
TMS320C55x DSP CPU

Programmer’s Reference

Supplement

SPRU652G
November 2002

Revised February 2005

Copyright 2005, Texas Instruments Incorporated

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

2

REVISION HISTORY

This revision history highlights the technical changes made to SPRU652E to generate SPRU652F. It also highlights the
technical changes made to SPRU652F to generate SPRU652G; these changes are marked by “[Revision G]” in the
Revision History table below.

Scope: Added Advisory CPU_118 and updated Section 1.1, etc.
Added Advisory CPU_119 [Revision G]

PAGE(S)
NO. ADDITIONS/CHANGES/DELETIONS

6 Table 1, Quick Reference Table:
− added CPU_118, CPU May Halt After Returning From an Interrupt Service Routine When Operating in Emulation (Debug) Mode

10 Updated Section 1.1, Device and Development-Support Tool Nomenclature

47 CPU_116, Interrupted Nesting of Loops May Stop CPU Execution:
− Details section: corrected hierarchy of bulleted list

50 Added CPU_118, CPU May Halt After Returning From an Interrupt Service Routine When Operating in Emulation (Debug) Mode

51 Added CPU_119, Due to Improper Update of the DBSTAT Register, the Debugger May Halt at Code Locations Where No Breakpoints
are Set [Revision G]

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

3

Contents
1 Introduction 5.

1.1 Device and Development-Support Tool Nomenclature 10.

2 Important Notices About CPU Advisories 11.

2.1 Prototype Silicon Advisory Information 11.

2.2 Useful Information Regarding Assembler Diagnostic Messages 11.

2.2.1 ERROR Diagnostics 11.

2.2.2 WARNING Diagnostics 11.

2.2.3 REMARK Diagnostics 11.

3 C55x CPU Known Design Advisories to Functional Specifications 13.
CPU_72 C54CM Bit Update and *CDP With T0 Index is not Pipeline-Protected 13.

CPU_73 Certain Instructions not Pipeline-Protected From Resets 14.

CPU_76 DELAY Smem Does not Work With Circular Addressing 15.

CPU_79 IDLE Cannot Copy the Content of ICR to ISTR 15.

CPU_80 Nested Local Repeat Corrupted After C54CM Bit Reset 16.

CPU_81 WHILE Instruction in Slot #2 is not Protected 16.

CPU_82 ‘if (cond true) goto’ at the End of Local Repeat Fails 17.

CPU_83 BRAF Updated Incorrectly in Certain Cases of Conditional Execution 17.

CPU_84 SP/SSP Access Followed by a Conditional Execute is not Protected Against Interrupts 18.

CPU_85 Local Repeat With C54CM = 1 may be Corrupted on its Last Iteration 19.

CPU_86 Corruption of CSR or BCRx Register Read When Executed in Parallel With Write 19.

CPU_87 Context Restore Just Before Return Instruction Sometimes Fails 20.

CPU_88 Incorrect Context Store of BRAF During Interrupt Servicing 21.

CPU_89 Internal Overflow not Detected When Using the Left Shift Command 22.

CPU_90 CPU Bypass Can Cause Corruption of a Read Following a Write 23.

CPU_91 C16, XF, and HM Bits not Reinitialized by Software Reset 24.

CPU_92 Consecutive C-Bus Accesses may not Work 24.

CPU_93 Interrupted Conditional Execution After Memory Write may Execute Unconditionally
in the D Unit 26.

CPU_94 Interrupted Conditional Execution After Long Memory-Mapped Register Write
is Executed Unconditionally in the D Unit / AD Unit 27.

CPU_95 BRCx Decrement may not Work When gotoP24 is put at End of Blockrepeat
With C54CM = 0 29.

CPU_96 gotoP24 Within Blockrepeat Exits the Loop 30.

CPU_97 RETA = Lmem || Lmem = RETA may not Work 31.

CPU_98 BANZ at the End of Inner Loop in Native Mode may Corrupt Program Flow 32.

CPU_99 Return_int (Under a Fast Return Configuration) may Cause Improper Operation of
Single Repeats and Conditional Executions 33.

CPU_100 Interrupted Single Repeat is not Resumed After RETI 34.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

4

CPU_102 Page Register Update and CPU Bypass Corrupts Following Memory Read 35.

CPU_103 C54x Instruction, FRET[D] is not Protected Against Prior C54CM Bit Update 37.

CPU_104 Blockrepeat Corrupted if Preceded by Localrepeat With C54CM = 1 and BRC0 = 0 37.

CPU_106 Move (Shift and Store) Instructions Incompatible With C54x When
C54CM Bit = 1 and SST Bit = 1 38.

CPU_107 Conditional Call With False Condition Corrupts RETA 40.

CPU_108 Long (32-Bit) Read From MMR Gets Corrupted 41.

CPU_109 Bus Error Issued on Byte Access to I/O Space With Address Range 0x0 to 0x5f 42.

CPU_110 Relative Branch in ISR Corrupts Program Flow When Localrepeat With C54CM = 1
is Interrupted 43.

CPU_111 C54CM Bit Modification Followed by a mar Instruction Not Pipeline-Protected 44.

CPU_112 Data Page Register and Stack Pointer Update Not Pipeline-Protected Against
Data Move Instructions 45.

CPU_114 ST2 Update and Dual-Memory Access With Circular Qualifier Not Pipeline-Protected 46.

CPU_116 Interrupted Nesting of Loops May Stop CPU Execution 47.

CPU_117 Updating BRC Prior to a Loop That Contains Only Single Repeats Incorrectly
Decrements the RPTC 48.

CPU_118 CPU May Halt After Returning From an Interrupt Service Routine When
Operating in Emulation (Debug) Mode 50.

CPU_119 Due to Improper Update of the DBSTAT Register, the Debugger May Halt at
Code Locations Where No Breakpoints are Set 51.

4 Documentation Support 53.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

5

1 Introduction

This document describes functional exceptions to the CPU behavior described in the
TMS320C55x DSP CPU Reference Guide (literature number SPRU371). Non-CPU issues are
described in the device-specific silicon errata. [For advisories on the OMAP5910 dual-core
processor, see the OMAP5910 Dual-Core Processor Silicon Errata (literature number
SPRZ016).] See Section 4 for a listing of related documentation.

A quick reference table (Table 1) is included so that advisory descriptions may be quickly
located from the short description of each advisory. The advisory number in the first column of
the table is referenced in the title of each advisory description that follows in Section 3. The
columns on the right of the table indicate whether the advisory is present on the indicated
silicon revision. The CPU advisories can be grouped into three primary categories:

• Parallel Execution Issues
These issues are related to specific combinations of instructions executed in parallel. In
most cases, these issues can be avoided by not executing the instructions in parallel.

• Pipeline-protection Issues
These issues are cases where the pipeline is not properly automatically protected for
specific instruction sequences. In most cases, these problems can be corrected by
rearranging the instruction sequences, or by adding NOP instructions.

• Other Issues
These are the issues that do not fall into one of the above two categories.

The legend following indicates which symbols are used for each case.

|| The advisory is present on this silicon revision and is related to parallel instruction execution.

P The advisory is present on this silicon revision and is related to pipeline protection.

X The advisory is present on this silicon revision and not related to either of the above categories.

fixed The advisory is not present on this silicon revision.

N/A The advisory is not applicable to this device.

All trademarks are the property of their respective owners.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

6

Table 1. Quick Reference Table

Advisory Device: 5501 5502 5503 5507 5509A 5510 OMAP5910 OMAP5912Advisory
Number Silicon Revision: All revs All revs All revs All revs All revs 2.1 / 2.2 All revs All revs

CPU_72 C54CM Bit Update and *CDP
With T0 Index is not
Pipeline-Protected

N/A N/A N/A N/A N/A P N/A N/A

CPU_73 Certain Instructions not
Pipeline-Protected From
Resets

N/A N/A N/A N/A N/A P P P

CPU_76 DELAY Smem Does not Work
With Circular Addressing

N/A N/A N/A N/A N/A X X X

CPU_79 IDLE Cannot Copy the
Content of ICR to ISTR

N/A N/A N/A N/A N/A X N/A N/A

CPU_80 Nested Local Repeat
Corrupted After C54CM Bit
Reset

N/A N/A N/A N/A N/A P N/A N/A

CPU_81 WHILE Instruction in Slot #2
is not Protected

N/A N/A N/A N/A N/A P N/A N/A

CPU_82 ‘if(cond true) goto’ at the End
of Local Repeat Fails

N/A N/A N/A N/A N/A X X X

CPU_83 BRAF Updated Incorrectly in
Certain Cases of Conditional
Execution

N/A N/A N/A N/A N/A X X X

CPU_84 SP/SSP Access Followed by
a Conditional Execute is not
Protected Against Interrupts

N/A N/A N/A N/A N/A P P P

CPU_85 Local Repeat With
C54CM = 1 may be Corrupted
on its Last Iteration

N/A N/A N/A N/A N/A X X X

CPU_86 Corruption of CSR or BCRx
Register Read When
Executed in Parallel With
Write

N/A N/A N/A N/A N/A || || ||

CPU_87 Context Restore Just Before
Return Instruction Sometimes
Fails

N/A N/A N/A N/A N/A P P P

CPU_88 Incorrect Context Store of
BRAF During Interrupt
Servicing

N/A N/A N/A N/A N/A || || ||

CPU_89 Internal Overflow not
Detected When Using the Left
Shift Command

N/A N/A N/A N/A N/A X X X

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

7

Table 1. Quick Reference Table (Continued)

Advisory
Number

OMAP5912OMAP591055105509A5507550355025501Device:Advisory
Number All revsAll revs2.1 / 2.2All revsAll revsAll revsAll revsAll revsSilicon Revision:

CPU_90 CPU Bypass Can Cause
Corruption of a Read
Following a Write

N/A N/A N/A N/A N/A fixed fixed fixed

CPU_91 C16, XF, and HM Bits not
Reinitialized by Software
Reset

N/A N/A N/A N/A N/A X X X

CPU_92 Consecutive C-Bus Accesses
may not Work

N/A N/A N/A N/A N/A X N/A N/A

CPU_93 Interrupted Conditional
Execution After Memory Write
may Execute Unconditionally
in the D Unit

