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Preface
SPRU871K–August 2010

Read This First

About This Manual

This document describes the TMS320C64x+™ megamodule peripherals.

Notational Conventions

This document uses the following conventions.

• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the C6000 devices and related support tools. Copies of these
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box
provided at www.ti.com.

The current documentation that describes the C6000 devices, related peripherals, and other technical
collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

SPRU732 — TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital
signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation
comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of
the C64x DSP with added functionality and an expanded instruction set.

SPRAA84 — TMS320C64x to TMS320C64x+ CPU Migration Guide. Describes migrating from the
Texas Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. The
objective of this document is to indicate differences between the two cores. Functionality in the
devices that is identical is not included.

TMS320C64x+, TMS320C64x+, TMS320C64x, C64x are trademarks of Texas Instruments.
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Chapter 1
SPRU871K–August 2010

Overview

The TMS320C64x+™ DSP is the new generation of the TMS320C64x™ DSP architecture. It presents
some new features that did not exist in the C64x™ DSP architecture as well as some existing features
that have been enhanced.

The C64x+™ megamodule is the name used to designate the CPU together with the hardware providing
memory, bandwidth management, interrupt, memory protection, and power-down support. This chapter
provides an overview of the main components and features of the C64x+ megamodule. The C64x+ CPU
is not described in this document since it is fully covered in the TMS320C64x/C64x+ DSP CPU and
Instruction Set Reference Guide (SPRU732).
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1.2 C64x+ Megamodule Overview ............................................................................. 19
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1.1 Introduction

The C64x+™ megamodule includes the following components: C64x+ CPU, Level 1 program (L1P)
memory controller, Level 1 data (L1D) memory controller, Level 2 (L2) memory controller, Internal DMA
(IDMA), bandwidth management (BWM), interrupt controller (INTC), power-down controller (PDC), and an
extended memory controller (EMC).

A block diagram of the megamodule is shown in Figure 1-1.

Figure 1-1. TMS320C64x+ Megamodule Block Diagram
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1.2 C64x+ Megamodule Overview

The following sections provide an overview of the main components and features of the C64x+
megamodule.

1.2.1 C64x+ CPU

The C64x+ CPU is an extension of the C64x CPU. The C64x+ CPU provides new features such as:

• New instructions that increase execution performance.
• Increased code compactness.
• Software and hardware exception for better debugging capabilities.

The C64x+ devices are object code compatible with the C64x devices.

The C64x+ CPU is not described further in this document. For more information on the C64x+ CPU, refer
to the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732).

1.2.2 Level 1 Program (L1P) Memory Controller

The L1P memory controller interfaces the CPU fetch pipeline to L1P memory. You can configure part of
the L1P memory as a one-way set-associative cache. Cache sizes of 4KB, 8KB, 16KB, or 32KB are
supported.

The L1P provides bandwidth management, memory protection, and power-down support. The L1P
memory is always initiated to either all SRAM or maximum cache after reset. The behavior is specific to
each C64x+ device.

For more information on the L1P cache/memory, refer to Chapter 2.

1.2.3 Level 1 Data (L1D) Memory Controller

The L1D memory controller interfaces the CPU data path to L1D memory. Part of the L1D memory can be
configured as a two way set-associative cache. Cache sizes of 4KB, 8KB, 16KB, or 32KB are supported.

The L1D provides bandwidth management, memory protection, and power-down support. The L1D
memory is always initiated to either all SRAM or maximum cache after reset. The behavior is specific to
each device.

For more information on the L1D cache/memory, refer to Chapter 3.

1.2.4 Level 2 (L2) Memory Controller

The L2 memory controller interfaces level 1 memories to higher-level memories. Part of the L2 memory
can be configured as a four way set-associative cache. Cache sizes of 32KB, 64KB, 128KB, or 256KB are
supported.

The L2 provides bandwidth management, memory protection, and power-down support. The L2 memory is
always initiated to all SRAM after reset. If you want to initiate cache modes, you must do so during device
run time.

If you configure part of internal memory as cache, the L2 controller provides a means of writing back
changes made to its contents, or invalidating the cache's contents altogether. This can be performed on a
block or global basis. These actions constitute coherence operations that you specify; that is, they are
intended to make the cached information coherent with the original memory location's content. Writebacks
and invalidations also occur automatically by virtue of how cache architectures operate. These activities
are generally called coherence operations throughout this document. Coherence operations are described
in more detail in Chapter 2, Chapter 3, and Chapter 4.

Refer to Chapter 4 for more information on the L2 cache/memory.
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1.2.5 Internal DMA (IDMA)

The internal DMA (IDMA), is a DMA local to the megamodule- that is, it provides data move services only
within the megamodule (L1P, L1D, L2, and CFG).

There are two IDMA channels (0 and 1).

• Channel 0 allows data to transfer between the peripheral configuration space (CFG) and any local
memories (L1P, L1D, and L2).

• Channel 1 enables data to transfer between the local memories (L1P, L1D, and L2).

The IDMA data transfers occur in the background of CPU operation. That is, once a channel transfer is
programmed, it happens concurrent with other CPU activity, and without additional CPU intervention.

For more information on the IDMA, refer to Chapter 5.

1.2.6 Bandwidth Management (BWM)

The C64x+ megamodule includes a set of resources (L1P, L1D, L2, and configuration bus) and a set of
requestors (CPU, SDMA, IDMA, and coherence operations) that need to use these resources. In order to
avoid blocking a requestor from accessing a resource for a long period of time, the C64x+ megamodule
implements a bandwidth management scheme in order to assure some bandwidth to all of the requestors.

Refer to Chapter 6 for more information on the BWM.

1.2.7 Interrupt Controller (INTC)

The C64x+ CPU provides two types of asynchronous signaling services:

• Interrupts
• Exceptions

Interrupts provide the means to redirect normal program flow due to the presence of an external or internal
hardware signal. Exceptions are similar in that they also redirect program flow, but they are normally
associated with error conditions in the system.

The C64x+ CPU can receive 12 maskable/configurable interrupts, 1 maskable exception, and 1
unmaskable interrupt/exception. The CPU can also respond to a variety of internal exception conditions,
though these are documented in the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide
(SPRU732) , since they are wholly contained within the CPU .

The megamodule includes an interrupt controller that allows up to 124 system events to be routed to the
CPU interrupt/exception inputs. These 124 events can either be directly connected to the maskable
interrupts, or grouped together as interrupts or exceptions. These various routing choices allow a great
deal of flexibility in event handling.

An error event is signaled when an interrupt is signaled to the CPU and there is already a flag pending for
this interrupt. In addition to routing events, the interrupt controller detects when the CPU misses an
interrupt. You can use this error event to notify the CPU when it misses a real time event. The INTC
hardware saves the missed interrupt number in a register so that corrective action can be taken.

Refer to Chapter 7 for more information on the INTC.
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1.2.8 Memory Protection Architecture (MPA)

The C64x+ megamodule offers memory protection support for its local memories (L1P, L1D, and L2).
System level memory protection is device-specific and is not available on all devices. Refer to the
device-specific data manual for more information.

Memory protection is defined globally, but implemented locally. Thus, the overall protection scheme is
defined for the entire C64x+ megamodule, but each resource implements its own protection hardware.
This distributed method of memory protection means you only need to learn one memory protection
interface, while the C64x+ remains flexible enough to support future peripherals and memories.

To implement the memory protection scheme, the memory map is divided into "pages" and each page has
an associated set of permissions. Invalid accesses are signaled with an exception and reported to the
system in memory fault registers. Additionally, MPA supports privilege modes (supervisor and user) and
memory locks.

Due to the distributed implementation of the memory protection scheme, the overall definitions are
described in Chapter 8. Refer to each resource's chapter for specific details for MPA implementation.

1.2.9 Power-Down Controller (PDC)

The power-down controller allows software-driven power-down management for all of the C64x+
megamodule components. The CPU can power-down all or part of the C64x+ megamodule through the
power-down controller based on its own execution thread or in response to an external stimulus from a
host or global controller.

Refer to Chapter 9 for more information on the PDC.

