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ACI3–1
Variable Speed Control of

Phase AC Induction Motor

The ACI3-1 offers the following:

� Open-loop V/Hz control

� Space Vector PWM

� Closed-loop speed control
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1 System Overview

Figure 1 shows the complete system diagram for a three-phase ACI motor drive. A three
phase voltage source inverter is utilized to operate a three pahse ACI motor. Six PWM
channels from DSP controller regulates the motor phase voltages by controlling the six
power devices. One capture input is utilized to measure the motor speed.

Figure 1. 3-Phase ACI Motor Drive System Diagram
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This document describes the 3-phase ACI ac induction motor using
TMS320F240�/TMS320F243 / TMS320F2407  DSPs. The system implemented here
is called ACI3-1 and uses the following software modules:

� BOX_CAR
� CAP_EVENT_DRV
� DATA_LOG
� FC_PWM_DRV
� RAMP_CNTL
� SVGEN_MF
� SINTB60
� SPEED_PRD
� SYS_INIT
� V_Hz_PROFILE

The ACI3-1 System has the following properties:

ASM Program Memory 1700 words

ASM Data Memory 224 words

C Program Memory 1692 words*

C Data Memory 164 words*

Development/Emulation Code Composer 4.1 (or above) with real-time debug

Target controller H/W Spectrum Digital – F240/F243/F2407 EVMs

Power Inverter H/W Spectrum Digital – DMC1000/DMC1500

Motor Type Three-Phase AC Induction (4 pole)
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PWM frequency 20 kHz (Timer T1 based)

PWM mode Symmetrical with Dead band

Interrupts 1 (Timer 1 underflow)

Main sampling loop 20 kHz

Peripheral Resources Used Timer 1, PWM 1/2/3/4/5/6, 2 ADC Channels

*Note: The C version of the software at this time excludes the modules DATA_LOG
RAMP_CNTL, and BOX_CAR.

Figure 2. Software Flowchart
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2 Hardware and Software Configuration

2.1 Hardware

The experimental system consists of the following hardware components:

� Spectrum Digital DMC1000 or DMC1500 drive platform;

� TMS320F240, TMS320F243, or TMS320F2407 EVM platform

� Spectrum Digital DMC to EVM Interface board;

� Three Phase AC Induction(ACI) motor

� IBM compatible development environment including an IBM compatible PC with Code
Composer 4.1 or higher installed and XDS510pp emulator.

Refer to the User’s Guides and or Manuals for configuration of the above items and their
connection to the system. Table 1, Table 2, and Table 3 show some of the other system
level choices that must be made.

Table 1. Configuration for DMC1000

Jumper Number Jumper Setting Comments

P19–P20 Connect these for ac input neutral
connection

P16–P18 Connect these for full bridge
rectifier front-end configuration
only

P16–P17 Connect these for voltage doubler
front-end configuration only

Donot use DMC1000/1500
boards in voltage doubler mode
with 220VAC input.

JP1, JP2, JP3 Install all jumpers Use 3-Phase power inverter
configuration

JP4 Remove jumper Use DC bus current sense
resistor R5.

JP17 Install jumper on pins 2–3 Use DC bus overcurrent condition
to generate PDPINT. Use the
potentiometer resistor R19 to
adjust the signal Vtrip. This will
set the maximum DC bus current.

JP19 Install jumper on pins 1–2 Disable PFC circuit

JP20 Install jumper on pins 2–3 Vccp=Vcc

JP22 Install jumper on pins 1–2 Use s/w to enable/disable
DMC1000 PWM signals
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Table 2. Configuration for DMC1500

Jumper Number Jumper Setting Comments

P21–P22 Connect these for ac input neutral
connection

P15–P17 Connect these for full bridge
rectifier front-end configuration
only

P15–P16 Connect these for voltage doubler
front-end configuration only

Donot use DMC1000/1500
boards in voltage doubler mode
with 220VAC input.

JP1, JP2, JP3 Install all jumpers Use 3-Phase power inverter
configuration

JP4 Remove jumper Use DC bus current sense
resistor R6

JP17 Install jumper on pins 1–2 Disable PFC circuit

JP27 Install jumper on pins 1–2 Use s/w to enable/disable PWM
signals on DMC1500

Table 3. Configuration for DMC to EVM Interface Board

Jumper Number Jumper Setting Comments

JP1 Remove jumper

JP2 Install jumper

2.2 Loading and Building CC Project for Assembly Case

In order to use the CC workspace file in “C:\TI\DCS\ACI3_1” directory, all the assembly
modules in the modular library must be copied into “C:\TI\DCS\ACI3_1” directory. The as-
sembly files needed for this system are – Box_car, Cap_drv, data_log, PID_ID, pwmodrv,
rmp_cntl, SINTB60, speed_pr, svgen_mf, sys_init, vhz_prof.  The other files in this directo-
ry are:

� The ACI system assembly file ACI31_x1.asm;

� The linker command file, ACI31_x1.cmd, that defines memory map and specifies
memory allocation;

� Two header files rtvecs.h and x24x_app.h

� CC real time monitor related files c200mnrt.i and c200mnrt.obj

� CC project file ACI3_10.mak

� CC workspace files (aci3_1_phase1, aci3_2_phase2) which contain the setup infor-
mation for the whole project and debugging environment.

It is also assumed that the emulator used is XDS510pp. Once the directory
“C:\TI\DCS\ACI3_1” contains all the necessary files (as mentioned above), the next step
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is to provide the supply voltage(+5V DC) to the F243/LF2407 EVM and RESET the emula-
tor. Then start the Code Composer and open the project ACI3_10.mak. Now load the
workspace file aci3_1_phase1.wks.

Loading the workspace will automatically open up the project file ACI3_10.mak and show
all the files relevant to the project. The following shows the expanded project view as part
of CC environment aci3_1_phase1wks is loaded:

Note that the same project can be built from scratch easily if the workspace file,
aci3_1_phase1wks, can’t be loaded directly because of differences in CC setup and or
emulator used. Refer to CC tutorial for information on a building project.

The variables in the Watch Window can be added manually  according to CC tutorial.

From the ‘PROGRAM LOAD OPTIONS’ in CC select ‘Load Program After Build’ for auto-
matic loading of the program to the target once the program is compiled.

2.3 Loading and building CC Project for “C” Case

The process for loading and building the C version of the ACI31 system is same as the
assembly case with the following exceptions:

� Modules: The modules DATA_LOG, RMP_CNTL, and BOX_CAR are excluded at
this time. The variable outputs that are directed to the DATA_LOG module in ASM are
directed to the EVMDAC. The EVMDAC has pointers to the variables that must be set
to the variables that are to be output.
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For instance suppose a variable ‘alpha’, that is in the SVGEN structure svgen, is to
be output to the DAC Channel 3. The following code is used to set the pointer:

dac.qptr3=&vhz.svgen.alpha;

( Since the structure SVGEN itself is a member of the structure vhz , the full variable
name is vhz.svgen.alpha )

� Incremental Build Control: The build level is set in build.h in the C infrastructure.
This header file is in the aci31\aci31_010\include\ directory.

To set the build level set the BUILDLEVEL symbol to one of the available choices.

/*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Following is the list of the Build Level choices.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
#define LEVEL1  1
#define LEVEL2  2
#define LEVEL3  3
/*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
This line sets the BUILDLEVEL to one of the available choices.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
#define   BUILDLEVEL LEVEL3

[This is also included in by the system and algorithm source files, and so is visible in the
include folder in the Code Composer project window.]

To set the build level to 2, use the following

#define   BUILDLEVEL LEVEL2

� The target processor selection is in the file TARGET.H. This file appears in the
code composer project as well, or can be found in the directory

aci31\aci31_010\include\

To change the selection of the processor set the TARGET macro to a different avail-
able choice.

/*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Following is the selection list of the target choices.
Note that the F241 is represented by the F243 and the 
LF2407 represents the LF2406 and the LF2402.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
#define F240   1
#define F243   2
#define F2407  4
#define UNKNOWN 8
/*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

This line sets the target to one of the available choices.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
#define TARGET  F243

� The Object vhz is implemented in the vhz.h. This has many sub–objects such as pid
etc. To watch/modify variables such as pid coefficients  etc watch

� The entire object vhz, and watch/modify vhz.pid.K0.

� An alternative is to watch vhz.pid and watch/modify pid.K0.

Watching smaller objects in the watch window has the advantage of lowering the
amount of data that must be up–loaded to the debug tool.



Incremental System Build – Phase 1

8 SPRU438

3 Incremental System Build – Phase 1

Assuming section 1.0 is completed successfully, this section describes the steps for a
“minimum” system check-out which confirms operation of system interrupts, some periph-
eral and target independent modules and one peripheral dependent module.

In the SYSTEM OPTIONS section of the code, select phase 1 incremental build option by
setting the constant phase1_commissioning to 1. Save the program, compile it and load
it to the target.

3.1 Phase 1

� In this phase, line to neutral voltage waveforms are generated based on the user
speed input as shown in Figure 3. Three software modules are utilized in this phase
to generate two sine wave forms.

� Set phase1_commissioning = 1 in ACI31_x1.asm as shown below:

phase1_commissioning .set 1
phase2_commissioning .set 0
phase3_commissioning .set 0

� The software modules utilized in this phase are – RAMP_CNTL, V_Hz_PROFILE,
SVGEN_MF

� RAMP_CNTL is utilized to avoid sudden change in speed command.

� V_Hz_PROFILE generates a voltage command “v_out”. V_Hz_PROFILE also main-
tains a fixed ratio between the input frequency and voltage command.

� The module SVGEN_MF generates three line-to-neutral waveforms. These wave-
forms are generated by space vector PWM technique and contain fundamental fre-
quency as well as a third harmonic component to maximize the utilization DC bus volt-
age.

� Although line to neutral waveform contains third harmonic, the actual line to line volt-
age seen by the load will not have any third harmonic component. This line to line wave
form is also generated by taking the appropriate difference between the line to neutral
voltages. For example, line to line wave form between phases A and B can be calcu-
lated as Van – Vbn, where, Van = waveform between phase A and neutral and Vbn
= waveform between phase B and neutral.

� The generated waveforms can be watched using the software module “DATA_LOG”.

� In order to watch line to neutral waveforms in real time initialize dlog_iptr1 = Ta   (line
to neutral waveform for phase A) and dlog_iptr2 = Tb (line to neutral waveform for
phase A) (Figure 4)

� In order to watch line to neutral and line to line waveform in real-time initialize
dlog_iptr1 = Ta and dlog_iptr2 = Vab (Figure 5)

� Figure 12 shows the complete software block diagram of Phase 1.
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Figure 3. Phase 1 Incremental Build for ACI1-1
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Figure 4. CC Window for Phase 1 Incremental Build of ACI3-1 Showing Line to Neutral Waveforms
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Figure 5. CC Window for Phase 1 Incremental Build of ACI3-1 Showing Line to Neutral (Ta or Van)
and Line-to-line Waveform (Vab)
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4 Incremental System Build – Phase 2

Successful completion of this phase will enable one to operate a three-phase AC induction
motor with open loop speed control.

