
TMS320C54x DSP Library
Programmer’s Reference

Literature Number: SPRU518D
October 2004

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI�s terms and conditions of sale supplied at the
time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI�s standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any
TI patent right, copyright, mask work right, or other TI intellectual property right relating to any
combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

iiiRead This First

Preface

Read This First

About This Manual

The TMS320C54x DSPLIB is an optimized DSP Function Library for C pro-
grammers on TMS320C54x devices. It includes over 50 C-callable assembly-
optimized general-purpose signal processing routines. These routines are
typically used in computationally intensive real-time applications where opti-
mal execution speed is critical. By using these routines you can achieve exe-
cution speeds considerably faster than equivalent code written in standard
ANSI C language. In addition to providing ready-to-use DSP functions,
TI DSPLIB can significantly shorten your DSP application development time.

Related Documentation

� The MathWorks, Inc. Matlab Signal Processing Toolbox User�s Guide.
Natick, MA: The MathWorks, Inc., 1996.

� Lehmer, D.H. �Mathematical Methods in large-scale computing units.�
Proc. 2nd Sympos. on Large-Scale Digital Calculating Machinery, Cam-
bridge, MA, 1949. Cambridge, MA: Harvard University Press, 1951.

� Oppenheim, Alan V. and Ronald W Schafer. Discrete-Time Signal Proc-
essing. Englewood Cliffs, NJ: Prentice Hall, 1989.

� Digital Signal Processing with the TMS320 Family (SPR012)

� TMS320C54x DSP CPU and Peripherals Reference Set, Volume 1
(SPRU131)

� TMS320C54x Optimizing C Compiler User�s Guide (SPRU103)

Trademarks

TMS320, TMS320C54x, and C54x are trademarks of Texas Instruments.

Matlab is a registered trademark of The MathWorks, Inc.

iv

Contents

v

Contents

1 Introduction 1-1.
Introduction to the TMS320C54x DSP Library.

1.1 DSP Routines 1-2.
1.2 Features and Benefits 1-2.

1.2.1 DSPLIB: Quality Freeware That You Can Build on and Contribute to 1-2.

2 Installing DSPLIB 2-1.
Describes how to install the DSPLIB.

2.1 DSPLIB Content 2-2.
2.2 How to Install DSPLIB 2-3.

2.2.1 De-Archive DSPLIB 2-3.
2.2.2 Update Your C_DIR Environment Variable 2-3.

2.3 How to Rebuild DSPLIB 2-4.
2.3.1 For Full Rebuild of 54xdsp.lib and/or 54xdspf.lib 2-4.
2.3.2 For Partial Rebuild of 54xdsp.lib and/or 54xdspf.lib (Modification of

a Specific DSPLIB Function, for example fir.asm) 2-4.

3 Using DSPLIB 3-1.
Describes how to use the DSPLIB.

3.1 DSPLIB Data Types 3-2.
3.2 DSPLIB Arguments 3-2.
3.3 Calling a DSPLIB Function from C 3-3.
3.4 Calling a DSPLIB Function from Assembly 3-4.
3.5 Where to Find Sample Code 3-4.
3.6 How DSPLIB is Tested � Allowable Error 3-5.
3.7 How DSPLIB Deals With Overflow and Scaling Issues 3-5.
3.8 Where DSPLIB Goes From Here 3-7.

4 Function Descriptions 4-1.
Provides descriptions for the TMS330C55x DSPLIB functions.

4.1 Arguments and Conventions Used 4-2.
4.2 DSPLIB Functions 4-3.

acorr 4-7.
add 4-8.
atan16 4-9.

Contents

vi

atan2_16 4-10.
bexp 4-11.
cbrev 4-12.
cfir 4-14.
cfft 4-15.
cfft32 4-17.
cifft 4-19.
cifft32 4-21.
convol 4-23.
corr 4-24.
dlms 4-26.
expn 4-27.
fir 4-28.
firdec 4-30.
firinterp 4-31.
firs 4-33.
firs2 4-34.
fltoq15 4-36.
hilb16 4-37.
iir32 4-38.
iircas4 4-40.
iircas5 4-42.
iircas51 4-44.
iirlat 4-45.
firlat 4-47.
log_2 4-48.
log_10 4-50.
logn 4-51.
maxidx 4-52.
maxval 4-53.
minidx 4-54.
minval 4-54.
mmul 4-55.
mtrans 4-56.
mul32 4-57.
nblms 4-58.
ndlms 4-60.
neg 4-62.
neg32 4-63.
power 4-64.
q15tofl 4-65.
rand16init 4-65.
rand16 4-66.
recip16 4-67.

Contents

viiContents

rfft 4-68.
rifft 4-70.
sine 4-72.
sqrt_16 4-74.
sub 4-75.

5 DSPLIB Benchmarks and Performance Issues 5-1.
Describes benchmarks and performance issues for the DSPLIB functions.

5.1 What DSPLIB Benchmarks are Provided 5-2.
5.2 Performance Considerations 5-2.

6 Software Updates and Customer Support 6-1.
Details the software updates and customer support issues for the TMS320C55x DSPLIB.

6.1 DSPLIB Software Updates 6-2.
6.2 DSPLIB Customer Support 6-2.

A Overview of Fractional Q Formats A-1.
Describes the fractional Q formats used by the DSPLIB functions.
A-1

A.1 Q3.12 Format A-2.
A.2 Q.15 Format A-2.
A.3 Q.31 Format A-2.

B Calculating the Reciprocal of a Q15 Number B-1.
Provides the calculations used to find the inverse of a fractional Q15 number.

Tables

viii

Tables

4−1 Arguments and Conventions 4-2.
4−2 DSPLIB Function Summary Table 4-3.
A−1 Q3.12 Bit Fields A-2.
A−2 Q.15 Bit Fields A-2.
A−3 Q.31 Low Memory Location Bit Fields A-2.
A−4 Q.31 High Memory Location Bit Fields A-2.

1-1

Introduction

The TMS320C54x DSP Library (DSPLIB) is an optimized DSP Function Li-
brary for C programmers on TMS320C54x devices. It includes over 50 C-call-
able assembly-optimized general-purpose signal processing routines. These
routines are typically used in computationally intensive real-time applications
where optimal execution speed is critical. By using these routines you can
achieve execution speeds considerably faster than equivalent code written in
standard ANSI C language. In addition to providing ready-to-use DSP func-
tions, TI DSPLIB can significantly shorten your DSP application development
time.

Topic Page

1.1 DSP Routines 1-2.

1.2 Features and Benefits 1-2.

Chapter 1

DSP Routines

 1-2

1.1 DSP Routines

The TI DSPLIB includes commonly used DSP routines. Source code is pro-
vided to allow you to modify the functions to match your specific needs.

The routines included within the library are organized into eight different func-
tional categories:

� FFT

� Filtering and convolution

� Adaptive filtering

� Correlation

� Math

� Trigonometric

� Miscellaneous

� Matrix

1.2 Features and Benefits

� Hand-coded assembly optimized routines

� C-callable routines fully compatible with the TI C54x compiler

� Support also provided for C54x devices with extended program memory
addressing (Far mode)

� Fractional Q15-format operand supported

� Complete set of examples on use provided

� Benchmarks (time and code) provided

� Tested against Matlab scripts

1.2.1 DSPLIB: Quality Freeware That You Can Build on and Contribute to

DSPLIB is a free-of-charge product. You can use, modify, and distribute TI
C54x DSPLIB for use on TI C54x DSPs with no royalty payments. Refer to
section 3.8, Where DSPLIB Goes From Here, for details.

2-1

Installing DSPLIB

This chapter describes how to install the DSPLIB.

Topic Page

2.1 DSPLIB Content 2-2.

2.2 How to Install DSPLIB 2-3.

2.3 How to Rebuild DSPLIB 2-4.

Chapter 2

DSPLIB Content

 2-2

2.1 DSPLIB Content

The TI DSPLIB software consists of four parts:

1) A header file for C programmers:

dsplib.h

2) Two object libraries for the two different memory models supported by TI
compilers:

54xdsp.lib for standards short-call mode (16-bit)

54xdspf.lib for far-call mode (24-bits)

3) One source library to allow function customization by the end user

54xdsp.src

4) Example programs and linker command files used under the �54x_test�
subdirectory.

How to Install DSPLIB

2-3Installing DSPLIB

2.2 How to Install DSPLIB

Note:

Read the README.1ST file for specific details of release.

2.2.1 De-Archive DSPLIB

DSPLIB is distributed in the form of an executable self-extracting ZIP file
(54xdsplib.exe) that will automatically restore the DSPLIB individual compo-
nents in the same directory you �execute� the self-extracting file from. Follow-
ing is an example on how to install DSPLIB. Just type:

54xdsplib.exe −d

The DSPLIB directory structure and content you will find is as follows:

54xdsplib (dir)

54xdsp.lib

54xdspf.lib

blt54x.bat

blt54xf.bat

: use for standards short-call mode

: use for far-call mode

: re-generate 54xdsp.lib based on 54xdsp.src

: re-generate 54xdspf.lib based on 54xdsp.src

examples(dir) : contains one subdirectory for each routine included in
the library where you can find complete test cases.

include(dir)

dsplib.h

tms320.lib

: include file with data types and function prototypes

: include file with type definitions to increase TMS320
portability

doc(dir)

code(dir) : contains the examples shown in the application report

2.2.2 Update Your C_DIR Environment Variable

Append the full path of the 54xdsplib directory path to your C_DIR environment
variable. For example, if you run the 54xdsplib.exe self-extracting file in
c:\54xdsplib, and your TI DSP development tools were installed in c:\dsptools,
add this line to your c:\autoexec.bat file.

Set C_DIR=. C:\54xdsplib c:\dsptools

This allows the C54x compiler/linker to find the C54x DSPLIB object libraries,
54xdsp.lib or 54xdspf.lib.

How to Rebuild DSPLIB

 2-4

2.3 How to Rebuild DSPLIB

2.3.1 For Full Rebuild of 54xdsp.lib and/or 54xdspf.lib

� To rebuild 54xdsp.lib, simply execute the blt54x.bat.
Warning: This will overwrite the existing 54xdsp.lib

� To rebuild 54xdspf.lib, simply execute the blt54xf.bat.
Warning: This will overwrite the existing 54xdspf.lib

2.3.2 For Partial Rebuild of 54xdsp.lib and/or 54xdspf.lib
(Modification of a Specific DSPLIB Function, for example fir.asm)

1) Extract the source for the selected function from the source archive:

ar500 x 54xdsp.src fir.asm

2) Reassemble your new fir.asm assembly source file:

asm500 �g fir.asm

3) Replace the object, fir.obj, in the dsplib.lib object library with the newly
formed object:

ar500 r 54xdsp.lib fir.obj

3-1

Using DSPLIB

This chapter describes how to use the DSPLIB.

Topic Page

3.1 DSPLIB Data Types 3-2.

3.2 DSPLIB Arguments 3-2.

3.3 Calling a DSPLIB Function from C 3-3.

3.4 Calling a DSPLIB Function from Assembly 3-4.

3.5 Where to Find Sample Code 3-4.

3.6 How DSPLIB is Tested − Allowable Error 3-5.

3.7 How DSPLIB Deals With Overflow and Scaling Issues 3-5.

3.8 Where DSPLIB Goes from Here 3-7.

Chapter 3

DSPLIB Data Types

 3-2

3.1 DSPLIB Data Types

DSPLIB handles the following fractional data types:

� Q.15 (DATA): A Q.15 operand is represented by a short data type (16-bit)
that is predefined as type DATA in the dsplib.h header file.

� Q.31 (LDATA): A Q.31 operand is represented by a long data type (32-bit)
that is predefined as type LDATA in the dsplib.h header file.

� Q.3.12: Contains 3 integer bits and 12 fractional bits.

Unless specifically noted, DSPLIB operates on Q15-fractional data type ele-
ments. Appendix A presents an overview of Fractional Q formats.

3.2 DSPLIB Arguments

TI DSPLIB functions typically operate over vector operands for greater effi-
ciency. Even though these routines can be used to process short arrays or
even scalars (unless a minimum size requirement is noted), they will be slower
on those cases.

� Vector stride is always equal 1: Vector operands are composed of
vector elements held in consecutive memory locations (vector stride equal
to 1).

� Complex elements are assumed to be stored in a Re-Im format.

� In-place computation is allowed (unless specifically noted): Source
operand can be equal to destination operand to conserve memory.

Calling a DSPLIB Function from C

3-3Using DSPLIB

3.3 Calling a DSPLIB Function from C

In addition to correctly installing the DSPLIB software, to include a DSPLIB
function in your code you have to:

� Include the dsplib.h include file.

� Link your code with one of the two DSPLIB object code libraries, 54xdsp.lib
or 54xdspf.lib, depending on whether you need far mode.

� Use a correct linker command file describing the memory configuration
available in your C54x board.

A project file has been included for each function in the examples folder. You
can reference function_t.c files in each subdirectory for calling DSPLIB from C.

Note:

The examples presented in this application report have been tested using
the Texas Instruments C54x EVM containing a C541. Therefore, the linker
command file used reflects the memory configuration available in that board.
Customization may be required to use it with a different board. No overlay
mode is assumed (default after C54x device reset).

Refer to the TMS320C54x Optimizing C Compiler User�s Guide (SPRU281)
if more in-depth explanation is required.

DSPLIB routines modify the 54x FRCT bit. This can cause problems
for users of versions of the compiler (cl500) prior to version 3.1 if
interrupt service routines (ISRs) are implemented in C�. Versions
prior to 3.1 do not preserve the FRCT bit on ISR entry, therefore the
FRCT bit may be corrupted and not restored which will lead to
incorrect results. One solution is to implement the ISRs in
assembly and preserve the FRCT bit. Users with version 3.1 and
above need not worry about this.

Calling a DSPLIB Function from Assembly

 3-4

3.4 Calling a DSPLIB Function from Assembly

The C54x DSPLIB functions were written to be used from C. Calling the func-
tions from Assembly language source code is possible as long as the calling-
function conforms with the Texas Instruments C54x C compiler calling conven-
tions. This means that the DSPLIB functions expect parameters to be passed
on the stack in reverse order (except for the first argument that is passed in
the C54x Accumulator A). Refer to the TMS320C54x Optimizing C Compiler
User�s Guide (SPRU281) if a more in-depth explanation is required.

Keep in mind that the TI DSPLIB is not an optimal solution for assembly-only
programmers. Even though DSPLIB functions can be invoked from an assem-
bly program, the result might not be optimal due to unnecessary C-calling
overhead.

3.5 Where to Find Sample Code

You can find examples on how to use every single function in DSPLIB, in the
examples subdirectory. This subdirectory contains one subdirectory for each
function. For example the examples/araw subdirectory contains the following
files:

� araw_t.c: main driver for testing the DSPLIB acorr (raw) function

� test.h: contains input data (a) and expected output data (yraw) for the
acorr (raw) function. This test.h file is generated by using Matlab scripts.

� test.c: contains function used to compare the output of araw function with
the expected output data.

� abias.cmd: an example of a linker command you can use for this function
(C541 evm specific)

How DSPLIB is Tested � Allowable Error

3-5Using DSPLIB

3.6 How DSPLIB is Tested � Allowable Error

Version 1.0 of DSPLIB is tested against Matlab scripts. Expected data output
has been generated from Matlab that uses double-precision (64-bit) floating-
point operations (default precision in Matlab). Test utilities have been added
to our test main drivers to automate this checking process. Notice that a maxi-
mum absolute error value (MAXERROR) is passed to the test function to set
the trigger point to flag a functional error.

We consider this testing methodology a good first pass approximation. Further
characterization of the quantization error ranges for each function (under ran-
dom input) as well as testing against a set of fixed-point C models is planned
for future releases. We welcome any suggestions you, as a user, may have on
this respect.

3.7 How DSPLIB Deals With Overflow and Scaling Issues

One of the inherent difficulties of programming for fixed-point processors, is
to determine how to deal with overflow issues. Overflow occurs as a result of
addition and subtraction operations when the dynamic range of the resulting
data is larger than what the intermediate and final data types can contain.

The methodology used to deal with overflow should depend on the specifics
of your signal, the type of operation in your functions and the DSP architecture
used. In general, overflow handling methodologies can be classified in five
categories: saturation, input scaling, fixed scaling, dynamic scaling and sys-
tem design considerations.

It is important to note that a C54x architectural feature that makes overflow
easier to deal with is the presence of guard bits in both C54x accumulators.
The 40-bit C54x accumulators provide eight guard bits to allow up to 256 con-
secutive MAC operations before an accumulator overrun � a very useful fea-
ture when implementing for example FIR filters.