1.2.10 Extended Memory Controller (EMC)

The extended memory controller (EMC) is a bridge from the megamodule to the rest of the device. It
includes three ports:

• Configuration registers (CFG) - This port provides access to the memory-mapped registers which
control various peripherals and resources on C64x+ devices.

NOTE: This port does not provide access to those control registers found within the CPU or the
megamodule.

• Master DMA (MDMA) - The master DMA provides access to resources outside of the megamodule for
transactions initiated within the megamodule (i.e., those accesses where the megamodule is the
master for the transaction). The master DMA is typically used for CPU/cache accesses to memory
beyond the L2 level. These accesses can be in the form of cache line allocates, writebacks, and
non-cacheable loads and stores to system memory.

• Slave DMA (SDMA) - The slave DMA provides access to resources inside the megamodule to system
masters found outside the megamodule such as DMA controllers, HPI, etc. That is, transfers initiated
outside the megamodule where the megamodule is the slave in the transaction.

The CFG bus is always 32 bits wide, and should always be accessed as 32-bit values using 32-bit load /
store instructions or the IDMA. The MDMA and SDMA ports can be 32, 64, or 128 bits wide; their actual
width is specific to each device, so refer to the device-specific data manual.
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2.1 Introduction

2.1.1 Purpose of the Level 1 Program (L1P) Memory and Cache

The purpose of the Level 1 program (L1P) memory and cache is to maximize performance of the code
execution. The configurability of the L1P cache offers the flexibility required in many systems.

2.1.2 Features

The L1P memory and cache provide the memory flexibility that is required in devices that use the C64x+
megamodule.

• Configurable L1P cache size: 0K, 4K, 8K, 16K, and 32K.
• Memory protection.
• Cache block and global coherence operations.

2.2 Terms and Definitions

Refer to Appendix A and Appendix B of this document for detailed definitions of the terms used in this
chapter. Appendix A describes general terms used throughout the this reference guide and Appendix B
defines terms related to the memory and cache architecture.

2.3 L1 Program Memory Architecture

2.3.1 L1P Memory

L1P memory supports up to 1 MB of RAM and ROM. This memory is divided up into two regions. Each
region may be no larger than 512KB. L1P memory can not be cached within Level 1 data (L1D) cache,
Level 1program (L1P) cache, or Level 2 (L2) cache within the same megamodule.

The L1P memory's base address is constrained to 1MB boundaries. The total size of L1P memory must
be a multiple of 16K bytes.

2.3.1.1 L1P Regions

L1P memory is divided into two regions (denoted L1P region 0 and L1P region 1).

The regions have two primary impacts on L1P:

1. Each region may have a different number of wait-states.
2. Each region has separate memory protection entries.

The two regions appear consecutively in memory. Region 0 may be 0K bytes (disabled) or any power-of-2
size in the 16K to 512K range. Region 1 starts at the end of region 0. Its size may be any multiple of 16K,
from 16K to 512K bytes. The size of region 1 must be less than or equal to the size of region 0, when
region 0 is enabled.

The two L1P regions divide the memory protection entries into two sets. L1P provides 32 memory
protection pages, as described in Section 2.9.2. The first 16 pages cover region 0, and the second 16
pages cover region 1. When region 0 is 0K bytes, its memory protection pages go unused.

The actual memory configuration is device-specific. Refer to the device-specific data manual for more
information.

2.3.1.2 L1P Access

The L1P regions can only be written to using EDMA or IDMA accesses; the L1P regions cannot be written
to using CPU stores. The L1P regions can be read from using EDMA or IDMA accesses. CPU access is
limited to instruction fetch. The CPU cannot read from L1P, even if L1P is memory-mapped. See
Section 2.9.1.2.
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2.3.1.3 L1P Wait States

The two regions may have different wait states. The maximum number of wait states is 3. The number of
wait states is not configurable in software, it is defined when the chip is created. L1P SRAM typically has 0
wait states. ROM at the L1 level may have greater than 0 wait states. Refer to the device-specific data
manual for more information.

2.4 L1P Cache

L1P cache is necessary to facilitate fetching program code at a fast clock rate in order to maintain a large
system memory. The cache is responsible for hiding the latency associated with reading from and writing
to the slower system memory.

It is possible to convert part or all of L1P into cache. L1P supports cache sizes of 4K, 8K, 16K, and 32K.

L1P cache converts memory from RAM to cache by starting at the top of the L1P memory map and
working downwards. To explain, the highest addresses of L1P region 1 are the first to become cache. L1P
cache may only occupy region 1.

The cache controller initializes after resetting to either "all RAM" or "maximal cache." Refer to the
device-specific data manual for specific behavior.

The operation of the L1P cache is controlled through several registers. Table 2-1 provides a summary of
these registers. These registers are mentioned throughout this section and will be described in more detail
in Section 2.6.

Table 2-1. L1P Cache Registers Summary

Address Acronym Register Description Section

0184 0020h L1PCFG Level 1 Program Configuration Register Section 2.6.3.1

0184 0024h L1PCC Level 1 Program Cache Control Register Section 2.6.3.2

0184 4020h L1PIBAR Level 1 Program Invalidate Base Address Register Section 2.6.3.3

0184 4024h L1PIWC Level 1 Program Invalidate Word Count Register Section 2.6.3.4

0184 5028h L1PINV Level 1 Program Invalidate Register Section 2.6.3.5

2.4.1 L1P Cache Architecture

The L1P cache is a direct-mapped cache, meaning that every physical memory location in the system has
one possible location in the cache where it may reside. When the CPU attempts to fetch a piece of code,
L1P must check whether the requested address resides in the L1P cache. To do so, the 32-bit address
provided by the CPU is partitioned into three fields (tag, set, and offset), as shown in Figure 2-1.

Figure 2-1. Data Access Address Organization
31 X+1 X 5 4 0

Tag Set Offset

The offset of 5 bits accounts for the fact that an L1P line size is 32 bytes. The cache control logic ignores
bits 0 through 4 of the address. The set field indicates the L1P cache line address where the data would
reside, if it were cached. The width of the set field depends on the amount of L1P configured as cache.
L1P uses the set field to look up and check the tag for any already-cached data from that address, as well
as the valid bit, which indicates whether the address in the tag actually represents a valid address held in
cache.

The tag field is the upper portion of the address that identifies the true physical location of the data
element. On a program fetch, if the tag matches and the corresponding valid bit is set, then it is a "hit,"
and the data is read directly from the L1P cache location and returned to the CPU. Otherwise, it is a
"miss" and the request is sent on to the L2 controller for the data to be fetched from its location in the
system. Misses may or may not directly result in CPU stalls.
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The CPU cannot write data to L1P under normal circumstances.

The L1P cache configuration dictates the size of the set and tag fields.

2.4.2 Replacement and Allocation Strategy

The L1P cache operates as a direct-mapped cache in all cache configurations. This means that each
location in system memory can reside in exactly one location in the L1P cache. Because L1P is
direct-mapped, its replacement strategy is simple: each newly cached line replaces the previously cached
line.

The L1P controller implements a read-allocate cache. This means that the L1P will fetch a complete line of
32 bytes on a read miss.

2.4.3 L1P Mode Change Operations

The C64x+ L1P architecture allows the size of L1P cache to be selected at run time. Programs select the
size of L1P cache by writing the requested mode to the L1PMODE field in the L1PCFG register.

Table 2-2. Cache Size Specified by the L1PMODE bit in the L1PCFG Register

L1PMODE Setting of the L1PCFG Register Amount of L1P Cache

000b 0K

001b 4K

010b 8K

011b 16K

100b 32K

101b "Maximal Cache." Maps to 32K.

110b

111b "Maximal Cache." Maps to 32K.

NOTE: In general, a larger value of L1PMODE specifies a larger cache size (up to the size of the
implemented L1P memory). The maximum L1P cache size is the smaller of "largest
power-of-2 that fits in L1P RAM size" and 32K.

The actual range of L1P cache modes is constrained by the size of L1P region 1. The L1P cache can be
no larger than 16K when L1P region 1 is only 16K in size. Thus, the encoding 011b through 111b are
mapped to 16K cache on devices whose L1P region 1 is only 16K.