In Phase 2 of incremental system build, a three phase AC induction motor will be operated
using DMC1000 board (www.spectrumdigital.com) and EVM board from TI. In Phase 2a
little software checks are made and then in Phase 2b an inverter and motor is used to oper-
ate a three phase ac induction motor with variable speed control.

4.1 Incremental System Build – Phase 2a

� Set phase2_commissioning = 1 in ACI31_x1.asm as shown below:

phase1_commissioning .set 0
phase2_commissioning .set 1
phase3_commissioning .set 0

� The software block diagram of Phase 2a is shown in Figure 6.

� The additional software module added in this Phase 2a are FC_PWM_DRV.

� FC_PWM_DRV configures PWM module of the DSP controller. It also provides the
required dead band through avoid shoot thorough faults.

� The variable “direction” can be set to “1” or “0” to change the direction of rotation of
the motor. When direction is equal to “1’, The phase sequence is a-b-c. If direction is
equal to “0” than the opposite will happen. The available graph display in CC can be
utilized to observe this. Put dlog_iptr1 = Mfunc_c1 and dlog_iptr2 = Mfunc_c2.
Figure 7 and Figure 8 show how phase to neutral waveforms lead or lag each other
depending on the value of “direction”.

Figure 6. Phase 2a Software Block Diagram for ACI3-1 System
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Figure 7. CC Display Window With dlog_iptr1=Mfunc_c1, dlog_iptr2=Mfunc_c2, direction=0
(wave 1 leads wave 2)

Figure 8. CC Display Window With dlog_iptr1=Mfunc_c1, dlog_iptr2=Mfunc_c2, direction=1
(wave 1 lags wave 2)

Note: Motor rotational direction in Figure 8 will be opposite of rotational direction in Figure 7.
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4.2 Incremental System Build – Phase 2b

In this phase a three phase AC induction motor is connected with a voltage source inverter
and the above mentioned software is utilized to implement a variable speed drive. A
243EVM is interfaced with DMC1000 board to setup the controller and power stage of the
drive. The following steps are needed for proper setup:

� P1 (I/O) terminal of 243EVM connects to P4 (I/O) terminal of DMC to EVM interface
board (use the supplied ribbon cable).

� P2 (Analog) terminal of 243EVM connects to P3 (I/O) terminal of DMC to EVM inter-
face board (use the supplied ribbon cable).

� JTAG connector of XDS510PP connects to the JTAG connector available in 243EVM
board.

� DMC1000 board is supplied 24VDC in P15.

� 243EVM is supplied 5VDC in J1.

� DMC1000 is supplied from a variac between LINE(P24) and NEUTRAL (P25).

� P19 and P20 are connected on DMC1000.

� P16 and P17 are connected on DMC1000.

� JP19 on DMC1000 should be between 1 and 2 (disables power factor correction cir-
cuit).

� Motor phase 1 connects to P2 on DMC1000.

� Motor phase 2 connects to P3 on DMC1000.

� Motor phase 3 connects to P5 on DMC1000.

� Turn the variac all the CCW to zero voltage position.

� Connect the variac to 120V wall socket.

� Connect a current probe with any motor phase.

� Power ON EVM and DMC1000 boards.

� Start CC and load the software.

� Once the software is running, apply DC bus voltage by rotating the variac. At this time
the current probe should show sinusoidal phase current and after sufficient DC bus
voltage, the motor will start rotating.

� The direction of rotation will depend on two variables – First the motor phase connec-
tions and second the value of the variable “direction”.

� Changing the value of “direction” as mentioned in the previous section (Phase 2a) can
change the rotational direction.

� Modifying the variable “speed_setpt” can vary the motor speed. The maximum speed
is fixed at 2500RPM. However, user can change that by modifying V_Hz_PROFILE
software module.
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� Figure 9 shows the hardware setup.

� Figure 13 shows the complete software block diagram of Phase 2.

Figure 9. Complete Hardware Setup for Phase 2b Implementation
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5 Incremental System Build – Phase 3

Successful completion of this phase will enable one to operate a three-phase AC induction
motor with closed loop speed control. Closed loop speed control is not implemented in
Phase 4.0a, however, software block is utilized to measure the speed. This will verify the
proper operation of speed measuring hardware (sprocket and hall effect sensor). In phase
3.0b, the speed loop is closed. Figure 10 shows the software block diagram for phase
3.0a.

Figure 10. Software Block Diagram for Phase 3a

RAMP_CNTLX
speed_setpt

RPM_SCALER

V_Hz_PROFILE SVGEN_MF

FC_PWM_DRV

CC GRAPH DISPLAY 1
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PWM 5
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5.1 Incremental System Build – Phase 3a

In this phase the same three phase AC induction motor is operated in variable speed
mode. However, in this phase, the speed of the motor is measured using a hall effect sen-
sor and hardware capture module of the DSP controller. In order to measure speed the
following assembly files are utilized:
� CAP_DRV.asm : configures the capture module
� SPEED_PR.asm : calculates speed from captured values
� Box_car : calculates the average of the calculated speed.

: This eliminates jitters in speed sensing hardware.

The following steps will ensure proper operation of Phase 3a:

� Set phase3_commissioning = 1 in ACI31_x1.asm as shown below:

phase1_commissioning .set 0
phase2_commissioning .set 0
phase3_commissioning .set 1

� The Hall effect speed sensor output is connected to P27 of DMC1000. P27 has
ground, power and capture input. The available ground and power from P27 can be
utilized as sensor ground and power. The voltage output at P27 can be set at various
level to match the sensor requirement.

� The remaining hardware setup is similar to Phase 2b.

� After starting the software, the motor will start rotating as the DC bus voltage is applied
by rotating the variac from zero to higher voltages.
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� The measured speed can be watched by adding the variable “speed_rpm” in the
watch window.

� Figure 11 shows CC window when the motor is operating in Phase 3a. The following
observations can be made from Figure 11.

� Line to neutral voltages contain fundamental and third harmonics

� Speed command, speed_setpt = 1800RPM.

� Measured speed, speed_rpm = 1777RPM. Since this is an induction motor, the mea-
sured speed equals to command speed minus the slip speed.

� Figure 14 shows the complete software block diagram of Phase 3.

Figure 11. CC Window for Phase 3a – Commanded Speed is 1800RPM,
Open-loop speed is 1777RPM
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Figure 12. Software Block Diagram of Phase–1
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Figure 13. Software Block Diagram of Phase–2
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Figure 14. Software Block Diagram of Phase–3
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Averaging Box CarBC_CALC

Description This software module calculates the average value of a s/w variable. The output can
be rescaled and the size of buffer used for storing the averaging data is selectable.

BC_CALC BC_OUTBC_IN

Q15/Q15

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Asembly File Name: box_car.asm

ASM Routines: BC_CALC, BC_INIT

C-Callable ASM File Names: box_car.asm, box_car.h

Item ASM Only C-Callable ASM Comments

Code size 47 words 46 words‡

Data RAM 69† words 69† words‡

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† For 64-word buffer size.
‡ Each pre-initialized BOXCAR structure occupies (5+BC_SIZE) words in the data memory and

(7+BC_SIZE) words in the .cinit section.
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Direct ASM Interface

Table 1.  Module Terminal Variables/Functions

Name Description Format Range

Input BC_IN Input to be averaged Q15 –1 –> 0.999

Output BC_OUT Averaged output with the
selectable buffer size

Q15 –1 –> 0.999

Init / Config BC_SIZE The buffer size Q0 2, 4, 8, 16, …

bc_scaler The scaling factor Q15 –1 –> 0.999

Routine names and calling limitation:
There are two routines involved:

BC_CALC, the main routine; and 
BC_INIT, the initialization routine.

The initialization routine must be called during program initialization. The BC_CALC
routine must be called in the control loop.

Variable Declaration: 
In the system file, including the following statements before calling the subroutines:

.ref BC_INIT, BC_CALC ;function call

.ref BC_IN, BC_OUT ;Inputs/Outputs

Memory map:
All variables are mapped to an uninitialized named section, bc, which can be allocated
to any one data page. However, the buffer data is mapped to an uninitialized named
section, farmem.

Example:
In the interrupt service routine call the module and read results as follows:

LDP #BC_IN   ; Set DP for module inputs
BLDD #input_var1,BC_IN ; Pass input variables to module inputs

CALL BC_CALC

LDP #output_var1 ; Set DP for module output
BLDD #BC_OUT, output_var1 ; Pass output to other variables
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C/C-Callable ASM Interface

Object Definition The structure of the BOXCAR object is defined in the header file, box_car.h, as seen
in the following:

#define BC_SIZE 64

typedef struct { int  BC_IN; /* Input: Box–Car input (Q15) */
int  BC_PTR; /* Variable: Box–car buffer pointer */
int  BC_BUFFER[BC_SIZE]; /* Variable: Box–car buffer (Q15) */
int  BC_OUT; /* Output: Box–car output (Q15) */
int  bc_scaler; /* Parameter: Box–car scaler (Q15) */
int  (*calc)(); /* Pointer to calculation function */ 

} BOXCAR;

Special Constants and Datatypes

BOXCAR
The module definition itself is created as a data type. This makes it convenient to
instance a BOXCAR object. To create multiple instances of the module simply declare
variables of type BOXCAR.

BOXCAR_DEFAULTS
Initializer for the BOXCAR object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers. This is initialized in the header
file, box_car.h.

Methods void calc(BOXCAR *);
This default definition of the object implements just one method – the runtime compute
function for averaging. This is implemented by means of a function pointer, and the de-
fault initializer sets this to bc_calc function. The argument to this function is the ad-
dress of the BOXCAR object. Again, this statement is written in the header file,
box_car.h.

Module Usage Instantiation:
The following example instances two such objects:

BOXCAR bc1, bc2;

Initialization:
To instance a pre-initialized object:

BOXCAR bc1 = BOXCAR_DEFAULTS;
BOXCAR bc2 = BOXCAR_DEFAULTS;

Invoking the compute function:

bc1.calc(&bc1); 
bc2.calc(&bc2);
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Example:
Lets instance two BOXCAR objects, otherwise identical, and compute the averaging
values of two different s/w variables. The following example is the c source code for
the system file.