There are four specific ways DSPLIB deals with overflow, as reflected in each
function description:

� Scaling implemented for overflow prevention: In this type of function,
DSPLIB scales the intermediate results to prevent overflow. Overflow
should not occur as a result. Precision is affected but not significantly. This
is the case of the FFT functions, in which scaling is used after each FFT
stage.

How DSPLIB Deals With Overflow and Scaling Issues

 3-6

� No scaling implemented for overflow prevention: In this type of func-
tion, DSPLIB does not scale to prevent overflow due to the potentially
strong effect in data output precision or in the number of cycles required.
This is the case for example of the MAC-based operations like filtering,
correlation or convolutions. The best solution on those cases is to design
your system, for example your filter coefficients with a gain less than 1 to
prevent overflow. In this case, overflow could happen unless you input
scale or you design for no overflow.

� Saturation implemented for overflow handling: In this type of function,
DSPLIB has enabled the C54x 32-bit saturation mode (OVM bit = 1). This
is the case of certain basic math functions that require the saturation mode
to be enabled to work.

� Not applicable: In this type of function, due to the nature of the function
operations, there is no overflow to worry about.

A couple of additional DSPLIB features relate to overflow/scaling handling:

� DSPLIB reporting of overflow conditions (overflow flag): Due to the
sometimes not predictible overflow risk, most DSPLIB functions have
been written to return an overflow flag (oflag) as an indication of a poten-
tially dangerous 32-bit overflow. However, keep in mind that due to the
guard-bits, the C54x is capable of dealing with intermediate 32-bit over-
flows, and still producing the correct final result. Therefore, the oflag
parameter should be taken in the context of a warning but not a definitive
error.

� Functions for handling of scaling and data block exponent: DSPLIB
includes a bexp that will return the maximum exponent (extra sign bits) of
a vector to allow determination of correct input scaling.

As a final note, DSPLIB is provided also in source format to allow customiza-
tion of DSPLIB functions to your specific system needs.

Where DSPLIB Goes From Here

3-7Using DSPLIB

3.8 Where DSPLIB Goes From Here

We anticipate DSPLIB to improve in future releases in the following areas:

� Increased number of functions: We anticipate the number of functions
in DSPLIB will grow overtime. We welcome user-contributed code. If dur-
ing the process of developing your application you develop a DSP routine
that seems like a good fit to DSPLIB, let us know. We will review and test
your routine and make sure to include it in the next DSPLIB software rele-
ase. Your contribution will be fully acknowledged and recognized by TI in
the DSPLIB Application Report Acknowledgment Section. Use this oppor-
tunity to make your name known by your DSP industry peers. Simply email
your contribution to dsph@ti.com and we will get in contact with you.

� Improved testing methodology and function characterization: See
section 3.6, How DSPLIB is Tested − Allowable Error.

� Increased code portability: DSPLIB looks to enhance code portability
across different TMS320-based platforms. It is our goal to provide similar
DSP libraries for other TMS320 devices that working in conjunction with
C54x compiler intrinsics make C-developing easier for fixed-point device-
s. However, it is anticipated that a 100% portable library across TMS320
devices may not be possible due to normal device architectural differen-
ces. TI will continue monitoring DSP industry standardization activities in
terms of DSP function libraries. In the event of the endorsement by the
DSP community of a standard DSP library spec, TI will take the necessary
steps to evolve DSPLIB into industry compliance.

 3-8

4-1

Function Descriptions

This chapter provides descriptions for the TMS330C55x DSPLIB functions.

Topic Page

4.1 Arguments and Conventions Used 4-2.

4.2 DSPLIB Functions 4-3.

Chapter 4

4-2

4.1 Arguments and Conventions Used

Table 4−1 lists the convention followed when describing the arguments for
each individual function.

Table 4−1. Arguments and Conventions

Argument Description

x,y Argument reflecting input data vector

r Argument reflecting output data vector

nx,ny,nr Arguments reflecting the size of vectors x,y, and r respectively. In
functions in which case nx= nr=nr, only nx has been used across.

h Argument reflecting filter coefficient vector (filter routines only)

nh Argument reflecting the size of vector h

DATA Data type definition equating a short, a 16-bit value representing a
Q15 number. Use of DATA instead of short is recommended to
increase future portability across devices.

LDATA Data type definition equating a long, a 32-bit value representing a
Q31 number. Use of LDATA instead of short is recommended to
increase future portability across devices.

ushort Unsigned short (16-bit). You can used this data type directly, be-
cause it has been defined in dsplib.h

4-3 Function Descriptions

4.2 DSPLIB Functions

The routines included within the library are organized into 8 different functional
categories:

� FFT

� Filtering and convolution

� Adaptive filtering

� Correlation

� Math

� Trigonometric

� Matrix functions

� Miscellaneous

Table 4−2. DSPLIB Function Summary Table

(a) FFT

Functions Description

void cfft (DATA x, nx, short scale) Radix-2 complex forward FFT − MACRO

void cifft (DATA x, nx, short scale) Radix-2 complex inverse FFT � MACRO

void cfft32 (LDATA x, nx, short scale) 32-bit forward complex FFT

void cifft32 (LDATA x, nx, short scale) 32-bit inverse complex FFT

void rfft (DATA x, nx, short scale) Radix-2 real forward FFT − MACRO

void rifft (DATA x, nx, short scale) Radix-2 real inverse FFT − MACRO

void cbrev (DATA *a, DATA *r, ushort n) Complex bit-reverse function

(b) Filtering and Convolution

Functions Description

short fir (DATA *x, DATA *h, DATA *r, DATA **dbuffer,
ushort nx, ushort nh)

FIR Direct form

short firs (DATA *x, DATA *r, DATA **dbuffer, ushort nh2,
ushort nx)

Symmetric FIR Direct form Optimized routine)

short int firs2 (DATA *x, DATA *h, DATA *r, DATA
**dbuffer, ushort nh2, ushort nx)

Symmetric FIR Direct form (generic routine)

4-4

Table 4−2. DSPLIB Function Summary Table (Continued)

(b) Filtering and Convolution (Continued)

Functions Description

short firdec (DATA *x, DATA *h, DATA *r, DATA **dbuffer,
ushort nh, ushort nx, ushort D)

Decimating FIR filter

short firinterp (DATA *x, DATA *h, DATA *r, DATA
**dbuffer, ushort nh, ushort nx, ushort I)

Interpolating FIR filter

short cfir (DATA *x, DATA *h, DATA *r, DATA **dbuffer,
ushort nh, ushort nx)

Complex FIR direct form

short convol (DATA *a, DATA *h, DATA *r, ushort na,
ushort nh)

Convolution

short hilb16 (DATA *x, DATA *h, DATA *r, DATA *db,
ushort nh, ushort nx)

16-bit fir Hilbert Transformer

short iircas4(DATA *x, DATA *h, DATA *r, DATA **dbuffer,
ushort nbiq, ushort nx)

IIR cascade Direct Form 2.4 coefficients per
biquad.

short iircas5(DATA *x, DATA *h, DATA *r, DATA **dbuffer,
ushort nbiq, ushort nx)

IIR cascade Direct Form 2.5 coefficients per
biquad

short iircas51(DATA *x, DATA *h, DATA *r, DATA
**dbuffer, ushort nbiq, ushort nx)

IIR cascade Direct Form 1.5 coefficients per
biquad

short iir32(DATA *x, LDATA *h, DATA *r, LDATA **dbuffer,
ushort nbiq, ushort nx)

32-bit IIR cascade Direct Form 2.5 coefficients
per biquad.

short iirlat (DATA *x, DATA *h, DATA *r, DATA *d, ushort
nh, ushort nx)

Lattice inverse IIR filter

short firlat (DATA *x, DATA *h, DATA *r, DATA *d, ushort
nx, ushort nh)

Lattice forward FIR filter

4-5 Function Descriptions

Table 4−2. DSPLIB Function Summary Table (Continued)

(c) Adaptive Filtering

Functions Description

short dlms (DATA *x, DATA *h, DATA *r, DATA **d, DATA
*des, DATA step, ushort nh, ushort nx)

LMS FIR (delayed version)

short ndlms (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
DATA *des, ushort nh, ushort nx, int l_tau, int cutoff, int
gain, DATA *norm_d)

Normalized delayed LMS implementation

short nblms (DATA *x,DATA *h,DATA *r, DATA *dbuffer,
DATA *des, ushort nh, ushort nx, ushort nb, DATA
*norm_e, int l_tau, int cutoff, int gain)

Normalized Block LMS implementation

(d) Correlation

Functions Description

short acorr (DATA *x, DATA *r, ushort nx, ushort nr, type) Auto-correlation (positive side only) � MACRO

short corr (DATA *x, DATA *y, DATA *r, ushort nx, ushort
ny, type)

Correlation (full-length) � MACRO

(e) Trigonometric

Functions Description

Short sine (DATA *x, DATA *r, ushort nx) sine of a vector

Short atan2_16(DATA *q, DATA *i, DATA *r, ushort nx) 4 − Quadrant Inverse Tangent of a vector

Short atan16(DATA *x, DATA *r, ushort nx) Arctan of a vector

(f) Math

Functions Description

short add (DATA *x, DATA *y, DATA *r, ushort nx, ushort
scale)

Optimized vector addition

short expn (DATA *x, DATA *r, ushort nx) Exponent of a vector

short ldiv16(LDATA *x, DATA *y, DATA *r, DATA *exp,
ushort nx)

Signed vector divide

short logn (DATA *x, LDATA *r, ushort nx) Natural log of a vector

short log_2 (DATA *x, LDATA *r, ushort nx) Log base 2 of a vector

Short log_10 (DATA *x, LDATA *r, ushort nx) Log base 10 of a vector

4-6

Table 4−2. DSPLIB Function Summary Table (Continued)

(f) Math (Continued)

Functions Description

short maxidx (DATA *x, ushort nx) Index for maximum magnitude in a vector

short maxval (DATA *x, ushort nx) Maximum magnitude in a vector

short minidx (DATA *x, ushort nx) Index for minimum magnitude in a vector

short minval (DATA *x, ushort nx) Minimum element in a vector

short mul32(LDATA *x, LDATA *y, LDATA *r, ushort nx) 32-bit vector multiply

short neg (DATA *x, DATA *r, ushort nx) 16-bit vector negate

short neg32 (LDATA *x, LDATA *r, ushort nx) 32-bit vector negate

short power (DATA *x, LDATA *r, ushort nx) sum of squares of a vector (power)

short rand16(DATA *x, ushort nx) Random number vector generator

void rand16init(void) Random number generator initialization

void recip16 (DATA *x, DATA *r, DATA *rzexp, ushort nx) Vector reciprocal

short sqrt_16 (DATA *x, DATA *r, short nx) Square root of a vector

short sub (DATA *x, DATA *y, DATA *r, ushort nx, ushort
scale)

Vector subtraction

(g) Matrix

Functions Description

short mmul (DATA *x1,short row1,short col1,DATA
*x2,short row2,short col2,DATA *r)

matrix multiply

short mtrans(DATA *x, DATA *r, ushort nx) matrix transponse

(h) Miscellaneous

Functions Description

short bexp(DATA *x, ushort nx) max exponent (extra sign-bits) of vector
(to allow determination of correct inputscaling)

void fltoq15 (float *x, DATA *r, ushort nx) Float to Q15 conversion

void q15tofl (DATA *x, float *r, ushort nx) Q15 to float conversion

acorr

4-7 Function Descriptions

Autocorrelationacorr

Function short oflag = acorr (DATA *x, DATA *r, ushort nx, ushort nr, type)
(defined in araw.asm, abias.asm, aubias.asm)

Arguments x[nx] Pointer to real input vector of nx real elements. nx >= nr

r[nr] Pointer to real output vector containing the first nr elements of the
positive side of the autocorrelation function of vector a. r must be
different than a (in-place computation is not allowed).

nx Number of real elements in vector x

nr Number of real elements in vector r

type Auto-correlation type selector. Types supported:
� If type = raw, r will contain the raw autocorrelation of x
� If type = bias, r will contain the biased autocorrelation of x
� If type = unbias, r will contain the unbiased autocorrelation

of x

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag = 0 a 32-bit overflow has not occurred

Description Computes the first nr points of the positive-side of the autocorrelation of the
real vector x and stores the results are stored in real output vector r. Notice that
the full-length autocorrelation of vector x will have 2*nx−1 points with even
symmetry around the lag 0 point (r[0]). This routine provides only the positive
half of this for memory and computational savings.

Algorithm Raw Autocorrelation: r[j] � �
nx�j�1

k�0

x[j � k]x[k] 0 � j � nr

Biased Autocorrelation: r[j] � 1
nx �

nx�j�1

k�0

x[j � k]x[k] 0 � j � nr

Unbiased Autocorrelation:

r[j] � 1
(nx � abs(j))

�
nx�j�1

k�0

x[j � k]x[k] 0 � j � nr

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

add

4-8

Implementation Notes
� Special debugging consideration: This function is implemented as a mac-

ro that invokes different autocorrelation routines according to the type se-
lected. As a consequence the acorr symbol is not defined. Instead the
acorr_raw, acorr_bias, acorr_unbias symbols are defined.

� Autocorrelation is implemented using time-domain techniques.

Example See examples/abias, examples/aubias, examples/araw subdirectories.

Benchmarks Cycles Abias
Core:
((na−1) * (na−2)) + ((nlags) * 13) + 26
Overhead 68
Araw
Core:
19 + (nr * 10) + ((na−2) * (na−3))
Overhead 61
Aubias
Core:
4 + ((nr−2) * 37) + ((na−1) * (na−2))
Overhead 68

Code size (in 16-bit words) Abias: 95 words
Araw: 79 words
Aubias: 94 words

Vector Addadd

Function short oflag = add (DATA *x, DATA *y, DATA *r, ushort nx, ushort scale)
(defined in add.asm)

Arguments x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

y[nx] Pointer to input data vector 2 of size nx

r[nx] Pointer to output data vector of size nx containing
� (x+y) if scale = 0
� (x+y) /2 if scale = 1

nx Number of elements of input and output vectors
nx >=4

atan16

4-9 Function Descriptions

scale Scale selection
� Scale = 1 divide the result by 2 to prevent overflow
� Scale = 0 does not divide by 2

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description This function adds two vectors, element by element.

Algorithm for (i=0; i < nx; i++)
z (i) = x (i) + y (i)

Overflow Handling Methodology Scaling implemented for overflow prevention (User selectable)

Special Requirements none

Implementation Notes none

Example See examples/add subdirectory

Benchmarks Cycles Core:
12 + 3*nx/2
Overhead 30

Code size (in 16-bit words) 39

Arctangent Implementationatan16

Function short oflag = atan16(DATA *x, DATA *r, ushort nx)
(defined in atant.asm)

Arguments x[nx] Pointer to input data vector of size nx. x contains the tangent of
r, where |x| < 1.

r[nx] Pointer to output data vector of size nx containing the arctangent
of x in the range [−pi/4, pi/4] radians. In-place processing allowed
(r can be equal to x) e.g. atan(1.0) = 0.7854 or 6478h)

nx Number of elements of input and output vectors
oflag Overflow flag

� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

atan2_16

4-10

Description This function calculates the arc tangent of each of the elements of vector x. The
result is placed in the resultant vector r and is in the range [−pi/2 to pi/2] in ra-
dians. For example,

if x = [0x7fff, 0x3505, 0x1976, 0x0] (equivalent to tan(PI/4), tan(PI/8),
tan(PI/16), 0 in float): atan16(x,r,4) should give r = [0x6478, 0x3243, 0x1921,
0x0] equivalent to [PI/4, PI/8, PI/16 0]

Algorithm for (i=0; i < nx; i++)
r (i) = atan (x(i))

Overflow Handling Methodology Not applicable

Special Requirements Linker command file: you must allocate .data section (for polynomial coeffi-
cients)

Implementation Notes
� atan(x), with 0 <= x <= 1, output scaling factor = PI.

� Uses a polynomial to compute the arctan (x) for |x| <1. For |x| > 1, you can
express the number x as a ratio of 2 fractional numbers and use the
atan2_16 function.