On these devices, the L1PMODE settings 100b through 111b select the 16K cache mode, as opposed to
the 32K cache mode. Thus, modes 000b through 011b always select the requested size, 0K through 16K.
Modes 100b through 111b select the maximum size implied by the size of L1P memory (16K or 32K).

As a result of this policy, programs wanting no more than a certain amount of cache should program the
value corresponding to this upper bound. Programs desiring "as much cache as possible" should program
111b into L1PMODE.

When programs initiate a cache mode change, the L1P cache itself invalidates its current contents. This
ensures that no false hits occur due to changing interpretation of cache tags.

While the invalidation is necessary to ensure correct cache behavior, it is not sufficient to prevent data
loss due to portions of L1P RAM becoming cache. Thus, to safely change L1P cache modes, applications
must adhere to the procedure in Table 2-3.
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Table 2-3. Switching L1P Modes

To switch from. . . To. . . The program must perform the following steps. . .

A mode with no or some L1P cache A mode with more L1P cache 1. DMA, IDMA or copy any needed data out of the
affected range of L1P RAM. (If none requires
saving, no DMA is necessary).

2. Write the desired cache mode to the L1PMODE
field in the L1PCFG register.

3. Read back L1PCFG. This stalls the CPU until the
mode change completes.

A mode with some L1P cache A mode with less or no L1P cache 1. Write the desired cache mode to the L1PMODE
field in the L1PCFG register.

2. Read back L1PCFG. This stalls the CPU until the
mode change completes.

2.4.4 L1P Freeze Mode

The L1P cache directly supports a freeze mode of operation for applications. This mode allows
applications to prevent CPU data accesses from evicting program code from the cache. This feature is
useful in an interrupt context. L1P freeze mode only affects L1P cache. L1P RAM is not affected by freeze
mode.

While in freeze mode, the L1P cache will service read hits normally. Read hits return data from the cache.
In freeze mode, the L1P cache will not allocate new cache lines on read misses, nor will it cause any
existing cache contents to be marked invalid.

The OPER field in the L1PCC register controls whether L1P is frozen or it is operating normally, as shown
in Example 2-1.

The CPU places L1P into freeze mode by writing 001b to the OPER field in the L1PCC register. The CPU
returns L1P to normal operation by writing 0b to the OPER field in the L1PCC register.

The POPER field in the L1PCC register holds the previous value of the OPER field. The value of the
OPER field is copied to the POPER field in the L1PCC register on writes to the L1PCC register. Copying
the value of the OPER field to the POPER field alleviates the cycle cost of reading the L1PCC register (in
order to save the previous value of the OPER field) before it is written. If the POPER field is not in the
L1PCC register, the program must read, write, and then read again to fully freeze the cache while
recording its previous operating mode. If the POPER field is in the L1PCC register, this operation reduces
to a single write followed by a read.

When you write to the L1PCC register, the following operations occur:

1. The OPER field copies to the POPER field in the L1PCC register.
2. The POPER field loses its previous value.
3. The OPER field updates according to the value that the CPU writes to bit 0 of the L1PCC register.

Thus, writing to the L1PCC register only modifies the OPER field in this register.

Programs cannot directly modify the POPER field with a single write. This is not problematic since the
value held in the POPER field does not change the behavior of L1P cache and only interests programs
that have recently written to the OPER field.

The software must perform a write to the L1PCC register followed by a read of the L1PCC to ensure that
the L1PCC updates. Performing a write to followed by a read of the L1PCC register guarantees that the
requested mode is in effect.

The goal of the OPER field in the L1PCC register is to avoid the substantial CPU cycle penalty and code
size involved in a read-write-reread sequence that would otherwise be necessary. Thus, applications may
quickly freeze L1P and record the previous "freeze" state of L1P with the short sequence of code in
Example 2-1.
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Example 2-1. L1P Quick Freeze Example Code Sequence

MVKL L1PCC, A0 ; Point to L1PCC
MVKH L1PCC, A0 ;

|| MVK 1b, B0 ; OPER encoding for 'freeze'
STW B0, *A0[0] ; Write 1b to L1PCC.OPER
LDW *A0[0], A1 ; Read L1PCC to get L1PCC.POPER
NOP 4

; At this point, L1P is frozen, and the CPU has the old OPER value ; in bit 16 of A1.

The L1PCC can be used for unfreezing the cache in a manner similar to how it was frozen. Example 2-2
illustrates how this is performed:

Example 2-2. Restore Example Code Sequence for the OPER bit in the L1PCC

; Assume A1 holds value read in at the end of the L1P Quick Freeze Example Code Sequence above.
MVKL L1PCC, A0 ; Point to L1PCC
MVKH L1PCC, A0 ;

|| SHRU A1, 16, A1 ; Shift POPER field into OPER's position
STW A1, *A0[0] ; Write to L1PCC, restoring old value of OPER
LDW *A0[0], A1 ; Read back L1PCC to ensure change is complete
NOP 4

; At this point, L1P is in its previous state (frozen or unfrozen)

The L1D cache also supports a freeze mode. Refer to Chapter 3 for more details on the L1D cache freeze
mode.

It is often desirable to freeze both caches together. Therefore, consecutive writes to L1DCC and L1PCC
followed by reading both L1DCC and L1PCC are sufficient to ensure that both L1D and L1P are frozen.
Example 2-3 illustrates a sequence that freezes both L1D and L1P.

Example 2-3. Example Code Sequence for Freezing L1D and L1P Simultaneously

MVKL L1DCC, A0 ; \
|| MVKL L1PCC, B0 ; |__ Generate L1DCC pointer in A0

MVKH L1DCC, A0 ; | and L1PCC pointer in B0
|| MVKH L1PCC, B0 ; /
|| MVK 1b, A1 ; \___ OPER encoding for 'freeze'
|| MVK 1b, B1 ; / in both A1 and B1.

STW A1, *A0 ; Write to L1DCC.OPER
|| STW B1, *B0 ; Write to L1PCC.OPER

LDW *A0, A1 ; Get old freeze state into A1 from L1DCC
|| LDW *B0, B1 ; Get old freeze state into B1 from L1PCC

NOP 4
; At this point, L1D and L1P are frozen.
; The old value of L1DCC.OPER is in bit 16 of A1.
; The old value of L1PCC.OPER is in bit 16 of B1.
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2.5 Program Initiated Coherence Operations

The C64x+ L1P architecture supports program-initiated cache coherence operations. These operations
operate either on a block of addresses or on the entire L1P cache.

2.5.1 Global Coherence Operation

Global cache operations synchronize L1P with "the system" between major events, such as a task switch,
L1P mode change, or change to memory protection settings. Thus, global cache operations are viewed as
“synchronous” with respect to other program activity.

You can globally invalidate the L1P cache under software control. The program must write a 1 to the I bit
of the L1PINV register in order to initiate a global invalidation operation.

During the global invalidation of the L1P cache, no writeback operation is performed because code is not
modified.

The I bit of the L1PINV register resets to 0 upon completion of the global coherence operation. The
program can poll this field to detect the completion of the operation. The polling code must be located
outside the L1P cache.

Table 2-4 provides a summary of the L1P global coherence operations.

Table 2-4. L1P Global Coherence Operations

Cache Operation Register Used L1P Effect

L1P Invalidate L1PINV All lines invalidated in L1P.

You can also globally invalidate the L1P cache by setting the IP bit in the L2CFG register to 1. The IP bit
provides backward compatibility with C64x and C64x+ devices. You should not use the IP bit in new
applications; use the L1PINV register for new applications.

2.5.2 Block Coherence Operation

Block coherence operations have similar functionality as the global coherence operation; however, they
apply only to a defined block of code. This block is defined by the base address and the word size (32-bit)
in the associated L1PIBAR and L1PIWC, respectively.

The block coherence operations are designed to be as efficient as possible, while minimizing the impact to
tasks running concurrently on the CPU. Block cache operations are running in the “background” of CPU
activity.

The L1P invalidate word count field of the L1PIWC sets to 0 upon completion of the block coherence
operation. The program can poll this field to detect the completion of the operation. The polling code must
be located outside of the affected block of the L1P cache.