BOXCAR bc1= BOXCAR_DEFAULTS;  /* instance the first object */
BOXCAR bc2= BOXCAR_DEFAULTS;    /* instance the second object */

main()
{

bc1.BC_IN = input1; /* Pass inputs to bc1 */
bc2.BC_IN = input2; /* Pass inputs to bc2 */

}

void interrupt periodic_interrupt_isr()
{

bc1.calc(&bc1); /* Call compute function for bc1 */
bc2.calc(&bc2); /* Call compute function for bc2 */

output1 = bc1.BC_OUT; /* Access the outputs of bc1 */  
output2 = bc2.BC_OUT; /* Access the outputs of bc2 */

}
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Background Information

This s/w module computes the average of the runtime values of the selected input vari-
able. The size of the buffer used to keep the data is selectable with the power of two,
i.e., 2, 4, 8, 16, 32, 64, …. The default buffer size is 64. For different buffer size modify
the code (valid for both ASM and CcA versions) as required. The following instruction
is added or deleted, according to the buffer size, at the location indicated in the code.
This divides the number in accumulator by two.

SFR ; Number of times SFR need to be executed
; is, log2(BC_SIZE)
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Capture Input Event DriverCAP_EVENT_DRV

Description This module provides the instantaneous value of the selected time base (GP Timer)
captured on the occurrence of an event. Such events can be any specified transition
of a signal applied at the event manager (EV) capture input pins of 24x/24xx devices.

EV
CAP_EVENT_

CAPn_FIFO DRV

Q15
HW

CAPn

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: cap_drv.asm

C-Callable Version File Names: F243CAP.h, F243CAPx.c, F2407CAPx.c,
F2407CAP.H, CAPTURE.H

Item ASM Only C-Callable ASM Comments

Code size 32 words 54 words (49
words .text, 5
words .cinit)

Data RAM 1 words 6 words

Multiple instances No Yes† Multiple instances must be
initialized to point to different
capture pin routines.

† Creating multiple instances pointing to the same capture pin can cause undefined results.
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Direct ASM Interface

Table 2.  Module Terminal Variables/Functions

Name Description Format Range

H/W Inputs CAPn
(n=1,2,3,4)

Capture input signals to 24x/24xx
device

N/A N/A

Outputs CAPnFIFO
(n=1,2,3,4)

Capture unit FIFO registers. N/A N/A

Init / Config 24x/24xx Select appropriate 24x/24xx device
in the x24x_app.h file.

N/A N/A

CLK_prescaler_bits Initialize this clock prescaler
variable. The default value is set to
4. To use this value call the
CAP_EVENT_DRV_INIT routine
only. For a different value modify
this variable and also call the other
initialization routine
CAP_EVENT_DRV_CLKPS_INIT.
The correct value for this
parameter is calculated in the
Excel file with the user input of the
desired clock prescaler
(1,2,4,8,16,32,64,128).

Q0 0–7

Variable Declaration: 
In the system file include the following statements:

.ref CAP_EVENT_DRV, CAP_EVENT_DRV _INIT ;function call

.ref CAP_EVENT_DRV_CLKPS_INIT ;function call

.ref CLK_prescaler_bits ;parameter

Memory map: 
Not required.

Example:

CALL CAP_EVENT_DRV_INIT
ldp #CLK_prescaler_bits
splk #7, CLK_prescaler_bits ;To specify a prescaler of 128
CALL CAP_EVENT_DRV_CLKPS_INIT

ldp #output_var1 ;Set DP for output variable
bldd #CAP1FIFO,output_var1 ;Pass module o/ps to output vars
bldd # CAP2FIFO, output_var2
bldd # CAP3FIFO, output_var3
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C/C-Callable ASM Interface

Object Definition The structure of the CAPTURE object is defined by the following struct

/*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Define the structure of the Capture Driver Object 
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
typedef struct { int time_stamp;
                 int (*init)(); /*Pointer to the init function */
                 int (*read)(); /*Pointer to the init function */
               } CAPTURE;

Table 3.  Module Terminal Variables/Functions

Name Description Format Range

H/W Input
Pins

– – Inputs are
logic levels on
hardware pins.

Output Time_stamp An Integer value read from timer
assigned to the capture unit.

Q0 –32768 to
32767

Special Constants and Datatypes

CAPTURE
The module definition itself is created as a data type. This makes it convenient to
instance an interface to the CAPTURE pin(s).

CAPTURE_DEFAULTS 
Initializer for the CAPTURE Object. This provides the initial values to the terminal vari-
ables as well as method pointers.

CAPTURE_handle
This is typedef’ed to CAPTURE *.

Methods void init(CAPTURE_handle)
Initializes the CAPTURE unit on the device to activate the capture function.

int read(CAPTURE_handle)
Reads a time stamp value from the timer associated with the capture unit. Note that
the time stamp is placed in the capture object. The return value of the function is either
0 or 1. If the function read a value from the hardware, i.e. if a capture event has oc-
curred, then the function returns 0. Otherwise the return value is 1.

Module Usage Instantiation:
The interface to the Capture unit on the device is instanced thus:

CAPTURE cap1;

Initialization:
To instance a pre-initialized object

CAPTURE cap1=CAP1_DEFAULTS;

Invoking the initialization function:

cap1.init(&cap1);
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Reading a  time stamp from the capture unit:

cap1.read(&cap1);

Example:
Lets instance one CAPTURE object, init it and invoke the read function to fetch a time
stamp.

CAPTURE cap1 CAP1_DEFAULTS; /*Instance the Capture interface object    */

main()
{

cap1.init(&cap1);

}
void interrupt periodic_interrupt_isr()
{

int status;
int time_of_event;

status=cap1.read(&cap1);

/* if status==1 then a time stamp was not read, 
   if status==0 then a time stamp was read.

if(status==0) 
{
time_of_event=cap1.time_stamp;
}

}
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2-Channel Data Logging Utility ModuleDATA_LOG

Description This module stores the realtime values of two user selectable s/w variables in the exter-
nal data RAM provided on the 24x/24xx EVM. Two s/w variables are selected by con-
figuring two module inputs, dlog_iptr1 and dlog_iptr2, point to the address of the two
variables. The starting addresses of the two RAM locations, where the data values are
stored, are set to 8000h and 8400h. Each section allows logging of 400 data values.

EXT

RAM

dlog_iptr1

dlog_itpr2 DATA_LOG DATA

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Independent

Target Devices: x24x/x24xx

Assembly File Name: data_log.asm

ASM Routines: DATA_LOG, DATA_LOG_INIT

C-Callable ASM File Names: data_log1.c, data_log2.asm, data_log.h

Item ASM Only C-Callable ASM Comments

Code size 80 words 118 words†

Data RAM 8 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized DATALOG structure instance consumes 14 words in the data memory and 16 words
in the .cinit section.
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Direct ASM Interface

Table 4.  Module Terminal Variables/Functions

Name Description Format Range

Inputs dlog_iptrx
(x=1,2)

These inputs contain the
addresses of the desired variables.

N/A N/A

Outputs none

Init / Config dlog_iptrx
(x=1,2)

Initialize these inputs with the
addresses of the desired variables.
However, this initialization is
optional, since these input
variables can also be loaded with
the addresses of any s/w variables
from the Code Composer watch
window.

Variable Declaration: 
In the system file include the following statements:

.ref DATA_LOG, DATA_LOG _INIT ;function call

.ref dlog_iptr1, dlog_iptr2 ;inputs

Memory map: 
All variables are mapped to an uninitialized named section ‘data_log’

Example:
During the initialization part of the user code, initialize the module inputs with the ad-
dress of the desired variables as shown below:

CALL DATA_LOG_INIT ;Initializes DAC parameters

ldp #dlog_iptr1 ;Set DP for module inputs
splk #input_var1, dlog_iptr1 ;Pass input variables to module inputs
splk #input_var2, dlog_iptr2

Then in the interrupt routine just call the module to store the values of the intended vari-
ables in the external RAM.

CALL DATA_LOG

Note:

This module does not have any user configurable s/w outputs and, therefore, does
not need any output parameter passing.
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C/C-Callable ASM Interface

Object Definition The structure of the DATALOG object is defined in the header file, data_log.h, as
shown in the following:

typedef struct { int  *dlog_iptr1; /* Input: First input pointer (Q15) */
int  *dlog_iptr2; /* Input: Second input pointer (Q15) */
int  trig_value; /* Input: Trigger point (Q15) */
int  graph_ptr1; /* Variable: First graph address */
int  graph_ptr2; /* Variable: Second graph address */
int  dlog_skip_cntr; /* Variable: Data log skip counter */
int  dlog_cntr; /* Variable: Data log counter */
int  task_ptr; /* Variable: Task address */
int  dlog_prescale; /* Parameter: Data log prescale */
int  dlog_cntr_max; /* Parameter: Maximum data buffer */
int  dl_buffer1_adr; /* Parameter: Buffer starting address 1 */
int  dl_buffer2_adr; /* Parameter: Buffer starting address 2 */
int  (*init)(); /* Pointer to init function */
int  (*update)(); /* Pointer to update function */ 

} DATALOG;

Special Constants and Datatypes

DATALOG 
The module definition itself is created as a data type. This makes it convenient to
instance a DATALOG object. To create multiple instances of the module simply declare
variables of type DATALOG.

DATALOG_DEFAULTS
Initializer for the DATALOG object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers. This is initialized in the header
file, data_log.h.

Methods void init(DATALOG *);
void update(DATALOG *);
This default definition of the object implements two methods – the initialization and run-
time update function for data logging. This is implemented by means of a function
pointer, and the default initializer sets these to data_log_init and data_log_update
functions. The argument to these functions is the address of the DATALOG object.
Again, this statement is written in the header file, data_log.h.

Module Usage Instantiation:
The following example instances two such objects:

DATALOG dlog1, dlog2;

Initialization:
To instance a pre-initialized object:

DATALOG dlog1 = DATALOG_DEFAULTS;
DATALOG dlog2 = DATALOG_DEFAULTS;

Invoking the compute function:

dlog1.update(&dlog1); 
dlog2.update(&dlog2);
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Example:
Lets instance two DATALOG objects, otherwise identical, and run four data logging
variables. The following example is the c source code for the system file.