N/A N/A N/A N/A N/A X N/A N/A

CPU_94 Interrupted Conditional
Execution After Long
Memory-Mapped Register
Write is Executed
Unconditionally in the D Unit /
AD Unit

N/A N/A N/A N/A N/A X X X

CPU_95 BRCx Decrement may not
Work When gotoP24 is put at
End of Blockrepeat With
C54CM = 0

N/A N/A N/A N/A N/A X X X

CPU_96 gotoP24 Within Blockrepeat
Exits the Loop

N/A N/A N/A N/A N/A X X X

CPU_97 RETA = Lmem || Lmem =
RETA may not Work

N/A N/A N/A N/A N/A || || ||

CPU_98 BANZ at the End of Inner
Loop in Native Mode may
Corrupt Program Flow

N/A N/A N/A N/A N/A X X X

CPU_99 Return_int (Under a Fast
Return Configuration) may
Cause Improper Operation of
Single Repeats and
Conditional Executions

N/A N/A N/A N/A N/A X X X

CPU_100 Interrupted Single Repeat is
not Resumed After RETI

N/A N/A N/A N/A N/A X X X

CPU_102 Page Register Update and
CPU Bypass Corrupts
Following Memory Read

N/A N/A N/A N/A N/A X X X

CPU_103 C54x Instruction, FRET[D] is
not Protected Against Prior
C54CM Bit Update

X X X X X || N/A N/A

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

8

Table 1. Quick Reference Table (Continued)

Advisory
Number

OMAP5912OMAP591055105509A5507550355025501Device:Advisory
Number All revsAll revs2.1 / 2.2All revsAll revsAll revsAll revsAll revsSilicon Revision:

CPU_104 Blockrepeat Corrupted if
Preceded by Localrepeat With
C54CM = 1 and BRC0 = 0

X X X X X X X X

CPU_106 Move (Shift and Store)
Instructions Incompatible With
C54x When C54CM Bit = 1
and SST Bit = 1

X X X X X X X X

CPU_107 Conditional Call With False
Condition Corrupts RETA

X X X X X X X X

CPU_108 Long (32-Bit) Read From
MMR Gets Corrupted

X X X X X X X X

CPU_109 Bus Error Issued on Byte
Access to I/O Space With
Address Range 0x0 to 0x5f

X X X X X X X X

CPU_110 Relative Branch in ISR
Corrupts Program Flow When
Localrepeat With C54CM = 1
is Interrupted

X X X X X X X X

CPU_111 C54CM Bit Modification
Followed by a mar Instruction
Not Pipeline-Protected

P P P P P P P P

CPU_112 Data Page Register and Stack
Pointer Update Not
Pipeline-Protected Against
Data Move Instructions

P P P P P P P P

CPU_114 ST2 Update and
Dual-Memory Access With
Circular Qualifier Not
Pipeline-Protected

P P P P P P P P

CPU_116 Interrupted Nesting of Loops
May Stop CPU Execution

P P P P P P P P

CPU_117 Updating BRC Prior to a Loop
That Contains Only Single
Repeats Incorrectly
Decrements the RPTC

X X X X X X X X

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

9

Table 1. Quick Reference Table (Continued)

Advisory
Number

OMAP5912OMAP591055105509A5507550355025501Device:Advisory
Number All revsAll revs2.1 / 2.2All revsAll revsAll revsAll revsAll revsSilicon Revision:

CPU_118 CPU May Halt After Returning
From an Interrupt Service
Routine When Operating in
Emulation (Debug) Mode

X X X X X X X X

CPU_119 Due to Improper Update of
the DBSTAT Register, the
Debugger May Halt at
Code Locations Where No
Breakpoints are Set

X X X X X X X X

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

10

1.1 Device and Development-Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP
devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS
(e.g., TMS320VC5502GZZ). Texas Instruments recommends two of three possible prefix designators for its
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from
engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

Device development evolutionary flow:

TMX Experimental device that is not necessarily representative of the final device’s electrical specifications

TMP Final silicon die that conforms to the device’s electrical specifications but has not completed quality and
reliability verification

TMS Fully qualified production device

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.

TMDS Fully qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:

“Developmental product is intended for internal evaluation purposes.”

TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the
device have been demonstrated fully. TI’s standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system because their
expected end-use failure rate still is undefined. Only qualified production devices are to be used.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

11

2 Important Notices About CPU Advisories

2.1 Prototype Silicon Advisory Information

The list of advisories included in this document may include all prototype versions of a device. As prototype silicon
revisions become obsolete, they will be removed from this document. Please consult your local sales
representative if you need information concerning previous silicon revisions not listed in this document.

2.2 Useful Information Regarding Assembler Diagnostic Messages

The TMS320C55x Assembler will generate three types of diagnostic messages when it detects a potential or
probable Silicon Exception.

2.2.1 ERROR Diagnostics

The assembler generates ERROR diagnostics in cases where it can fully determine that the code will cause a
silicon exception to occur on hardware.

2.2.2 WARNING Diagnostics

The assembler generates WARNING diagnostics in cases where it can fully determine that the code will cause a
silicon exception to occur on hardware, but which, under certain circumstances, may not be an issue for the user.

2.2.3 REMARK Diagnostics

The assembler generates REMARK diagnostics in conditions where it can fully determine that the code may cause
a silicon exception to occur on hardware, but the exception itself also depends on non-visible trigger conditions that
the assembler has no knowledge of, such as whether interrupts are enabled.

Since the assembler cannot determine the state of these trigger conditions, it cannot know that the exception will
affect this code. Therefore, it generates a REMARK to instruct the user to examine the code and evaluate whether
this is a potential silicon exception situation. (Please see the following sections for how to suppress remarks in
situations where you have determined that the other trigger conditions do not exist.)

Intended Treatment of REMARK Diagnostics

The intent of generating REMARK diagnostics is to inform the user that the code could potentially cause a silicon
exception and that it should be reviewed by the user side by side with the trigger conditions and a determination be
made whether the code is a potential silicon exception situation.

If the code is determined to be a potential silicon exception situation, users should modify their code to prevent that
exception from occurring.

If users determine that their code will not cause a silicon exception based on the trigger conditions, then the
REMARK that the assembler generates can be suppressed. There are two methods of doing so; please see the
“Suppressing REMARK Diagnostics” section.

Suppressing REMARK Diagnostics

Once the user determines that a silicon exception REMARK diagnostic is not appropriate for the code as written,
the REMARK diagnostic can be suppressed in one of the following ways.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

12

REMARK Directives:

The .noremark/.remark directives can be used to suppress the generation of a REMARK diagnostic for particular
regions of code. The .noremark directive turns off the generation of a particular REMARK diagnostic. The .remark
directive re-enables the generation of a particular REMARK diagnostic.

A ’.noremark ##’ (where ## is the remark id) directive is placed at the beginning of the region, and a ’.remark ##’
directive is placed at the end of the region.

NOTE: The .noremark/.remark directive combination should always be placed around
the entire region of code that participates in the potential silicon exception. Otherwise,
spurious diagnostics may still be generated.

Additionally, the user has the option of disabling a silicon exception diagnostic for the entire file by placing just the
.noremark directive at the top of the assembly file. However, this may be dangerous if, during inevitable code
maintenance, the code is modified by someone not familiar with all the exception conditions. Please take great
care when using the directives in this manner.

REMARK Command-Line Options:

The compiler shell (cl55) supports a command line option to suppress a particular REMARK diagnostic. The shell
option −ar# (where # is the assembler’s silicon exception id as described above) will suppress the named
REMARK for the entire scope of all assembly files compiled with that command. Using the option −ar without a
number will suppress all REMARK diagnostics.

Again, this may be dangerous if, during inevitable code maintenance, the code is modified by someone not familiar
with all the silicon exception conditions. Please take great care when using the command-line REMARK options.
Using the .noremark/.remark directives covering the shortest possible range of source lines is much safer.

PENDING Assembler Notification Status:

In the advisory descriptions, an assembler notification status marked “Pending” indicates the current version of the
code generation tools do not yet detect the condition. As versions of the tools are released, known issues are
included.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

13

3 C55x CPU Known Design Advisories to Functional Specifications

C54CM Bit Update and *CDP With T0 Index is not Pipeline-ProtectedAdvisory CPU_72

Revision(s) Affected: See Table 1

Details: When the C54CM bit in status register 1 (ST1_55) is set to 1, the T0 index for
single/dual/coefficient memory accesses should be replaced with AR0 for 54x compatibility.
Therefore, if a C54CM bit update is followed by an instruction utilizing the Data Address
Generator and T0 index, a stall should be generated to postpone the Data Address Generator
until the C54CM bit update is complete. In the following cases, the stall is not created and the
incorrect index is used (AR0/T0):

Case 1

C54CM bit update by bit instruction
0−4 cycles
B-bus access with ‘coef(*CDP+T0)’ using address modifier: *ABS16(#k) or *(#k).

Case 2

C54CM bit update by MMR write
0−5 cycles
B-bus access with ‘coef(*CDP+T0)’ using address modifier: *ABS16(#k) or *(#k).

Algebraic example
bit(ST1,#5) = #1 ; set C54CM (=1)
AC0 = *(#60h)*coef(*(CDP+T0)) ; T0 incorrectly used as index

Mnemonic example
BSET #5, ST1_55 ; set C54CM (=1)
MOV (#60h)*coef(*(CDP+T0)), AC0 ; T0 incorrectly used as index

; 0xaaaa

Assembler Notification: Assembler (versions 2.00 and later) will generate a REMARK when this condition is found.

Workaround(s): 1. In the case where the C54CM bit is updated by a bit instruction, maintain at least 5 cycles
(useful code or NOPs) between the C54CM bit update and the Data Address Generator
instruction.

2. In the case where the C54CM bit is updated by a MMR write of ST1_55, maintain at least
6 cycles (useful code or NOPs) between the C54CM bit update and the Data Address
Generator instruction.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

14

Certain Instructions not Pipeline-Protected From ResetsAdvisory CPU_73

Revision(s) Affected: See Table 1

Details: In the following cases, instructions may not execute properly due to insufficient pipeline
protection from reset conditions:

Case 1

The following instruction(s) is not executed properly when closely preceded by a hardware or
software reset:
DP = #K16 ;OR
Data Address Generator operation affected by any status bit ;OR
if (cond) execute (AD Unit)

These instructions (which depend on ST0_55, ST1_55 and ST2_55) will not execute correctly
if they are located in the first four instructions following the reset (including the delay slot in the
reset vector).