Example See examples/atant subdirectory

Benchmarks Cycles Core:
11 * nx
Overhead 39

Code size (in 16-bit words) 32

Arctangent 2 Implementationatan2_16

Function short oflag = atan2_16(DATA *i, DATA *q, DATA *r, ushort nx)
(defined in arct2.asm)

Arguments q[nx] Pointer to quadrature input vector (in Q15 format) of size nx

i[nx] Pointer to in-phase input vector (in Q15 format) of size nx

r[nx] Pointer to output data vector (in Q15 format) number
representation of size nx containing. In-place processing allowed
(r can be equal to x)
On output, r contains the arctangent of (q/I) * (1/PI)

bexp

4-11 Function Descriptions

nx Number of elements of input and output vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description This function calculates the arc tangent of the ratio q/I, where −1 <=
atan2_16(Q/I)<= 1. representing an actual range of −PI < atan2_16(Q/I) < PI
The result is placed in the resultant vector r. Output scale factor correction =
PI.

For example, if
y = [0x1999, 0x1999, 0x0, 0xe667 0x1999] (equivalent to [0.2, 0.2, 0 , −0.2 0.2]
float)
x = [0x1999, 0x3dcc, 0x7ffff, 0x3dcc c234] (equivalent to [0.2, 0.4828, 1,
0.4828�0.4828] float) atan2_16(y, x, r,4) should give
r = [0x2000, 0x1000, 0x0, 0xf000, 0x7000] equivalent to [0.25, 0.125, 0 �0.125
0.875]*pi

Algorithm For (j=0; j<nx; j++)
r[j] = atan2(q(j)/I(j))

Overflow Handling Methodology Not applicable

Special Requirements Linker command file: you must allocate .data section (for polynomial
coefficients)

Implementation Notes none

Example See examples/arct2 subdirectory

Benchmarks Cycles Core:
107 * nx
Overhead 47

Code size (in 16-bit words) 143 words + 6 words of 16-bit data

Block Exponent Implementationbexp

Function short maxexp = bexp(DATA *x, ushort nx)

Arguments maxexp Return value � max exponent that may be used in scaling

x[nx] Pointer to input vector of size nx

cbrev

4-12

nx Number of elements of input and output vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Computes the exponents (number of extra sign bits) of all values in the input
vector and returns the minimum exponent. This will be useful in determining
the maximum shift value that may be used in scaling a block of data.

Algorithm for (short j=0; j<nx; j++)
 temp = exp(x[j]);
 if (temp < maxexp) maxexp = temp;
} return maxexp;

Overflow Handling Methodology Not applicable

Special Requirements none

Implementation Notes none

Example See examples/bexp subdirectory

Benchmarks Cycles Core:
9 * nx
Overhead 28

Code size (in 16-bit words) 29 words

Complex Bit-Reversecbrev

Function void cbrev (DATA *x, DATA *r, ushort n)
(defined in cbrev.asm)

Arguments x[2*nx] Pointer to complex input vector x

r[2*nx] Pointer to complex output vector r

nx Number of complex elements of vectors x and r
� To bit-reverse the input of a complex FFT, nx should be the

complex FFT size.
� To bit-reverse the input of a real FFT, nx should be half the real

FFT size.

cbrev

4-13 Function Descriptions

Description This function bit-reverses the position of elements in complex vector x into out-
put vector r. In-place bit-reversing is allowed. Use this function in conjunction
with FFT routines to provide the correct format for the FFT input or output data.
If you bit-reverse a linear-order array, you obtain a bit-reversed order array. If
you bit-reverse a bit-reversed order array, you obtain a linear-order array.

Algorithm Not applicable

Note: The C54x Overflow Handling Methodology: Not applicable

Overflow Handling Methodology Not applicable

Special Requirements Memory alignment: input data (x) must be aligned at 2*nx boundary. The
log(nx) + 1 LSBits of address x must be zero.

Implementation Notes
� x is read with bit-reversed addressing and r is written in normal linear ad-

dressing.

� In-place bit-reversing (x = r) is much more cycle consuming compared with
the off-place bit-reversing (x < > r). However this is at the expense of doub-
ling the data memory requirements.

Example See examples/cfft and examples/rfft subdirectories

Benchmarks Cycles Core:
2 + 3 * nx (off-place)
13 * nx � 26 (in-place)
Overhead 21

Code size (in 16-bit words) 50 (includes support for both in-place and
off-place bit-reverse)

Note: The C54x is capable to do an off-place bit-reverse in 2*n by using the
following code:

stm #N,ar0
stm #INPUT, ar2 ; source address of data
rpt #N*2 −1 ; looping 2*N times
mvdk *ar2+0b, #DATA

The drawback of this implementation is the hard-coding of the destination ad-
dress with label #DATA. The cbrev DSPLIB implementation has chosen a
more generic solution at the expense at one extra cycle (3*nx).

cfir

4-14

Complex FIR Filtercfir

Function short oflag = cfir (DATA *x, DATA *h, DATA *r, DATA **dbuffer, ushort nh,
ushort nx)

Arguments x[2*nx] Pointer to compex input vector of nx complex elements
(re-Im in consecutive locations)

h[2*nh] Pointer to coefficient vector of size 2*nh (nh complex
elements with re-Im in consecutive locations) in normal order.
For example
if nh=3: h = b0re, b0im, b1re,b1im,b2re,b2im.
Memory alignment: this is a circular buffer and must start in
a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2 (2*nh).

r[2*nx] Pointer to complex output vector of nx complex elements (re-Im
in consecutive locations)In-place computation (r = x) is allowed

dbuffer[2*nh] Delay buffer
� In the case of multiple-buffering schemes, this array

should be initialized to 0 for the first block only. Between
consecutive blocks, the delay buffer preserves the
previous r output elements needed.

� Memory alignment: this is a circular buffer and must start
in a k-bit boundary (that is, the k LSBs of the starting
address must be zeros) where k = log2 (2*nh).

nx Number of complex elements in vector x (input samples)

nh Number of complex coefficients

oflag Overflow error flag
= 1 if a 32-bit data overflow has occurred in an intermediate
or final result
= 0 if no 32-bit data overflow has occurred in an intermediate
or final result

Description Computes a real FIR filter (direct-form) using coefficient stored in vector h. The
real data input is stored in vector x. The filter output result is stored in vector
r. This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion can be used for both block-by-block and sample-by-sample filtering (nx=1)

cfft

4-15 Function Descriptions

Algorithm r[j] ��nh

k�0

h[k]x[j � k] 0 � j � nx

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes none

Example See examples/cfir subdirectory

Benchmarks Cycles Core:
nx*(13 + 8*nh)
Overhead 49

Code size (in 16-bit words) 66

Forward Complex FFTcfft

Function void cfft (DATA x, nx, short scale);
(defined in cfft#.asm where #=nx)

Arguments x[2*nx] Pointer to input vector containing nx complex elements (2*nx
real elements) in bit-reversed order. On output, vector a
contains the nx complex elements of the FFT(x). Complex
numbers are stored in Re-Im.

nx Number of complex elements in vector x. nx must be a
constant number (not a variable) and can take the following
values. nx = 8,16,32,64,128,256,512,1024

scale Flag to indicate whether or not scaling should be
implemented during computation.
If (scale == 0)
 scale factor = 1;
else
 scale factor = nx;
end

Description Computes a Radix-2 complex DIT FFT of the nx complex elements stored in
vector x in bit-reversed order. The original content of vector x is destroyed in
the process. The nx complex elements of the result are stored in vector x in
normal-order.

Algorithm (DFT)

y[k] � 1
(scale factor)

* �
nx�1

i�0

x[i] * �cos�2 * � * i * k
nx

� � j sin�2 * � * i * k
nx

��

cfft

4-16

Overflow Handling Methodology Scaling implemented for overflow prevention

Special Requirements
� Special linker command file sections required: .sintab (containing the

twiddle table). For .sintab section size refer to the benchmark information
below.

� This function requires the inclusion of two other files during assembling
(automatically included):

� macros.asm (contains all macros used for this code)

� sintab.q15 (contains twiddle table section .sintab)

� Memory alignment: Although there is no memory alignment request for
this function, you need to align input data if you use this function with func-
tion cbrev (see page 4-13).

Implementation Notes
� This is an FFT optimized for time. Space consumption is high due to the

use of a separate sine table in each stage. This reduce MIPS count but
also increases twiddle table data space.

� First 2 FFT stages implemented are implemented as a radix-4. Last stage
is also unrolled for optimization. Twiddle factors are built-in and provided
in the sintab.q15 that is automatically included during the assembly pro-
cess.

� Special debugging consideration: This function is implemented as a mac-
ro that invokes different FFT routines according to the size. As a conse-
quence, instead of the cfft symbol being defined, multiple cfft# symbols are
(where # = nx = FFT complex size).

� This routine prevents overflow by scaling by 2 at each FFT intermediate
stages.

Example See examples/cfft subdirectory

cfft32

4-17 Function Descriptions

Benchmarks 8 cycles (butterfly core only)

FFT size Cycles (see note)
Code-Size (words)

.text section
Data-Size (words)

.sintab section

8 149 109 0

16 322 151 11

32 733 199 34

64 1672 247 81

128 3795 295 176

256 8542 343 367

512 19049 391 750

1024 42098 439 1517

Note: Assumes all data is in on-chip dual access RAM and that there is no bus
conflict due to twiddle table reads and instruction fetches (provided linker com-
mand file reflects those conditions).

32-Bit Forward Complex FFTcfft32

Function void cfft32 (LDATA x, nx, short scale);
(defined in c#.asm where #=nx)

Arguments x [2*nx] Pointer to input vector containing nx complex elements (2*nx real
elements) in bit-reversed order. On output, vector a contains the
nx complex elements of the FFT(x). Complex numbers are stored
in Re-Im.
x must be aligned at 2*nx boundary, where nx = # = FFT size. The
log(nx) + 1 LSBits of address x must be zero.

nx Number of complex elements in vector x. nx must be a constant
number (not a variable) and can take the following values.
nx = 8,16,32,64,128,256,512,1024

scale Flag to indicate whether or not scaling should be implemented
during computation.
if (scale == 0)
 scale factor = nx;
else
 scale factor = 1;
end

cfft32

4-18

Description Computes a 32-bit Radix-2 complex DIT FFT of the nx complex elements
stored in vector x in bit-reversed order. The original content of vector x is de-
stroyed in the process. The nx complex elements of the result are stored in
vector x in normal-order.

Algorithm (DFT)

y[k] � 1
(scale factor)

* �
nx�1

i�0

x[i] * �cos�2 * � * i * k
nx � � j sin�2 * � * i * k

nx ��
Overflow Handling Methodology Scaling implemented for overflow prevention.

Special Requirements
� Special linker command file sections required: .sintab (containing the

twiddle table). For .sintab section size refer to the benchmark information
below.

� This function requires the inclusion of two other files during assembling
(automatically included):

� cfft_32.asm (contains all functions used for this code)

� sintab.q31 (contains twiddle table section .sintab)

Implementation Notes
� This is an FFT optimized for time. Space consumption is high due to the

usage of a separate sine table in each stage. This reduce MIPS count but
also increases twiddle table data space.

� The First 2 FFT stages are implemented as a radix-4. Last stage is also
unrolled for optimization. Twiddle factors are built-in and provided in the
sintab.q31 that is automatically included during the assembly process.

� Special debugging consideration: This function is implemented as a mac-
ro that invokes different FFT routines according to the size. As a conse-
quence, instead of the cfft32 symbol being defined, multiple cfft32_# sym-
bols are (where # = nx = FFT complex size).

� This routine prevents overflow by scaling by 2 at each FFT intermediate
stages.

Example See examples/cfft32 subdirectory

cifft

4-19 Function Descriptions

Benchmarks 37 cycles (butterfly core only)

FFT size Cycles (see note)
Code-Size (words)

.text section
Data-Size (words)

.sintab section

8 297 389 0

16 796 407 26

32 2097 429 74

64 5263 452 170

128 12749 475 362

256 30059 498 764

512 144205 521 1514

1024 371312 544 3050

Note: Assumes all data is in on-chip dual access RAM and that there is no bus
conflict due to twiddle table reads and instruction fetches (provided linker com-
mand file reflects those conditions).

Inverse Complex FFTcifft

Function void cifft (DATA x, nx, short scale)
(defined in cfft#.asm where #=nx)

Arguments x[2*nx] Pointer to input vector containing nx complex elements (2*nx
real elements) in bit-reversed order representing the complex
FFT of a signal. On output, vector x contains the nx complex
elements of the IFFT(x) or the signal itself. Complex numbers
are stored in Re-Im format.
x must be aligned at 2*nx boundary, where nx = # = IFFT size.
The log(nx) + 1 LSBits of address x must be zero.

nx Number of complex elements in vector x. nx must be a
constant number (not a variable) and can take the following
values.
nx = 8,16,32,64,128,256,512,1024

scale Flag to indicate whether or not scaling should be
implemented during computation.
If (scale == 0)
 scale factor = 1;
else
 scale factor = nx;
end

cifft

4-20

Description Computes a Radix-2 complex DIT IFFT of the nx complex elements stored in
vector x in bit-reversed order. The original content of vector x is destroyed in
the process. The nx complex elements of the result are stored in vector x in
normal-order.

Algorithm (IDFT)

y[k] � 1
(scale factor)

* �
nx�1

i�0

X(w) * �cos�2 * � * i * k
nx

� � j sin�2 * � * i * k
nx

��

Overflow Handling Methodology Scaling implemented for overflow prevention

Special Requirements
� Special linker command file sections required: .sintab (containing the

twiddle table). For .sintab section size refer to the benchmark information
below.

� This function requires the inclusion of two other files during assembling
(automatically included):

� macrosi.asm (contains all macros used for this code)

� sintab.q15 (contains twiddle table section .sintab)

� Memory alignment: Although there is no memory alignment request for
this function, you need to align input data if you use this function with func-
tion cbrev (see page 4-13).

Implementation Notes
� This is an IFFT optimized for time. Space consumption is high due to the

use of a separate sine table in each stage. This reduce MIPS count but
also increases twiddle table data space.

� First 2 IFFT stages implemented are implemented as a radix-4. Last stage
is also unrolled for optimization. Twiddle factors are built-in and provided
in the sintab.q15 that is automatically included during the assembly pro-
cess.

� Special debugging consideration: This function is implemented as a mac-
ro that invokes different IFFT routines according to the size. As a conse-
quence, instead of the cifft symbol being defined, multiple cifft# symbols
are (where # = nx = IFFT complex size).

� This routine prevents overflow by scaling by 2 at each IFFT intermediate
stages.

Example See examples/cfft subdirectory

cifft32

4-21 Function Descriptions

Benchmarks 8 cycles (butterfly core only)

FFT size Cycles (see note)
Code-Size (words)

.text section
Data-Size (words)

.sintab section

8 149 109 0

16 322 151 11

32 733 199 34

64 1672 247 81

128 3795 295 176

256 8542 343 367

512 19049 391 750

1024 42098 439 1517

Note: Assumes all data is in on-chip dual access RAM and that there is no bus
conflict due to twiddle table reads and instruction fetches (provided linker com-
mand file reflects those conditions) linker command file reflects those condi-
tions).

32-Bit Inverse Complex FFTcifft32

Function void cifft32 (LDATA x, nx, short scale);
(defined in ci#.asm where #=nx)

Arguments x [2*nx] Pointer to input vector containing nx complex elements (2*nx real
elements) in bit-reversed order. On output, vector a contains the
nx complex elements of the IFFT(x). Complex numbers are
stored in Re-Im.
x must be aligned at 2*nx boundary, where nx = # = IFFT size. The
log(nx) + 1 LSBits of address x must be zero.

nx Number of complex elements in vector x. nx must be a constant
number (not a variable) and can take the following values.
nx = 8,16,32,64,128,256,512,1024

scale Flag to indicate whether or not scaling should be implemented
during computation.
if (scale == 0)
 scale factor = nx;
else
 scale factor = 1;
end

cifft32

4-22

Description Computes a 32-bit Radix-2 complex DIT IFFT of the nx complex elements
stored in vector x in bit-reversed order. The original content of vector x is de-
stroyed in the process. The nx complex elements of the result are stored in
vector x in normal-order.

Algorithm (IDFT)

y[k] � 1
(scale factor)

* �
nx�1

i�0

x[i] * �cos�2 * � * i * k
nx � � j sin�2 * � * i * k

nx ��
Overflow Handling Methodology Scaling implemented for overflow prevention.

Special Requirements
� Special linker command file sections required: .sintab (containing the

twiddle table). For .sintab section size refer to the benchmark information
below.

� This function requires the inclusion of two other files during assembling
(automatically included):

� cifft_32.asm (contains all functions used for this code)

� sintab.q31 (contains twiddle table section .sintab)

Implementation Notes
� This is an IFFT optimized for time. Space consumption is high due to the

usage of a separate sine table in each stage. This reduces MIPS count but
also increases twiddle table data space.