DATALOG dlog1= DATALOG_DEFAULTS; /* instance the first object */
DATALOG dlog2 = DATALOG_DEFAULTS; /* instance the second object */

main()
{

dlog1.init(&dlog1); /* Initialize the data_log function for dlog1 */
dlog2.init(&dlog2); /* Initialize the data_log function for dlog2 */

/* Since dlog1 already occupied the data buffer addressed (by default) from 0x8000 to
0x87FF, the starting buffer address for dlog2 need to set to other empty space of memory */

dlog2.dl_buffer1_adr = 0x08800; /* Set new starting buffer address of dlog2 */ 
dlog2.dl_buffer2_adr = 0x08C00; /* Set new starting buffer address of dlog2 */

dlog1.dlog_iptr1 = &input1; /* Pass inputs to dlog1 */
dlog1.dlog_iptr2 = &input2; /* Pass inputs to dlog1 */

dlog2.dlog_iptr1 = &input3; /* Pass inputs to dlog2 */
dlog2.dlog_iptr2 = &input4; /* Pass inputs to dlog2 */

}

void interrupt periodic_interrupt_isr()
{

dlog1.update(&dlog1); /* Call update function for dlog1 */
dlog2.update(&dlog2); /* Call update function for dlog2 */

/* This module does not have any user configurable s/w outputs and, therefore, does not
need any output parameter passing.  */

}
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Background Information

This s/w module stores 400 realtime values of each of the selected input variables in
the data RAM as illustrated in the following figures. The starting addresses of two RAM
sections, where the data values are stored, are set to 8000h and 8400h.

input_var1
dlog_iptr1

DATA
RAM

8000h

83FFh

input_var2
dlog_iptr2

DATA
RAM

8400h

87FFh
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Full Compare PWM DriverFC_PWM_DRV

Description This module uses the duty ratio information and calculates the compare values for gen-
erating PWM outputs. The compare values are used in the full compare unit in
24x/24xx event manager(EV). This also allows PWM period modulation.

FC_PWM_DRV

PWM1mfunc_c1

Q0

EV

HW

mfunc_c2

mfunc_c3

mfunc_p

PWM2

PWM3

PWM4

PWM5

PWM6

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: pwm_drv.asm

C-Callable Version File Names: F243PWM1.C, F243PWM2.ASM, F243PWM.H,
F2407PWM1.C, F2407PWM2.C, F2407PWM3.ASM, F2407PWM4.ASM,
F2407PWM.H, PWM.H

Item ASM Only C-Callable ASM Comments

Code size 52 words 88 words † ‡ §

Data RAM 6 words 0 words §

Multiple instances No Yes

† Multiple instances must point to distinct interfaces on the target device. Multiple instances pointing to the
same PWM interface in hardware may produce undefined results. So the  number of interfaces on the
F241/3 is limited to one, while there can be upto two such interfaces on the LF2407.

‡ If, on the 2407, there are two interfaces concurrently linked in, then the code size will be 176 words + .cinit
space + data memory space.

§ Each pre-initialized PWMGEN structure instance consumes 6 words in data memory and 8 words in the
.cinit section.
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Direct ASM Interface

Table 5.  Module Terminal Variables/Functions

Name Description Format Range

Inputs mfunc_cx
(x=1,2,3)

Duty ratios for full compare unit
1, 2 and 3

Q15 8000–7FFF

mfunc_p PWM period modulation function Q15 8000–7FFF

Outputs PWMx
(x=1,2,3,4,5,6)

Full compare PWM outputs from
24x/24xx device.

N/A N/A

Init / Config 24x/24xx Select appropriate 24x/24xx
device from the x24x_app.h file.

N/A N/A

FPERIOD PWM frequency select constant.
Default value is set for 20kHz.
Modify this constant for different
PWM frequency.

Q0 Application
dependent

Variable Declaration:
In the system file include the following statements:

.ref FC_PWM_DRV, FC_PWM _DRV _INIT ;function call

.ref mfunc_c1, mfunc_c2, mfunc_c3, mfunc_p ;inputs

Memory map:
All variables are mapped to an uninitialized named section ‘pwm_drv’

Example:

ldp #mfunc_c1 ;Set DP for module inputs
bldd #input_var1, mfunc_c1 ;Pass input variables

;to module inputs
bldd #input_var2, mfunc_c2 
bldd #input_var3, mfunc_c3
bldd #input_var4, mfunc_p
CALL FC_PWM_DRV

Note:

Since this is an output driver module it does not have any user configurable s/w out-
puts and, therefore, does not need any output parameter passing. This s/w module
calculates the compare values, which are used in the full compare unit internal to
24x/24xx device. From the compare values the device generates the PWM outputs.
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C/C-Callable ASM Interface

Object Definition The structure of the PWMGEN Interface Object is defined by the following structure
definition

typedef struct {   
int period_max;    /* PWM Period in CPU clock cycles.  Q0–Input  */
         int mfunc_p;       /* Period scaler. Q15 – Input                 */
         int mfunc_c1;      /* PWM 1&2 Duty cycle ratio. Q15, Input       */
         int mfunc_c2;      /* PWM 3&4 Duty cycle ratio. Q15, Input       */
         int mfunc_c3;      /* PWM 5&6 Duty cycle ratio. Q15, Input       */
         int (*init)();     /* Pointer to the init function               */
         int (*update)();   /* Pointer to the update function             */
         } PWMGEN ;

Table 6.  Module Terminal Variables/Functions

Name Description Format Range

Inputs mfunc_cx
(x=1,2,3)

Duty ratios for full compare unit
1, 2 and 3

Q15 8000–7FFF

mfunc_p PWM period modulation function Q15 8000–7FFF

Outputs PWMx
(x=1,2,3,4,5,6)

Full compare PWM outputs from
24x/24xx device.

N/A N/A

Init / Config 24x/24xx Select appropriate 24x/24xx
device from the x24x_app.h file.

N/A N/A

period_max PWM period setting. Modify this
constant for different PWM
frequency.

Q0 Application
dependent

Special Constants and Datatypes

PWMGEN
The module definition itself is created as a data type. This makes it convenient
to instance an interface to the PWM Generator module.

PWMGEN _DEFAULTS
Initializer for the PWMGEN Object. This provides the initial values to the termi-
nal variables as well as method pointers.

PWMGEN_handle
Typedef’ed to PWMGEN *

F243_FC_PWM_GEN
Constant initializer for the F243 PWM Interface.

F2407_EV1_FC_PWM_GEN
Constant initializer for the F2407 PWM Interface, EV1.
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F2407_EV2_FC_PWM_GEN
Constant initializer for the F2407 PWM Interface, EV2.

Methods void init  (PWMGEN  *)
Initializes the PWM Gen unit hardware.

void update(PWMGEN *)
Updates the PWM Generation hardware with the data from the PWM Structure.

Module Usage Instantiation:
The interface to the PWM Generation Unit is instanced thus:

PWMGEN  gen;

Initialization:
To instance a pre-initialized object

PWMGEN  gen =PWMGEN_DEFAULTS

Hardware Initialization:

gen.init(&gen);

Invoking the update function:

gen.update(&gen);

Example:
Lets instance one PWMGEN object and one SVGENMF object, (For details on
SVGENMF see the SVGEN_MF.DOC.). The outputs of SVGENMF are output via the
PWMGEN.

SVGENMF svgen= SVGEN_DEFAULTS;  /*Instance the space vector gen object */
PWMGEN  gen  = F243_FC_PWM_GEN; /*Instance the PWM interface object    */

main()
{
svgen.freq=1200; /* Set properties for svgen */
gen.period_max=500; /*Sets the prd reg for the Timer to 500 cycles*/
gen.init(&gen); /* Call the hardware initialization function  */

}
void interrupt periodic_interrupt_isr()
{
sv1.calc(&sv1); /* Call compute function for sv1 */

/* Lets output sv1.va,sv1.vb, and sv1.vc */

gen.mfunc_c1= svgen.va; /*Connect the output of svgen to gen inputs*/
gen.mfunc_c2= svgen.vb;
gen.mfunc_c3= svgen.vc;

gen.update(&gen); /* Call the hardware update function */
}
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Full-Compare PWM Driver with Over-modulationFC_PWM_O_DRV

Description The module implements over-modulation technique to increase DC bus voltage utiliza-
tion for a voltage source inverter. The input limit sets the extent of over-modulation. For
example, limit = 0 means no over-modulation and limit = (timer period)/2 means maxi-
mum over-modulation.

FC_PWM_

PWM1mfunc_c1

EV

HW

mfunc_c2

mfunc_c3

mfunc_p

PWM2

PWM3

PWM4

PWM5

PWM6limit

O_DRV

Q0

Availability This module is available in the direct-mode assembly-only interface (Direct ASM).

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: pwmodrv.asm

Item ASM Only Comments

Code size 133 words

Data RAM 11 words

xDAIS module No

xDAIS component No IALG layer not implemented
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Direct ASM Interface

Table 7.  Module Terminal Variables/Functions

Name Description Format Range

Inputs limit Defines the level of over
modulation. This is related to
the PWM timer period.

Q0 0–timer_
period/2

Mfunc_c1 Duty ratio for PWM1/PWM2 Q15 08000h–
7FFFh

Mfunc_c2 Duty ratio for PWM3/PWM4 Q15 08000h–
7FFFh

Mfunc_c3 Duty ratio for PWM5/PWM6 Q15 08000h–
7FFFh

mfunc_p PWM period modulation
function

Q15 08000h–
7FFFh

H/W Outputs PWMx
(x=1,2,3,4,5,6)

Full compare PWM outputs
from 24x/24xx device.

N/A N/A

Init / Config limit Initial limit is set to 0 so that the
system starts without any
over-modulation. Specify limit
for overmodulation.

Q0 0 –
T1PER/2

FPERIOD PWM frequency select
constant. Default value is set
for 20kHz. Modify this constant
for different PWM frequency.

Q0 Application
dependent

24x/24xx Select appropriate 24x/24xx
device from the x24x_app.h
file.

N/A N/A

Variable Declaration: 
In the system file include the following statements:

.ref FC_PWM_O_DRV

.ref FC_PWM_O_DRV_INIT ;function call

.ref Mfunc_c1, Mfunc_c2, Mfunc_c3, Mfunc_p ;Inputs

Memory map: 
All variables are mapped to an uninitialized named section “pwmodrv”

Example:

ldp #mfunc_c1 ;Set DP for module inputs
bldd #input_var1, mfunc_c1 ;Pass input variables to module inputs
bldd #input_var2, mfunc_c2 
bldd #input_var3, mfunc_c3
bldd #input_var4, mfunc_p

CALL FC_PWM_O_DRV
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Background Information

For high performance motor drive systems, full utilization of the dc bus voltage is an
important factor to achieve maximum output torque under any operating conditions,
and to extend the field weakening range of the motor.  However, for a pulse-width mod-
ulated voltage source inverter (PWM–VSI), the maximum voltage is 78% of the six-
step waveform value. Therefore, in general, a standard motor supplied from an inverter
can not utilize the full DC bus voltage capability. To obtain higher DC bus voltage utiliza-
tion, operating the inverter in over-modulation region is required.