Case 2

IFR0/1 or ST1 MMR read instructions may return invalid read data when followed by a
software reset.

Case 3

The BRAF bit is not cleared correctly by a software reset which follows the
bit (ST1, #BRAF) = #1 instruction.

Assembler Notification: None

Workaround: Use the appropriate workaround, based on the Case.

Case 1

Do not put the following instruction(s) in the delay slot (last four bytes after the interrupt
vector). Also do not use the following instruction(s) as the first, second, or third instructions at
beginning of program space:

DP = #K16 ;OR
DAGEN-operation affected by any status bit ;OR
if (cond) execute (AD Unit)

Case 2

Ensure at least 3 cycles between IFR0/1 or ST1 MMR read and a software reset.

Case 3

Ensure at least 5 cycles between bit(ST1, #BRAF) = #1 and a software reset

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

15

DELAY Smem Does not Work With Circular AddressingAdvisory CPU_76

Revision(s) Affected: See Table 1

Details: When using circular addressing mode with the ‘DELAY Smem’ instruction in the following
case:

smem = (end address of a circular buffer)

the incorrect destination address is used for the delay instruction. The destination address
used is (end of circular buffer)+1, which is outside of the circular buffer. The correct
functionality would be for the destination address to wrap around to the beginning address of
the circular buffer.

Assembler Notification: Assembler (version 2.3 and later) will detect the use of delay (Smem) and generate a
REMARK.

Workaround: Do not use circular addressing mode with the ‘DELAY’ instruction.

IDLE Cannot Copy the Content of ICR to ISTRAdvisory CPU_79

Revision(s) Affected: See Table 1

Details: When an IDLE instruction is decoded, the content of the Idle Configuration Register (ICR) is
supposed to be copied to the Idle Status Register (ISTR) when the instruction preceding the
IDLE completes its write phase. However, during the following sequence, the ICR to ISTR
copy does not happen:

1. IDLE is decoded.

2. A wakeup interrupt condition (NMI or any maskable interrupt which is enabled in the
IER0/IER1 registers) is captured or is currently pending.

3. The ICR to ISTR would normally happen here, but does not occur.

Assembler Notification: None

Workaround: Make sure all interrupts are masked (disabled) via the IER0/IER1 registers before IDLE
instruction is decoded. This workaround does not work for the NMI interrupt.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

16

Nested Local Repeat Corrupted After C54CM Bit ResetAdvisory CPU_80

Revision(s) Affected: See Table 1

Details: When the following conditions occur:

• A local repeat follows another local repeat (nested local repeats).

• The first local repeat is stalled in the address phase due to a C54CM bit update from
1 to 0,

The CPU jumps to the wrong instruction address when leaving the outer repeat loop.

Algebraic example
bit(ST1,#5) = #0
nop
nop ;insert additional NOP here to implement workaround
localrepeat { ;instruction stalled in address phase

localrepeat {
<instruction>
<instruction>
<instruction>
:

}
:

} ;instruction pointer is incorrect upon leaving outer
 loop

Assembler Notification: Assembler (version 2.30 and greater) will generate a WARNING when these conditions occur.

Workaround(s): 1. In the case of a C54CM bit update by a bit instruction to register ST1. Ensure that the
C54CM bit update occurs a least four (4) cycles before the first local repeat.

2. In the case of a C54CM bit update by an MMR instruction. Ensure that the C54CM bit
update occurs a least five (5) cycles before the first local repeat.

WHILE Instruction in Slot #2 is not ProtectedAdvisory CPU_81

Revision(s) Affected: See Table 1

Details: When WHILE instruction is located as second slot and single repeated instruction follows after
one null slot that is caused by any pipeline discontinuity, the WHILE instruction is not pipeline
protected. If the single repeat instruction follows WHILE instruction immediately or there are
more than one null slot, it works.

Assembler Notification: Assembler (version 1.83 and greater) will generate an ERROR when a WHILE operation is
found in the second position of a parallel pair.

Workaround: Do not use the WHILE instruction in the second slot of a parallel instruction pair.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

17

‘if (cond true) goto’ at the End of Local Repeat FailsAdvisory CPU_82

Revision(s) Affected: See Table 1

Details: Within any local repeat block if a conditional branch instruction is placed at the second to last
position, and the branch target is at the last position of the loop, the program flow is corrupted.
This is the case regardless of whether the local repeat is the outer loop or a nested inner loop.

Algebraic example
localrepeat{

.

.

.

if (cond true) goto TARGET

TARGET
nop

}

.

Assembler Notification: None

Workaround: Do not use this instruction sequence.

BRAF Updated Incorrectly in Certain Cases of Conditional ExecutionAdvisory CPU_83

Revision(s) Affected: See Table 1

Details: When C54CM=1 and one of the following cases occurs, the BRAF bit is modified regardless of
the condition.

• if(cond=false)Execute(D_unit) � bit(ST1, @BRAF) = #0/1

• while(cond=false && (RPTC < k8)) bit(ST1, @BRAF) = #0/1

Assembler Notification: Assembler (version 2.3 and greater) will attempt to detect the cases above and generate a
WARNING.

Workaround(s): 1. Use the AD-unit instead of the D-unit in the conditional execution instruction
OR
Do not use parallelism (use conditional execute of next instruction as opposed to
conditional execute of parallel instruction).

2. Do not use a bit instruction that modifies BRAF within the WHILE instruction

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

18

SP/SSP Access Followed by a Conditional Execute is not Protected Against Interrupts Advisory CPU_84

Revision(s) Affected: See Table 1

Details: Any of the following instructions are not protected against interrupts when followed by a
AD-unit conditional execute instruction for which the condition is false. (This exception only
applies to conditional execution of the next instruction and not a conditional execute of a
parallel instruction):

• MMR-read access to SP/SSP

• dst = XSP/XSSP

• dbl(Lmem) = XSP/XSSP

• push_both(XSP/XSSP)

• XSP/XSSP = pop()

• MMR-write access to SP/SSP

Algebraic example
...{

nop

SP = SP - #1

if (TC1) execute (AD_Unit) ;where TC1=0, condition is false.

<interrupt occurs>

AR6 −= #1

...

Assembler Notification: Assembler (version 2.3 and greater) will attempt to identify a code sequence that may cause
the exception, and will generate a REMARK.

Workaround(s): 1. When SP/SSP is read in the read phase, insert two (2) NOPs between the SP/SSP
instruction and the conditional execute instruction.

2. When SP/SSP is read or written in the execute phase, insert three (3) NOPs between the
SP/SSP instruction and the conditional execute instruction.

3. When SP/SSP is written in the write phase, insert four (4) NOPs between the SP/SSP
instruction and the conditional execute instruction.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

19

Local Repeat With C54CM = 1 may be Corrupted on its Last IterationAdvisory CPU_85

Revision(s) Affected: See Table 1

Details: Under the following conditions during a local repeat loop:

• C54CM = 1

• The program fetch is occurring to restart the last iteration of the local repeat loop

• The program fetch is stalled

The local repeat may be overwritten even though the last iteration has not been completed.

Assembler Notification: Assembler (version 2.3 and greater) will generate a WARNING when a .C54CM_ON directive
is seen and a local repeat is encountered.

Workaround: Do not use local repeat loops with C54CM = 1.

Corruption of CSR or BCRx Register Read When Executed in Parallel With WriteAdvisory CPU_86

Revision(s) Affected: See Table 1

Details: Under the following conditions:

• CSR, BRC0, or BRC1 register is read in the EXE phase in parallel with a write to the same
register

• The instruction is stalled due to a previous write access

The register read may be corrupted, returning the new value from the register write instruction.
The possible parallel instruction pairs which may cause this condition are as follows:

Smem = CSR � CSR = TAx ;Smem should be updated by old register value, but
Smem = CSR � CSR = Smem ;updated to TAx value instead

Smem = BRC0 � BRC0 = TAx
Smem = BRC0 � BRC0 = Smem
TAx = BRC0 � BRC0 = TAx
TAx = BRC0 � BRC0 = Smem

Smem = BRC1 � BRC1 = TAx
Smem = BRC1 � BRC1 = Smem
TAx = BRC1 � BRC1 = TAx
TAx = BRC1 � BRC1 = Smem

Assembler Notification: Assembler (version 2.3 and greater) will detect the above parallel pairs and generate a
WARNING.

Workaround: Do not execute these instructions in parallel.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

20

Context Restore Just Before Return Instruction Sometimes FailsAdvisory CPU_87

Revision(s) Affected: See Table 1

Details: A context restore just before the return instruction sometimes fails. There are two cases in
which this condition may occur:

Case 1: When the C54CM bit in ST1_55 is updated via MMR write just before the return
instruction, a failure may occur. In the following sequence:

*(ST1_55) = <value>

return

the new value of the C54CM bit is not used by the return instruction. This may eventually lead
to a BRAF recovery error. When C54CM=1, BRAF is not recovered by return. When
C54CM=0, BRAF is recovered.

This failure occurs under the following conditions:

• C54CM bit is modified by ST1_55 context restore, AND

• the return condition is either ‘return’ with slow-return configuration, OR, ‘if() return’ with
fast or slow return configuration.

Case 2: Altering the BRAF bit just before ‘return_int’ instruction. In the following sequence:

C54CM = #1

...

any BRAF update

return_int

In the fast-return configuration, BRAF is recovered immediately after return_int is decoded
(along with return address). Due to lack of pipeline protection, the BRAF contents recovered
by ‘return_int’ is overwritten by the instruction preceding ‘return_int’.

This failure occurs under the following conditions:

• C54CM = 1, AND

• the return condition is either ‘return’ with fast-return configuration.

Assembler Notification: Assembler (version 2.3 and greater) will generate a REMARK when it detects the above
instruction sequences.

Workaround: Use one of the following workarounds.

Case 1: Insert at least one NOP between the MMR access and the return instruction.