Table 2-5 provides a summary of the L1P block cache operations.

Table 2-5. L1P Block Cache Operations

Cache Operation Register Used L1P Effect

L1P Invalidate L1PIBAR All lines in range invalidated in L1P.

L1PIWC
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2.6 L1P Cache Control Registers

2.6.1 Memory Mapped Cache Control Register Overview

The C64x+ megamodule memory system provides a set of registers to govern the operation of L1P cache.
These registers allow for changing cache modes and manually initiating cache coherence operations.

Table 2-6 lists the registers for the L1P specific cache control operations registers. See the device-specific
data manual for the memory address of these registers.

Refer to Chapter 4 for a detailed list of the available cache control operations provided.

Table 2-6. L1P Specific Cache Control Operations Registers

Address Acronym Register Description Section

0184 0020h L1PCFG Configures the size of L1P cache Section 2.6.3.1

0184 0024h L1PCC Controls L1P operating mode (freeze / normal) Section 2.6.3.2

0184 4020h L1PIBAR Specified range is invalidated in L1P without being Section 2.6.3.3
written back0184 4024h L1PIWC Section 2.6.3.4

0184 5028h L1PINV Entire contents of L1P is invalidated without being Section 2.6.3.5
written back.

In addition to the L1P-specific registers listed above, the L1P cache is directly affected by writes to
L2-specific controls as well. Refer to Chapter 4 for the complete list of cache control operations and their
affect on the L1P cache.

2.6.2 CPU Cache Control Registers

The CPU has a single internal control register, the control state register (CSR) that dedicates a field to
cache control operations (the PCC field in the CSR register). The PCC field is provided for backward
compatibility with C64x+/C64x/C62x/C67x devices. You should not use this field in new applications. Use
the L1PCFG and L1PCC registers described in Section 2.6.3 instead.
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2.6.3 L1P Cache Configuration Registers

The L1P configuration register (L1PCFG) and the L1P cache control register (L1PCC) control the
operation of L1P.

2.6.3.1 L1P Configuration Register (L1PCFG)

The L1P configuration register (L1PCFG) controls the size of L1P cache and is shown in Figure 2-2 and
described in Table 2-7.

Figure 2-2. L1P Configuration Register (L1PCFG)
31 16

Reserved

R-0

15 3 2 0

Reserved L1PMODE

R-0 R/W-0h or 7h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-7. L1P Configuration Register (L1PCFG) Field Descriptions

Bit Field Value Description

31-3 Reserved 0 Reserved

2-0 L1PMODE 0-7h Defines the size of the L1P cache. The L1PMODE field powers-up as either 0h or 7h. Refer
to the device-specific data manual for more information.

0 L1P cache disabled

1h 4K

2h 8K

3h 16K

4h 32K

5h Maximal cache

6h Maximal cache

7h Maximal cache
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2.6.3.2 L1P Cache Control Register (L1PCC)

The L1PCC cache control register (L1PCC) controls whether L1P is frozen or unfrozen.

The L1P cache control register (L1PCC) is shown in Figure 2-3 and described in Table 2-8.

Figure 2-3. L1P Cache Control Register (L1PCC)
31 17 16

Reserved POPER

R-0 R-0

15 1 0

Reserved OPER

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-8. L1P Cache Control Register (L1PCC) Field Descriptions

Bit Field Value Description

31-17 Reserved 0 Reserved

16 POPER 0-1 Holds the previous value of the OPER bit.

15-1 Reserved 0 Reserved

0 OPER Controls the L1P freeze mode.

0 Freeze mode disabled

1 Freeze mode enabled

2.6.3.3 L1P Invalidate Base Address Register (L1PIBAR)

The L1P invalidate base address register (L1PIBAR) defines the base address of the block invalidation
that the coherence operation will act upon.

The L1P invalidate base address register (L1PIBAR) is shown in Figure 2-4 and described in Table 2-9.

Figure 2-4. L1P Invalidate Base Address Register (L1PIBAR)
31 0

L1P Invalidate Base Address

W-x

LEGEND: W = Write only; -x, value is indeterminate, see your device-specific data manual

Table 2-9. L1P Invalidate Base Address Register (L1PIBAR) Field Descriptions

Bit Field Value Description

31-0 L1PIBAR 0-FFFF FFFFh 32-bit base address for block invalidation.
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2.6.3.4 L1P Invalidate Word Count (L1PIWC)

The L1P invalidate word count register (L1PIWC) defines the size of the block invalidation that the
coherence operation will act upon. The size is defined in 32-bit words.

The L1P invalidate word count register (L1PIWC) is shown in Figure 2-5 and described in Table 2-10.

Figure 2-5. L1P Invalidate Word Count Register (L1PIWC)
31 16

Reserved

R-0

15 0

L1P Invalidate Word Count

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-10. L1P Invalidate Word Count Register (L1PIWC) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 L1PIWC 0-FFFFh Word count for block invalidation.

2.6.3.5 L1P Invalidate Register (L1PINV)

The L1P invalidate register (L1PINV) controls the global invalidation of the L1P cache and is shown in
Figure 2-6 and described in Table 2-11

Figure 2-6. L1P Invalidate Register (L1PINV)
31 16

Reserved

R-0

15 1 0

Reserved I

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2-11. L1P Invalidate Register (L1PINV) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 I Controls the global invalidation of L1P cache.

0 Normal operation.

1 All L1P cache lines are invalidated.
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2.6.4 Privilege and Cache Control Operations

The impact of privilege on cache control operations can be summarized as follows:

• Supervisor code may change L1P cache size.
• User-mode code may not change L1P cache size.
• Both supervisor and user mode code may issue invalidates to L1P.
• Both supervisor and user modes may freeze or unfreeze L1P at any time.

Table 2-12 summarizes who may access which L1P cache control registers.

Table 2-12. Permissions for L1P Cache Control Registers

Register Supervisor User

L1PCFG R/W R

L1PCC R/W R/W

L1PINV R/W R/W

L1PIBAR W W

L1PIWC R/W R/W

2.7 L1P Performance

2.7.1 L1P Miss Penalty

A program fetch which hits L1P completes in a single cycle without stalling the CPU. An L1P miss that hits
in L2 may stall the CPU for up to X cycles, depending on the parallelism of the execute packets in the
vicinity of the miss. Section 2.7.2 describes this in more detail.

An L1P miss that misses in L2 cache stalls the CPU until the L2 retrieves the data from external memory
and transfers the data to the L1P, which then returns the data to the CPU. This delay depends upon the
type of external memory used to hold the program, as well as other aspects of system loading.

The C64x+ DSP allows an execute packet to span two fetch packets. This spanning does not change the
penalty for a single miss. However, if both fetch packets are not present in L1P, two cache misses occur.

2.7.2 L1P Miss Pipelining

Miss pipelining can hide much of this overhead by overlapping the processing for several cache misses.
Additionally, some amount of the cache miss overhead can be overlapped with dispatch stalls that occur
in the fetch pipeline.

For L1P miss pipelining to be effective, there must be multiple outstanding cache misses. The C64x+ DSP
fetch pipeline accomplishes this by attempting to fetch one new fetch packet every cycle, as long as there
is room in the fetch pipeline. To understand how this works, it is necessary to understand the nature of the
fetch pipeline itself.

The fetch and decode pipeline is divided into 6 stages leading up to, but not including the first execution
stage, E1. The stages are:

• PG - Program Generate
• PS - Program Send
• PW - Program Wait
• PR - Program Read
• DP - Dispatch
• DC - Decode
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The C6000 DSP instructions are grouped into two groupings: fetch packets and execute packets. The
CPU fetches instructions from memory in fixed bundles of 8 instructions, known as fetch packets. The
instructions are decoded and separated into bundles of parallel-issue instructions known as execute
packets. A single execute packet may contain between 1 and 8 instructions. Thus, a single fetch packet
may contain multiple execute packets. An execute packet may also span two fetch packets on the
C64x+ DSP. The program read (PR) stage of the pipeline is responsible for identifying a sequence of
execute packets within a sequence of fetch packets. The dispatch (DP) stage is responsible for extracting
and dispatching them to functional units.