This software module implements a simple but effective over-modulation scheme for
PWM inverters. This module can be applied both for three phase drive (using Space
Vector PWM or regular Sine PWM strategies) as well as single phase drive.

The level of over-modulation is controller by a variable called “limit”. Whenever, the
ouptut waveform is within “limit”, the Compare values for PWM channels are saturated
to the maximum value during the positive half of the waveform and to the minimum val-
ue during the negative half of the waveform. Figure 1 shows the effect of various values
of “limit”.



Background Information

42 SPRU449

(a)

(b)

(c)

Figure 1.  Implementation of Over-modulation Using the Software Module
(a) No over-modulation,

(b) Over-modulation with limit = T1PER/4,
(c) Maximum over-modulation (square wave) with limit = T1PER/2
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Ramp Control ModuleRAMP_CNTL

Description This module implements a ramp up and ramp down function. The output flag variable
s_eq_t_flg is set to 7FFFh when the output variable setpt_value equals the input vari-
able target_value.

RAMP_CNTL

setpt_value

target_value
s_eq_t_flg

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Assembly File Name: rmp_cntl.asm

C-Callable ASM File Names: rmp_cntl.asm, rmp_cntl.h

Item ASM Only C-Callable ASM Comments

Code size 47 words 72 words†

Data RAM 7 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized RMPCNTL structure instance consumes 8 words in the data memory and 10 words
in the .cinit section.
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Direct ASM Interface

Table 8.  Module Terminal Variables/Functions

Name Description Format Range

Input target_value Desired value of the ramp Q0 rmp_lo_limit
–
rmp_hi_limit

Outputs setpt_value Ramp output value Q0 rmp_lo_limit
–
rmp_hi_limit

s_eq_t_flg Ramp output status flag Q0 0 or 7FFF

Init / Config rmp_dly_max† Ramp step delay in number of
sampling cycles

Q0 0–7FFF

rmp_hi_limit† Maximum value of ramp Q0 0–7FFF

rmp_lo_limit† Minimum value of ramp Q0 0–7FFF

† From the system file, initialize these variables as required by the application. From the Real-Time Code
Composer window, specify target_value to vary the output signal setpt_value.

Variable Declaration:
In the system file include the following statements:

.ref RAMP_CNTL, RAMP_CNTL_INIT ; function call

.ref target_value ; Inputs

.ref rmp_dly_max, rmp_lo_limit ; Input Parameters

.ref rmp_hi_limit ; Input Parameter

.ref setpt_value, s_eq_t_flg ; Outputs

Memory map:
All variables are mapped to an uninitialized named section  ‘rmp_cntl’

Example:

ldp #target_value ;Set DP for module input
bldd #input_var1, target_value ;Pass input variable to module input

CALL RAMP_CNTL

ldp #output_var1 ;Set DP for output variable
bldd #setpt_value, output_var1 ;Pass module output to output variable
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C/C-Callable ASM Interface

Object Definition The structure of the RMPCNTL object is defined in the header file, rmp_cntl.h, as
seen in the following:

typedef struct { int  target_value; /* Input: Target input (Q15) */
int  rmp_dly_max; /* Parameter: Maximum delay rate */
int  rmp_lo_limit; /* Parameter: Minimum limit (Q15) */
int  rmp_hi_limit; /* Parameter: Maximum limit (Q15) */
int  rmp_delay_cntl; /* Variable: Incremental delay  */
int  setpt_value; /* Output: Target output (Q15) */
int  s_eq_t_flg; /* Output: Flag output */
int  (*calc)();   /* Pointer to calculation function */ 

} RMPCNTL;

Special Constants and Datatypes

RMPCNTL
The module definition itself is created as a data type. This makes it convenient to
instance a RMPCNTL object. To create multiple instances of the module simply de-
clare variables of type RMPCNTL.

RMPCNTL_DEFAULTS
Initializer for the RMPCNTL object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers. This is initialized in the header
file, rmp_cntl.h.

Methods void calc(RMPCNTL *);
This default definition of the object implements just one method – the runtime compute
function for ramp control. This is implemented by means of a function pointer, and the
default initializer sets this to rmp_cntl_calc function. The argument to these functions
is the address of the RMPCNTL object. Again, this statement is written in the header
file, rmp_cntl.h.

Module Usage Instantiation:
The following example instances two such objects

RMPCNTL rmpc1, rmpc2;

Initialization:
To instance a pre-initialized object:

RMPCNTL rmpc1 = RMPCNTL_DEFAULTS;
RMPCNTL rmpc2 = RMPCNTL_DEFAULTS;

Invoking the compute function:

rmpc1.calc(&rmpc1); 
rmpc2.calc(&rmpc2);
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Example:
Lets instance two RMPCNTL objects, otherwise identical, and run two ramp control-
ling variables. The following example is the c source code for the system file.

RMPCNTL rmpc1= RMPCNTL_DEFAULTS; /* instance the first object */
RMPCNTL rmpc2 = RMPCNTL_DEFAULTS; /* instance the second object */

main()
{

rmpc1.target_value = input1; /* Pass inputs to rmpc1 */
rmpc2.target_value = input2; /* Pass inputs to rmpc2 */

}

void interrupt periodic_interrupt_isr()
{

rmpc1.calc(&rmpc1); /* Call compute function for rmpc1 */
rmpc2.calc(&rmpc2); /* Call compute function for rmpc2 */

output1 = rmpc1.setpt_value; /* Access the outputs of rmpc1 */
output2 = rmpc2.setpt_value; /* Access the outputs of rmpc2 */

}
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Background Information

Implements the following equations:

Case 1: When target_value > setpt_value

setpt_value = setpt_value + 1,for t = n . Td, n = 1, 2, 3…
and (setpt_value + 1) < rmp_hi_limit

= rmp_hi_limit , for (setpt_value + 1) > rmp_hi_limit

where,
Td = rmp_dly_max . Ts
Ts = Sampling time period

Case 2: When target_value < setpt_value

setpt_value = setpt_value – 1, for t = n . Td, n = 1, 2, 3….. 
and (setpt_value – 1) > rmp_lo_limit

= rmp_lo_limit , for (setpt_value – 1) < rmp_lo_limit

where,
Td = rmp_dly_max . Ts
Ts = Sampling time period

target_value < setpt_value

target_value>
setpt_value target_value > setpt_value

1
Td

rmp_hi_limit

rmp_lo_limit

t

setpt_value

Example:

setpt_value = 0 (initial value), target_value = 1000 (user specified),
rmp_dly_max = 500 (user specified), sampling loop time period Ts = 0.000025 Sec.

This means that the time delay for each ramp step is Td = 500x0.000025 = 0.0125 Sec.
Therefore, the total ramp time will be Tramp = 1000x0.0125 Sec = 12.5 Sec
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Speed Calculator Based on Period MeasurementSPEED_PRD

Description This module calculates the motor speed based on a signal’s period measurement.
Such a signal, for which the period is measured, can be the periodic output pulses from
a motor speed sensor.

SPEED_PRD

speed_prd

speed_rpm

time_stamp

Q0/Q15

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version

Module Properties Type: Target Dependent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: speed_pr.asm

C-Callable Version File Names: speed_pr.asm, speed_pr.h

Item ASM Only C-Callable ASM Comments

Code size 55 words 64 words†

Data RAM 13 words 0 words†

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

† Each pre-initialized SPEED_MEAS structure instance consumes 9 words in the data memory and 11 words
in the .cinit section.



Direct ASM Interface

 SPEED_PRD 49

Direct ASM Interface

Table 9.  Module Terminal Variables/Functions

Name Description Format Range

Inputs time_stamp Captured base timer counter
value corresponding to the
periodic edges of the sensed
signal.

Q0 0–FFFF

Outputs speed_prd Normalized motor speed Q15 0–7FFF

speed_rpm Motor speed in revolution per
minute

Q0 0–rpm_max

Init / Config rpm_max Speed of normalization. The
value chosen should be equal to
or greater than the maximum
motor speed.

Q0 Specified
by user

speed_scaler Scaling constant. Use the Excel
file to calculate this.

Q0 System
dependent

shift Number of left shift less 1
required for max accuracy of
32bit/16bit division used for
speed calculation. Use the Excel
file to calculate this. When
speed_scaler is calculated as 1,
shift will be –1. In that case do
not apply any left shift on the
result of the 32bit/16bit division.

Q0 System
dependent

Variable Declaration: In the system file include the following statements:

.ref SPEED_PRD, SPEED_PRD _INIT ;function call

.ref  time_stamp, rpm_max, speed_scaler, shift ;input

.ref  speed_prd, speed_rpm ;output

Memory map: All variables are mapped to an uninitialized named section  ‘speedprd’

Example:

ldp # time_stamp ;Set DP for module input
bldd #input_var1, time_stamp ;Pass input to module input
CALL SPEED_PRD
ldp #output_var1 ;Set DP for output variables
bldd #speed_prd, output_var1 ;Pass module outputs to output 

;variables
bldd #speed_rpm, output_var2
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C/C-Callable ASM Interface

Object Definition The structure of the SPEED_MEAS object is defined by the following structure defini-
tion

typedef struct {
int time_stamp_new; /*Variable: New ‘Timestamp’ corresponding to a capture event*/
int time_stamp_old; /*Variable: Old ‘Timestamp’ corresponding to a capture event*/
int time_stamp; /*Input: Current ‘Timestamp’ corresponding to a capture event*/
int shift; /*Parameter: For maximum accuracy of 32bit/16bit division*/
int speed_scaler; /*Parameter: Scaler converting 1/N cycles to a Q15 speed*/
int speed_prd; /*Output: speed in per–unit
int rpm_max; /*Parameter: Scaler converting Q15 speed to rpm (Q0) speed*/
int speed_rpm; /*Output: speed in r.p.m.
int (*calc) (); /*Pointer to the calculation function*/
} SPEED_MEAS; /*Data type created*/

Table 10.  Module Terminal Variables

Name Description Format Range

Inputs time_stamp Captured base timer counter
value corresponding to the
periodic edges of the sensed
signal.

Q0 0–FFFF

Outputs speed_prd Normalized motor speed Q15 0–7FFF

speed_rpm Motor speed in revolution per
minute

Q0 0–rpm_max

Init / Config rpm_max Speed of normalization. The
value chosen should be equal to
or greater than the maximum
motor speed.

Q0 Specified
by user

speed_scaler Scaling constant. Use the Excel
file to calculate this.

Q0 System
dependent

shift Number of left shift less 1
required for max accuracy of
32bit/16bit division used for
speed calculation. Use the Excel
file to calculate this. When
speed_scaler is calculated as 1,
shift will be –1. In that case, do
not apply any left shift on the
result of the 32 bit/16 bit division.