Case 2: Do not recover the BRAF context with an instruction that accesses BRAF. Instead, let
the return instruction recover the BRAF content.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

21

Incorrect Context Store of BRAF During Interrupt ServicingAdvisory CPU_88

Revision(s) Affected: See Table 1

Details: When an interrupt is serviced while a blockrepeat loop is active, the context pushed onto the
stack incorrectly stores the BRAF bits as 0. Upon returning from the interrupt service routine,
the CPU acts as if no loop is active. The program execution will continue sequentially past the
end of the active loop. in other words, the blockrepeat loop is not re-activated upon return from
an interrupt.

This condition occurs when the second instruction of a parallel instruction pair is a call (only
call L16 is legal for such an instruction pair). The condition can occur when these parallel
instructions are placed before the loop as well as within the loop.

Algebraic example
...
<instruction 1> � call L16
...
blockrepeat{
...
<interrupt decoded>
... ; upon return from interrupt, loop becomes inactive.
}

OR

...
blockrepeat{
...
<instruction 1> � call L16
...
<interrupt decoded>
... ; upon return from interrupt, loop becomes inactive.
}

Assembler Notification: Assembler (version 2.3 and greater) will detect any instruction with a parallel call L16 and
generate a REMARK.

Workaround: Since interrupts are asynchronous, the only workaround is NOT to utilize the following parallel
instruction pair.

<instruction 1> � call L16

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

22

Internal Overflow not Detected When Using the Left Shift CommandAdvisory CPU_89

Revision(s) Affected: See Table 1

Details: In native 55x mode (C54CM=0) when performing left shifts using 32-bit computational mode
(M40=0) with the sign extension mode bit set to UNSIGNED (SXMD=0), any overflow in ACx
should result in a saturate 40-bit value of 0x 00 7FFF FFFF. However, if ACx[39..32] = 0xFF
and a left shift occurs with the shift value ≥ 0x8, then ACx gets zeroed.

Example
SXMD = #0

M40 = #0

AC2 = FF 0000 0000h

DR1 = 0x0008h

TARGET*AR4 = HI(saturate(AC2 << DR1))

; *AR4 = 0x0000

; Expected value should be *AR4 = 0x7FFF.

Assembler Notification: Assembler will emit a REMARK for any instruction containing a left shift of an accumulator
(ACx) by DRx or a constant ≥ 8.

Workaround: None

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

23

CPU Bypass Can Cause Corruption of a Read Following a WriteAdvisory CPU_90

Revision(s) Affected: See Table 1

Details: When the CPU writes data to memory there is typically a pipeline based latency that occurs
before that value actually gets written. So when the same memory address is read
immediately after it is written, the 55x incorporates a data bypass that reads that value directly
from the internal write bus while the memory write is still occurring. However, if a pipeline stall
occurs between memory write followed by read to the same address, then the read data may
become corrupt. The following scenarios describe when this corruption may occur:

Case 1:

Write to memory
Read from same memory � anything causing CPU stall

Case 2:

Write to memory
Anything
Read from same memory � anything causing CPU stall

Case 3:

Write to memory
Anything
Anything
Read from same memory � anything causing CPU stall

Case 4:

Write to memory
Anything causing CPU stall
Read from same memory

Case 5:

Write to memory
Anything
Anything causing CPU stall
Read from same memory

Assembler Notification: Simulator c55xsimBBD.ccs is available to detect this bug.

Workaround: Avoid the CPU bypass. Insert at least three non-memory related instructions between memory
write followed by corresponding memory read instructions to the same address. Three NOPs
between write and read will work.

Example
Memory Write Operation

NOP

NOP

NOP

Memory Read Operation (to the same address)

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

24

C16, XF, and HM Bits not Reinitialized by Software ResetAdvisory CPU_91

Revision(s) Affected: See Table 1

Details: According to the specification, the software reset only affects IFR0/1, STO_55, ST1_55, and
ST2_55. In this case, the reset value should be the same as those forced by a hardware reset
(C16=0, HM=0, XF=1). Instead, the software reset does not affect the C16, XF, and HM bits
and they retain their previous values.

Assembler Notification: Assembler will emit a REMARK on any “reset” instruction.

Workaround: Always initialize these bits as desired following reset.

Consecutive C-Bus Accesses may not WorkAdvisory CPU_92

Revision(s) Affected: See Table 1

Details: When two C-bus accesses are performed consecutively, as show below, and the second
instruction’s C-bus memory access wait state is different from that of the D-bus, the second as
well as forthcoming C-bus based instructions may read corrupted data from the C-bus.

Instruction 1

Memory read − 32-bit data read addressed by ”Lmem”.

Instruction 2

Dual memory read − Two 16-bit data reads by one of the following:

• Implicit dual memory read instruction, “Xmem” and “Ymem”.

• Paralleled single memory read instructions, “Smem || Smem”.

• Dual stack read instructions shown below.
dst1,dst2 = pop()
ACx = dbl(pop())
dst = s_pop()
dbl(Lmem) = pop()
dst,Smem = pop()

Instruction 3

Long or Dual memory access (i.e. C-bus use)
if (cond) return
return
return_int

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

25

Consecutive C-Bus Accesses may not Work (Continued)

Instruction 4

Long or Dual memory access (i.e. C-bus use)

NOTE: This problem can also occur when a when a dual memory read
instruction is executed at the top of a local repeat followed by a long memory read
at the end of the repeat.

Algebraic example
localrepeat{
 Dual memory read

.

.

.
 Long memory read
}

Assembler Notification: Assembler will detect Lmem read followed by Dual mem read and REMARK. Assembler will
also detect when this situation arises around the boundaries of a loop (blockrepeat or
localrepeat − with Lmem read at the end of the loop in combination with a Dual mem read at
the start of the loop), and emit a REMARK.

Workaround: Insert a NOP, or any other instruction that does not use C-bus, between first and second
instruction.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

26

Interrupted Conditional Execution After Memory Write may Execute Unconditionally in the
D Unit

Advisory CPU_93

Revision(s) Affected: See Table 1

Details: When a memory write instruction is executed just before a conditional statement in the D Unit
and an interrupt is asserted between the conditional execute and the next instruction to be
executed based on the conditional’s result, the next instruction may get executed regardless of
the conditional’s result as shown in the following examples.

Example 1
Memory Write
If (Conditional) Execute (D Unit)
<Hardware Interrupt Asserted>
Instruction to be executed based on the Conditional gets executed
regardless of the Conditional

Example 2
Localrepeat {
If (Conditional) Execute (D Unit)
<Hardware Interrupt Asserted>
Instruction to be executed based on the Conditional gets executed
regardless of the Conditional

Assembler Notification: Assembler will detect when a memory write is followed by a conditional execute on the D-unit
and emit a REMARK. The assembler will also detect when this situation arises at the
boundaries of a loop (blockrepeat or localrepeat − with memory write at the end of the loop
and the conditional execute in the D-unit at the start of the loop) and emit a REMARK.

Workaround: Insert a NOP between the memory write instruction and the conditional execution.

Example
Memory Write

NOP
If (Conditional) Execute (D Unit)
<Hardware Interrupt Asserted>
Instruction to be executed based on the Conditional

Or, replace the:
If (Conditional) Execute (D Unit)

instruction with:
If (Conditional) Execute (AD Unit)

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

27

Interrupted Conditional Execution After Long Memory-Mapped Register Write is Executed
Unconditionally in the D Unit / AD Unit

Advisory CPU_94

Revision(s) Affected: See Table 1

Details: When a long memory-mapped register (MMR)† write instruction is executed just before or
during a conditional statement in the D unit / AD unit and:

• an interrupt is asserted between the conditional execute and the next instruction to be
executed

• no single MMR write follows before or during the return from interrupt

then, the instruction to be executed based on the conditional gets executed regardless of the
conditional’s value as shown in the following examples.

Example 1
long MMR Write
. ;No single MMR write
If (Conditional) Execute (AD Unit / D Unit) ;No single MMR write
<Hardware Interrupt Asserted>
Instruction to be executed based on the Conditional gets executed
regardless of the Conditional
.
.

ISR . ;No single MMR write
. ;No single MMR write
Return_Int ;No single MMR write

† Long memory mapped register (MMR): Any of the following instructions that point to 0x0 − 0x5F with
“Lmem”. Such as:

dbl(Lmem) = pop()
dbl(Lmem) = ACx, copr()
dbl(Lmem) = LCRPV
dbl(Lmem) = src
dbl(Lmem) = ACx
dbl(Lmem) = saturate(uns(ACx))
Lmem = pair(DAx)
HI(Lmem) = HI(ACx) >> #1, LO(Lmem) = LO(ACx) >> #1
Lmem = pair(HI(ACx))
Lmem = pair(LO(ACx))
Lmem = dbl(coeff)

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

28

Interrupted Conditional Execution After Long Memory-Mapped Register Write is Executed Unconditionally in the
D Unit / AD Unit (Continued)

Example 2
If (Conditional) Execute (AD Unit / D Unit) ;No single MMR write
<Hardware Interrupt Asserted>
Instruction to be executed based on the Conditional gets executed
regardless of the Conditional
.
.

ISR .
.
long MMR write
. ;No single MMR write
Return_Int ;No single MMR write

Example 3
If (Conditional) Execute (AD Unit / D Unit) ;No single MMR write
<Hardware Interrupt Asserted>
Instruction to be executed based on the Conditional gets executed
regardless of the Conditional
.
.

ISR .
.
long MMR write � Return_Int

Assembler Notification: Assembler will emit a REMARK on any return-from-interrupt instruction. It will avoid emitting
this remark if it is able to determine that a single memory write occurs before the
return-from-interrupt and there is no long MMR write between the single memory write and the
return-from-interrupt instruction.

Workaround: Put a dummy single memory write (i.e., @#0x1F = AR0 � mmap() : 0x1F is a reserved space.)
in front of all “Return_int” and ensure that no long memory writes are in parallel with a
“Return_int.”

Example
long MMR Write
. ;No single MMR write
If (Conditional) Execute (AD Unit / D Unit) ;No single MMR write
<Hardware Interrupt Asserted>
Instruction to be executed
.
.

ISR . ;No single MMR write
. ;No single MMR write
Single MMR write
Return_Int ;No single MMR write

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

29

BRCx Decrement may not Work When gotoP24 is put at End of Blockrepeat
With C54CM = 0

Advisory CPU_95

Revision(s) Affected: See Table 1

Details: When a branch, such as a gotoP24, is performed at the end of blockrepeat with C54CM = 0,
then the corresponding BRCx may not get decremented. This bug occurs in both outer and
inner blockrepeats. See the following example.