As a result of the disparity between fetch packets and execute packets, the entire fetch pipeline need not
advance every cycle. Rather, the PR pipeline stage only allows the program wait (PW) stage to advance
its contents into the PR stage when the DP stage has consumed the complete fetch packet held in PR.
The stages before PR advance as needed to fill in gaps. Thus, when there are no cache misses, the early
stages of the fetch pipeline are stalled while the DP stage pulls the individual execute packets from the
current fetch packet. These stalls are referred to as dispatch stalls.

The C64x+ DSP takes advantage of these dispatch stalls by allowing the earlier stages of the pipeline to
advance toward DP while cache misses for those stages are still pending. Cache misses may be pending
for the PR, PW, and PS pipeline stages. It is not necessary to expose these cache stalls to the CPU
because the DP stage stalls the PR stage with a dispatch stall while it consumes the fetch packets in the
PR stage of the pipeline. When a fetch packet is consumed completely; however, the contents of the PW
stage must advance into the PR stage. At this point, the CPU stalls if DP requests an execute packet from
PR for which there is still an outstanding cache miss.

When a branch is taken, the fetch packet containing the branch target advances through the fetch pipeline
every cycle until the branch target reaches the E1 pipeline stage. Branch targets override the dispatch
stall described above. As a result, they do not gain as much benefit from miss pipelining as other
instructions. However, the fetch packets that immediately follow a branch target do benefit. Although the
code in the fetch packets that follows the branch target may not execute immediately, the branch triggers
several consecutive fetches for this code. Thus, it pipelines any misses for that code. In addition, no stalls
are registered for fetch packets that were requested prior to the branch being taken, but that never made it
to the DP pipeline stage.

The miss performance is measured with sustained back-to-back misses in straight-line (non-branching)
code incurs an average miss penalty based on the average parallelism of the code. The average miss
penalty for a long sequence of sustained misses in straight-line code is summarized in Table 2-13. The
code is fetched from L2SRAM. Two different configurations are presented. The first configuration features
0 wait state for L2SRAM, 2 × 128 bit banks. This configuration is available in the DM644x devices. The
second configuration features 1 wait state L2SRAM, 4 × 128 bit banks. This configuration is available in
the C645x devices.

Table 2-13. L1P Miss Pipelining Performance (Average Number of Stalls per Execute Packet)

L2 Type 0 wait state, 2 × 128 bit banks 1 wait state, 4 × 128 bit banks

Instructions per Execute Packet L2 SRAM L2 Cache L2 SRAM L2 Cache

1 0.000 0.000 0.000 0.000

2 0.001 0.497 0.167 0.499

3 0.501 1.247 0.751 1.249

4 0.997 1.997 1.329 1.999

5 1.499 2.747 1.915 2.749

6 2.001 3.497 2.501 3.499

7 2.497 4.247 3.079 4.249

8 2.999 4.997 3.665 4.999
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2.8 Power-Down Support

The L1P memory can be powered-down in several ways in order to save power.

2.8.1 Static Power-Down

The L1P memory is powered-down when the entire megamodule is powered-down. The following software
sequence is required to power-down the C64x+ megamodule:

1. Enable power-down by setting the MEGPD field in the PDCCMD register to 1.
2. Enable the CPU interrupt(s) that you want to wake the megamodule up; disable all others.
3. Execute an IDLE instruction.

The megamodule stays in powered-down mode until the interrupts enabled in step 2 above are awakened.

The power-down controller command register (PDCCMD) is described in Chapter 9. If a DMA access
occurs to the L1D, L1P, or L2 memory while the megamodule is powered-down, the PDC wakes up all
three memory controllers. When the DMA access has been serviced, the PDC will power-down the
memory controllers again.

NOTE: Powering-down the megamodule as described here is often called static power-down. This
term is used to describe this mode since it is often used for longer periods of time. The use
of the term dynamic power-down elsewhere in this chapter implies that they are used for
limited periods of time.

2.8.2 Dynamic Power-Down

The L1P memory is automatically powered-down while the CPU executes code from the SPLOOP buffer.
For more information about the SPLOOP buffer, refer to the TMS320C64x/C64x+ DSP CPU and
Instruction Set Reference Guide (SPRU732) .

2.8.3 Feature-Oriented Power-Down

When the L1P cache is disabled (000b is written to the MODE field of the L1PCFG register) it is in a
power-down state to conserve energy further.
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2.9 L1P Memory Protection

L1P memory supports memory protection to offer the robustness required in many systems. Several levels
of memory protection are available. Not all of the levels are available on all of the devices. Refer to the
device-specific data manual for more information. Refer to Chapter 8 for the details of C64x+ protection.

2.9.1 Protection Checks on L1P Accesses

Unlike the L1D, L1P implements different memory protection rules for CPU program fetches from L1P
memory versus CPU DMA and IDMA accesses to L1P memory. The following sections detail those
differences.

All three memory controllers feature two exception outputs which are routed to the megamodule interrupt
controller. One of these exception outputs indicates that a CPU-triggered (“local”) memory exception
occurred. The other indicates that a DMA-triggered (“remote”) exception occurred. Most programs will
likely route the CPU-triggered exception input to the CPU’s exception input and the DMA-triggered input to
an interrupt input.

2.9.1.1 Protection Checks on CPU Program Fetches

L1P performs memory protection checks on all fetches. Each fetch packet has two permission bits
associated with it (shown in Table 2-14) that determine the execution privileges associated with the code
contained within the cache line or corresponding region of L1P RAM/L1P ROM. L1P provides the results
of the permission checks for all fetches, regardless of where the fetched data eventually arrives from.

Table 2-14. Permission Bits Examined With Each Fetch

Bit Description

UX User mode may eXecute

SX Supervisor mode may eXecute

2.9.1.2 Protection Checks on CPU Data Accesses

The CPU cannot directly access L1P RAM and ROM via load and store instructions. However, it can
attempt to access L1P’s control registers with load and store instructions.

The permissions associated with the registers are checked for reads of its registers. L1P checks writes off
of its registers. It will signal a CPU-triggered memory exception in response to disallowed writes. The
details of the exception are recorded in L1PMPFAR/L1PMPFSR, and L1P signals a CPU memory
protection exception event to the interrupt controller.

2.9.1.3 Protection Checks on DMA/IDMA Accesses

DMA and IDMA access to L1P memory are constrained to L1P RAM and ROM. DMA/IDMA cannot access
L1P cache. Accesses to the L1P RAM under the L1P cache are governed by protection entries associated
with the L1P RAM.

Each DMA/IDMA access is checked against the SR/SW/UR/UW and access ID fields for the
corresponding memory protection page. DMA/IDMA accesses to region 0 index into the first 16 memory
protection pages. DMA/IDMA accesses to region 1 index into the second 16 memory protection pages.

Upon an invalid access to L1P memory via a DMA or IDMA, the L1P signals an exception. The details of
this exception are recorded in L1PMPFAR/L1PMPFSR. L1P signals a DMA memory protection exception
event to the interrupt controller.
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2.9.2 Memory Protection Registers

The following registers govern the operation of memory protection within L1P. The MMRs fall into three
main categories:

• Memory Page Protection Attribute (MPPA) registers: Page attribute registers store the permissions
associated with each protected page.

• Memory Protection Lock (MPLK) registers: Peripherals may choose to implement a hardware memory
protection lock. When engaged, the lock disables all updates to the memory protection entries for that
peripheral.

• Memory Protection Fault (MPFxR) registers: Each peripheral that generates memory protection faults
provides MPFAR, MPFSR, and MPFCR registers for recording the details of the fault.