� The first 2 IFFT stages are implemented as a radix-4. Last stage is also
unrolled for optimization. Twiddle factors are built-in and provided in the
sintab.q31 that is automatically included during the assembly process.

� Special debugging consideration: This function is implemented as a mac-
ro that invokes different IFFT routines according to the size. As a conse-
quence, instead of the cifft32 symbol being defined, multiple cifft32_#
symbols are (where # = nx = FFT complex size).

� This routine prevents overflow by scaling by 2 at each IFFT intermediate
stages.

Example See examples/cifft32 subdirectory

convol

4-23 Function Descriptions

Benchmarks 37 cycles (butterfly core only)

FFT size Cycles (see note)
Code-Size (words)

.text section
Data-Size (words)

.sintab section

8 288 389 0

16 779 407 26

32 2059 429 74

64 5170 452 170

128 12500 475 362

256 29446 498 764

512 142724 521 1514

1024 361469 544 3050

Note: Assumes all data is in on-chip dual access RAM and that there is no bus
conflict due to twiddle table reads and instruction fetches (provided linker com-
mand file reflects those conditions).

Convolutionconvol

Function oflag = short convol (DATA *x, DATA *h, DATA *r, ushort nr, ushort nh)

Arguments x[nr+nh−1] Pointer to real input vector a of nr+nh−1 real elements

h[nh] Pointer to real input vector h of nh real elements

r Pointer to real output vector h of nr real elements

nr Number of real elements in vector r

nh Number of elements in vector h

oflag Overflow error flag
= 1 if a 32-bit data overflow has occurred in an intermediate
or final result
= 0 if no 32-bit data overflow has occurred in an intermediate
or final result

Description Computes the real convolution (positive) of 2 vectors a and h and places the
results
in vector r. Typically used for block-by-block FIR filter computation without any
need of using circular addressing or restricted data alignment. This function
can be used for both block-by-block and sample-by-sample filtering (nr=1).

corr

4-24

Algorithm r[j] ��nh

k�0

h[k]x[j � k] 0 � j � nr

Overflow Handling Methodology No scaling implemented for overflow prevention

Special Requirements none

Implementation Notes none

Example See examples/convol subdirectory

Benchmarks Cycles Core:
nr * (nh + 4)
Overhead 35

Code size (in 16-bit words) 43

Correlation (full-length)corr

Function short oflag = corr (DATA *x, DATA *y, DATA *r, ushort nx, ushort ny, type)
(defined in craw.asm, cbias.asm , cubias.asm)

Arguments x[nx] Pointer to real input vector of nx real elements

x[ny] Pointer to real input vector of ny real elements

r[nx+ny−1] Pointer to real output vector containing the full-length
correlation (nx+ny−1 elements) of vector x with y. r must be
different than both x and y (in-place computation is not
allowed).

nx Number of real elements in vector x.

ny Number of real elements in vector y. Requirements nx � ny.

type Correlation type selector. Types supported:
� If type = raw, r will contain the raw correlation
� If type = bias, r will contain the biased-correlation
� If type = unbias, r will contain the unbiased-correlation

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
If oflag =0 a 32-bit overflow has not occurred

Description Computes the full-length correlation of vectors x and y and stores the result
in vector r. using time-domain techniques.

corr

4-25 Function Descriptions

Algorithm Raw correlation:

r[j] � �
nr�j�1

k�0

x[j � k] * y[k] 0 � j � nr � nx � ny � 1

Biased correlation:

r[j] � 1
nr �

nr�j�1

k�0

x[j � k] * y[k] 0 � j � nr � nx � ny � 1

Unbiased correlation:

r[j] � 1
(nx � abs(j))

�
nr�j�1

k�0

x[j � k] * y[k] 0 � j � nr � nx � ny � 1

Overflow Handling Methodology No scaling implemented for overflow prevention

Special Requirements nx � ny

Implementation Notes
� Special debugging consideration: This function is implemented as a mac-

ro that invokes different correlation routines according to the type se-
lected. As a consequence the corr symbol is not defined. Instead the
corr_raw, corr_bias, corr_unbias symbols are defined.

� Correlation is implemented using time-domain techniques.

Example See examples/cbias, examples/cubias, examples/craw subdirectories

Benchmarks Cycles Raw:
Core:

 41 + (16 + (nx−3)(nx−2) + 17 * (nx−3)) + (14 +
(ny−nx+1)(nx−2+8)
Overhead 36

Unbias:
Core:
26 + (((nx−3)*53) + (nx−3)(nx−2))+ (38 +
(ny−nx+1)*(11+nx−2))
Overhead 51

Bias:
Core:
59 + (2 * ((nx−3)*12 + (nx−3)(nx−2)/2)) +
((ny − nx + 1) * (12 + nx−2))
Overhead 51

Code size (in 16-bit words) Raw: 105
Unbias: 255
Bias: 132

dlms

4-26

Adaptive Delayed lms Filterdlms

Function short oflag = dlms (DATA *x, DATA *h, DATA *r, DATA **d, DATA *des, DATA
step, ushort nh, ushort nx)
(defined in dlms.asm)

Arguments x[nx] Pointer to input vector of size nx

h[nh] Pointer to filter coefficient vector of size nh
� h is stored in reversed order: h(n−1), ... h(0) where h[n] is at

the lowest memory address.
� Memory alignment: h is a circular buffer and must start in a

k-bit boundary (that is, the k LSBs of the starting address must
be zeros) where k = log2(nh)

r[nx] Pointer to output data vector of size nx. r can be equal to x

dbuffer[nh] Pointer to location containing the address of the delay buffer
Memory alignment: the delay buffer is a circular buffer and must
start in a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2(nh)

des[nx] Pointer to expected output array

step Scale factor to control learning curve rate = 2*mu

nh Number of filter coefficients. Filter order = nh−1. nh >=3

nx Length of input and output data vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Adaptive Delayed LMS (Least-mean-square) FIR filter using coefficients
stored in vector h. Coefficients are updated after each sample based on the
LMS algorithm and using a constant step = 2*mu. The real data input is stored
in vector a. The filter output result is stored in vector r. LMS algorithm is used
but adaptation using the previous error and the previous sample (�delayed�)
to take advantage of the C54x LMS instruction.

expn

4-27 Function Descriptions

Algorithm FIR portion: r[i] � �nh�1

k�0

b[k] * x[i � k] 0 � i � nx

Adaptation using the previous error and the previous sample:
e(i) � des(i) � r(i)
bk(i � 1) � bk(i) � 2 * � * e(i � 1) * x(i � k � 1)

Overflow Handling Methodology No scaling implemented for overflow prevention

Special Requirements none

Implementation Notes Delayed version implemented to take advantage of the C54x LMS instruction.
Effect on covergence minimum. For reference, following is the algorithm for
the regular LMS (non-delayed):

FIR portion r[i] � �nh�1

k�0

b[k] * x[i � k] 0 � i � nx

Adaptation using the previous error and the previous sample:
e(i) � des(i) � r(i)
bk(i � 1) � bk(i) � 2 * � * e(i) * x(i � k)

Example See examples/dlms subdirectory

Benchmarks Cycles Core:
nx * (18 + 2*(nh−2)) = nx * (14+ 2*nh)
Overhead 45

Code size (in 16-bit words) 62

Exponential Base eexpn

Function short oflag = expn (DATA *x, DATA *r, ushort nx)
(defined in expn.asm)

Arguments x[nx] Pointer to input vector of size nx. x contains the numbers
normalized between (−1,1) in q15 format.

r[nx] Pointer to output data vector (Q3.12 format) of size nx. r can be
equal to x.

nx Length of input and output data vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

fir

4-28

Description Computes the exponent of elements of vector x using Taylor series.

Algorithm for (i � 0; i 	 nx; i ��) y(i) � ex(i) where � 1 	 x(i) 	 1

Overflow Handling Methodology Not applicable

Special Requirements Linker command file: you must allocate .data section (for polynomial coeffi-
cients)

Implementation Notes Computes the exponent of elements of vector x. It uses the following Taylor
series:

exp(x) = c1*x + c2* x ^2 + c3*x^3 + c4*x^4 + c5*x^5

where

c1 = 0.0139
c2 = 0.0348
c3 = 0.1705
c4 = 0.4990
c5 = 1.0001

Example See examples/expn subdirectory

Benchmarks Cycles Core:
12*nx
Overhead 32

Code size (in 16-bit words) 36

FIR Filterfir

Function oflag = short fir (DATA *x, DATA *h, DATA *r, DATA **dbuffer, ushort nh,
ushort nx)

Arguments x[nx] Pointer to real input vector of nx real elements.

h[nh] Pointer to coefficient vector of size nh in normal order:
h = b0 b1 b2 b3 …
Memory alignment: this is a circular buffer and must start in a k-bit
boundary (that is, the k LSBs of the starting address must be
zeros) where k = log2 (nh).

fir

4-29 Function Descriptions

r[nx] Pointer to real input vector of nx real elements. In-place
computation (r = x) is allowed.

dbuffer[nh] Delay buffer
� In the case of multiple-buffering schemes, this array should

be initialized to 0 for the first block only. Between consecutive
blocks, the delay buffer preserves the previous r output
elements needed.

� Memory alignment: this is a circular buffer and must start in
a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2 (nh).

nx Number of real elements in vector x (input samples)

nh Number of coefficients

oflag Overflow error flag
= 1 if a 32-bit data overflow has occurred in an intermediate or

final result
= 0 if no 32-bit data overflow has occurred in an intermediate or
final result

Description Computes a real FIR filter (direct-form) using coefficient stored in vector h. The
real data input is stored in vector x. The filter output result is stored in vector
r . This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion can be used for both block-by-block and sample-by-sample filtering
(nx=1).

Algorithm r[j] ��nh

k�0

h[k]x[j � k] 0 � j � nx

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes You can also use the convolution function for filtering, by having an input buffer
x padded with nh−1 zeros at the beginning of the x buffer. However, having an
fir filter implementation that uses a totally independent delay buffer (dbuffer)
gives you more control in the relocation in memory of your data buffers in the
case of a dual-buffering filtering scheme.

Example See examples/fir subdirectory

firdec

4-30

Benchmarks Cycles Core:
4 + nx*(4+nh)
Overhead 34

Code size (in 16-bit words) 42

Decimating FIR Filterfirdec

Function short oflag = firdec (DATA *x, DATA *h, DATA *r, DATA **dbuffer , ushort nh,
ushort nx, ushort D)
(defined in decimate.asm)

Arguments x[nx] Pointer to real input vector of nx real elements.

h[nh] Pointer to coefficient vector of size nh in normal order:
h = b0 b1 b2 b3 …
Memory alignment: this is a circular buffer and must start in
a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2 (nh).

r[nx/D] Pointer to real input vector of nx/D real elements. In-place
computation
(r = x) is allowed.

dbuffer[nh] Delay buffer
� In the case of multiple-buffering schemes, this array should

be initialized to 0 for the first block only. Between consecutive
blocks, the delay buffer preserves the previous r output
elements needed.

� Memory alignment: this is a circular buffer and must start in
a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2 (nh).

nx Number of real elements in vector x

nh Number of coefficients

D Decimation factor. For example a D = 2 means you drop every
other sample. Ideally, nx should be a multiple of D. If not, the
trailing samples will be lost in the process.

firinterp

4-31 Function Descriptions

oflag Overflow error flag
= 1 if a 32-bit data overflow has occurred in an intermediate or
final result
= 0 if no 32-bit data overflow has occurred in an intermediate or
final result

Description Computes a decimating real FIR filter (direct-form) using coefficient stored in
vector h. The real data input is stored in vector x. The filter output result is
stored in vector r. This function retains the address of the delay filter memory
d containing the previous delayed values to allow consecutive processing of
blocks. This function can be used for both block-by-block and sample-by-sam-
ple filtering (nx=1).

Algorithm r[j] ��nh

k�0

h[k]x[j * D � k] 0 � j � nx

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes none

Example See examples/decim subdirectory

Benchmarks Cycles Cycles
(nx/D)*(12+nh+4(D−1))
Overhead 86

Code size (in 16-bit words) 67

Interpolating FIR Filterfirinterp

Function short oflag = firinterp (DATA *x, DATA *h, DATA *r, DATA **dbuffer , ushort nh,
ushort nx, ushort I)
(defined in interp.asm)

Arguments x[nx] Pointer to real input vector of nx real elements.

h[nh] Pointer to coefficient vector of size nh in normal order:
h = b0 b1 b2 b3 …
Memory alignment: this is a circular buffer and must start in
a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2 (nh).

firinterp

4-32

r[nx*I] Pointer to real output vector of nx real elements.

dbuffer[nh] Delay buffer
� In the case of multiple-buffering schemes, this array

should be initialized to 0 for the first block only. Between
consecutive blocks, the delay buffer preserves the
previous r output elements needed.

� Memory alignment: this is a circular buffer and must start
in a k-bit boundary (that is, the k LSBs of the starting
address must be zeros) where k = log2 (nh).

nx Number of real elements in vector x and r

nh Number of coefficients

I Interpolation factor. For example an I = 2 means you will add
one sample result for every sample.

oflag Overflow error flag
= 1 if a 32-bit data overflow has occurred in an intermediate
or final result
= 0 if no 32-bit data overflow has occurred in an intermediate
or final result

Description Computes an interpolating real FIR filter (direct-form) using coefficient stored
in vector h. The real data input is stored in vector x. The filter output result is
stored in vector r. This function retains the address of the delay filter memory
d containing the previous delayed values to allow consecutive processing of
blocks. This function can be used for both block-by-block and sample-by-sam-
ple filtering (nx=1).

Algorithm r[t] ��nh

k�0

h[k]x
 t
I � k

� 0 � j � nr

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes none

Example See examples/decimate subdirectory

Benchmarks Cycles Core:
nx*(6+(I−1)*(17+(nh/I)))
Overhead 88

Code size (in 16-bit words) 74

firs

4-33 Function Descriptions

Symmetric FIR Filterfirs

Function short oflag = int firs (DATA *x, DATA *r, DATA **dbuffer, ushort nh2, ushort nx)

Arguments x[nx] Pointer to real input vector of nx real elements.

r[nx] Pointer to real input vector of nx real elements. In-place
computation (r = x) is allowed.

dbuffer[2*nh2] Delay buffer of size nh = 2*nh2
� In the case of multiple-buffering schemes, this array

should be initialized to 0 for the first block only. Between
consecutive blocks, the delay buffer preserves the
previous r output elements needed.

� Memory alignment: this is a circular buffer and must start
in a k-bit boundary (that is, the k LSBs of the starting
address must be zeros) where k = log2 (2*nh2).

nx Number of real elements in vector a (input samples)

nh2 Half the number of coefficients of the filter (due to symmetry
there is no need to provide the other half)

oflag Overflow error flag
= 1 if a 32-bit data overflow has occurred in an intermediate
or final result
= 0 if no 32-bit data overflow has occurred in an intermediate
or final result

Description Computes a real FIR filter (direct-form) using the nh2 coefficients stored in pro-
gram location pointed by TI_FIRS_COEFFS global label. The filter is assumed
to have a symmetric impulse response, with the first half of the filter coefficients
stored in locations pointed by TI_FIRS_COEFFS. The real data input is stored
in vector x. The filter output result is stored in vector r. This function retains the
address of the delay filter memory d containing the previous delayed values
to allow consecutive processing of blocks. This function can be used for both
block-by-block and sample-by-sample filtering (nx=1).

Algorithm r[j] ��nh

k�0

h[k]x[t � k] 0 � j � nx

where
h is symmetric (for example h = h0 h1 h2 h2 h1 h0 where nh2 = 3. Only h0, h1,
h2 are stored in program memory pointed by the TI_LIB_COEFFS global la-
bel)

firs2

4-34

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements Filter coefficients must be provided in program space with a global label called
TI_LIB_COEFFS pointing to the start of the coefficient table.

Implementation Notes Although this routine is faster than the generic symmetric filter routine (firs2)
included in DSPLIB, it is restrictive in that the address for the coefficients is
hard-coded to the global label TI_LIB_COEFFS in program memory. This
could be a problem in the event you want to use multiple filtering routines with
different coefficient values. If that is the case, use the firs2 routine.