Example
BRC = x
blockrepeat{

 goto tgt ; assembled to gotoP24

. .
tgt: BRC == x or (x−1) ?

}

NOTE: If the destination of the goto is within a 16-bit range (i.e., gotoL16) is assigned, this
problem does not occur.

Assembler Notification: The assembler will emit a WARNING if a goto P24 instruction occurs at the end of a
blockrepeat loop.

Workaround: Do not put a gotoP24 instruction at the end of a blockrepeat.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

30

gotoP24 Within Blockrepeat Exits the LoopAdvisory CPU_96

Revision(s) Affected: See Table 1

Details: When a branch, such as a gotoP24, occurs within a blockrepeat with C54CM = 0 and its target
is within the same loop, the loop ends immediately. If a nested loop starts after the branch, it is
handled as a non-nested one with the 1st-level (RSA0/REA0 utilized, BRC0 decremented).
See the following examples.

Example 1
blockrepeat{
 .
 goto tgt
 .

tgt: .
 .
} ; Exit from the loop regardless BRCx value.

Example 2
blockrepeat{
 .
 goto tgt
 .

tgt: blockrepeat { ; Regarded as outer loop, use of RSA0/REA0/BRC0
 .
 }
 .
}

NOTE: If the destination of the goto is within a 16-bit range, (i.e., gotoL16) is used, this problem
does not occur. This implies that the size of the blockrepeat must be greater than 0x8000.

Assembler Notification: The assembler will emit an ERROR when a goto P24 instruction occurs in a blockrepeat loop
and its target is also defined in the same loop.

Workaround: Do not put a goto instruction, in which the target is within the same loop, in a blockrepeat
which is greater than 0x8000 in size.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

31

RETA = Lmem || Lmem = RETA may not WorkAdvisory CPU_97

Revision(s) Affected: See Table 1

Details: RETA = Lmem || Lmem = RETA can be used to swap the data between Lmem and RETA as
shown below:

New RETA <− Old Lmem

Old RETA −> New Lmem

However, when this store operation is stalled during a parallel execution, the content of the old
RETA is lost as shown below:

New RETA <− Old Lmem

New RETA −> New Lmem

Example

Before execution : RETA is 0x00123456, Lmem is 0xffffffff

After execution : RETA is 0xffffffff, Lmem is 0xffffffff (Should be 0x00123456)

Assembler Notification: The assembler will emit a WARNING if “RETA = Lmem || Lmem = RETA” is specified.

Workaround: Do not use this parallel execution.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

32

BANZ at the End of Inner Loop in Native Mode may Corrupt Program FlowAdvisory CPU_98

Revision(s) Affected: See Table 1

Details: When all of the following conditions are met:

− C54CM=0 (Native mode),

− Two blockrepeats (not localrepeat) are nested,

− the instruction at end of inner loop is BANZ with a false condition,

− the size of inner loop is less than 32 bytes.

− the distance between the end of the two loops is greater than 0 and less than 24 bytes.

The program flow may be corrupted. The instruction immediately after the inner loop, although
outside of the inner loop, gets executed during first iteration of the inner loop. See the
example below.

Example

”INST−A” is executed at the first iteration of the inner loop.

bit(ST1,@C54CM) = #0

blockrepeat{

 .

 blockrepeat{

 . Less than 32 bytes

 .

 BANZ with false condition

 }

 INST−A

 . Greater 0 and less than 24 bytes

 }

Assembler Notification: The assembler will emit a REMARK if the following conditions are met:

• BANZ instruction is the last instruction in a nested block repeat

• size of inner block repeat loop is < 32 bytes

• the distance between the end of the outer block repeat loop and the end of the inner
blockrepeat loop must be > 0, but < 24 bytes

Workaround: Put a NOP immediately after the BANZ within the inner loop

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

33

Return_int (Under a Fast Return Configuration) may Cause Improper Operation of Single
Repeats and Conditional Executions

Advisory CPU_99

Revision(s) Affected: See Table 1

Details: Under a fast return configuration, when an interrupt is asserted during any of the following:

• Single repeat

• The single repeat is executed more than expected and if it is located at the end of
blockrepeat / localrepeat, the BRCx may be not get decremented.

And if the corresponding Return_Int is stalled at an ADDRESS or ACCESS1 phase, then the
following may occur:

• Just before a conditional execute instruction

• The instruction to be executed conditionally gets executed UNconditionally.

See the following examples.

Example 1
AR0 = #0
repeat(#15)
AR0 = AR0 + #1 ; An interrupt is asserted here.
AR0 = AR0 ^ #16 ; AR0 is expected to be 0 but not.
if(AR0 != #0) goto ERROR
.

ISR: .
AR1 = AR1 − #1
mar(*AR1+) || return_int ; Stalled at ADDRESS phase.

Example 2
.
<< An interrupt is asserted here >>
if(cond=false)Execute(AD_Unit/D_Unit)
Instruction to be executed conditionally always gets executed.
.

ISR: .
AR1 = AR1 − #1
mar(*AR1+) || return_int ; Stalled at ADDRESS phase.

Assembler Notification: The assembler will emit a REMARK on any return-from-interrupt instruction that does not have
at least six NOP instructions preceding it (to avoid stall in ADDRESS or ACCESS1 phase of
the pipeline).

Workaround: If the ”hold” feature, which can cause the CPU to stall, is not used, place 6 NOPs immediately
before the return_int to avoid it from stalling.

Example
nop
nop
nop
nop
nop
nop
return_int ; No stalling during an ADDRESS or ACCESS1 phase.

Or don’t use the fast return configuration

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

34

Interrupted Single Repeat is not Resumed After RETIAdvisory CPU_100

Revision(s) Affected: See Table 1

Details: When an interrupt is asserted during any of the following single repeat instructions:

• while (cond && (RPTC < k8)) repeat

• repeat (k16)

• repeat (CSR)

• repeat (CSR) , CSR += DAx

• repeat (CSR) , CSR += k4

• repeat (CSR) , CSR −= k4

• repeat (k8)

The single repeat doesn’t resume after returning from the interrupt under all of the following
conditions:

• the restore of the repeat counter(RPTC) by MMR write in ISR is close(*) to the
”return_int”.

• the RPTC is 0 before the restore.

(*) if the instruction between restore RPTC and return_int is less than

• six bytes for the fast return configuration.

• two bytes for the slow return configuration.

Assembler Notification: The assembler will emit a REMARK on any return-from-interrupt instruction which has a RPTC
register write within six instructions before it.

Workaround: Insert six nops between the restore RPTC and return_int for the fast return configuration.
Insert two nops between restore RPTC and return_int for the slow return configuration.

Example
ISR: . ; Fast return configuration.

.
@RPTC_L=pop()||mmap()
nop
nop
nop
nop
nop
nop
return_int.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

35

Page Register Update and CPU Bypass Corrupts Following Memory ReadAdvisory CPU_102

Revision(s) Affected: See Table 1

Details: In the following sequence:

INST0: Any instruction

INST1: Any instruction

INST2: Any instruction

INST3: Write to a memory

INST4: Read from the same memory with a CPU STALL

INST5: Read from any memory (Does not have to be same address as INST3 or
INST4)

INST5 may get wrong data from memory if the corresponding page register for the data read
address generation has been updated with:

• a MMR write at INST0 or INST1 or INST2

• an EXE phase instruction at INST1 or INST2

The following table shows all Page registers with MMR address, instructions to update in EXE
phase, and the events (data read) to be used.

Page Register
(MMR Address) EXE Phase Instruction

Used by
(Candidate of INST5)

DPH (2Bh) XDP = xsrc −Direct addressing (CPL = 0)

XDP = dbl(Lmem)

XDP = popboth()

SPH, SSPH (4Eh) XSP = xsrc −Direct addressing (CPL = 1)

XSP = dbl(Lmem) −All kinds of return INST.

XSP = popboth() −All kinds of pop INST.

XSSP = xsrc

XSSP = dbl(Lmem)

XSSP = popboth()

CDPH (4Fh) XCDP = xsrc −Indirect addressing with CDP pointer

XCDP = dbl(Lmem)

XCDP = popboth()

ARx_H (None) XARx = xsrc −Indirect addressing with ARx pointer

XARx = dbl(Lmem)

XARx = popboth()

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

36

Page Register Update and CPU Bypass Corrupts Following Memory Read (Continued)

In the following example, DR1 gets corrupted value.

Example
XAR1 = XAR3 ; The page of AR1 is updated in EXE
nop
*AR6 = #0xABCD || DR3 = AR7 ; Write to a memory
DR0 = *AR6 || AC0 = DR3 ; Read from the same memory with CPU stall
DR1 = *AR1 || DR2 = *AR2 ; Reading data from *AR1 using XAR1

Assembler Notification: Pending

Workaround:

Case 1

Have at least three instructions between the page register update by the MMR write and the
next write instruction as follows. As the assembler cannot detect “Page register update by
MMR write”, this condition must be confirmed by users.

Example

Page register update by MMR write in WRITE phase
INST
INST
INST
Write to a memory
Read from the memory
Read from memory/stack using the updated page register

Case 2

Have at least two instructions between the page register update by EXE phase instruction and
the next write instruction as follows. If there is less than two instructions, it is planned that the
assembler will reject it.

Example

Page register update by EXE phase instructions
INST
INST
Write to a memory
Read from the memory
Read from memory/stack using the updated page register

Case 3

Use dst = mar(Smem), which is to update the Page Register at ADDRESS phase, as
shown in the following example.

Example

dst = mar(Smem) ; dst can be XARn, XCDP, XDP, XSP, or XSSP
Write to a memory
Read from the memory
Read from memory/stack using the updated page register

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

37

C54x Instruction, FRET[D] is not Protected Against Prior C54CM Bit UpdateAdvisory CPU_103

Revision(s) Affected: See Table 1

Details: Similar to the behavior of the C54x instruction, the FRET[D] (Far Return) instruction depends
on the status of the C54CM bit. It is necessary for the CPU to protect the FRET[D] instruction
from prior C54CM bit update(s); however, this protection does not work when the stack mode
is configured for the slow return mode.