Q0 System
dependent

Special Constants and Datatypes

SPEED_MEAS
The module definition itself is created as a data type. This makes it convenient to
instance a Space Vector Generation module. To create multiple instances of the mod-
ule simply declare variables of type SVGENMF.
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SPEED_PR_MEAS_DEFAULTS
Initializer for the SVGENMF Object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers.

Methods void calc(SPEED_MEAS *)
Pointer to the speed calculation function.

Module Usage Instantiation:

SPEED_MEAS  shaftSpeed;

Initialization:
To instance a pre-initialized object

SPEED_MEAS  shaftSpeed=SPEED_PR_MEAS_DEFAULTS;

Invoking the compute function:

shaftSpeed.calc(&shaftSpeed);

Example:

/*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Pre initialized declaration for the speed measurement object.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
        SPEED_MEAS shaftSpeed=SPEED_PR_MEAS_DEFAULTS;

/*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Declaration for the capture driver. For more details see the CAP_DRV
document.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
        CAPTURE cap=CAPTURE_DEFAULTS;
main()
{

/*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
    Initialize the capture interface
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
        cap.init(&cap);

}

void periodic_interrupt_isr()
{
/*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Call the capture driver read function. Note, that this func returns
the status, as the return value, NOT the time_stamp. The time_stamp
is returned directly into the CAPTURE object structure.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/
  if((cap.read(&cap))==0)  /* Call the capture read function */
  {
 shaftSpeed.time_stamp=cap.time_stamp; /* Read out new time stamp */
 shaftSpeed.calc(&shaftSpeed);        /* Call the speed calulator */
  }

}
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Background Information

A low cost shaft sprocket with n teeth and a Hall effect gear tooth sensor is used to mea-
sure the motor speed. Figure 2 shows the physical details associated with the sprock-
et.  The Hall effect sensor outputs a square wave pulse every time a tooth rotates within
its proximity. The resultant pulse rate is n pulses per revolution.  The Hall effect sensor
output is fed directly to the 24x/24xx Capture input pin. The capture unit will capture
(the value of it’s base timer counter) on either the rising or the falling edges(whichever
is specified) of the Hall effect sensor output. The captured value is passed to this s/w
module through the variable called time_stamp.

In this module, every time a new input time_stamp becomes available it is compared
with the previous time_stamp. Thus, the tooth-to-tooth period (t2–t1) value is calcu-
lated. In order to reduce jitter or period fluctuation, an average of the most recent n peri-
od measurements can be performed each time a new pulse is detected.

25 teeth

t1

t2

�t

�

�

�t � t2 � t1 sec

� � 360
25

� � 2�
25
�

n � 1
�tn

rad�sec

= 14.4°

Figure 2.  Speed Measurement With a Sprocket

From the two consecutive time_stamp values the difference between the captured val-
ues are calculated as,

∆ = time_stamp(new) – time_stamp(old)

Then the time period in sec is given by,

�t � t2 � t1 � Kp � TCLK � �

where,

KP = Prescaler value for the Capture unit time base

TCLK = CPU clock period in sec

From Figure 2, the angle θ in radian is given by,

� � 2�
n

where,

n = number of teeth in the sprocket, i.e., the number of pulses per revolution

Then the speed ω in radian/sec and the normalized speed ωN are calculated as,
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� � �

�t
� 2�

n�t
� 2�

n � Kp � TCLK � �

� �N � �
�max

� �

2�� 1
n�KP�TCLK

�
� 1

�

Where, ωmax is the maximum value of ω which occurs when ∆=1. Therefore,

�max �
2�

nKPTCLK

For, n=25, KP=32 and TCLK=50x10–9 sec (20MHz CPU clock), the normalized speed
ωN is given by,

�N � �

2�(25000)
� 1

�

The system parameters chosen above allows maximum speed measurement of
1500,000 rpm. Now, in any practical implementation the maximum motor speed will be
significantly lower than this maximum measurable speed. So, for example, if the motor
used has a maximum operating speed of 23000 rpm, then the calculated speed can
be expressed as a normalized value with a base value of normalization of at least
23000 RPM. If we choose this base value of normalization as 23438 rpm, then the cor-
responding base value of normalization, in rad/sec, is,

�max1 �
23438 � 2�

60
	 2�(390)

Therefore, the scaled normalized speed is calculated as,

�N1 �
�

2�(390)
	 64

�
� 64 � �N � speed_scaler � �N

This shows that in this case the scaling factor is 64.

The speed, in rpm, is calculated as,

N1 � 23438 � �N1 � 23438 � 64
�

� rpm_max � �N1

The capture unit in 24x/24xx allows accurate time measurement (in multiples of clock
cycles and defined by a prescaler selection) between events. In this case the events
are selected to be the rising edge of the incoming pulse train. What we are interested
in is the delta time between events and hence for this implementation Timer 1 is al-
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lowed to free run with a prescale of 32 (1.6uS resolution for 20MHz CPU clock) and
the delta time ∆, in scaled clock counts, is calculated as shown in Figure 3.

t

f(t)

FFFFh

0

t1 t2 t1 t2

∆∆

1

2

Case 1

Case 2

Note: only true if

T f (t2) 
 f (t1)

� � f (t2) � f (t1)

f (t2) � f (t1)

� � 1 � f (t2) � f (t1)

t2 � t1 
 T

Figure 3.  Calculation of Speed

In Figure 3, the vertical axis f(t) represents the value of the Timer counter  which is run-
ning in continuous up count mode and resetting when the period register = FFFFh.
Note that two cases need to be accounted for: the simple case where the Timer has
not wrapped around and where it has wrapped around. By keeping the current and pre-
vious capture values it is easy to test for each of these cases.

Once a “robust” period measurement is extracted from the averaging algorithm, the
speed is calculated using the appropriate equations explained before. In order to main-
tain high precision in the calculation for the full range of motor speeds, a 32-bit/16-bit
division is performed as shown in Figure 4 in the following.

s i i i i i i i
31 30 16

f f f f f f f f
15 01. . . . . .

fraction
sign

Speed =

Q31

1
period

�
7FFFFFFF(Q31)

period(Q0)
� speed(Q31 � 32bit)

Figure 4.  32-Bit/16-Bit Division

Once complete the result is a 32-bit value in Q31 format. This value is subsequently
scaled to a 16 bit, Q15 format value for later calculation of the speed error (see
Figure 4).

Table 11.  Variable Cross Ref Table

Variables in the Equations Variables in the Code

∆ event_period

ωN speed_prd_max

ωN1 speed_prd

N1 speed_rpm
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Space Vector Generator (Magnitude/Frequency Method)SVGEN_MF

Description This module calculates the appropriate duty ratios needed to generate a given stator
reference voltage using space vector PWM technique. The stator reference voltage is
described by it’s magnitude and frequency.

SVGEN_MF
Ta

Tc

sv_freq

sv_gain

Q15/Q15 Tbsv_offset

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Independent, Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: svgen_mf.asm

C-Callable Version File Name: svgen_mf.asm

Item ASM Only C-Callable ASM Comments

Code size 427 words 454 words†

Data RAM 16 words 0 words†

xDAIS ready No Yes

xDAIS component No No IALG layer not implemented

Multiple instances No Yes

† Each pre-initialized SVGENMF structure consumes 11 words in the .cinit section instance and 9 words in
data memory.
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Direct ASM Interface

Table 12.  Module Terminal Variables/Functions

Name Description Format Range

Inputs sv_freq Normalized frequency of
reference voltage vector.

Q15 8000–7FFF

sv_gain Normalized gain of the reference
voltage vector.

Q15 8000–7FFF

sv_offset Normalized offset in the
reference voltage vector

Q15 8000–7FFF

Outputs Ta Duty ratio of PWM1(CMPR1
register value as a fraction of
associated period register,
TxPR, value).

Q15 8000–7FFF

Tb Duty ratio of PWM3(CMPR2
register value as a fraction of
associated period register,
TxPR, value).

Q15 8000–7FFF

Tc Duty ratio of PWM5(CMPR3
register value as a fraction of
associated period register,
TxPR, value).

Q15 8000–7FFF

Init / Config none

Variable Declaration:
In the system file include the following statements:

.ref SVGEN_MF, SVGEN_MF _INIT ;function call

.ref sv_freq, sv_gain, sv_offset, Ta, Tb, Tc ;input/output

Memory map:
All variables are mapped to an uninitialized named section ‘svgen_mf’

Example:

ldp #sv_freq ;Set DP for module input
bldd #input_var1, sv_freq ;Pass input variables to module inputs
bldd #input_var2, sv_gain
bldd #input_var2, sv_offset

CALL SVGEN_MF

ldp #output_var1 ;Set DP for output variable
bldd #Ta, output_var1 ;Pass module outputs to output variables
bldd #Tb, output_var2 
bldd #Tc, output_var3
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C/C-Callable ASM Interface

Object Definition The structure of the SVGENMF object is defined by the following structure definition

/*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Define the structure of the SVGENMF
(Magnitude and angular velocity based Space Vector Waveform Generator)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

typedef struct { int gain;      /* Waveform amplitude Q15 Input         */
int freq;      /* Frequency setting  Q15 Input         */
int freq_max;  /* Frequency setting  Q0  Input         */
int alpha;     /* Internal var – Sector angle history  */
int sector;    /* Internal var – Sector number history */
int va;        /* Phase A output Q15                   */
int vb;        /* Phase B output Q15                   */
int vc;        /* Phase C output Q15                   */
int (*calc)(); /* Pointer to calculation function      */

} SVGENMF;

Table 13.  Module Terminal Variables/Functions

Name Description Format Range

Inputs freq Fraction of Frequency of reference
voltage vector.

Q15 8000–7FFF

freq_max Frequency of reference voltage vector. Q0 8000–7FFF

gain Required gain for the desired
reference voltage vector.

Q15 8000–7FFF

Outputs va Duty ratio of PWM1(CMPR2 register
value as a fraction of associated
period register, TxPR, value).

Q15 8000–7FFF

vb Duty ratio of PWM3(CMPR2 register
value as a fraction of associated
period register, TxPR, value).

Q15 8000–7FFF

vc Duty ratio of PWM5(CMPR3 register
value as a fraction of associated
period register, TxPR, value).

Q15 8000–7FFF

Special Constants and Datatypes

SVGENMF
The module definition itself is created as a data type. This makes it convenient to
instance a Space Vector Generation module. To create multiple instances of the mod-
ule simply declare variables of type SVGENMF.

SVGENDQ_handle
Typedef’ed to SVGENMF *
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SVGENMF_DEFAULTS
Initializer for the SVGENMF Object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers.

