interrupt vector table (IVT), definition A-4
interrupt vector table pointer (IVTP), definition A-4
interrupts

communication port 8-3
context switching 2-14
context-switching 2-11
DMA 7-4
dual services, example 2-12
example 3-2
examples 2-11
IVTP reset 2-12
nesting 2-13
NMI 2-11
priorities 2-11
programming 2-11
service routines 2-11, 2-13
software polling, example 2-11
vector table 2-11

inverse Fourier transform 6-24
inverse lattice filter, example 6-18
inverse of floating point 3-12
ISR. See interrupt service routine (ISR)
IVTP 2-12

See also interrupt vector table pointer
IVTP register 2-11

J
JTAG 11-14
JTAG emulator

buffered signals 11-9
connection to target system 11-1 to 11-24
no signal buffering 11-8
pod interface 11-4

jumps 2-4

L
LA0-LA30, definition. See A0-A30
LAJ instruction 2-4, 5-5
lattice filter structure 6-17
lattice filters 6-17, 6-18

applications 6-17
benchmarks 6-20
forward 6-19

LBb LBUb instructions 3-4
LD0-LD31, definition. See D0-D31
LHw, LHUw instructions 3-4
linker command file 1-6

example 1-9
literature 10-3
LMS algorithm 6-13
local bus 4-3

control signals 4-11
local memory interface. See memory interface
local memory interface control register (LMICR),

LSTRB ACTIVE field 4-9
loop, delayed block repeat, example 2-19
loop optimization, example 5-3
loops 2-18

single repeat 2-20
LSB, definition A-5
LWLct, LWRct instructions 3-4

M
machine cycle. See CPU cycle
mantissa, definition A-5
maskable interrupt, definition A-5
matrix vector multiplication, data-memory organiza-

tion 6-21
MBct, MHct instructions 3-4
memory, object exchange, example 5-2
memory device timing 4-6
memory interface 4-12

global 4-4
local 4-4
ready generation 4-11
shared global 4-21
strobes 4-7

two banks 4-8
wait states 4-11

Index

Index-6

memory interface (local, global)
RAM (zero wait states) 4-7
shared bus 4-22

memory interface control registers 4-12
LSTRB ACTIVE field 4-8
PAGESIZE field 4-8, 4-18

memory interfacing, introduction 4-1

memory map 4-4

memory-mapped register, definition A-5

message broadcasting 8-20
communication ports 8-21

MFLOPS, definition A-5

microcomputer mode, definition. See microproces-
sor mode

microprocessor mode, definition. See microcomput-
er mode

MIPS, definition A-5

miss, definition A-5

MPYI3 instruction 3-18

MPYSHI3 instruction 3-18

MSB, definition A-5

mu-law
compression, expansion 6-2
conversion, linear 6-2

multiplication, matrix vector 6-21

multiplier, definition A-5

N

networks
distributed-memory 4-21
parallel connectivity 8-18

Newton-Raphson algorithm 3-12, 3-15

NMI 2-13
See also nonmaskable interrupt

nomenclature 10-9

nonmaskable interrupt (NMI), definition A-6

normalization 3-15

O
OCEMPTY interrupt, example 8-2

OCRDY interrupt, example 8-2

operations
examples 3-1
introduction 3-1
logical instructions 3-2

output enable (OE) controls 4-5

output modes
external count 11-18
signal event 11-18

output port 8-15

overflow flag (OV) bit, definition A-6

P
packing data example 3-4

page, switching 4-18

page switching, example 4-19

PAL 11-19, 11-20, 11-22

parallel instruction set, optimization use 5-5

parallel processing
’C4x to ’C4x 8-20
distributed memory 8-19
shared and distributed memory 8-19
shared bus 4-22
shared memory 4-21, 8-19

part numbers
device 10-11
tools 10-12

part-order information 10-9

PC. See program counter

peripheral bus, definition A-6

phone numbers, manufacturer 10-6

pipeline, definition A-6

pipelined linear array 8-18

PLD equations 4-16

polling method, communication port 8-4

POP instruction 2-7, 2-14

POPF instruction 2-7

port driver circuit, diagram 8-16

primary channel 7-14

processor, delays 4-5

Index

Index-7

processor initialization 1-6
C language 1-9
example 1-7
introduction 1-1

product vector 6-21
program control

instructions 2-1
introduction 2-1

program counter, definition A-6
programming tips 7-2

introduction 5-1
protocol, bus 11-3
pulldown resistor 8-5
pullups 1-5, 8-5
PUSH instruction 2-7, 2-14
PUSHF instruction 2-7