Example See examples/firs subdirectory

Benchmarks Cycles Core:
nx * (16+nh)
Overhead 35

Code size (in 16-bit words) 56

Symmetric FIR Filter (generic)firs2

Function short oflag = int firs2 (DATA *x, DATA *h, DATA *r, DATA *dbptr, ushort nh2,
ushort nx)

Arguments x[nx] Pointer to real input vector of nx real elements.

r[nx] Pointer to real input vector of nx real elements. In-place
computation (r = x) is allowed.

h[nh2] Pointer to vector containing 1st half the filter coefficients. It
assumes that the filter has a symmetric impulse response
(filter coefficients). The total number of filter coefficients is
2*nh2. For example if:
The filter coefficients are b0 b1 b1 b0
then nh2 = 2 and h = { b0, b1 }

dbptr[2] Delay buffer pointer array contains two pointers to the delay
buffer: dbuffer[2*nh2]. The delay buffer dbuffer has size
2*nh2.
� In the case of multiple-buffering schemes, the delay

buffer should be initialized to 0 for the first block only.
Between consecutive blocks, the delay buffer preserves
the previous r output elements needed.

firs2

4-35 Function Descriptions

� Memory alignment: the delay buffer is a circular buffer
and must start in a k-bit boundary (that is, the k LSBs of
the starting address must be zeros) where k = log2
(2*nh2).

nx Number of real elements in vector x (input samples)

nh2 Half the number of coefficients of the filter (due to symmetry
there is no need to provide the other half)

oflag Overflow error flag
= 1 if a 32-bit data overflow has occurred in an intermediate
or final result
= 0 if no 32-bit data overflow has occurred in an intermediate
or final result

Description Computes a real FIR filter (direct-form) using the nh2 coefficients stored in
array h (data memory). The filter is assumed to have a symmetric impulse re-
sponse, so array h stores only the first half of the filter coefficients. The real
data input is stored in vector x. The filter output result is stored in vector r. This
function retains the address of the delay filter memory d containing the pre-
vious delayed values to allow consecutive processing of blocks. This function
can be used for both block-by-block and sample-by-sample filtering (nx=1).

Algorithm r[j] ��nh

k�0

h[k]x[t � k] o � j � nx

where h is symmetric (for example h = h0 h1 h2 h2 h1 h0 where nh2 = 3. Only
h0, h1, h2 are stored in data memory)

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes Although this routine is slower than the symmetric filter routine (firs) included
in DSPLIB, it does not impose any restrictions in the location of the coefficient
vector or in the use of multiple filtering routines in the same executable.

Example See examples/firs2 subdirectory

Benchmarks Cycles Core:
nx*(15 + 2*nh2)
Overhead 43

Code size (in 16-bit words) 58

fltoq15

4-36

Float to q15 Conversionfltoq15

Function short errorcode = fltoq15 (float *x, DATA *r, ushort nx)
(defined in fltoq15.asm)

Arguments x[nx] Pointer to floating-point input vector of size nx. x should
contain the numbers normalized between (−1,1). The erro
code returned value will reflect if that condition is not met.

r[nx] Pointer to output data vector of size nx containing the q15
equivalent of vector x.

nx Length of input and output data vectors

errorcode The function returns the following error codes:
1. If any element is too large to represent in Q15 format
2. If any element is too small to represent in Q15 format
3. Both conditions 1 and 2 were encountered

Description Convert the IEEE floating point numbers store in vector x into Q15 numbers
stored in vector r. The function returns the error codes if any element x[i] is not
representable in Q15 format.

All values that exceed the size limit will be saturated to a Q15 1 or −1 depend-
ing on sign. (0x7fff if value is positive, 0x8000 if value is negative) All values
too small to be correctly represented will be truncated to 0.

Algorithm Not applicable

Overflow Handling Methodology Saturation implemented for overflow handling

Special Requirements none

Implementation Notes none

Example See examples/expn subdirectory

Benchmarks Cycles Core:
19 + 40*nx
Overhead 43

Code size (in 16-bit words) 60

hilb16

4-37 Function Descriptions

FIR Hilbert Transformerhilb16

Function oflag = short hilb16 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nh,
ushort nx)

Arguments x[nx] Pointer to real input vector of nx real elements

h[nh] Pointer to coefficient vector of size nh in normal order:
h = b0 b1 b2 b3 b4 …..
Every odd valued filter coefficient has to be 0,
i.e. b1 = b3= … = 0
and h = b0 0 b2 0 b4 0 ……
Memory alignment: this is a circular buffer and must start in
a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2 (nh).

r[nx] Pointer to real input vector of nx real elements. In-place
computation (r = x) is allowed

dbuffer[nh] Delay buffer
� In the case of multiple-buffering schemes, this array

should be initialized to 0 for the first block only. Between
consecutive blocks, the delay buffer preserves the
previous r output elements needed.

� Memory alignment: this is a circular buffer and must start
in a k-bit boundary (that is, the k LSBs of the starting
address must be zeros) where k = log2 (nh).

nx Number of real elements in vector x (input samples)

nh Number of coefficients

oflag Overflow error flag
= 1 if a 32-bit data overflow has occurred in an intermediate
or final result
= 0 if no 32-bit data overflow has occurred in an intermediate
or final result

iir32

4-38

Description Computes a real FIR filter (direct-form) using coefficient stored in vector h. The
real data input is stored in vector x. The filter output result is stored in vector
r. This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion can be used for both block-by-block and sample-by-sample filtering
(nx=1).

Algorithm r[j] ��nh

k�0

h[k]x[j � k] 0 � j � nx

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements Every odd valued filter coefficient has to be 0. This is a requirement for the hil-
bert transformer. For example, a 5 tap filter may look like this:
h = [0.876 0 �0.324 0 �0.002]

Implementation Notes You can also use the convolution function for filtering, by having an input buffer
x padded with nh−1 zeros at the beginning of the x buffer. However, having an
fir filter implementation that uses a totally independent delay buffer (dbuffer)
gives you more control in the relocation in memory of your data buffers in the
case of a dual-buffering filtering scheme.

Example See examples/fir subdirectory

Benchmarks Cycles Core:
nx*(4+nh)
Overhead 53

Code size (in 16-bit words) 42

Double-precision IIR Filteriir32

Function short oflag = iir32(DATA *x, LDATA *h, DATA *r, LDATA **dbuffer, ushort nbiq,
ushort nx)

Arguments x[nx] Pointer to input data vector of size nx

h[5*nbiq] Pointer to the 32-bit filter coefficient vector with the following
format. For example for nbiq= 2, h is equal to:
b21 � high beginning of biquad 1
b21 � low
b11 � high
b11 � low

iir32

4-39 Function Descriptions

b01 � high
b01 � low
a21 � high
a21 � low
a1/2 � high
a1/2 � low
b22 � high beginning of biquad 2 coefs
b22 � low
b12 � high
b12 � low
b02 � high
b02 � low
a22 � high
a22 � low
a1/2 � high
a1/2 � low

r[nx] Pointer to output data vector of size nx. r can be equal
than x.

dbuffer[3*nbiq] Pointer to address of 32-bit delay line dbuffer. Each biquad
has 3 consecutive delay line elements. For example for
nbiq=2:
d1(n−2) − low beginning of biquad 1
d1(n−2) � high
d1(n−1) � low
d1(n−1) � high
d1(n) � low
d1(n) � high
d2(n−2) − low beginning of biquad 2
d2(n−2) − high
d2(n−1) � low
d2(n−1) � high
d2(n) � low
d2(n) � high
� In the case of multiple-buffering schemes, this array

should be initialized to 0 for the first block only. Between
consecutive blocks, the delay buffer preserves the
previous r output elements needed.

� Memory alignment: this is a circular buffer and must start
in a k-bit boundary (that is, the k LSBs of the starting
address must be zeros) where k = log2 (3*nbiq).

iircas4

4-40

nbiq Number of biquads

nx Number of elements of input and output vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Computes a cascaded IIR filter of nbiquad biquad sections using 32-bit coeffi-
cients and 32-bit delay buffers. The input data is assumed to be single-preci-
sion (16 bits).

Each biquad section is implemented using Direct-form II. All biquad coeffi-
cients (5 per biquad) are stored in vector h. The real data input is stored in vec-
tor a. The filter output result is stored in vector r.

This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion is more efficient for block-by-block filter implementation due to the C-call-
ing overhead. However, it can be used for sample-by-sample filtering (nx=1).

The use of a1/2 instead of a1 permits to use a1 values larger than 1.

Algorithm (for biquad) d(n) � x(n) � 2 * a1�2 * d(n � 1) � a2 * d(n � 2)
y(n) � b0 * d(n) � b1 * d(n � 1) � b2 * d(n � 2)

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes none

Example See examples/iir32 subdirectory

Benchmarks Cycles Core:
4 + nx*(12 + 56*nbiq)
Overhead 58

Code size (in 16-bit words) 110

Cascaded IIR Direct Form II Using 4-Coefs per Biquadiircas4

Function short oflag = iircas4(DATA *x, DATA *h, DATA *r, DATA **dbuffer, ushort nbiq,
ushort nx)
(defined in iir4cas4.asm)

Arguments x[nx] Pointer to input data vector of size nx

iircas4

4-41 Function Descriptions

h[4*nbiq] Pointer to filter coefficient vector with the following format:
h = a1/2 a21 b21 b11 ….a1/2 a2I b2I b1I
where I is the biquad index (i.e. a21: is the a2 coefficient of
biquad 1)
Pole (recursive) coefficients = a
Zero (non-recursive) coefficients = b

r[nx] Pointer to output data vector of size nx. r can be equal
than x

dbuffer[2*nbiq] Pointer to address of delay line d

Each biquad has 2 delay line elements separated by nbiq
locations in the following format:
d1(n−1), d2(n−1),..di(n−1) d1(n−2), d2(n−2)…di(n−2)
where I is the biquad index (i.e. d2(n−1) is the (n−1)th delay
element for biquad 2.
� In the case of multiple-buffering schemes, this array

should be initialized to 0 for the first block only. Between
consecutive blocks, the delay buffer preserves the
previous r output elements needed.

� Memory alignment: this is a circular buffer and must start
in a k-bit boundary (that is, the k LSBs of the starting
address must be zeros) where k = log2 (2*nbiq).

nbiq Number of biquads

nx Number of elements of input and output vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag = 0 a 32-bit overflow has not occurred

Description Computes a cascade IIR filter of nbiquad biquad sections. Each biquad sec-
tion is implemented using Direct-form II. All biquad coefficients (4 per biquad)
are stored in vector h. The real data input is stored in vector a. The filter output
result is stored in vector r.

This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion is more efficient for block-by-block filter implementation due to the C-call-
ing overhead. However, it can be used for sample-by-sample filtering (nx=1).

The use of a1/2 instead of a1 permits to use a1 values larger than 1.

iircas5

4-42

Algorithm (for biquad) d(n) � x(n) � 2 * a1�2 * d(n � 1) � a2 * d(n � 2)
y(n) � d(n) � b1 * d(n � 1) � b2 * d(n � 2)

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes none

Example See examples/iircas4 subdirectory

Benchmarks Cycles Core:
nx * (11 + 5*nbiq)
Overhead 40

Code size (in 16-bit words) 50

Cascaded IIR Direct Form II (5-Coefs per Biquad)iircas5

Function short oflag = iircas5(DATA *x, DATA *h, DATA *r, DATA **dbuffer, ushort nbiq,
ushort nx)
(defined in iircas5.asm)

Arguments x[nx] Pointer to input data vector of size nx

h[5*nbiq] Pointer to filter coefficient vector with the following
format:
h = a1/2 a21 b21 b01 b11a1/2 a2i b2i b0i b1i
where i is the biquad index (i.e. a21: is the a2
coefficient of biquad 1)
Pole (recursive) coefficients = a
Zero (non-recursive) coefficients = b

r[nx] Pointer to output data vector of size nx. r can be equal
than x.

dbuffer[2*nbiq] Pointer to address of delay line d. Each biquad has 2 delay
line elements separated by nbiq locations in the following
format:
d1(n−1), d2(n−1),..di(n−1) d1(n−2), d2(n−2)...di(n−2)
where i is the biquad index(i.e. d2(n−1) is the (n−1)th delay
element for biquad 2.
� In the case of multiple-buffering schemes, this array

iircas5

4-43 Function Descriptions

should be initialized to 0 for the first block only. Between
consecutive blocks, the delay buffer preserves the
previous r output elements needed.

� Memory alignment: this is a circular buffer and must start
in a k-bit boundary (that is, the k LSBs of the starting
address must be zeros) where k = log2 (2*nbiq).

nbiq Number of biquads

nx Number of elements of input and output vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Computes a cascade IIR filter of nbiquad biquad sections. Each biquad sec-
tion is implemented using Direct-form II. All biquad coefficients (5 per biquad)
are stored in vector h. The real data input is stored in vector a. The filter output
result is stored in vector r.

This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion is more efficient for block-by-block filter implementation due to the C-call-
ing overhead. However, it can be used for sample-by-sample filtering (nx=1).

The use of 5 coefficients instead of 4, facilitates the design of filters with Unit
gain less that one (for overflow avoidance) typically achieved by filter coeffi-
cient scaling.

The use of a1/2 instead of a1 permits to use a1 values larger than 1.

Algorithm (for biquad) d(n) � x(n) � 2 * a1�2 * d(n � 1) � a2 * d(n � 2)
y(n) � d(n) � b1 * d(n � 1) � b2 * d(n � 2)

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes none

Example See examples/iircas5 subdirectory

Benchmarks Cycles Core:
nx * (11 + 6*nbiq)
Overhead 40

Code size (in 16-bit words) 51

iircas51

4-44

Cascaded IIR Direct Form I (5-Coefs per Biquad)iircas51

Function short oflag = iircas51(DATA *x, DATA *h, DATA *r, DATA **dbuffer, ushort nbiq,
ushort nx)
(defined in iircas51.asm)

Arguments x[nx] Pointer to input data vector of size nx

h[5*nbiq] Pointer to filter coefficient vector with the following format:
h = b01 b11 b21 a1/2 a21 ….b0I b1I b2I a1/2 a2I
where I is the biquad index (i.e. a21: is the a2 coefficient of
biquad 1)
where I is the biquad index (i.e. a21: is the a2 coefficient of
biquad 1)
Pole (recursive) coefficients = a
Zero (non-recursive) coefficients = b

r[nx] Pointer to output data vector of size nx. r can be equal
than x.

dbuffer[4*nbiq] Pointer to adress of delay line dbuffer. Each biquad has 4
delay line elements stored consecutively in memory in the
following format:
x1(n−1), x1(n−2), y1(n−1), y1(n−2) … xi(n−2), xi(n−2),
yi(n−1),yi(n−2)
where I is the biquad index(i.e. x1(n−1) is the (n−1)th delay
element for biquad 1.
� In the case of multiple-buffering schemes, this array

should be initialized to 0 for the first block only. Between
consecutive blocks, the delay buffer preserves the
previous r output elements needed.

� Memory alignment: No need for memory alignment.

nbiq Number of biquads

nx Number of elements of input and output vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

iirlat

4-45 Function Descriptions

Description Computes a cascade IIR filter of nbiquad biquad sections. Each biquad sec-
tion is implemented using Direct-form I. All biquad coefficients (5 per biquad)
are stored in vector h. The real data input is stored in vector a. The filter output
result is stored in vector r.

Computes a cascade IIR filter of nbiquad biquad sections. Each biquad sec-
tion is implemented using Direct-form I. All biquad coefficients (5 per biquad)
are stored in vector h. The real data input is stored in vector x. The filter output
result is stored in vector r.

The use of 5 coefficients instead of 4, facilitates the design of filters with Unit
gain less that one (for overflow avoidance) typically achieved by filter coeffi-
cient scaling.

The use of a1/2 instead of a1 permits to use a1 values larger than 1.

Algorithm (for biquad) y(n) � b0 * x(n) � b1 * x(n � 1) � b2 * x(n � 2)
−2 * a1�2 * y(n � 1) � a2 * y(n � 2)

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes This implementation does not use circular addressing for the delay buffer.
Instead it takes advantage of the 54x DELAY instruction. For this reason the
delay buffer pointer will always point to the top between successive block calls.

Example See examples/iircas51 subdirectory

Benchmarks Cycles Core:
nx * (13 + 8*nbiq)
Overhead 44

Code size (in 16-bit words) 58

Lattice Inverse (IIR) Filteriirlat

Function short oflag = iirlat (DATA *x, DATA *h, DATA *r, DATA *d, int nh, int nx)

Arguments x[nx] Pointer to real input vector of nx real elements.

h[nh] Pointer to lattice coefficient vector of size nh in normal order:
h = b0 b1 b2 b3 …
Memory alignment: this is a circular buffer and must start in a k-bit
boundary (that is, the k LSBs of the starting address must be

iirlat

4-46

zeros) where k = log2 (nh).

r[nx] Pointer to real input vector of nx real elements. In-place
computation (r = x) is allowed.

d[nh] Delay buffer
� In the case of multiple-buffering schemes, this array should

be initialized to 0 for the first block only. Between consecutive
blocks, the delay buffer preserves the previous r output
elements needed.