Table 2-15. Memory Protection Registers

Address Acronym Register Description Section

0184 A6xxh L1PMPPAxx Level 1 Memory Page Protection Attribute Registers Section 2.9.2.1

0184 A500h L1PMPLK0 Level 1 Memory Protection Lock Register 0 (L1PMPLK0) Section 2.9.2.2.1

0184 A504h L1PMPLK1 Level 1 Memory Protection Lock Register 1 (L1PMPLK1) Section 2.9.2.2.2

0184 A508h L1PMPLK2 Level 1 Memory Protection Lock Register 2 (L1PMPLK2) Section 2.9.2.2.3

0184 A50Ch L1PMPLK3 Level 1 Memory Protection Lock Register 3 (L1PMPLK3) Section 2.9.2.2.4

0184 A510h L1PMPLKCMD Level 1 Memory Protection Lock Command Register (L1PMPLKCMD) Section 2.9.2.2.5

0184 A514h L1PMPLKSTAT Level 1 Memory Protection Lock Status Register (L1PMPLKSTAT) Section 2.9.2.2.6

0184 A400h L1PMPFAR Level 1 Memory Protection Fault Address Register (L1PMPFAR) Section 2.9.2.3.1

0184 A404h L1PMPFSR Level 1 Memory Protection Fault Set Register (L1PMPFSR) Section 2.9.2.3.2

0184 A408h L1PMPFCLR Level 1 Memory Protection Fault Clear Register (L1PMPFCLR) Section 2.9.2.3.3
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2.9.2.1 Memory Page Protection Attribute Registers

Table 2-16 lists the registers for the memory page protection.

L1P implements 32 memory protection pages. L1PMPPA0 through L1PMPPA15 correspond to region 0
and L1PMPPA16 through L1PMPPA31 correspond to region 1.

Refer to the device-specific data manual to determine the page size and number of pages used on a
particular device.

Table 2-16. Memory Page Protection Attribute Registers

Address Acronym Register Description Section

0184 A600h L1PMPPA0 Level 1 Memory Page Protection Attribute Register 0 Section 2.9.2.1.1

0184 A604h L1PMPPA1 Level 1 Memory Page Protection Attribute Register 1 Section 2.9.2.1.1

0184 A608h L1PMPPA2 Level 1 Memory Page Protection Attribute Register 2 Section 2.9.2.1.1

0184 A60Ch L1PMPPA3 Level 1 Memory Page Protection Attribute Register 3 Section 2.9.2.1.1

0184 A610h L1PMPPA4 Level 1 Memory Page Protection Attribute Register 4 Section 2.9.2.1.1

0184 A614h L1PMPPA5 Level 1 Memory Page Protection Attribute Register 5 Section 2.9.2.1.1

0184 A618h L1PMPPA6 Level 1 Memory Page Protection Attribute Register 6 Section 2.9.2.1.1

0184 A61Ch L1PMPPA7 Level 1 Memory Page Protection Attribute Register 7 Section 2.9.2.1.1

0184 A620h L1PMPPA8 Level 1 Memory Page Protection Attribute Register 8 Section 2.9.2.1.1

0184 A624h L1PMPPA9 Level 1 Memory Page Protection Attribute Register 9 Section 2.9.2.1.1

0184 A628h L1PMPPA10 Level 1 Memory Page Protection Attribute Register 10 Section 2.9.2.1.1

0184 A62Ch L1PMPPA11 Level 1 Memory Page Protection Attribute Register 11 Section 2.9.2.1.1

0184 A630h L1PMPPA12 Level 1 Memory Page Protection Attribute Register 12 Section 2.9.2.1.1

0184 A634h L1PMPPA13 Level 1 Memory Page Protection Attribute Register 13 Section 2.9.2.1.1

0184 A638h L1PMPPA14 Level 1 Memory Page Protection Attribute Register 14 Section 2.9.2.1.1

0184 A63Ch L1PMPPA15 Level 1 Memory Page Protection Attribute Register 15 Section 2.9.2.1.1

0184 A640h L1PMPPA16 Level 1 Memory Page Protection Attribute Register 16 Section 2.9.2.1.1

0184 A644h L1PMPPA17 Level 1 Memory Page Protection Attribute Register 17 Section 2.9.2.1.1

0184 A648h L1PMPPA18 Level 1 Memory Page Protection Attribute Register 18 Section 2.9.2.1.1

0184 A64Ch L1PMPPA19 Level 1 Memory Page Protection Attribute Register 19 Section 2.9.2.1.1

0184 A650h L1PMPPA20 Level 1 Memory Page Protection Attribute Register 20 Section 2.9.2.1.1

0184 A654h L1PMPPA21 Level 1 Memory Page Protection Attribute Register 21 Section 2.9.2.1.1

0184 A658h L1PMPPA22 Level 1 Memory Page Protection Attribute Register 22 Section 2.9.2.1.1

0184 A65Ch L1PMPPA23 Level 1 Memory Page Protection Attribute Register 23 Section 2.9.2.1.1

0184 A660h L1PMPPA24 Level 1 Memory Page Protection Attribute Register 24 Section 2.9.2.1.1

0184 A664h L1PMPPA25 Level 1 Memory Page Protection Attribute Register 25 Section 2.9.2.1.1

0184 A668h L1PMPPA26 Level 1 Memory Page Protection Attribute Register 26 Section 2.9.2.1.1

0184 A66Ch L1PMPPA27 Level 1 Memory Page Protection Attribute Register 27 Section 2.9.2.1.1

0184 A670h L1PMPPA28 Level 1 Memory Page Protection Attribute Register 28 Section 2.9.2.1.1

0184 A674h L1PMPPA29 Level 1 Memory Page Protection Attribute Register 29 Section 2.9.2.1.1

0184 A678h L1PMPPA30 Level 1 Memory Page Protection Attribute Register 30 Section 2.9.2.1.1

0184 A67Ch L1PMPPA31 Level 1 Memory Page Protection Attribute Register 31 Section 2.9.2.1.1
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2.9.2.1.1 Memory Page Protection Attribute Registers

The size of each page differs from region to region and from one device to another. Some pages may not
be used on a particular device. Program unused pages to a value of all zeroes for debug purposes.

Refer to the device-specific data manual to determine the page size and number of pages used on a
particular device.

The general structure of the memory page protection attribute register (L1PMPPAxx) is shown in
Figure 2-7 and described in Table 2-17.

Figure 2-7. Memory Page Protection Attribute Registers (L1PMPPAx)
31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AID5 AID4 AID3 AID2 AID1 AID0 AIDX LOCAL Reserved SR SW SX UR UW UX

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 2-17. Memory Page Protection Attribute Register (L1PMPPAx) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15 AID5 Controls access from ID = 5.

0 Access denied.

1 Access granted.

14 AID4 Controls access from ID = 4.

0 Access denied.

1 Access granted.

13 AID3 Controls access from ID = 3.

0 Access denied.

1 Access granted.

12 AID2 Controls access from ID = 2.

0 Access denied.

1 Access granted.

11 AID1 Controls access from ID = 1.

0 Access denied.

1 Access granted.

10 AID0 Controls access from ID = 0.

0 Access denied.

1 Access granted.

9 AIDX Controls access from ID>=6

0 Access denied.

1 Access granted.

8 LOCAL Controls access from CPU to local memories (L1/L2)

0 Access denied.

1 Access granted.

7-6 Reserved 0 Reserved.

5 SR Supervisor read access type.

0 Normal operation.

1 Indicates a Supervisor read request.

40 Level 1 Program Memory and Cache SPRU871K–August 2010

Copyright © 2010, Texas Instruments Incorporated



www.ti.com L1P Memory Protection

Table 2-17. Memory Page Protection Attribute Register (L1PMPPAx) Field Descriptions (continued)

Bit Field Value Description

4 SW Supervisor write access type.

0 Normal operation.

1 Indicates a Supervisor write request.

3 SX Supervisor execute access type.

0 Normal operation.

1 Indicates a Supervisor execute request.

2 UR User read access type.

0 Normal operation.

1 Indicates a User read request.

1 UW User write access type.

0 Normal operation.

1 Indicates a User write request.

0 UX User execute access type.

0 Normal operation.

1 Indicates a User execute request.
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2.9.2.2 Memory Protection Lock Registers

The L1P implements a 64-bit lock register for controlling write access to the memory protection registers.

Table 2-18 lists the registers for the memory protection lock. See the device-specific data manual for the
memory address of these registers.