Methods void calc(SVGENMF_handle)
The default definition of the object implements just one method – the runtime compute
function for the generation of the space vector modulation functions. This is implement-
ed by means of a function pointer, and the default initializer sets this to svgenmf_calc.
The argument to this function is the address of the SVGENMF object.

Module Usage Instantiation:
The following example instances two such objects:

SVGENMF   sv1,sv2;

Initialization:
To instance a pre-initialized object

SVGENMF  sv1=SVGEN_DEFAULTS,sv2=SVGEN_DEFAULTS;

Invoking the compute function:

sv1.calc(&sv1);

Example:
Lets instance two SVGENMF objects, otherwise identical, but running with different
freq values.

SVGENMF sv1=SVGEN_DEFAULTS; /* Instance the first object */
SVGENMF sv2=SVGEN_DEFAULTS; /* Instance the second object*/

main()
{

sv1.freq=1200; /* Set properties for sv1 */
sv2.freq=1800; /* Set properties for sv2 */

}
void interrupt periodic_interrupt_isr()
{

sv1.calc(&sv1); /* Call compute function for sv1 */
sv2.calc(&sv2); /* Call compute function for sv2 */

x=sv1.va; /* Access the outputs of sv1 */
y=sv1.vb;
z=sv1.vc;

p=sv2.va; /* Access the outputs of sv2 */
q=sv2.vb;
r=sv2.vc;

/* Do something with the outputs */

}
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Background Information

The Space Vector Pulse Width Modulation (SVPWM) refers to a special switching se-
quence of the upper three power devices of a three-phase voltage source inverters
(VSI) used in application such as AC induction and permanent magnet synchronous
motor drives. This special switching scheme for the power devices results in 3 pseudo-
sinusoidal currents in the stator phases.

motor phases

VDC +

a cb

Q6Q4Q2

Q5Q3Q1

c′a′ b′

VA VB VC

Figure 5.  Power Circuit Topology for a Three-Phase VSI

It has been shown that SVPWM generates less harmonic distortion in the output volt-
ages or currents in the windings of the motor load and provides more efficient use of
DC supply voltage, in comparison to direct sinusoidal modulation technique.

c′a′ b′

VDC

a

A

b

B

c

C

Z

Z Z

N

ACI or PMSM

Figure 6.  Power Bridge for a Three-Phase VSI

For the three phase power inverter configurations shown in Figure 5 and Figure 6,
there are eight possible combinations of on and off states of the upper power transis-
tors. These combinations and the resulting instantaneous output line-to-line and
phase voltages, for a dc bus voltage of VDC, are shown in Table 14.
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Table 14.  Device On/Off Patterns and Resulting Instantaneous Voltages of a
3-Phase Power Inverter

c b a VAN VBN VCN VAB VBC VCA

0 0 0 0 0 0 0 0 0

0 0 1 2VDC/3 –VDC/3 –VDC/3 VDC 0 –VDC

0 1 0 –VDC/3 2VDC/3 –VDC/3 –VDC VDC 0

0 1 1 VDC/3 VDC/3 –2VDC/3 0 VDC –VDC

1 0 0 –VDC/3 –VDC/3 2VDC/3 0 –VDC VDC

1 0 1 VDC/3 –2VDC/3 VDC/3 VDC –VDC 0

1 1 0 –2VDC/3 VDC/3 VDC/3 –VDC 0 VDC

1 1 1 0 0 0 0 0 0

The quadrature quantities (in d–q frame) corresponding to these 3 phase voltages are
given by the general Clarke transform equation:

Vds � VAN

Vqs �
(2VBN � VAN)

3�

In matrix from the above equation is also expressed as,

�Vds

Vqs
� � 2

3�
�

�

1

0

�1
2

3�

2

� 1
2

�
3�

2

�
�

�
�
�

�

VAN

VBN

VCN

�
�

�

Due to the fact that only 8 combinations are possible for the power switches, Vds and
Vqs can also take only a finite number of values in the (d–q) frame according to the sta-
tus of the transistor command signals (c,b,a). These values of Vds and Vqs for the corre-
sponding instantaneous values of the phase voltages (VAN, VBN, VCN) are listed in
Table 15.

Table 15.  Switching Patterns, Corresponding Space Vectors, and their (d–q)
Components

c b a Vds Vqs Vector

0 0 0 0 0 O0

0 0 1 0 U0

0 1 0 U120

0 1 1 U60

1 0 0 U240

1 0 1 U300

1 1 0 0 U180

1 1 1 0 0 O111

2VDC

3
VDC

3�
�

VDC

3
VDC

3
VDC

3�

�
VDC

3
�

VDC

3�
VDC

3
�

VDC

3�

�
2VDC

3
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These values of Vds and Vqs, listed in Table 15, are called the (d–q) components of the
basic space vectors corresponding to the appropriate transistor command signal
(c,b,a). The space vectors corresponding to the signal (c,b,a) are listed in the last col-
umn in Table 15. For example, (c,b,a)=001 indicates that the space vector is U0.The
eight basic space vectors defined by the combination of the switches are also shown
in Figure 7.

U120(010)

U240(100)

U60(011)

U300(101)

U180(110) U0(001)
O111(111) O0(000)

q

d

Figure 7.  Basic Space Vectors

In Figure 7, vectors corresponding to states 0 (000) and 7 (111) of the switching vari-
ables are called the zero vectors.

Decomposing the reference voltage vector V*

The objective of Space Vector PWM technique is to approximate a given stator refer-
ence voltage vector V* by combination of the switching pattern corresponding to the
basic space vectors. The reference voltage vector V* is obtained by mapping the de-
sired three phase output voltages(line to neutral) in the (d–q) frame through the Clarke
transform defined earlier. When the desired output phase voltages are balanced three
phase sinusoidal voltages, V* becomes a vector rotating around the origin of the (d–q)
plane with a frequency corresponding to that of the desired three phase voltages.

The magnitude of each basic space vector, as shown in Figure 8, is normalized by the
maximum value of the phase voltages. Therefore, when the maximum bus voltage is
VDC, the maximum line to line voltage is also VDC, and so the maximum phase volt-
age(line to neutral) is VDC/√3. From Table 15, the magnitude of the basic space vectors
is 2VDC/3. When this is normalized by the maximum phase voltage(VDC/√3), the mag-
nitude of the basic space vectors becomes  2/√3. These magnitudes of the basic space
vectors are indicated in Figure 8.
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Figure 8.  Projection of the Reference Voltage Vector

Representing the reference vector V* with the basic space vectors requires precise
control of both the vector magnitude M (also called the modulation index) and the angle
α. The aim here is to rotate V* in the d–q plane at a given angular speed (frequency)
ω. The vector magnitude M controls the resultant peak phase voltage generated by the
inverter.

In order to generate the reference vector V*, a time average of the associated basic
space vectors is required, i.e. the desired voltage vector V* located in a given sector,
can be synthesized as a linear combination of the two adjacent space vectors, Ux and
Uy which frame the sector, and either one of the two zero vectors. Therefore,

V *� dxUx � dyUy � dzUz

where Uz is the zero vector, and dx, dy and dz are the duty ratios of the states X, Y and
Z within the PWM switching interval. The duty ratios must add to 100% of the PWM
period, i.e: dx + dy + dz = 1.

Vector V* in Figure 8 can also be written as:

V *� MVmax ej� � dxUx � dyUy � dzUz

where M is the modulation index and Vmax is the maximum value of the desired phase
voltage.

By projecting V* along the two adjacent space vectors Ux and Uy, we have,

�MVmax cos� � dx|Ux| � dy|Uy| cos
MVmax sin� � dy|Uy| sin 60°

60°
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Since the voltages are normalized by the maximum phase voltage, Vmax=1. Then by
knowing |Ux| = |Uy|  = 2/√3 (when normalized by maximum phase voltage), the duty
ratios can be derived as,

dx � M sin(60 � �)

dy � M sin(�)

These same equations apply to any sector, since the d–q reference frame, which has
here no specific orientation in the physical space, can be aligned with any space vector.

Implementation of sin function

In this implementation the angular speed ω is controlled by a precision frequency gen-
eration algorithm which relies on the modulo nature (i.e. wrap-around) of a finite length
register, called Integrator in Figure 8. The upper 8 bits of this integrator (a data memory
location in 24x/24xx) is used as a pointer to a 256 word Sine lookup table. By adding
a fixed value (step size) to this register, causes the 8 bit pointer to cycle at a constant
rate through the Sine table. In effect we are integrating angular velocity to give angular
position. At the end limit the pointer simply wraps around and continues at the next mo-
dulo value given by the step size. The rate of cycling through the table is very easily
and accurately controlled by the value of step size.

As shown in Figure 8, sine of α is needed to decompose the reference voltage vector
onto the basic space vectors of the sector the voltage vector is in. Since this decom-
position is identical among the six sectors, only a 60� sine lookup table is needed. In
order to complete one revolution (360o) the sine table must be cycled through 6 times.

For a given step size the angular frequency (in cycles/sec) of V* is given by:

� �
STEP � fs

6 � 2m

where

fs = sampling frequency (i.e. PWM frequency)

STEP = angle stepping increment

m = # bits in the integration register.

For example, if fs  = 24KHz, m=16 bits & STEP ranges from 0à2048 then the resulting
angular frequencies will be as shown in Table 16.

Table 16.  Frequency Mapping

STEP Freq (Hz) STEP Freq (Hz) STEP Freq (Hz)

1 0.061 600 36.62 1700 103.76

20 1.22 700 42.72 1800 109.86

40 2.44 800 48.83 1900 115.97

60 3.66 900 54.93 2000 122.07

80 4.88 1000 61.04 2100 128.17

100 6.10 1100 67.14 2200 134.28

From the table it is clear that a STEP value of 1 gives a frequency of 0.061Hz, this de-
fines the frequency setting resolution, i.e. the actual line voltage frequency delivered
to the AC motor can be controlled to better than 0.1 Hz.



Background Information

64 SPRU447

For a given fs  the frequency setting resolution is determined by m the number of bits
in the integration register. Table 17 shows the theoretical resolution which results from
various sizes of m.

Table 17.  Resolution of Frequency Mapping

m (# bits) Freq res (Hz) m (# bits) Freq res (Hz)

8 15.6250 17 0.0305

12 0.9766 18 0.0153

14 0.2441 19 0.0076

16 0.0610 20 0.0038

Another important parameter is the size of the lookup table. This directly effects the
harmonic distortion produced in the resulting synthesized sine wave. As mentioned
previously a 256 entry sine table is used which has a range of 60°. This gives an angle
lookup resolution of 60° / 256 = 0.23°. The table entries are given in Q15 format and
a summarized version is shown below.