� Memory alignment: this is a circular buffer and must start in
a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2 (nh).

nx Number of real elements in vector x (input samples)

nh Number of coefficients

oflag Overflow error flag
= 1 if a 32-bit data overflow has occurred in an intermediate or final
result
= 0 if no 32-bit data overflow has occurred in an intermediate or
final result

Description Computes a real lattice IIR filter implementation using coefficient stored in vec-
tor h. The real data input is stored in vector x. The filter output result is stored
in vector r. This function retains the address of the delay filter memory d con-
taining the previous delayed values to allow consecutive processing of blocks.
This function can be used for both block-by-block and sample-by-sample filter-
ing (nx=1).

Algorithm eN[n] � x[n]

ei�1[n] � ei[n] � hie
i � 1 [n � 1], i � n, (N � 1), . . . , 1

e
i [n] � � kiei�1[n] � e

i � 1 [n � 1], i � N, (N � 1), . . . , 1

y[n] � e0[n] � e
0 [n]

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes none

Example See examples/iirlat subdirectory

firlat

4-47 Function Descriptions

Benchmarks Cycles Core:
nx[(3*nh) + 14]
Overhead 48

Code size (in 16-bit words) 49

Lattice Forward (FIR) Filterfirlat

Function short oflag = firlat (DATA *x, DATA *h, DATA *r, DATA *d, int nx, int nh)

Arguments x[nx] Pointer to real input vector of nx real elements

h[nh] Pointer to lattice coefficient vector of size nh in normal order:
h = b0 b1 b2 b3 …
Memory alignment: this is a circular buffer and must start in a k-bit
boundary (that is, the k LSBs of the starting address must be

zeros) where k = log2 (nh).

r[nx] Pointer to real input vector of nx real elements. In-place
computation (r = x) is allowed.

d[nh] Delay buffer
� In the case of multiple-buffering schemes, this array should

be initialized to 0 for the first block only. Between consecutive
blocks, the delay buffer preserves the previous r output
elements needed.

� Memory alignment: this is a circular buffer and must start in
a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2 (nh).

nx Number of real elements in vector x (input samples)

nh Number of coefficients

oflag Overflow error flag
= 1 if a 32-bit data overflow has occurred in an intermediate or final
result
= 0 if no 32-bit data overflow has occurred in an intermediate or
final result

log_2

4-48

Description Computes a real lattice FIR filter implementation using coefficient stored in
vector h. The real data input is stored in vector x. The filter output result is
stored in vector r. This function retains the address of the delay filter memory
d containing the previous delayed values to allow consecutive processing of
blocks. This function can be used for both block-by-block and sample-by-sam-
ple filtering (nx=1).

Algorithm e0[n] � e
0 [n] � x[n],

ei[n] � ei�1[n] � hie
i � 1 [n � 1], i � 1, 2, . . . , N

e
i [n] � hiei�1[n] � e

i � 1 [n � 1], i � 1, 2, . . . , N

y[n] � e0[n] � eN[n]

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes none

Example See examples/firlat subdirectory

Benchmarks Cycles Core:
nx[(3*nh) + 18]
Overhead 61

Code size (in 16-bit words) 64

Base 2 Logarithmlog_2

Function short oflag = log_2 (DATA *x, LDATA *r, ushort nx)
(defined in log_2.asm)

Arguments x[nx] Pointer to input vector of size nx

r[nx] Pointer to output data vector (Q16.15 format) of size nx

nx Length of input and output data vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Computes the log base 2 of elements of vector x using Taylor series.

log_2

4-49 Function Descriptions

Algorithm for (i � 0; i 	 nx; i ��) y(i) � log2 x(i) where � 1 	 x(i) 	 1

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes y = 1.4427 * ln(x) with x = M(x)*2^P(x) = M*2^P
y = 1.4427 * (ln(M) + ln(2)*P)
y = 1.4427 * (ln(2*M) + (P−1)*ln(2))
y = 1.4427 * (ln((2*M−1)+1) + (P−1)*ln(2))
y = 1.4427 * (f(2*M−1) + (P−1)*ln(2))
with f(u) = ln(1+u).

We use a polynomial approximation for f(u):
f(u) = (((((C6*u+C5)*u+C4)*u+C3)*u+C2)*u+C1)*u+C0
for 0<= u <= 1.

The polynomial coefficients Ci are as follows:
C0 = 0.000 001 472
C1 = 0.999 847 766
C2 = −0.497 373 368
C3 = 0.315 747 760
C4 = −0.190 354 944
C5 = 0.082 691 584
C6 = −0.017 414 144

The coefficients Bi used in the calculation are derived from the Ci as follows:
B0 Q30 1581d 0062Dh
B1 Q14 16381d 03FFDh
B2 Q15 −16298d 0C056h
B3 Q16 20693d 050D5h
B4 Q17 −24950d 09E8Ah
B5 Q18 21677d 054Adh
B6 Q19 −9130d 0DC56h

Example See examples/log_2 subdirectory

Benchmarks Cycles Core:
60*nx
Overhead 56

Code size (in 16-bit words) 85

log_10

4-50

Base 10 Logarithmlog_10

Function short oflag = log_10 (DATA *x, LDATA *r, ushort nx)
(defined in log_10.asm)

Arguments x[nx] Pointer to input vector of size nx

r[nx] Pointer to output data vector (Q16.15 format) of size nx

nx Length of input and output data vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Computes the log base 10 of elements of vector x using Taylor series.

Algorithm for (i � 0; i 	 nx; i ��) y(i) � log10 x(i) where � 1 	 x(i) 	 1

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes y = 0.4343 * ln(x) with x = M(x)*2^P(x) = M*2^P
y = 0.4343 * (ln(M) + ln(2)*P)
y = 0.4343 * (ln(2*M) + (P−1)*ln(2))
y = 0.4343 * (ln((2*M−1)+1) + (P−1)*ln(2))
y = 0.4343 * (f(2*M−1) + (P−1)*ln(2))
with f(u) = ln(1+u).

We use a polynomial approximation for f(u):
f(u) = (((((C6*u+C5)*u+C4)*u+C3)*u+C2)*u+C1)*u+C0
for 0<= u <= 1.

The polynomial coefficients Ci are as follows:
C0 = 0.000 001 472
C1 = 0.999 847 766
C2 = −0.497 373 368
C3 = 0.315 747 760
C4 = −0.190 354 944
C5 = 0.082 691 584
C6 = −0.017 414 144

logn

4-51 Function Descriptions

The coefficients Bi used in the calculation are derived from the Ci as follows:
B0 Q30 1581d 0062Dh
B1 Q14 16381d 03FFDh
B2 Q15 −16298d 0C056h
B3 Q16 20693d 050D5h
B4 Q17 −24950d 09E8Ah
B5 Q18 21677d 054ADh
B6 Q19 −9130d 0DC56h

Example See examples/log_10 subdirectory

Benchmarks Cycles Core:
55*nx
Overhead 56

Code size (in 16-bit words) 82

Base e Logarithm (natural logarithm)logn

Function short oflag = logn (DATA *x, LDATA *r, ushort nx)
(defined in logn.asm)

Arguments x[nx] Pointer to input vector of size nx

r[nx] Pointer to output data vector (Q16.15 format) of size nx

nx Length of input and output data vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Computes the log base e of elements of vector x using Taylor series.

Algorithm for (i � 0; i 	 nx; i ��) y(i) � logn x(i) where � 1 	 x(i) 	 1

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes y = 0.4343 * ln(x) with x = M(x)*2^P(x) = M*2^P
y = 0.4343 * (ln(M) + ln(2)*P)
y = 0.4343 * (ln(2*M) + (P−1)*ln(2))
y = 0.4343 * (ln((2*M−1)+1) + (P−1)*ln(2))
y = 0.4343 * (f(2*M−1) + (P−1)*ln(2))
with f(u) = ln(1+u).

maxidx

4-52

We use a polynomial approximation for f(u):
f(u) = (((((C6*u+C5)*u+C4)*u+C3)*u+C2)*u+C1)*u+C0
for 0<= u <= 1.

The polynomial coefficients Ci are as follows:
C0 = 0.000 001 472
C1 = 0.999 847 766
C2 = −0.497 373 368
C3 = 0.315 747 760
C4 = −0.190 354 944
C5 = 0.082 691 584
C6 = −0.017 414 144

The coefficients Bi used in the calculation are derived from the Ci as follows:
B0 Q30 1581d 0062Dh
B1 Q14 16381d 03FFDh
B2 Q15 −16298d 0C056h
B3 Q16 20693d 050D5h
B4 Q17 −24950d 09E8Ah
B5 Q18 21677d 054ADh
B6 Q19 −9130d 0DC56h

Example See examples/logn subdirectory

Benchmarks Cycles Core:
39*nx
Overhead 56

Code size (in 16-bit words) 67

Index of the Maximum Element of a Vectormaxidx

Function short r = maxidx (DATA *x, ushort nx)
(defined in maxidx.asm)

Arguments x[nx] Pointer to input vector of size nx

r Index for vector element with maximum value

nx Length of input data vector (nx >= 6)

Description Returns the index of the maximum element of a vector x. In case of multiple
maximum elements, r contains the index of the last maximum element found.

Algorithm Not applicable

maxval

4-53 Function Descriptions

Overflow Handling Methodology Not applicable

Special Requirements none

Implementation Notes none

Example See examples/maxidx subdirectory

Benchmarks Cycles Core:
27 + 3*nx (if n even) � approx
31 + 3*nx
Overhead 27

Code size (in 16-bit words) 66

Maximum Value of a Vectormaxval

Function short r = maxval (DATA *x, ushort nx)
(defined in maxval.asm)

Arguments x[nx] Pointer to input vector of size nx

r Maximum value of a vector

nx Length of input data vector

Description Returns the maximum element of a vector x.

Algorithm Not applicable

Overflow Handling Methodology Not applicable

Special Requirements none

Implementation Notes none

Example See examples/maxval subdirectory

Benchmarks Cycles Core:
2*nx
Overhead 16

Code size (in 16-bit words) 13

minidx

4-54

Index of the Minimum Element of a Vectorminidx

Function short r = minidx (DATA *x, ushort nx)
(defined in minidx.asm)

Arguments x[nx] Pointer to input vector of size nx

r Index for vector element with minimum value

nx Lenght of input data vector (nx >= 6)

Description Returns the index of the minimum element of a vector x. In case of multiple
minimum elements, r contains the index of the last minimum element found.

Algorithm Not applicable

Overflow Handling Methodology Not applicable

Special Requirements none

Implementation Notes Different implementation than maxidx because unable to use cmps instruction
with min.

Example See examples/minidx subdirectory

Benchmarks Cycles Core:
4 + 5*nx
Overhead 18

Code size (in 16-bit words) 22

Minimum Value of a Vectorminval

Function short r = minval (DATA *x, ushort nx)
(defined in minval.asm)

Arguments x[nx] Pointer to input vector of size nx

r Maximum value of a vector

nx Lenght of input data vector

Description Returns the minimum element of a vector x.

Algorithm Not applicable

mmul

4-55 Function Descriptions

Overflow Handling Methodology Not applicable

Special Requirements none

Implementation Notes none

Example See examples/minval subdirectory

Benchmarks Cycles Core:
2*nx
Overhead 16

Code size (in 16-bit words) 13

Matrix Multiplicationmmul

Function short oflag = mmul (DATA *x1,short row1,short col1,DATA *x2,short
row2,short col2,DATA *r)

Arguments x1[row1*col1]: Pointer to input vector of size nx
Pointer to input matrix of size row1*col1
; row1 :
;
 :; :
; r[row1*col2] : Pointer to output data vector of size
row1*col2

row1 number of rows in matrix 1

col1 number of columns in matrix 1

x2[row2*col2]: Pointer to input matrix of size row2*col2

row2 number of rows in matrix 2

col2 number of columns in matrix 2

r[row1*col2] Pointer to output matrix of size row1*col2

nx Length of input data vector

Description Returns the minimum element of a vector x.

mtrans

4-56

Algorithm Multiply input matrix A (M by N) by input matrix B (N by P) using 2 nested loops:
 for i = 1 to M
 for k = 1 to P
 {
 temp = 0
 for j = 1 to N
 temp = temp + A(i,j) * B(j,k)
 C(i,k) = temp
 }

Overflow Handling Methodology Not applicable

Special Requirements Verify that the dimensions of input matrices are legal.

Implementation Notes none

Example See examples/minval subdirectory

Benchmarks Cycles Core:
row1*(7+(11+(6*col1))*col2)
Overhead 71

Code size (in 16-bit words) 65

Matrix Transposemtrans

Function short oflag = mtrans(DATA *x, DATA *r, ushort nx)
(defined in mtrans.asm)

Arguments x[row*col] Pointer to input matrix. In-place processing is not allowed.

row Number of rows in matrix

col Number of columns in matrix

r[row*col] Pointer to output data vector of size nx containing

Description This function transponse matrix x.

Algorithm for i = 1 to M
 for j = 1 to N
 C(j,i) = A(i,j)

Overflow Handling Methodology Scaling implemented for overflow prevention (user selectable).

Special Requirements none

mul32

4-57 Function Descriptions

Implementation Notes none

Example See examples/mtrans subdirectory

Benchmarks Cycles Core:
[5+(col*6)]
Overhead 44

Code size (in 16-bit words) 34

32-bit Vector Multiplymul32

Function short oflag = mul32(LDATA *x, LDATA *y, LDATA *r, ushort nx)
(defined in mul32.asm)

Arguments x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y).

y[nx] Pointer to input data vector 2 of size nx

r[nx] Pointer to output data vector of size nx containing

nx Number of elements of input and output vectors
nx >=4

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description This function multiply two 2 32-bit Q31 vectors, element by element, and pro-
duce a 32-bit Q31 vector.

Algorithm for (i=0; i < nx; i++)
z (i) = x (i) * y (i)

Overflow Handling Methodology Scaling implemented for overflow prevention (User selectable)

Special Requirements none

Implementation Notes none

Example See examples/add subdirectory

Benchmarks Cycles Core:
7*nx + 4
Overhead 29

Code size (in 16-bit words) 35

nblms

4-58

Normalized Block LMS Block Filternblms

Function short oflag = nblms (DATA *x,DATA *h,DATA *r, DATA **dbuffer, DATA *des,
ushort nh, ushort nx, ushort nb, DATA **norm_e, int l_tau, int cutoff, int gain)
(defined in nblms.asm)

Arguments x[nx] Input data vector of size nx (reference input)

h(nh) Pointer to filter coefficient vector of size nh
� h is stored in reversed order: h(n−1), ... h(0) where h[n] is at

the lowest memory address.
� Memory alignment: h is a circular buffer and must start in a

k-bit boundary (that is, the k LSBs of the starting address must
be zeros) where k = log2(nh).

r[nx] Pointer to output data vector of size nx. r can be equal to x.

dbuffer[nh] Pointer to location containing the address of the delay buffer.
Memory alignment: the delay buffer is a circular buffer and must
start in a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2(nh).

des[nx] Pointer to expected output array

nh Number of filter coefficients. Filter order = nh−1. nh >=3

nx Length of input and output data vectors

nb number of blocks

bsize blocksize (number of coefficients to be updated for each input
sample)
Note: nh (number of coefficients) = nb*bsize

norm_e pointer to normalized error buffer

l_tau decay constant for long-term filtering of power estimate

cutoff the lowest allowed value for power estimate

gain step size constant: 2*beta= beta1/abs_power = 2^(gain) /
abs_power

nblms

4-59 Function Descriptions

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Normalized Delayed LMS (NDLMS) Block FIR implementation using coeffi-
cients stored in vector h. Coefficients are updated after each sample based on
the LMS algorithm. The real data input is stored in vector a. The filter output
result is stored in vector r.

LMS algorithm is used but adaptation uses the previous error and the previous
sample (�delayed�) and takes advantage of the C54x LMS instruction.

Restrictions: This version does not allow consecutive calls to this routine in a
dual buffering fashion.

Algorithm For a more detailed description of the algorithm, refer to [4].