Table 2-18. Memory Protection Lock Registers

Address Acronym Register Description Section

0184 A500h L1PMPLK0 Memory Protection Lock Register 0 (L1PMPLK0) Section 2.9.2.2.1

0184 A504h L1PMPLK1 Memory Protection Lock Register 1 (L1PMPLK1) Section 2.9.2.2.2

0184 A508h L1PMPLK2 Memory Protection Lock Register 2 (L1PMPLK2) Section 2.9.2.2.3

0184 A50Ch L1PMPLK3 Memory Protection Lock Register 3 (L1PMPLK3) Section 2.9.2.2.4

0184 A510h L1PMPLKCMD Memory Protection Lock Command Register (L1PMPLKCMD) Section 2.9.2.2.5

0184 A514h L1PMPLKSTAT Memory Protection Lock Status Register (L1PMPLKSTAT) Section 2.9.2.2.6

2.9.2.2.1 Memory Protection Lock Register 0 (L1PMPLK0)

The memory protection lock register 0 (L1PMPLK0) is shown in Figure 2-8.

Figure 2-8. Memory Protection Lock Register 0 (L1PMPLK0)
31 0

Lock Bits 31:0

W-x

LEGEND: W = Write only; -x, value is indeterminate, see your device-specific data manual

2.9.2.2.2 Memory Protection Lock Register 1 (L1PMPLK1)

The memory protection lock register 1 (L1PMPLK1) is shown in Figure 2-9.

Figure 2-9. Memory Protection Lock Register 1 (L1PMPLK1)
31 0

Lock Bits 63:32

W-x

LEGEND: W = Write only; -x, value is indeterminate, see your device-specific data manual

2.9.2.2.3 Memory Protection Lock Register 2 (L1PMPLK2)

The memory protection lock register 2 (L1PMPLK2) is shown in Figure 2-10.

Figure 2-10. Memory Protection Lock Register 2 (L1PMPLK2)
31 0

Lock Bits 95:64

W-x

LEGEND: W = Write only; -x, value is indeterminate, see your device-specific data manual
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2.9.2.2.4 Memory Protection Lock Register 3 (L1PMPLK3)

The memory protection lock register 3 (L1PMPLK3) is shown in Figure 2-11.

Figure 2-11. Memory Protection Lock Register 3 (L1PMPLK3)
31 0

Lock Bits 127:96

W-x

LEGEND: W = Write only; -x, value is indeterminate, see your device-specific data manual

2.9.2.2.5 Memory Protection Lock Command Register (L1PMPLKCMD)

The memory protection lock command register (L1PMPLKCMD) is shown in Figure 2-12 and described in
Table 2-19.

Figure 2-12. Memory Protection Lock Command Register (L1PMPLKCMD)
31 16

Reserved

R-0

15 3 2 1 0

Reserved KEYR LOCK UNLOCK

R-0 W-0 W-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 2-19. Memory Protection Lock Command Register (L1PMPLKCMD) Field Descriptions

Bit Field Value Description

31-3 Reserved 0 Reserved

2 KEYR Reset status

0 No effect.

1 Reset status

1 LOCK Interface to complete a lock sequence.

0 No effect.

1 Locks the lock provided that the software executed the sequence correctly.

0 UNLOCK Interface to complete an unlock sequence.

0 No effect.

1 Unlocks the lock provided that the software executed the sequence correctly.
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2.9.2.2.6 Memory Protection Lock Status Register (L1PMPLKSTAT)

The memory protection lock status register (L1PMPLKSTAT) is shown in Figure 2-13 and described in
Table 2-20.

Figure 2-13. Memory Protection Lock Status Register (L1PMPLKSTAT)
31 16

Reserved

R-0

15 1 0

Reserved LK

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 2-20. Memory Protection Lock Status Register (L1PMPLKSTAT) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 LK Indicates the lock's current status.

0 Lock is disengaged.

1 Lock is engaged.

As illustrated above, the memory protection architecture allows for lock sizes up to 128 bits. The L1P
implements only a 64-bit lock behind the lock interface. Thus, the values written to L1PMPLCK1,
L1PMPLCK2, and L1PMPLCK3 are ignored. The behavior of the lock mechanism with respect to keys that
are shorter than 128 bits is defined in Chapter 8.
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2.9.2.3 Memory Protection Fault Registers

Table 2-21 lists the registers for the memory protection fault. See the device-specific data manual for the
memory address of these registers.

In order to allow programs to diagnose a memory protection fault after an exception occurs, the L1P
implements two registers dedicated to storing information about the fault.

Table 2-21. Memory Protection Fault Registers

Address Acronym Register Description Section

0184 A400h L1PMPFAR Level 1 Program Memory Fault Address Register Section 2.9.2.3.1

0184 A404h L1PMPFSR Level 1 Program Memory Fault Set Register Section 2.9.2.3.2

0184 A408h L1PMPFCLR Level 1 Program Memory Fault Clear Register Section 2.9.2.3.3

2.9.2.3.1 L1P Memory Protection Fault Address Register (L1PMPFAR)

The memory protection fault address register (L1PMPFAR) is shown in Figure 2-14 and described in
Table 2-22.

Figure 2-14. L1P Memory Protection Fault Address Register (L1PMPFAR)
31 0

Fault Address

R-x

LEGEND: R = Read only; -x, value is indeterminate, see your device-specific data manual

Table 2-22. L1P Memory Protection Fault Address Register (L1PMPFAR) Field Descriptions

Bit Field Value Description

31-0 Fault Address 0-FFFF FFFFh Reserved
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2.9.2.3.2 L1P Memory Protection Fault Set Register (L1PMPFSR)

The memory protection fault set register (L1PMPFSR) is shown in Figure 2-15 and described in
Table 2-23.

Figure 2-15. L1P Memory Protection Fault Set Register (L1PMPFSR)
31 16

Reserved

R-0

15 9 8 7 6 5 4 3 2 1 0

FID LOCAL Reserved SR SW Reserved UR UW Reserved

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 2-23. L1P Memory Protection Fault Set Register (L1PMPFSR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-9 FID 0-7Fh Bit 6:0 of faulting requestor. If ID is narrower than 7 bits, the remaining bits return 0. If ID is
wider than 7 bits, the additional bits get truncated. FID =0 if LOCAL =1.

8 LOCAL 0 Normal operation.

1 Access was a "LOCAL" access.

7-6 Reserved 0 Reserved

5 SR Supervisor read access type.

0 Normal operation.

1 Indicates a Supervisor read request.

4 SW Supervisor write access type.

0 Normal operation.

1 Indicates a Supervisor write request.

3 Reserved 0 Reserved

2 UR User read access type.

0 Normal operation.

1 Indicates a User read request.

1 UW User write access type.

0 Normal operation.

1 Indicates a User write request.

0 Reserved 0 Reserved
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2.9.2.3.3 L1P Memory Protection Fault Clear Register (L1PMPFCLR)

The memory protection fault clear register (L1PMPFCLR) is shown in Figure 2-16 and described in
Table 2-24.

Figure 2-16. L1P Memory Protection Fault Clear Register (L1PMPFCLR)
31 16

Reserved

R-0

15 1 0

Reserved MPFCLR

R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 2-24. L1P Memory Protection Fault Clear Register (L1PMPFCLR) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 MPFCLR Command to clear the L1DMPFAR.

0 No effect.

1 Clear L1DMPFAR and L1DMPFCR.

The L1PMPFAR and L1PMPFSR registers only store enough information for one fault. Generally, the
hardware records the information about the first fault and generates an exception only for that fault. L1P
has a notion of “local” (CPU triggered) and “remote” (DMA/IDMA triggered) faults. The L1P allows a “local”
fault to replace a “remote” fault and generate a new exception.

The fault information is held until the software clears it by writing a 1 to the MPFCLR bit in the L1PMPFCR
register. Writing a 0 to the MPFCLR bit in the L1PMPFCR register has no effect.
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2.9.2.3.4 Protection Checks on Accesses to Memory Protection Registers

L1P implements permission checks on the memory protection registers themselves. The rules are as
follows:
• All requestors can read any memory protection (MP) register at any time in all circumstances, except

L1PMPLK0 through L1PMPLK3.
• Supervisor can write the register.

Table 2-25 summarizes which L1P memory protection registers are accessible by role and what protection
checks are performed in the megamodule.