Assembler Notification: The assembler (versions 2.7 and greater) will generate a remark if the C54M bit modification
is within 5 instructions of the far return.

Workaround: In the source code, add five NOPs between the C54CM update (by MMR write or bit
instruction for ST1) and C54x instruction, FRET. In case of FRETD, add four NOPs.

NOTE: Since FRET[D] is typically used for subroutine codes made for the
C54x, it is very unusual to manipulate the C54CM bit within a subroutine.

Blockrepeat Corrupted if Preceded by Localrepeat With C54CM = 1 and BRC0 = 0Advisory CPU_104

Revision(s) Affected: See Table 1

Details: A blockrepeat loop after a localrepeat loop can be corrupted, under the following conditions:

1. C54CM = 1 throughout the sequence.

2. BRC0 = 0 for the localrepeat loop (no iteration), non-zero for the blockrepeat loop.

3. No branch/call instruction between the end of the localrepeat and the blockrepeat
instruction.

Example

bit(ST1, @C54CM) = #1
BRC0 = #0
localrepeat{ ; Performed only one time

.

.
}

. ; No absolute branch or relative branch which
; distance is more than 24 bytes

. ; No absolute branch or relative branch which
; distance is more than 24 bytes

BRC0 = #non-zero
 blockrepeat{

.

.
}

Assembler Notification: Pending

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

38

Blockrepeat Corrupted if Preceded by Localrepeat With C54CM = 1 and BRC0 = 0 (Continued)

Workaround: Do one of the following:

• Do not use localrepeat with C54CM = 1 and BRC0 = 0

• Replace the localrepeat with blockrepeat

• Insert absolute branch between the localrepeat and blockrepeat (e.g., specified by “<<”)

localrepeat{
 .
 .
}
.vli_off ; Force to use absolute branch <<
goto LABEL ; Absolute branch <<
.vli_on ; cancel .vli_off <<

LABEL: . ; Branch target
 .
 .
BRC0 = #non-zero
blockrepeat{
 .
 .
}

Move (Shift and Store) Instructions Incompatible With C54x When C54CM Bit = 1 and
SST Bit = 1

Advisory CPU_106

Revision(s) Affected: See Table 1

Details: Under the following conditions, an overflow is incorrectly detected in the C54x Compatibility
Mode:

• C54CM = 1, SST = 1

• The shift direction is to the left (<< positive number)

• Any of the following 13 instructions is performed:

− Smem = LO(ACx << Tx)

− Smem = HI(rnd(ACx) << Tx)

− Smem = LO(ACx << SHIFTW)

− Smem = HI(ACx << SHIFTW)

− Smem = HI(rnd(ACx << SHIFTW))

− Smem = HI(saturate(uns(rnd(ACx << Tx))))

− Smem = HI(saturate(uns(rnd(ACx << SHIFTW))))

− ACy = rnd(Tx * Xmem) , Ymem = HI(ACx << T2) [, T3 = Xmem]

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

39

Move (Shift and Store) Instructions Incompatible With C54x When C54CM Bit = 1 and SST Bit = 1 (Continued)

− ACy = rnd(ACy + (Tx * Xmem)) , Ymem = HI(ACx << T2) [, T3 = Xmem]

− ACy = rnd(ACy − (Tx * Xmem)) , Ymem = HI(ACx << T2) [, T3 = Xmem]

− ACy = ACx + (Xmem << #16) , Ymem = HI(ACy << T2) [, T3 = Xmem]

− ACy = (Xmem << #16) − ACx , Ymem = HI(ACy << T2) [, T3 = Xmem]

− ACy = Xmem << #16 , Ymem = HI(ACx << T2) [, T3 = Xmem]

An overflow occurs during the shift operation, but is not detected within the 40 bits of the
shifted result. This occurs only in the C54x Compatibility Mode.

Example

C54x : *AR7 = hi(A) << 12 (STH A, 12, *AR7)
SST: 1
SXM: 1

(before)
A : 00.F000.0000 (40bits)
Data Memory 0321h : ABCD

(after)
A : 00.F000.0000

(shift result) : F.00.0000.0000
Data Memory 0321h : 0000 (Expects no overflow is detected)

C55x : *AR7 = HI(AC0 << 12)
C54CM : 1
SST : 1
SXMD : 1

(before)
AC0 : 00.F000.0000 (40bits)
Data Memory 0321h : ABCD

(after) :
AC0 : 00.F000.0000

(shift result) : F.00.0000.0000
Data Memory 0321h : 7FFF (An overflow is detected.)

Assembler Notification: Pending

Workaround: None

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

40

Conditional Call With False Condition Corrupts RETAAdvisory CPU_107

Revision(s) Affected: See Table 1

Details: When using the following sequence, RETA gets corrupted:

1. Memory write instruction with latency.

2. Zero or one (pair of) instructions of any kind that does not produce PC discontinuity.

3. Conditional call with false condition.

4. Any one of the following instructions:

− call L16/P24/ACx

− if (cond) call L16/P24

− intr(k5) (and Hardware interrupt as well)

− trap(k5)

Example

AR0 = #0
AR1 = #external_memory
*AR1 = #0 ; Memory write with latency
if(AR0 != #0) call subroutine ; No call is performed and RETA gets corrupted
call another_subroutine

Assembler Notification: The assembler (versions 2.7 and greater) will generate a remark when a conditional call is
preceded by a memory write.

Workaround: Do one of the following:

• Use slow return mode, which does not utilize RETA

• Put at least two instructions between a memory write instruction and a conditional call.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

41

Long (32-Bit) Read From MMR Gets CorruptedAdvisory CPU_108

Revision(s) Affected: See Table 1

Details: When “Lmem” (see instruction list below) points to address “0x4A” or “0x4D”, two
memory-mapped registers (MMR)—IVPH and ST2 for “0x4A”; SP and SSP for “0x4D”—are
supposed to be read. However, a corrupted value is read from ST2 (for the case of “0x4A”)
and SSP (for the case of “0x4D”).

NOTE: The following shows the corresponding part of the MMR mapping.

Address Register

4A IVPH

4B ST2

4C SSP

4D SP

Example

@#0x4a = #0xaaaa || mmap() ; IVPH <= 0xaaaa
@#0x4b = #0x1111 || mmap() ; ST2 <= 0x1111
push(dbl(@#0x4a)) || mmap() ; @SP−1 <= ST2, @SP−2 <= IVPH

The stack, pointed by SP−1, should be updated with ST2, but instead, gets a corrupted value.

The following is the entire list of Lmem instructions:

• push(dbl(Lmem))

• dbl(coeff) = Lmem

• ACy = ACx + dbl(Lmem)

• ACy = ACx − dbl(Lmem)

• ACy = dbl(Lmem) − ACx

• RETA = dbl(Lmem)

• ACx = M40(dbl(Lmem))

• pair(HI(ACx)) = Lmem

• pair(LO(ACx)) = Lmem

• pair(TAx) = Lmem

• dst = dbl(Lmem)

• HI(ACy) = HI(Lmem) + HI(ACx) , LO(ACy) = LO(Lmem) + LO(ACx)

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

42

Long (32-Bit) Read From MMR Gets Corrupted (Continued)

• HI(ACy) = HI(ACx) − HI(Lmem) , LO(ACy) = LO(ACx) − LO(Lmem)

• HI(ACy) = HI(Lmem) − HI(ACx) , LO(ACy) = LO(Lmem) − LO(ACx)

• HI(ACx) = Tx − HI(Lmem) , LO(ACx) = Tx − LO(Lmem)

• HI(ACx) = HI(Lmem) + Tx , LO(ACx) = LO(Lmem) + Tx

• HI(ACx) = HI(Lmem) − Tx , LO(ACx) = LO(Lmem) − Tx

• HI(ACx) = HI(Lmem) + Tx , LO(ACx) = LO(Lmem) − Tx

• HI(ACx) = HI(Lmem) − Tx , LO(ACx) = LO(Lmem) + Tx

Assembler Notification: Pending

Workaround: Use “4B” instead of “4A”, “4C” instead of “4D”. For example,
@#0x4a = #0xaaaa || mmap() ; IVPH <= 0xaaaa
@#0x4b = #0x1111 || mmap() ; ST2 <= 0x1111
push(dbl(@#0x4b)) || mmap() ; @SP−1 <= IVPH, @SP−2 <= ST2

Bus Error Issued on Byte Access to I/O Space With Address Range 0x0 to 0x5fAdvisory CPU_109

Revision(s) Affected: See Table 1

Details: A bus error, which is captured on IFR1 bit 8 as “BERRINTF” and ST3 bit 7 as “CBERR”, is
issued when an illegal bus access occurs. All I/O space (0x0 to 0xffff) is byte
read/write-accessible without any bus errors. However, a bus error is wrongly issued when a
byte access is made to the I/O space with address range 0x0 to 0x5f.

The following is the entire list of byte-accessible instructions that will give bus errors when
trying to read I/O space address 0x0 to 0x5f:

• dst = uns(high_byte(Smem))

• dst = uns(low_byte(Smem))

• ACx = low_byte(Smem) << SHIFTW

• ACx = high_byte(Smem) << SHIFTW

• high_byte(Smem) = src

• low_byte(Smem) = src

Assembler Notification: Pending

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

43

Bus Error Issued on Byte Access to I/O Space With Address Range 0x0 to 0x5f (Continued)

Workaround: Do one of the following:

• Do not use any of the above instructions to access the I/O space, address 0x0 to 0x5f

• Ignore the bus error, by either not setting IER1[8] or by not using ST3[7].

Relative Branch in ISR Corrupts Program Flow When Localrepeat With C54CM = 1
is Interrupted

Advisory CPU_110

Revision(s) Affected: See Table 1

Details: When in the C54x Compatibility Mode (C54CM = 1), if an interrupt is asserted during a local
repeat in which the interrupt service routine contains a relative branch (any from the list below)
whose offset is >64 bytes forward or backward, then the program flow is corrupted.

• goto L16

• call L16

• if (cond) goto L8

• if (cond) goto L16

• if (cond) call L16

• compare (uns(src RELOP K8)) goto L8

• if (ARn[mod] != #0) goto L16

Assembler Notification: Pending

Workaround: Do one of the following:

• Reset the BRAF bit (ST1[15]) in the ISR which contains the relative branch at least
5 instruction cycles prior to the relative branch. See example below.