FIR portion r[i] � �nh�1

k�0

b[k] * x[i � k] 0 � i � nx

Adaptation using the previous error and the previous sample
e(i) = d(i) − y(i); (error)
var(i) = (1−�) * var(i−1) + �*[abs(x(i)) + cutoff]; (signal power estimate)

for (j � 0 : j 	 nb; j ��)

{

bkj(i � 1) �
bkj(i) � [2 * � * e(i) * x(i � k)]

[var(i) � 2]
}

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements Linker command file: you must allocate .ebuffer section (for polynomial coeffi-
cients).

ndlms

4-60

Implementation Notes Delayed version implemented to take advantage of the C54x LMS instruction.
Effect on covergence minimum. For reference, following is the algorithm for
the regular LMS (non-delayed):

FIR portion

r[i] � �nh�1

k�0

b[k] * x[i � k] 0 � i � nx

Adaptation using the current error and the current sample:
e(i) = des(i) − r(i);
bk(i � 1) � bk(i) � 2 * � * e(i) * x(i � k)

Example See examples/ndlms subdirectory

Benchmarks Cycles Core:
[85+bsize+nh+((18+bsize)*nb)]*nx
Overhead 88

Code size (in 16-bit words) 144

Normalized Delayed LMS Filterndlms

Function short oflag = ndlms (DATA *x, DATA *h, DATA *r, DATA *dbuffer, DATA *des,
ushort nh, ushort nx, int l_tau, int cutoff, int gain, DATA *norm_d)
(defined in ndlms.asm)

Arguments x[nx] input data vector of size nx (reference input)

h(nh) Pointer to filter coefficient vector of size nh
� h is stored in reversed order : h(n−1), … h(0) where h[n] is at

the lowest memory address.
� Memory alignment: h is a circular buffer and must start in a

k-bit boundary (that is, the k LSBs of the starting address must
be zeros) where k = log2(nh).

r[nx] Pointer to output data vector of size nx. r can be equal to x.

dbuffer[nh] Pointer to location containing the address of the delay buffer.
Memory alignment: the delay buffer is a circular buffer and must
start in a k-bit boundary (that is, the k LSBs of the starting address
must be zeros) where k = log2(nh).

des[nx] Pointer to expected output array

ndlms

4-61 Function Descriptions

nh Number of filter coefficients. Filter order = nh−1. nh >=3

nx Length of input and output data vectors

l_tau Decay constant for long-term filtering of power estimate

cutoff the lowest allowed value for power estimate

gain step size constant:
gain = log2 (2M), where M = 2* stepsize

norm_d pointer to normalized delay buffer

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Normalized Delayed LMS (NDLMS) Block FIR implementation using coeffi-
cients stored in vector h. Coefficients are updated after each sample based on
the LMS algorithm. The real data input is stored in vector a. The filter output
result is stored in vector r.

LMS algorithm is used but adaptation using the previous error and the pre-
vious sample (�delayed�) to take advantage of the C54x LMS instruction.

Restrictions: This version does not allow consecutive calls to this routine in a
dual buffering fashion.

Algorithm For a more detailed description of the algorithm, refer to [4].

FIR portion

r[i] � �nh�1

k�0

h[k] * x[i � k] 0 � i � nx

Adaptation using the previous error and the previous sample:
e(i) = des(i) − r(i)
var(i) � (1 � l_tau) * var(i � 1) � l_tau * [abs(x(i)) � cutoff];

h(i � 1) � h(i) �
2 � (gain) * e(i � 1) * x(i � k � 1)

[var(i) � 2]

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements none

neg

4-62

Implementation Notes Delayed version implemented to take advantage of the C54x LMS instruction.
Effect on covergence minimum.

Example See examples/ndlms subdirectory

Benchmarks Cycles Core:
[63+(nh−1)*2]*nx
Overhead 52

Code size (in 16-bit words) 144

Vector Negateneg

Function short oflag = neg (DATA *x, DATA *r, ushort nx)
(defined in neg.asm)

Arguments x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

r[nx] Pointer to output data vector of size nx. In-place processing
allowed
Special cases:
� if x[I] = −1 = 32768, then r = 1 = 321767 with oflag = 1
� if x= 1 = 32767, then r = −1 = 321768 with oflag = 1

nx Number of elements of input and output vectors
nx >=4

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred
This shoud be taken it as a warning: overflow in negation of a Q15
number can happen naturally when negating (−1).

Description This function negates each of the elements of a vector (fractional values).

Algorithm for (i=0; i < nx; i++)
x(i) = −x(i)

Overflow Handling Methodology Saturation implemented for overflow handling.

Special Requirements none

Implementation Notes none

Example See examples/neg subdirectory

neg32

4-63 Function Descriptions

Benchmarks Cycles Core:
2*(nx−1)
Overhead 30

Code size (in 16-bit words) 21

Vector Negate (double-precision)neg32

Function short oflag = neg32 (LDATA *x, LDATA *r, ushort nx)
(defined in neg32.asm)

Arguments x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

r[nx] Pointer to output data vector of size nx. In-place processing
allowed
Special cases:
� if x= −1 = 32768*2^16 , then r = 1 = 321767*2^16

with oflag = 1
� if x= 1 = 32767*2^16 , then \ r = −1 = 321768*2^16

with oflag = 1

nx Number of elements of input and output vectors
nx >=4

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred
This should be take it as a warning: overflow in negation of a Q31
number can happen naturally when negating (−1).

Description This function negates each of the elements of a vector (fractional values).

Algorithm for (i=0; i < nx; i++)
x(i) = −x(i)

Overflow Handling Methodology Saturation implemented for overflow handling.

Special Requirements none

Implementation Notes none

Example See examples/neg32 subdirectory

power

4-64

Benchmarks Cycles Core:
4*nx + 4
Overhead 18

Code size (in 16-bit words) 19

Vector Powerpower

Function short oflag = power (DATA *x, LDATA *r, ushort nx)
(defined in power.asm)

Arguments x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

r[1] Pointer to output data vector element in Q31 format
Special cases:
� if x= −1 = 32768*2^16 , then r = 1 = 321767*2^16

with oflag = 1
� if x= 1 = 32767*2^16 , then r = −1 = 321768*2^16

with oflag = 1

nx Number of elements of input vectors
nx >=4

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description This function calculates the power (sum of products) of a vector.

Algorithm Power = 0
for (i=0; i < nx; i++)
power += x(i) *x(I)

Overflow Handling Methodology No scaling implemented for overflow handling.

Special Requirements none

Implementation Notes none

Example See examples/power subdirectory

Benchmarks Cycles Core:
nx + 4

Overhead 18

Code size (in 16-bit words) 18

rand16init

4-65 Function Descriptions

Q15 to Float Conversionq15tofl

Function void q15tofl (DATA *x, float *r, ushort nx)
(defined in q152fl.asm)

Arguments x[nx] Pointer to Q15 input vector of size nx

r[nx] Pointer to floating-point output data vector of size nx containing
the floating-point equivalent of vector x

nx Length of input and output data vectors

Description Converts the Q15 stored in vector x to IEEE floating point numbers stored vec-
tor r.

Algorithm Not applicable

Overflow Handling Methodology Saturation implemented for overflow handling.

Special Requirements none

Implementation Notes none

Example See examples/ug subdirectory

Benchmarks Cycles Core:
11+36*nx
Overhead 15

Code size (in 16-bit words) 56

Initialize Random Number Generatorrand16init

Function void rand16init(void)
(defined in rand16i.asm)

Arguments none

Description Initializes seed for 16 bit random number generation routine

Algorithm Not applicable

Overflow Handling Methodology No scaling implemented for overflow handling.

Special Requirements Allocation of .bss section is required in linker command file.

rand16

4-66

Implementation Notes This function initializes a global variable rndnum in global memory to be used
for the 16 bit random number generation routine (rand16).

Example See examples/rand subdirectory

Benchmarks Cycles Total
7

Code size (in 16-bit words) 5

Random Vector Generationrand16

Function short oflag = rand16(DATA *x, ushort nx)
(defined in rand16.asm)

Arguments x[nx] Pointer to input data vector 1 of size nx

nx Number of elements of input and output vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Computes vector of 16 bit random numbers.

Algorithm Linear Congruential Method

Overflow Handling Methodology Not applicable

Special Requirements none

Implementation Notes none

Example See examples/rand16 subdirectory

Benchmarks Cycles Core:
13 + nx*4
Overhead 10

Code size (in 16-bit words) 28

recip16

4-67 Function Descriptions

16-bit Reciprocal Functionrecip16

Function void recip16 (DATA *x, DATA *r, DATA *rexp, ushort nx)
(defined in recip16.asm)

Arguments x[nx] Pointer to input data vector 1 of size nx

r[nx] Pointer to output data buffer

rexp[nx] Pointer to exponent buffer for output values. These exponent
values are in integer format.

nx Number of elements of input and output vectors

Description This routine returns the fractional and exponential portion of the reciprocal of
a Q15 number. Since the reciprocal is always greater than 1, it returns an expo-
nent such that:
r[i] * rexp[i] = true reciprocal in floating-point

Algorithm Appendix-Calculating a reciprocal of a Q15 number

Overflow Handling Methodology none

Special Requirements none

Implementation Notes none

Example See examples/recip16 subdirectory

Benchmarks Cycles Core:
4 + nx * 54
Overhead 24

Code size (in 16-bit words) 77 words + 15 words of data space

rfft

4-68

Forward Real FFT (in-place)rfft

Function void rfft (DATA x, nx, short scale)
(defined in rfft#.asm where #=nx)

Arguments x[nx] Pointer to input vector containing nx real elements in bit-reversed
order. On output, vector x contains the 1st half (nx/2 complex
elements) of the FFT output in the following order. Real FFT is a
symmetric function around the Nyquist point, and for this reason
only half of the FFT(x) elements are required.

On output x will contain the FFT(x) = y in the following format:
y(0)Re y(nx/2)im → DC and Nyquist
y(1)Re y(1)Im
y(2)Re y(2)Im
….
y(nx/2)Re y(nx/2)Im
Complex numbers are stored in Re-Im format

nx Number of real elements in vector x. nx must be a constant
number (not a variable) and can take the following values.
nx =16,32,64,128,256,512,1024

scale Flag to indicate whether or not scaling should be implemented
during computation.
If (scale == 0)
 scale factor = 1;
else
 scale factor = nx;
end

Description Computes a Radix-2 real DIT FFT of the nx real elements stored in vector x
in bit-reversed order. The original content of vector x is destroyed in the pro-
cess. The first nx/2 complex elements of the FFT(x) are stored in vector x in
normal-order.

Algorithm (DFT)

y[k] � 1
(scale factor)

* �
nx�1

i�0

x[i] * �cos�2 * � * i * k
nx

� � j sin�2 * � * i * k
nx

��

rfft

4-69 Function Descriptions

Overflow Handling Methodology Scaling implemented for overflow prevention (See section 6.3)

Special Requirements
� Special linker command file sections required: .sintab (containing the

twiddle table). For .sintab section size refer to the benchmark information
below.

� This function requires the inclusion of two other files during assembling
(automatically included):

� macros.asm (contains all macros used for this code)

� sintab.q15 (contains twiddle table section .sintab)

� unpack.asm (containing code to for unpacking results)

� Memory alignment: Although there is no memory alignment request for
this function, you need to align input data if you use this function with func-
tion cbrev (see page 4-13).

Implementation Notes
� Implemented as a complex FFT of size nx/2 followed by an unpack stage

to unpack the real FFT results. Therefore, implementation notes for the cfft
function apply to this case. For this reason, you must use the complex bit
reverse.

� Notice that normally an FFT of a real sequence of size N, produces a com-
plex sequence of size N (or 2*N real numbers) that will not fit in the input
sequence. To accomodate all the results without requiring extra memory
locations, the output reflects only half of the spectrum (complex output).
This still provides the full information because an FFT of a real sequence
has even symmetry around the center or nyquist point(N/2).

� Special debugging consideration: This function is implemented as a mac-
ro that invokes different FFT routines according to the size. As a conse-
quence, instead of the rfft symbol being defined, multiple rfft# symbols are
(where # = nx = FFT real size)

� When scale = 1, this routine prevents overflow by scaling by 2 at each FFT
intermediate stages and at the unpacking stage.

Example See examples/rfft subdirectory

rifft

4-70

Benchmarks 8 cycles (butterfly core only)

FFT size Cycles (see note)
Code-Size (words)

.text section
Data-Size (words)

.sintab section

16 264 171 11

32 541 213 34

64 1160 261 81

128 2516 309 176

256 5470 357 367

512 11881 405 750

1024 25716 453 1517

Note: Assumes all data is in on-chip dual access RAM and that there is no bus
conflict due to twiddle table reads and instruction fetches (provided linker com-
mand file reflects that).

Inverse Real FFT (in-place)rifft

Function void rifft (DATA x, nx, short scale)
(defined in rifft#.asm where #=nx)

Arguments x[nx] Pointer to input vector x containing nx real elements in
bit-reversed order, shown below for nx = 8:
Y(0)Re y(nx/2)im → DC and Nyquist
y(2)Re y(2)Im
y(1)Re y(1)Im
y(nx/2)Re y(nx/2)Im

where y = fft(x)

On output, the vector x contains nx complex elements
corresponding to IFFT(x) or the signal itself.
Complex numbers are stored in Re-Im format

nx Number of real elements in vector x. nx must be a constant
number (not a variable) and can take the following values.
nx =16,32,64,128,256,512,1024

rifft

4-71 Function Descriptions

scale Flag to indicate whether or not scaling should be implemented
during computation.
If (scale == 0)
 scale factor = 1;
else
 scale factor = nx;
end

Description Computes a Radix-2 real DIT IFFT of the nx real elements stored in vector x
in bit-reversed order. The original content of vector x is destroyed in the pro-
cess. The 1st nx/2 complex elements of the IFFT(x) are stored in vector x in
normal-order.

Algorithm (IDFT)

y[k] � 1
(scale factor)

* �
nx�1

i�0

X[w] * �cos�2 * � * i * k
nx

� � j sin�2 * � * i * k
nx

��
Overflow Handling Methodology Scaling implemented for overflow prevention.

Special Requirements
� Special linker command file sections required: .sintab (containing the

twiddle table). For .sintab section size refer to the benchmark information
below.

� This function requires the inclusion of two other files during assembling
(automatically included):

� macrosi.asm (contains all macros used for this code)

� sintab.q15 (contains twiddle table section .sintab)

� unpacki.asm (containing code to for unpacking results)

� Memory alignment: Although there is no memory alignment request for
this function, you need to align input data if you use this function with func-
tion cbrev (see page 4-13).

Implementation Notes
� Implemented as a complex IFFT of size nx/2 followed by an unpack stage

to unpack the real IFFT results. Therefore, implementation Notes for the
cfft function apply to this case.

� Notice that normally an IFFT of a real sequence of size N, produces a com-
plex sequence of size N (or 2*N real numbers) that will not fit in the input
sequence. To accomodate all the results without requiring extra memory
locations, the output reflects only half of the spectrum (complex output).
This still provides the full information because an IFFT of a real sequence
has even symmetry around the center or nyquist point(N/2).

sine

4-72

� Special debugging consideration: This function is implemented as a mac-
ro that invokes different IFFT routines according to the size. As a conse-
quence, instead of the rfft symbol being defined, multiple rifft# symbols are
(where # = nx = IFFT real size)

� When scale = 1, this routine prevents overflow by scaling by 2 at each IFFT
intermediate stages and at the unpacking stage.

Example See examples/rifft subdirectory

Benchmarks 8 cycles (butterfly core only)

FFT size Cycles (see note)
Code-Size (words)

.text section
Data-Size (words)

.sintab section

16 264 171 11

32 541 213 34

64 1160 261 81

128 2516 309 176

256 5470 357 367

512 11881 405 750

1024 25716 453 1517

Note: Assumes all data is in on-chip dual access RAM and that there is no bus
conflict due to twiddle table reads and instruction fetches (provided linker com-
mand file reflects that).

Sinesine

Function short oflag = sine (DATA *x, DATA *r, ushort nx)
(defined in sine.asm)

Arguments x[nx] Pointer to input vector of size nx. x contains the angle in radians
between [−pi, pi] normalized between [−1,1) in q15 format
x = xrad /pi
For example:
45o = pi/4 will be equivalent to x = 1/4 = 0.25 = 0x200
in q15 format.

r[nx] Pointer to output vector containing the sine of vector x in q15
format

nx Number of elements of input and output vectors

sine

4-73 Function Descriptions

nx >=4

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Computes the sine of elements of vector x. It uses the following Taylor series
to compute the angle x in quadrant 1 (0−pi/2).