Q
queues (stack) 2-9

R
R/W. See read/write pin
RAM, zero wait states 4-7
RAMS 4-8
RAMs 4-5
RC. See repeat counter register
RCPF instruction 3-9, 3-12
read sync 7-13
read/write (R/W) pin, definition A-6
ready control logic 4-14
ready generation 4-11
ready signals 4-12
regional technology centers 10-5
register file, definition A-6
registers

optimization use 5-5
repeat count (RC) 2-20
stack pointer (SP) 2-7

regular subroutine call, example 2-3
repeat count register (RC) 2-20
repeat counter register, definition A-6
repeat mode, definition A-6
repeat modes, block repeat, restrictions 2-19

reset
definition A-6
multiprocessing 1-5
rise/fall time 1-4
signal generation 1-3
vector locations 1-2
vector mapping 1-2
voltage 1-3

reset circuit, diagram 1-3
reset pin

definition A-6
voltage, diagram 1-4

RETIcond instruction 2-13
RETScond instruction 2-2
ROMEN, definition A-6
RPTB and RPTBD instructions 6-24

optimization use 5-5
RPTB instruction 2-18
RPTBD instruction 2-18
RPTS instruction 2-18

example 2-18, 3-3
optimization use 5-5

RSQRF instruction 3-15, 3-16
RTCs 10-5
run/stop operation 11-8
RUNB, debugger command 11-18, 11-19, 11-20,

11-21, 11-22
RUNB_ENABLE, input 11-20

S
scan path linkers 11-14

secondary JTAG scan chain to an SPL 11-15
suggested timings 11-21
usage 11-14

scan paths, TBC emulation connections for JTAG
scan paths 11-23

seminars 10-5
serial resistors 8-5
shared bus interface 4-22
shared memory 4-21
short floating point format, definition A-7
short integer format, definition A-7
short unsigned integer format, definition A-7
signal descriptions, 14-pin header 11-2
signal quality 8-5

Index

Index-8

signals
buffered 11-9
buffering for emulator connections 11-8 to 11-11
description, 14-pin header 11-2
timing 11-5

sign-extend, definition A-7

single-access RAM (SARAM), definition A-7

single-precision floating-point format, definition A-7

single-precision integer format, definition A-7

single-precision unsigned-integer format, defini-
tion A-7

slave devices 11-3

slow devices, OR 4-12

sockets 10-6
325-pin ’C40, 304-pin ’C44 10-6

software development tools
assembler/linker 10-2
C compiler 10-2
digital filter design package 10-2
general 10-12
linker 10-2
simulator 10-2

software interrupt, definition A-7

software polling, interrupts, example 2-11

software stack 2-2, 2-11

split mode, definition A-7

split mode (DMA) 7-5

split-mode 7-13, 7-14

square root, calculation 3-15

ST. See status register

stack 2-7
definition A-7

stack pointer 2-7

stack pointer (SP), application 2-7

stacks
growth 2-8
high-to-low memory, diagram 2-9
low-to-high memory, diagram 2-9
user 2-8

status register, definition A-7

straight, unshrouded, 14-pin 11-3

STRBx SWW 4-12

strobes 4-9
wait states 4-7

SUBB instruction 3-17, 3-18

SUBC instruction 3-9
SUBI instruction 3-18
subroutine 2-21
subroutines 2-4, 2-14

calls. See calls
support tools

development 10-10
device 10-10

support tools nomenclature 10-9
system configuration 4-2

possible 4-2
system configuration stack, diagram 2-8
system initialization 1-3
system stacks 2-7

stack pointer 2-7

T
target cable 11-12
target system, connection to emulator 11-1 to

11-24
target-system clock 11-10
TCK signal 11-2, 11-3, 11-5, 11-6, 11-11, 11-15,

11-16, 11-23
TDI signal 11-2, 11-3, 11-4, 11-5, 11-6, 11-7, 11-10,

11-11, 11-16, 11-17
TDO output 11-3
TDO signal 11-3, 11-4, 11-6, 11-7, 11-17, 11-23
technical assistance 10-3
test bus controller 11-20, 11-23
test clock 11-10

diagram 11-10
third-party support 10-3
Timer, definition A-7
Timer Period Register, definition A-7
timing

bank switching 4-20
page switching 4-20

timing calculations 11-6 to 11-7, 11-16 to 11-24
TMS, signal 11-3
TMS signal 11-2, 11-4, 11-5, 11-6, 11-7, 11-10,

11-11, 11-15, 11-16, 11-17, 11-23
TMS/TDI inputs 11-3
TOIEEE instruction 3-19
token forcer 8-15
token forcer circuit, diagram 8-15

Index

Index-9

tools, part numbers 10-12
tools nomenclature 10-9
transfer function 6-9
trap vector table (TVT), definition A-8
trap vector table pointer (TVTP), definition A-8
tree structures 8-18
TRST signal 11-2, 11-5, 11-6, 11-11, 11-15, 11-16,

11-24
TSTB instruction 3-2
TVTP. See trap vector table pointer
twiddle factor 6-32

fast Fourier transforms (FFT) 6-41

U
unified mode, definition. See split mode
unpacking data example 3-5

W
wait state, definition A-8

wait states 4-5, 4-11, 4-15
consecutive reads, then write 4-6
consecutive writes, then read 4-7
full-speed 4-5
logic 4-14
memory device timing. See memory device tim-

ing
wait-state generator, definition A-8
workshops 10-5
write cycles, RAM requirements 4-6

X
XDS510 emulator, JTAG cable. See emulation

Z
zero fill, definition A-8
zero overhead subroutine call, example 2-5
ZIF PGA socket

handle-activated, diagram 10-8
tool-activated, diagram 10-7

Index-10