Example

ISR: bit(ST1, #15) = #0
nop
nop
nop
nop
call L16
.
.

NOTE: Because the BRAF bit is automatically saved before executing an ISR,
and restored at the return from interrupt, the localrepeat can be restarted without
any problems after returning from interrupt even if the BRAF bit is reset in the ISR.

• Avoid use of localrepeat under C54CM = 1.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

44

C54CM Bit Modification Followed by a mar Instruction Not Pipeline-ProtectedAdvisory CPU_111

Revision(s) Affected: See Table 1

Details: When the destination register of the following mar instructions is AR4, AR5, AR6, or AR7, and
the circular-addressing mode is set by either the corresponding bit in ST2 or use of circular()
qualifier, the C54CM bit determines the circular buffer size register as BK47 when C54CM = 0
or BK03 when C54CM = 1.

• mar(TAy + TAx)

• mar(TAy − TAx)

• mar(TAx + P8)

• mar(TAx − P8)

Therefore, any instruction to modify the C54CM bit in the pipeline prior to the mar instruction
must be completed before the mar instruction is performed at its ADDRESS phase. However,
because a pipeline-protection mechanism is missing for this case, the C54CM bit modification
may not be completed in time under the following condition.

• “bit(ST1, @C54CM) = #0/1” or “MMR write access to ST1 to modify C54CM bit”

• < less than or equal 4 instruction slots >

• any of above mar instruction to modify AR4−7 in circular mode

In the above case, the wrong circular buffer size register will be used.

Assembler Notification: Pending

Workaround: Make sure enough instruction slots are inserted between the two events as follows:

• “bit(ST1, @C54CM) = #0/1” or “MMR write access to ST1 to modify C54CM bit”

• < less than or equal 5 instruction slots >

• any of above mar instruction to modify AR4−7 in circular mode

Example:
bit(ST1, @C54CM) = #0
nop
nop
nop
nop
nop
mar(AR7 + AR0) || circular()

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

45

Data Page Register and Stack Pointer Update Not Pipeline-Protected Against
Data Move Instructions

Advisory CPU_112

Revision(s) Affected: See Table 1

Details: The following registers are used for address generation in direct-addressing mode:

• XDP[22:0] (DPH[6:0] and DP[15:0]) when the CPL bit (ST1[14]) is 0. (Note that DP[15:7] is
mapped to ST0[8:0].)

• XSP[22:0] (SPH[6:0] and SP[15:0]) when the CPL bit (ST1[14]) is 1.

Any update of these registers followed by a direct-addressing access should be completed by
the address generation unit. However, because of missing pipeline protection, under the
following conditions, the update of the register will not be reflected for the address generation.

Condition 1

Instruction to update the Data Page register or Stack Pointer in EXECUTE phase. See
Instruction List below.

• less than 4 instruction cycles

• “Smem = coeff || readport()” or “coeff = Smem || writeport()” (Smem is in
direct-addressing mode.)

Instruction List
When CPL = 0,

Xdst = Xsrc (Xdst is XDP)
Xdst = popboth() (Xdst is XDP)
XAdst = dbl(Lmem) (XAdst is XSP)
DP = Smem
DPH = Smem
bit(ST0,#k4) = #0/1 (k4 is 8,7,...,1,0)

When CPL = 1,
Xdst = Xsrc (Xdst is XSP or XSSP)
Xdst = popboth() (Xdst is XSP or XSSP)
XAdst = dbl(Lmem) (XAdst is XSP or XSSP)
SP = Smem
SP = TAx
SP = SP + K8 (Applicable to only Rev1.0 as it is performed

in EXECUTE phase instead of ADDRESS phase.)

Condition 2

Instruction with MMR write to DPH (0x2B)/DP (0x2E)/ST0_55 (0x02)/ST0 (0x06) with CPL = 0
or SPH (0x4E)/SP (0x18, 0x4D) with CPL = 1 in WRITE phase.

• less than 5 instruction cycles

• “Smem = coeff || readport()” or “coeff = Smem || writeport()” (Smem is in
direct-addressing mode.)

Assembler Notification: Pending

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

46

Data Page Register and Stack Pointer Update Not Pipeline-Protected Against
Data Move Instructions (Continued)

Workaround: Make sure enough instruction slots are inserted between the two events as follows:

• More than or equal 4 instruction slots for Condition 1

• More than or equal 5 instruction slots for Condition 2

Example:
XDP = AC0
nop
nop
nop
nop
@#0xa = coef(*CDP) || readport()

ST2 Update and Dual-Memory Access With Circular Qualifier Not Pipeline-ProtectedAdvisory CPU_114

Revision(s) Affected: See Table 1

Details: When the C54CM bit is set to 1 for the following addressing modes for dual-memory-access
instructions:

*ARn
*ARn+
*ARn−
*ARn(AR0)

the circular qualifier should not have an effect on operation, and ST2[n] should define the
addressing mode (linear or circular) for compatibility with C54x devices. However, when
ST2[n] is updated just prior to accessing the dual-memory instructions with the circular
qualifier, the update is not reflected due to missing pipeline protection, as shown in the
example below.

Example:
bit(ST2,#0) = 0

 .
 .
 .

bit(ST2,#0) = 1
nop
*AR0+ = *+AR1 || circular() ; AR0 post increment is expected to be

; in circular mode, not linear mode.

Assembler Notification: Pending

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

47

ST2 Update and Dual-Memory Access With Circular Qualifier Not Pipeline-Protected (Continued)

Workaround: Make sure enough instruction slots are inserted between the two events, as shown below:

• Put more than four instructions between instructions to update ST2 and dual-memory
accesses with the circular qualifier.

• Put more than five instructions between MMR write accesses to ST2 and dual-memory
accesses with the circular qualifier.

Example:
@ST2 = #0x1 || mmap()
nop
nop
nop
nop
nop
nop
*AR0+ = *+AR1 || circular()

Interrupted Nesting of Loops May Stop CPU ExecutionAdvisory CPU_116

Revision(s) Affected: See Table 1

Details: When all four of the following conditions occur, the CPU will stop execution.

• A localrepeat is used for the inner loop within nested loops.

• Any of the following conditions is met:

− The first single or pair of instructions located at the top of the inner loop is less than
4 bytes.

− The size difference between the outer and inner loop (see NOTE) is less than or
equal to 32 bytes, and BRC1 is changed from zero to non-zero values during the last
iteration.

• An interrupt occurs anywhere within the inner loop at any iteration.

• After returning from an interrupt, a specific P-request is stalled with more than two latency
cycles.

Assembler Notification: Pending

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

48

Interrupted Nesting of Loops May Stop CPU Execution (Continued)

Workaround: Use one of the following workarounds:

• Do not use local repeats for inner loops.

• Make sure the first instruction of the inner loop is more than or equal to 4 bytes, and also
one of the following:

− The outer loop is at least 33 bytes larger than the inner loop.

− Do not change BRC1 from zero, which means at the last iteration, to non-zero value
in the inner loop.

Updating BRC Prior to a Loop That Contains Only Single Repeats Incorrectly Decrements
the RPTC

Advisory CPU_117

Revision(s) Affected: See Table 1

Details: When a loop (blockrepeat or localrepeat) contains the following:

• only the single repeat instruction (can be in parallel with another instruction) and an
instruction to be single-repeated

• the corresponding BRC (BRC0 in case of outer loop, BRC1 in case of inner loop) is
updated prior to the loop

the RPTC for the single repeat is decremented incorrectly. The single repeat instruction is
executed fewer times (depending on stall conditions) than expected.

The following examples are possible BRC update cases. Note that the instruction “BRCx =
k12” is not a problem.

Case 1: BRC update with MMR access

Example:
@BRC0 = something || mmap()
[0~3 instructions]
blockrepeat{

single repeat instruction (see NOTE)
instruction1 || instruction2 ; to be single−repeated

}

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

49

Updating BRC Prior to a Loop That Contains Only Single Repeats Incorrectly Decrements the RPTC (Continued)

Case 2: BRC update with “BRCx = TAx” or “BRCx = Smem”

Example:
BRC0 = T0
[0~2 instructions]
localrepeat{

something || single repeat instruction (see NOTE)
instruction ; to be single−repeated

}

NOTE: A single instruction could be one of the following:
repeat(k8)
repeat(k16)
repeat(CSR)
repeat(CSR) , CSR += TAx
repeat(CSR) , CSR += k4
repeat(CSR) , CSR −= k4
while (cond && (RPTC < k8)) repeat

Assembler Notification: Pending

Workaround: Place at least four instructions between BRC update and the loop for Case 1, or three
instructions between BRC update and the loop for Case 2.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

50

CPU May Halt After Returning From an Interrupt Service Routine When Operating in
Emulation (Debug) Mode

Advisory CPU_118

Revision(s) Affected: See Table 1

Details: When an interrupt is generated, the CPU automatically saves some context registers onto the
stacks before executing the interrupt service routine. The registers saved to the stack are: the
return address (PC); the loop context bits; the status registers 0, 1, and 2; and the debug
status register (DBSTAT). DBSTAT is a DSP register that holds debug context information
used during emulation. The return address is the address of the instruction to be executed
when the CPU returns from the interrupt service routine. The loop context bits are a record of
the type and status of repeat loops that were active when the interrupt occurred.

After the automatic context save, the CPU then executes the interrupt service routine, which
may save some additional context before servicing the interrupt. At the end of the interrupt
service routine, the return-from-interrupt instruction (RETI) is used to branch back to the
interrupted program. The CPU is forced to restore the automatically saved context registers
when the RETI instruction is executed.

If a memory stall is generated during the automatic context restore, an invalid value could be
loaded into the DBSTAT register when the RETI instruction is executed. This value could
cause the CPU to go into an emulation halt mode. This emulation halt mode is similar to what
debug software (such as Code Composer Studio) uses to halt the processor during break
points and halt commands. While in emulation halt mode, the CPU will not execute any
instructions and will not service any interrupts.

NOTE: Only the DBSTAT register is affected by stalls during the automatic context restore.
The return address and the loop context bits are not affected by this error.