;–––––––––––––––––––––––––––––––––––––––––––––––––––––––
;No. Samples: 256,  Angle Range: 60, Format: Q15
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––
;            SINVAL ;   Index  Angle    Sin(Angle)
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––
STABLE  .word 0  ; 0 0 0.00
        .word 134  ; 1 0.23 0.00
        .word 268  ; 2 0.47 0.01
        .word 402  ; 3 0.70 0.01
        .word 536  ; 4 0.94 0.02
        .word 670  ; 5 1.17 0.02

      ”         ”       ”       ”    ”
      ”         ”       ”       ”    ”
      ”         ”       ”       ”    ”

        .word 28106 ; 252 59.06 0.86
        .word 28175 ; 253 59.30 0.86
        .word 28243 ; 254 59.53 0.86
        .word 28311 ; 255 59.77 0.86

Realization of the PWM Switching Pattern

Once the PWM duty ratios dx, dy and dz are calculated, the appropriate compare val-
ues for the compare registers in 24x/24xx can be determined. The switching pattern
in Figure 9 is adopted here and is implemented with the Full Compare Units of
24x/24xx. A set of 3 new compare values, Ta, Tb and Tc, need to be calculated every
PWM period to generate this switching pattern.
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T

= 1 PWM period

Note:

d0 dx dv d7 d0 dx

Ta

Tb

Tc

d0 � d7 � dz

Figure 9.  PWM Output Switching Pattern

From Figure 9, it can be seen:

Ta �
(T � dx � dy)

2

Tb � dx � Ta

Tc � T � Ta

If we define an intermediate variable T1 using the following equation:

T1 �
T � dx � dy

2

Then for different sectors Ta, Tb and Tc can be expressed in terms of T1. Table 18
depicts this determination.

Table 18.  Calculation of Duty Cycle for Different Sectors

Sector U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

Ta T1 dy+Tb T–Tb T–Tc dx+Tc T1

Tb dx+Ta T1 T1 dy+Tc T–Tc T–Ta

Tc T–Ta T–Tb dx+Tb T1 T1 dy+Ta

The switching pattern shown in Figure 9 is an asymmetric PWM implementation. How-
ever, 24x/24xx devices can also generate symmetric PWM. Little change to the above
implementation is needed to accommodate for this change. The choice between the
symmetrical and asymmetrical case depends on the other care-about in the final imple-
mentation.
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Volts/Hertz Profile for AC Induction MotorV_HZ_PROFILE

Description This module generates an output command voltage for a specific input command fre-
quency according to the specified volts/hertz profile. This is used for variable speed
implementation of AC induction motor drives.

V_Hz_PROFILE

v_outvhz_freq

Availability This module is available in two interface formats:

1) The direct-mode assembly-only interface (Direct ASM)

2) The C-callable interface version.

Module Properties Type: Target Independent/Application Dependent

Target Devices: x24x/x24xx

Direct ASM Version File Name: vhz_prof.asm

C-Callable Version File Names: vhzprof.asm, vhzprof.h

Item ASM Only C-Callable ASM Comments

Code size 42 words 48 words†

Data RAM 9 words 0 words†

xDAIS module No Yes

xDAIS component No No IALG layer not implemented

† Each pre-initialized VHZPROFILE struction consumes 10 words in the .cinit section instance and 8 words
in data memory.
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Direct ASM Interface

Table 19.  Module Terminal Variables/Functions

Name Description Format Range

Inputs vhz_freq Command frequency of the stator
voltage

Q15 0–7FFF

Outputs v_out Command stator output voltage Q15 0–7FFF

Init / Config FL† Low frequency point on v/f profile. Q15 Application
dependent

FH† High frequency point on v/f
profile.

Q15 Application
dependent

Fmax† Maximum frequency Q15 Application
dependent

vf_slope† Slope of the v/f profile Q12 Application
dependent

Vmax† Voltage corresponding to FH Q15 Application
dependent

Vmin† Voltage corresponding to FL Q15 Application
dependent

† These parameters are initialized to some default values in the module initialization routine. Initialize these
from the system file if the default values are not used.

Variable Declaration:
In the system file include the following statements:

.ref V_Hz_PROFILE, V_Hz_PROFILE _INIT ;function call

.ref vhz_freq, v_out ;input/output

Memory map:
All variables are mapped to an uninitialized named section ‘vhz_prof’

Example:

ldp #vhz_freq ;Set DP for module input
bldd #input_var1, vhz_freq ;Pass input variable to module

;input

CALL V_Hz_PROFILE

ldp #output_var1 ;Set DP for output variable
bldd #v_out, output_var1 ;Pass module output to output

; variable
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C/C-Callable ASM Interface

Object Definition The object is defined as

typedef struct { int freq;   /* Frequency input Q15 */
                 int fl;     /* Freq below which vout=vmin:Q15 Input  */
                 int fh;     /* Freq above which vout=vmax Q15 Input  */
                 int slope;  /* Slope of the Vhz profile:  Q15 Input  */
                 int vmax;   /* Voltage output above fmax  Q15 Input  */
                 int vmin;   /* Voltage output below fmin  Q15 Input  */
                 int vout;   /* Computed output voltage    Q15 Output */
                 int (*calc)();  /* Ptr to the calculation function   */
               } VHZPROFILE;

Table 20.  Module Terminal Variables/Functions

Name Description Format Range

Inputs freq Command frequency of the stator
voltage

Q15 0–7FFF

Outputs vout Command stator output voltage Q15 0–7FFF

Init / Config fl† Low frequency point on v/f profile. Q15 Application
dependent

fh† High frequency point on v/f
profile.

Q15 Application
dependent

slope† Slope of the v/f profile Q12 Application
dependent

vmax† Voltage corresponding to fl Q15 Application
dependent

vmin† Voltage corresponding to fh Q15 Application
dependent

† These parameters are initialized to some default values in the module initialization routine. Initialize these
from the system file if the default values are not used.

Special Constants and Datatypes

VHZPROFILE
The module definition itself is created as a data type. This makes it convenient to
instance a VHZ Profile module. To create multiple instances of the module simply de-
clare variables of type VHZPROFILE.

DEFAULT_PROFILE
Initializer for the SVGENMF Object. This provides the initial values to the terminal vari-
ables, internal variables, as well as method pointers.

Methods void calc(VHZPROFILE *)
The only method implemented for this object is the runtime compute function for the
calculation of the vout value depending on the object parameters. The argument to this
function is the address of the VHZPROFILE object.

Module Usage Instantiation:
The following example instances two such objects:

VHZPROFILE   vhz1,vhz2;
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Initialization:
To instance a pre-initialized object

VHZPROFILE   vhz1=DEFAULT_PROFILE;

Invoking the compute function:

vhz1.calc(&vhz1);

Example:
Lets instance two SVGENMF objects, otherwise identical, but running with different
freq values. These SVGENMF objects need the computed value of the envelope for
the SVGEN waveforms, and this is computed by the VHZPROFILE objects.

SVGENMF sv1=SVGEN_DEFAULTS; /* Instance the first object */
SVGENMF sv2=SVGEN_DEFAULTS; /* Instance the second object*/

VHZPROFILE vhz1=DEFAULT_PROFILE;
VHZPROFILE vhz2=DEFAULT_PROFILE;

main()
{

sv1.freq=1200; /* Set properties for sv1 */
sv2.freq=1800; /* Set properties for sv2 */

}

void interrupt periodic_interrupt_isr()
{

vhz1.freq=sv1.freq; /* Connect the sv1, sv2 freq to vhz1 and vhz2 */
vhz1.freq=sv1.freq;

vhz2.calc(&vhz1); /* Call the compute functions */
vhz2.calc(&vhz1);

sv1.gain=vhz1.gain; /* Pass the computed output voltages back to the svgens */

sv2.gain=vhz2.gain;

sv1.calc(&sv1); /* Call compute function for sv1 */
sv2.calc(&sv2); /* Call compute function for sv2 */

x=sv1.va; /* Access the outputs of sv1 */
y=sv1.vb;
z=sv1.vc;

p=sv2.va; /* Access the outputs of sv2 */
q=sv2.vb;
r=sv2.vc;

/* Do something with the outputs. Something is probably modulate PWMs to drive motors with.
*/

}
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Background Information

If the voltage applied to a three phase AC Induction motor is sinusoidal, then by ne-
glecting the small voltage drop across the stator resistor, we have, at steady state,

V
^
	 j� �

^

i.e.,

V 	 � �

where V
^

and �
^
 are the phasor representations of stator voltage and stator flux,

and V and � are their magnitude, respectively. Thus, we get

� � V
�
� 1

2�
V
f

From the last equation, it follows that if the ratio V/f remains constant for any change
in f, then flux remains constant and the torque becomes independent of the supply fre-
quency. In actual implementation, the ratio of the magnitude to frequency is usually
based on the rated values of these parameters, i.e., the motor rated parameters. How-
ever, when the frequency, and hence the voltage, is low, the voltage drop across the
stator resistor cannot be neglected and must be compensated for. At frequencies high-
er than the rated value, maintaining constant V/Hz means exceeding rated stator volt-
age and thereby causing the possibility of insulation break down. To avoid this,
constant V/Hz principle is also violated at such frequencies. This principle is illustrated
in Figure 10.
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Figure 10.  Voltage Versus Frequency Under the Constant V/Hz Principle

Since the stator flux is maintained constant (independent of the change in supply fre-
quency), the torque developed depends only on the slip speed. This is shown in
Figure 11. So by regulating the slip speed, the torque and speed of an AC Induction
motor can be controlled with the constant V/Hz principle.
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Figure 11.  Toque Versus Slip Speed of an Induction Motor With Constant
Stator Flux
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Both open and closed-loop control of the speed of an AC induction motor can be imple-
mented based on the constant V/Hz principle. Open-loop speed control is used when
accuracy in speed response is not a concern such as in HVAC (heating, ventilation and
air conditioning), fan or blower applications. In this case, the supply frequency is deter-
mined based on the desired speed and the assumption that the motor will roughly fol-
low its synchronous speed. The error in speed resulted from slip of the motor is consid-
ered acceptable.

In this implementation, the profile in Figure 10 is modified by imposing a lower limit on
frequency. This is shown in Figure 12. This approach is acceptable to applications
such as fan and blower drives where the speed response at low end is not critical. Since
the rated voltage, which is also the maximum voltage, is applied to the motor at rated
frequency, only the rated minimum and maximum frequency information is needed to
implement the profile.
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Figure 12.  Modified V/Hz Profile

The command frequency is allowed to go below the minimum frequency, fmin, with the
output voltage saturating at a minimum value, Vmin . Also, when the command frequen-
cy is higher than the maximum frequency, fmax, the output voltage is saturated at a
maximum value, Vmax.