Algorithm for (i=0; i<nx; i++)
y(i)= sin(x(i))

where x(i) = xrad/pi

Overflow Handling Methodology Not applicable

Special Requirements Linker command file: .data section must be allocated.

Implementation Notes Computes the sine of elements of vector x. It uses the following Taylor series
to compute the angle x in quadrant 1 (0−pi/2)

sin(x) = c1*x + c2*x^2 + c3*x^3 + c4*x^4 + c5*x^5

c1 = 3.140625x
c2 = 0.02026367
c3 = − 5.3251
c4 = 0.5446778
c5 = 1.800293

The angle x in other quadrant is calculated by using symmetries that map the
angle x into quadrant 1.

Example See examples/sine subdirectory

Benchmarks Cycles Core:
20*nx (worst case)
18*nx (best case)
Overhead 23

Code size (in 16-bit words) 41 (in program space)
6 (in data space)

sqrt_16

4-74

Square Root of a 16-bit Numbersqrt_16

Function short oflag = sqrt_16 (DATA *x, DATA *r, short nx)
(defined in sqrtv.asm)

Arguments x[nx] Pointer to input vector of size nx

r[nx] Pointer to output vector of size nx containing the sqrt(x). In-place
operation is allowed (r can be equal to x).

nx Number of elements of input and output vectors

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description Calculates the square root for each element in input vector x, storing results
in output vector r.

Algorithm for(i � 0; i 	 nx; i ��)

r[i] � (x(i))� 0 � i � nx

Overflow Handling Methodology Not applicable

Special Requirements none

Implementation Notes none

Example See examples/sine subdirectory

Benchmarks Cycles Core:
42*nx
Overhead 41

Code size (in 16-bit words) 68

sub

4-75 Function Descriptions

Vector Subtractsub

Function short oflag = sub (DATA *x, DATA *y, DATA *r, ushort nx, ushort scale)
(defined in sub.asm)

Arguments x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

y[nx] Pointer to input data vector 2 of size nx

r[nx] Pointer to output data vector of size nx containing
� (x−y) if scale = 0
� (x−y) /2 if scale = 1

nx Number of elements of input and output vectors
nx >=4

scale Scale selection
� Scale = 1 divide the result by 2 to prevent overflow
� Scale = 0 does not divide by 2

oflag Overflow flag
� If oflag = 1 a 32-bit overflow has occurred
� If oflag =0 a 32-bit overflow has not occurred

Description This function adds two vectors, element by element.

Algorithm for (i=0; i < nx; i++)
z(i) = x(i) − y(i)

Overflow Handling Methodology Scaling implemented for overflow prevention (user selectable).

Special Requirements none

Implementation Notes none

Example See examples/sub subdirectory

Benchmarks Cycles Core:
12 + 3*nx/2
Overhead 30

Code size (in 16-bit words) 39

sub

4-76

5-1

DSPLIB Benchmarks and Performance Issues

All functions in the DSPLIB are provided with execution time and code size
benchmarks. While developing the included functions, we tried to compromise
between speed, code size and ease of use. However with few exceptions, the
highest priority was given to optimize for speed and ease-of-use, and last for
code size.

Even though DSPLIB can be used as a first estimation of processor perfor-
mance for an specific function, you should have in mind that the generic nature
of DSPLIB might add extra cycles not required for customer specific use.

Topic Page

5.1 What DSPLIB Benchmarks are Provided 5-2.

5.2 Performance Considerations 5-2.

Chapter 5

What DSPLIB Benchmarks are Provided

 5-2

5.1 What DSPLIB Benchmarks are Provided

DSPLIB documentation includes benchmarks for instruction cycles and
memory consumption. The following benchmarks are typically included:

� Calling and register initialization overhead

� Number of cycles in the kernel code: Typically provided in the form of an
equation that is a function of the data size parameters. We consider the
kernel (or core) code, the instructions contained between the _start and
_end labels that you can see in each of the functions

� Memory consumption: Typically program size in 16-bit words is reported.
For functions requiring significant internal data allocation, data memory
consumption is also provided. When stack usage for local variables is
minimum, that data consumption is not reported.

For functions in which is difficult to determine the number of cycles in the kernel
code as a function of the data size parameters, we have included direct cycle
count for specific data sizes.

5.2 Performance Considerations

Benchmark cycles presented assume best case conditions, typically assum-
ing: 0-wait state memory external memory for program and data data alloca-
tion to on-chip DARAM no-pipeline hits.

A linker command file showing the memory allocation used during testing and
benchmarking in the TI C54x EVM is included under the example subdirectory.

Remember, execution speed in a system is dependent on where the different
sections of program and data are located in memory. Be sure to account for
such differences, when trying to explain why a routine is taking more time that
the reported DSPLIB benchmarks.

6-1

Software Updates and Customer Support

This chapter details the software updates and customer support issues for the
TMS320C55x DSPLIB.

Topic Page

6.1 DSPLIB Software Updates 6-2.

6.2 DSPLIB Customer Support 6-2.

Chapter 6

DSPLIB Software Updates

 6-2

6.1 DSPLIB Software Updates

C54x DSPLIB software updates will be periodically released, incorporating
product enhancement and fixes.

DSPLIB software updates will be posted as they become available in the same
location you download this information. Source code for previous releases will
be kept public to prevent any customer problem in case we decide to discontin-
ue or change the functionality of one of the DSPLIB functions. Make sure to
read the readme.1st file available in the root directory of every release.

6.2 DSPLIB Customer Support

If you have question or want to report problems or suggestions regarding the
C54x DSPLIB, contact Texas Instruments at dsph@ti.com. We encourage the
use of the software report form (report.txt) contained in the DSPLIB doc direc-
tory to report any problem associated with the C54xDSPLIB.

A-1

Appendix A

Overview of Fractional Q Formats

Unless specifically noted, DSPLIB functions use Q15 format or to be more ex-
act Q0.15. In a Qm.n format, there are m bits used to represent the twos com-
plement integer portion of the number, and n bits used to represent the twos
complement fractional portion. m+n+1 bits are needed to store a general Qm.n
number. The extra bit is needed to store the sign of the number in the most-sig-
nificant bit position. The representable integer range is specified by (−2m,2m)
and the finest fractional resolution is 2−n.

For example, the most commonly used format is Q.15. Q.15 means that a
16-bit word is used to express a signed number between positive and negative
one. The most-significant binary digit is interpreted as the sign bit in any Q for-
mat number. Thus in Q.15 format, the decimal point is placed immediately to
the right of the sign bit. The fractional portion to the right of the sign bit is stored
in regular twos complement format.

Topic Page

A.1 Q3.12 Format A-2.

A.2 Q.15 Format A-2.

A.3 Q.31 Format A-2.

Appendix A

 A-2

A.1 Q3.12 Format

Q.3.12 format places the sign bit after the fourth binary digit from the right, and
the next 12 bits contain the twos complement fractional component. The
approximate allowable range of numbers in Q.3.12 representation is (−8,8)
and the finest fractional resolution is 2−12 = 2.441x104.

Table A−1. Q3.12 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S I3 I2 I1 Q11 Q10 Q9 … Q0

A.2 Q.15 Format

Q.15 format places the sign bit at the leftmost binary digit, and the next 15 left-
most bits contain the twos complement fractional component. The approxi-
mate allowable range of numbers in Q.15 representation is (−1,1) and the fin-
est fractional resolution is 2�15 = 3.05 x 10�5.

Table A−2. Q.15 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S Q14 Q13 Q12 Q11 Q10 Q9 … Q0

A.3 Q.31 Format

Q.31 format spans two 16-bit memory words. The 16-bit word stored in the low-
er memory location contains the 16 least-significant bits, and the higher
memory location contains the most-significant 15 bits and the sign bit. The
approximate allowable range of numbers in Q.31 representation is (−1,1) and
the finest fractional resolution is 2�31 = 4.66 x 10�10.

Table A−3. Q.31 Low Memory Location Bit Fields

Bit 15 14 13 12 … 3 2 1 0

Value Q15 Q14 Q13 Q12 … Q3 Q2 Q1 Q0

Table A−4. Q.31 High Memory Location Bit Fields

Bit 15 14 13 12 … 3 2 1 0

Value S Q30 Q29 Q28 … Q19 Q18 Q17 Q16

B-1

Appendix A

Calculating the Reciprocal of a Q15 Number

The most optimal method for calculating the inverse of a fractional number
(Y=1/X) is to normalize the number first. This limits the range of the number
as follows:

0.5 <= Xnorm < 1
−1 <= Xnorm <= −0.5 (1)

The resulting equation becomes:

Y = 1/(Xnorm*2^−n)
or
Y = 2^n/Xnorm (2)

where n = 1,2,3,...,14,15

Letting Ye = 2^n:

Ye = 2^n (3)

Substituting (3) into equation (2):

Y = Ye * 1/Xnorm (4)

Letting Ym = 1/Xnorm:

Ym = 1/Xnorm (5)

Substituting (5) into equation (4):

Y = Ye * Ym (6)

For the given range of Xnorm, the range of Ym is:

1 <= Ym < 2
−2 <= Ym <= −1 (7)

To calculate the value of Ym, various options are possible:

� Taylor Series Expansion

� 2nd,3rd,4th,... Order Polynomial (Line Of Best Fit)

Appendix B

Calculating the Reciprocal of a Q15 Number

 B-2

� Successive Approximation

The method chosen in this example is (c). Successive approximation yields
the most optimum code versus speed versus accuracy option. The method
outlined below yields an accuracy of 15 bits.

Assume Ym(new) = exact value of 1/Xnorm:

Ym(new) = 1/Xnorm (c1)
or
Ym(new)*X = 1 (c2)

Assume Ym(old) = estimate of value 1/X:

Ym(old)*Xnorm = 1 + Dyx
or
Dxy = Ym(old)*Xnorm − 1 (c3)

where Dyx = error in calculation

Assume that Ym(new) and Ym(old) are related as follows:

Ym(new) = Ym(old) − Dy (c4)

where Dy = difference in values

Substituting (c2) and (c4) into (c3):

Ym(old)*Xnorm = Ym(new)*Xnorm + Dxy
(Ym(new) + Dy)*Xnorm = Ym(new)*Xnorm + Dxy
Ym(new)*Xnorm + Dy*Xnorm = Ym(new)*Xnorm + Dxy
Dy*Xnorm = Dxy
Dy = Dxy * 1/Xnorm (c5)

Assume that 1/Xnorm is approximately equal to Ym(old):

Dy = Dxy * Ym(old) (approx) (c6)

Substituting (c6) into (c4):

Ym(new) = Ym(old) − Dxy*Ym(old) (c7)

Substituting for Dxy from (c3) into (c7):

Ym(new) = Ym(old) − (Ym(old)*Xnorm − 1)*Ym(old)
Ym(new) = Ym(old) − Ym(old)^2*Xnorm + Ym(old)
Ym(new) = 2*Ym(old) − Ym(old)^2*Xnorm (c8)

If after each calculation we equate Ym(old) to Ym(new):

Ym(old) = Ym(new) = Ym

Calculating the Reciprocal of a Q15 Number

B-3Calculating the Reciprocal of a Q15 Number

Then equation (c8) evaluates to:

Ym = 2*Ym − Ym^2*Xnorm (c9)

If we start with an initial estimate of Ym, then equation (c9) will converge to a
solution very rapidly (typically 3 iterations for 16-bit resolution).

The initial estimate can either be obtained from a look up table, or from choos-
ing a mid-point, or simply from linear interpolation. The method chosen for this
problem is the latter. This is simply accomplished by taking the complement
of the least significant bits of the Xnorm value.

 B-4

Index

Index-1

Index

A
acorr 4-7

adaptive filtering functions 4-3
dlms 4-26
nblms 4-58
ndlms 4-60

add 4-8

atan16 4-9

atan2_16 4-10

B
bexp 4-11

C
cbrev 4-12

cfft 4-15

cfft32 4-17

cfir 4-14

cifft 4-19

cifft32 4-21

convol 4-23

corr 4-24

correlation functions 4-3
acorr 4-7
corr 4-24

D
dlms 4-26

DSPLIB
allowable error 3-5
arguments 3-2

DSPLIB (continued)
calling a function from assembly language source

code 3-4
calling a function from C 3-3
content 2-2
data types 3-2
dealing with overflow and scaling issues 3-5
future releases 3-7
how to install 2-3
how to rebuild 2-4
sample code 3-4

E
expn 4-27

F
FFT functions 4-3

cbrev 4-12
cfft 4-15
cfft32 4-17
cifft 4-19
cifft32 4-21
rfft 4-68
rifft 4-70

filtering and convolution functions 4-3
cfir 4-14
convol 4-23
fir 4-28
firdec 4-30
firinterp 4-31
firlat 4-47
firs 4-33
firs2 4-34
hilb16 4-37
iir32 4-38
iircas4 4-40
iircas5 4-42

Index

Index-2

filtering and convolution functions (continued)
iircas51 4-44
iirlat 4-45

fir 4-28
firdec 4-30
firinterp 4-31
firlat 4-47
firs 4-33
firs2 4-34
fltoq15 4-36
fractional Q formats

Q.15 A-2
Q.31 A-2
Q3.12 A-2

H
hilb16 4-37

I
iir32 4-38
iircas4 4-40
iircas5 4-42
iircas51 4-44
iirlat 4-45

L
log_10 4-50
log_2 4-48
logn 4-51

M
math functions 4-3

add 4-8
expn 4-27
log_10 4-50
log_2 4-48
logn 4-51
maxidx 4-52
maxval 4-53
minidx 4-54

math functions (continued)
minval 4-54
mul32 4-57
neg 4-62
neg32 4-63
power 4-64
rand16 4-66
rand16init 4-65
recip16 4-67
sqrt_16 4-74
sub 4-75

matrix functions 4-3
mmul 4-55
mtrans 4-56

maxidx 4-52
maxval 4-53
minidx 4-54
minval 4-54
miscellaneous functions 4-3

bexp 4-11
fltoq15 4-36
q15tofl 4-65

mmul 4-55
mtrans 4-56
mul32 4-57

N
nblms 4-58
ndlms 4-60
neg 4-62
neg32 4-63

P
power 4-64

Q
Q formats

Q.15 A-2
Q.31 A-2
Q3.12 A-2

q15tofl 4-65

Index

Index-3

R
rand16 4-66
rand16init 4-65
recip16 4-67
rfft 4-68
rifft 4-70

S
sine 4-72
sqrt_16 4-74
sub 4-75

T
trigonometric functions 4-3

atan16 4-9
atan2_16 4-10
sine 4-72

Index

Index-4

Index

Index-5

	Title Page - SPRU518D
	IMPORTANT NOTICE
	Read This First
	About This Manual
	Related Documentation
	Trademarks

	Contents
	Tables
	Chapter 1 Introduction
	1.1 DSP Routines
	1.2 Features and Benefits
	1.2.1 DSPLIB: Quality Freeware That Y ou Can Build on and Contribute to

	Chapter 2 Installing DSPLIB
	2.1 DSPLIB Content
	2.2 How to Install DSPLIB
	2.2.1 De-Archive DSPLIB
	2.2.2 Update Y our C_DIR Environment V ariable

	2.3 How to Rebuild DSPLIB
	2.3.1 For Full Rebuild of 54xdsp.lib and/or 54xdspf.lib
	2.3.2 For Partial Rebuild of 54xdsp.lib and/or 54xdspf.lib (M o d i f i c a t i o n o f a S p e c i f i c D S P L I B F u n c t i o n , f o r e xample fir .asm)

	Chapter 3 Using DSPLIB
	3.1 DSPLIB Data T ypes
	3.2 DSPLIB Arguments
	3.3 Calling a DSPLIB Function from C
	3.4 Calling a DSPLIB Function from Assembly
	3.5 Where to Find Sample Code
	3.6 How DSPLIB is T ested Œ Allowable Error
	3.7 How DSPLIB Deals With Overflow and Scaling Issues
	3.8 Where DSPLIB Goes From Here

	Chapter 4 Function Descriptions
	4.1 Arguments and Conventions Used
	4.2 DSPLIB Functions

	Chapter 5 DSPLIB Benchmarks and Performance Issues
	5.1 What DSPLIB Benchmarks are Provided
	5.2 Performance Considerations

	Chapter 6 Software Updates and Customer Support
	6.1 DSPLIB Software Updates
	6.2 DSPLIB Customer Support

	Appendix A Overview of Fractional Q Formats
	A.1 Q3.12 Format
	A.2 Q.15 Format
	A.3 Q.31 Format

	Appendix B Calculating the Reciprocal of a Q15 Number
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	P
	Q
	R
	S
	T