NOTE: Emulation halts are ignored by the CPU when it is not operating in emulation mode;
therefore, this error will not impact the device operation when the device is operated in
functional mode (i.e., when the debugger is not being used).

More information on stacks, interrupts, and the automatic steps executed by the CPU during
interrupts can be found in the TMS320C55x DSP CPU Reference Guide (literature number
SPRU371).

Assembler Notification: N/A

Workaround: The chances of encountering this error can be minimized by decreasing the chances of
generating stalls during the automatic context restore.

To minimize the chances of generating stalls, follow one of these steps:

1. Allocate the data stack and the system stack in DARAM.

2. Allocate the data stack and system stack in separate SARAM blocks.

The location of the data stack is specified through the XSP register while the system stack
location is specified through the XSSP register.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

51

Due to Improper Update of the DBSTAT Register, the Debugger May Halt at
Code Locations Where No Breakpoints are Set

Advisory CPU_119

Revision(s) Affected: See Table 1

Details: The error described here causes the Code Composer Studio (CCS) debugger to halt at code
locations where no breakpoint has been set by the user. This error can be reproduced by
following these steps using CCS.

1. Load and execute a program.

2. Place a software breakpoint in non-ISR code (setting the breakpoint in the ISR could also
show the problem, but it is more likely to be seen when breakpoint is in non-ISR code).

3. After the CPU stops at the software breakpoint, clear it.

4. Generate an interrupt to the CPU.

5. Start the CPU again without stepping from the breakpoint location.

6. Refresh a memory, register or watch window (executing a GEL script may also trigger the
problem).

7. The CPU halts at an arbitrary location.

NOTE: This bug is not seen when the user runs or steps from a breakpoint and leaves the
breakpoint in place. Only the sequence listed above will cause the problem.

This error is caused by the debug status register (DBSTAT) being incorrectly pushed onto the
stacks before its breakpoint status bits are cleared. DBSTAT is a DSP register that holds
debug context information used during emulation. Among other things, it contains several bits
which indicate when the CPU is halted as well as the reason for the halt.

The CPU automatically saves DBSTAT to the stacks along with other context registers before
executing an interrupt service routine (ISR) [see the TMS320C55x DSP CPU Reference Guide
(literature number SPRU371)]. At the end of the ISR, the CPU is forced to restore the
automatically saved context registers when the RETI instruction is executed.

When an interrupt is generated while the CPU is halted due to a software breakpoint, the
software breakpoint bits should be cleared by a command from the debug software before
DBSTAT is pushed onto the stack. Instead, the contents of DBSTAT are incorrectly pushed
onto the stack before these bits are cleared. At the end of the ISR, DBSTAT is automatically
restored from the stack, incorrectly restoring the previous setting of the software breakpoint
bits.

When a debug operation such a memory window refresh is executed, CCS commands the
CPU to halt (as it should) and, after the checking DBSTAT to ensure its command was
successful, it believes the CPU is already halted due to a software breakpoint. Since CCS is
not be able associate the breakpoint with one of its own, it simply informs the user the CPU is
halted at the current program counter location.

NOTE: This error does not corrupt the state of the CPU. It only causes an incorrect status of
the emulation state, which causes problems for debug tools such as CCS.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

52

Due to Improper Update of the DBSTAT Register, the Debugger May Halt at
Code Locations Where No Breakpoints are Set (Continued)

Assembler Notification: N/A

Workaround: If this error is encountered, single-step a few assembly or C instructions before starting the
CPU again after a software breakpoint. Interrupts are blocked from the CPU during
single-stepping, allowing enough time for the software breakpoint flags to be cleared from
DBSTAT.

For example, follow these steps using CCS:

1. Load and execute a program.

2. Place a software breakpoint in non-ISR code.

3. After the CPU stops at the software breakpoint, clear it.

4. Generate an interrupt to the CPU.

5. Single-step a couple of assembly or C instructions.

6. Start the CPU again.

SPRU652GC55x DSP CPU Programmer’s Reference Supplement

53

4 Documentation Support

For device-specific data sheets and related documentation, visit the TI web site at: http://www.ti.com

For additional information, see the latest versions of:

• TMS320VC5501 Fixed-Point Digital Signal Processor data manual (literature number SPRS206)

• TMS320VC5502 Fixed-Point Digital Signal Processor data manual (literature number SPRS166)

• TMS320VC5503 Fixed-Point Digital Signal Processor data manual (literature number SPRS245)

• TMS320VC5507 Fixed-Point Digital Signal Processor data manual (literature number SPRS244)

• TMS320VC5509A Fixed-Point Digital Signal Processor data manual (literature number SPRS205)

• TMS320VC5510 Fixed-Point Digital Signal Processor data manual (literature number SPRS076)

• OMAP5910 Dual-Core Processor data manual (literature number SPRS197)

• OMAP5912 Applications Processor data manual (literature number SPRS231)

• TMS320C55x� DSP Functional Overview (literature number SPRU312)

• TMS320C55x DSP CPU Reference Guide (literature number SPRU371)

• TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature number SPRU374)

• TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature number SPRU375)

• TMS320C55x DSP Peripherals Overview Reference Guide (literature number SPRU317)

• OMAP5910 Dual-Core Processor Silicon Errata (literature number SPRZ016)

http://www-s.ti.com/sc/techlit/sprs206
http://www-s.ti.com/sc/techlit/sprs166
http://www-s.ti.com/sc/techlit/sprs245
http://www-s.ti.com/sc/techlit/sprs244
http://www-s.ti.com/sc/techlit/sprs205
http://www-s.ti.com/sc/techlit/sprs076
http://www-s.ti.com/sc/techlit/sprs197
http://www-s.ti.com/sc/techlit/sprs231
http://www-s.ti.com/sc/techlit/spru312
http://www-s.ti.com/sc/techlit/spru371
http://www-s.ti.com/sc/techlit/spru374
http://www-s.ti.com/sc/techlit/spru375
http://www-s.ti.com/sc/techlit/spru317
http://www-s.ti.com/sc/techlit/sprz016

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Title Page - SPRU652G
	REVISION HISTORY
	Contents
	1 Introduction
	1.1 Device and Development-Support Tool Nomenclature

	2 Important Notices About CPU Advisories
	2.1 Prototype Silicon Advisory Information
	2.2 Useful Information Regarding Assembler Diagnostic Messages
	2.2.1 ERROR Diagnostics
	2.2.2 WARNING Diagnostics
	2.2.3 REMARK Diagnostics

	3 C55x CPU Known Design Advisories to Functional Specifications
	CPU_72: C54CM Bit Update and *CDP With T0 Index is not Pipeline-Protected
	CPU_73: Certain Instructions not Pipeline-Protected From Resets
	CPU_76: DELAY Smem Does not Work With Circular Addressing
	CPU_79: IDLE Cannot Copy the Content of ICR to ISTR
	CPU_80: Nested Local Repeat Corrupted After C54CM Bit Reset
	CPU_81: WHILE Instruction in Slot #2 is not Protected
	CPU_82: ‘if (cond true) goto’ at the End of Local Repeat Fails
	CPU_83: BRAF Updated Incorrectly in Certain Cases of Conditional Execution
	CPU_84: SP/SSP Access Followed by a Conditional Execute is not Protected Against Interrupts
	CPU_85: Local Repeat With C54CM = 1 may be Corrupted on its Last Iteration
	CPU_86: Corruption of CSR or BCRx Register Read When Executed in Parallel With Write
	CPU_87: Context Restore Just Before Return Instruction Sometimes Fails
	CPU_88: Incorrect Context Store of BRAF During Interrupt Servicing
	CPU_89: Internal Overflow not Detected When Using the Left Shift Command
	CPU_90: CPU Bypass Can Cause Corruption of a Read Following a Write
	CPU_91: C16, XF, and HM Bits not Reinitialized by Software Reset
	CPU_92: Consecutive C-Bus Accesses may not Work
	CPU_93: Interrupted Conditional Execution After Memory Write may Execute Unconditionally in the D Unit
	CPU_94: Interrupted Conditional Execution After Long Memory-Mapped Register Write is Executed Unconditionally in the D Unit/ AD Unit
	CPU_95: BRCx Decrement may not Work When gotoP24 is put at End of Blockrepeat With C54CM = 0
	CPU_96: gotoP24 Within Blockrepeat Exits the Loop
	CPU_97: RETA = Lmem || Lmem = RETA may not Work
	CPU_98: BANZ at the End of Inner Loop in Native Mode may Corrupt Program Flow
	CPU_99: Return_int (Under a Fast Return Configuration) may Cause Improper Operation of Single Repeats and Conditional Executions
	CPU_100: Interrupted Single Repeat is not Resumed After RETI
	CPU_102: Page Register Update and CPU Bypass Corrupts Following Memory Read
	CPU_103: C54x Instruction, FRET[D] is not Protected Against Prior C54CM Bit Update
	CPU_104: Blockrepeat Corrupted if Preceded by Localrepeat With C54CM = 1 and BRC0 = 0
	CPU_106: Move (Shift and Store) Instructions Incompatible With C54x When C54CM Bit = 1 and SST Bit = 1
	CPU_107: Conditional Call With False Condition Corrupts RETA
	CPU_108: Long (32-Bit) Read From MMR Gets Corrupted
	CPU_109: Bus Error Issued on Byte Access to I/O Space With Address Range 0x0 to 0x5f
	CPU_110: Relative Branch in ISR Corrupts Program Flow When Localrepeat With C54CM = 1 is Interrupted
	CPU_111: C54CM Bit Modification Followed by a mar Instruction Not Pipeline-Protected
	CPU_112: Data Page Register and Stack Pointer Update Not Pipeline-Protected Against Data Move Instructions
	CPU_114: ST2 Update and Dual-Memory Access With Circular Qualifier Not Pipeline-Protected
	CPU_116: Interrupted Nesting of Loops May Stop CPU Execution
	CPU_117: Updating BRC Prior to a Loop That Contains Only Single Repeats Incorrectly Decrements the RPTC
	CPU_118: CPU May Halt After Returning From an Interrupt Service Routine When Operating in Emulation (Debug) Mode
	CPU_119: Due to Improper Update of the DBSTAT Register, the Debugger May Halt at Code Locations Where No Breakpoints are Set

	4 Documentation Support
	IMPORTANT NOTICE