Table 2-25. Permissions for L1P Memory Protection Registers

Register Supervisor User

L1PMPFAR R R

L1PMPFSR R R

L1PMPFCR W /

L1PMPLK0 W /

L1PMPLK1 W /

L1PMPLK2 W /

L1PMPLK3 W /

L1PMPLKCMD W /

L1PMPLKSTAT R R

L1PMPPAxx R/W R
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3.1 Introduction

3.1.1 Purpose of the Level 1 Data (L1D) Memory and Cache

The purpose of the L1D memory and cache is to maximize performance of the data processing. The
configurability of the L1D memory and cache offers the flexibility to use L1D cache or L1D memory in a
system.

3.1.2 Features

The L1D memory and cache provide the following features:

• Configurable L1D cache size: 0K, 4K, 8K, 16K, 32K.
• Memory protection
• Cache block and global coherence operations

3.1.3 Terms and Definitions

Refer to Appendix A and Appendix B of this document for detailed definitions of the terms used in this
chapter. Appendix A describes general terms used throughout this reference guide and Appendix B
defines terms related to the memory and cache architecture.

3.2 L1D Memory Architecture

3.2.1 L1D Memory

The L1D memory supports up to 1MB of memory-mapped RAM and ROM. L1D memory may not be
cached within L1D cache, L1P cache, or L2 cache within the same megamodule.

The L1D memory's base address is constrained to 1MB boundaries. The total size of L1D memory must
be a multiple of 16K bytes.

L1D memory is not cached within L1D cache, L1P cache, or L2 cache within the same megamodule.

3.2.1.1 L1D Regions

L1D memory is divided into two regions, denoted L1D region 0 and L1D region 1. The regions have the
following different features:

• Each region has separate memory protection entries.
• Part of L1D region 1 can be converted into data cache.

The two regions appear consecutively in memory. Region 0 may be 0K bytes (thus disabled), or any
power-of-2 size in the range 16K to 512K. Region 1 starts at the end of region 0. Its size may be any
multiple of 16K from 16K to 512K bytes. When region 0 is enabled, the size of region 1 must be less than
or equal to the size of region 0, when region 0 is enabled.

The two L1D regions divide the memory protection entries into two sets. There are 32 data memory
protection pages as described in Section 3.7.2. The first 16 pages cover region 0, and the second 16
pages cover region 1. When region 0 is 0K bytes, its memory protection pages go unused.

The actual memory configuration is device-specific. Refer to the device-specific data manual for more
information.
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3.3 L1D Cache

The C64x+ L1D memory and cache architecture allow converting part or all of L1D region 1 into a
read-allocate, writeback, two-way set-associative cache. The cache is necessary to facilitate reading and
writing data at the full CPU clock rate, while still having a large system memory. It is the cache's
responsibility to hide much of the latency associated with reading from and writing to the slower system
memory.

The cache controller design supports a range of cache sizes, from 4K through 32K. However, a given
device may implement less than 32K of L1D RAM in region 1.

The L1D cache converts L1D memory to cache starting at the highest L1D memory address in L1D region
1 and working downwards.

The L1D memory is initialized as either "All RAM" or "maximal cache" at reset. Refer to the device-specific
data manual for specific behavior.

The operation of the L1D Cache is controlled through several registers. These registers are described in
more detail in Section 3.4.

3.3.1 L1D Cache Architecture

L1D cache is a two-way set associative cache, meaning that every physical memory location in the
system has two possible locations in the cache where it can reside. When the CPU attempts to access a
piece of data, the L1D cache must check whether the requested address resides in either way of the L1D
cache. To do so, the 32-bit address provided by the CPU is partitioned into six fields, as shown in
Figure 3-1.

Figure 3-1. Data Access Address Organization
31 X + 1 X 6 5 4 2 1 0

Tag Set Offset

Sub-line Bank Byte

The offset of six bits accounts for the fact that an L1D line size is 64 bytes. The cache control logic
ignores bits 0 through 5 of the address (the byte, bank, and sub-line fields). Bits 0 through 5 only
determine which bank and which bytes within a bank to access; thus, they are irrelevant to the cache's tag
compare logic. The set field indicates that the L1D cache line address where the data would reside, if it
were cached. The width of the set field depends on the amount of L1D that you configure as cache, as
defined in Table 3-1 below. Use the set field to look up and check the tags in each way for any
already-cached data from that address as well as the valid bit, which indicates whether the address in the
tag actually represents a valid address held in cache.

The tag field is the upper portion of the address that identifies the true physical location of the data
element. The cache compares the tag to the stored tags for both ways of the L1D cache.

If one of the tags matches and you set the corresponding valid bit is set on reads, then it is a "hit," and the
data cache returns data to the CPU directly from the L1D cache. Otherwise, the read is a "miss", and the
CPU stalls while the request is sent on to the Level 2 (L2) memory to fetch the data from its location
elsewhere in the system.

The CPU can also write data to L1D. When the CPU performs a store, the L1D performs the same tag
comparison as it does for reads. If a valid matching tag is found, then the write is a "hit", and the data is
written directly into the L1D cache location. Otherwise, the write is a "miss" and the data is queued in the
L1D write buffer. This buffer is used to prevent CPU stalls on write misses. Since the CPU does not wait
for data to return on writes, there is no reason to stall during the L2 access.
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The L1D cache configuration determines the size of the set and tag fields, as shown in Table 3-1.

Table 3-1. Data Access Address Set Field Width

L1DMODE Setting in the L1DCFG Register Amount of L1D Cache 'X' Bit Position Description

000b 0K N/A L1D is all RAM

001b 4K 10 32 L1D cache lines

010b 8K 11 64 L1D cache lines

011b 16K 12 128 L1D cache lines

100b 32K 13 256 L1D cache lines

101b Reserved. Maps to 32K

110b

111b "Maximal Cache." Maps to 32K

Another characteristic of the data cache is the ability to evict data from the L1D cache to L2. Since the
CPU is able to modify the contents of the L1D cache, it must be capable of updating the data in its true
physical location. This occurs when a new L1D line replaces one that has been modified, or when the
CPU tells the L1D cache to write back modified data through software control.

3.3.2 Replacement and Allocation Strategy

The L1D cache operates with a fixed two-way set associativity in all cache configurations. This means that
each location in system memory can reside in either of two possible locations in the L1D cache.

The L1D cache is a read-allocate-only cache. This means that the L1D cache will fetch a complete line of
64 bytes only on a read miss. Write misses are sent directly to L2 through the L1D write buffer. The
replacement strategy calls for the least-recently-used (LRU) L1D line to be replaced with the new line.
This keeps the most recently-accessed data in the L1D cache at all times.

L1D is writeback cache. Write hits are processed directly within L1D. The update is not passed to L2 or
the rest of the memory system immediately. When a cache line is modified, that line's associated "dirty bit"
is set to 1. L1D writes back only dirty lines when evicting them to make room for newly-cached data, when
the program initiates a manual coherence operation to force its writeback, or when the CPU initiates a
long-distance read to a non-cacheable memory having a set match.
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3.3.3 L1D Mode Change Operations

You can configure the size of L1D cache at run time. Programs select the size of L1D cache by writing the
requested mode to the L1DMODE field in the L1DCFG register.

The L1DMODE field in the L1DCFG register selects the L1D cache mode according to Table 3-2.

Table 3-2. Cache Size Specified by the L1DMODE in the L1DCFG

L1DMODE Setting in L1DCFG Register Amount of L1D Cache

000b 0K

001b 4K

010b 8K

011b 16K

100b 32K

101b Reserved. Maps to 32K

110b

111b "Maximal Cache." Maps to 32K

The actual range of L1D cache modes is constrained by the size of L1D region 1.

In general, a larger value of L1DMODE specifies a larger cache size, up to the size of the implemented
L1D memory. The maximum L1D cache size is the smaller of "largest power-of-2 that fits in L1D region 1
RAM size" and 32K.

For example, when L1D region 1 is only 16K in size, the L1D cache can be no larger than 16K. In this
case, the encoding 011b through 111b maps to 16K. On these devices, L1DMODE settings 100b through
111b will select the 16K cache mode as opposed to the 32K cache mode. That is, modes 000b through
011b always select the requested size, 0K through 16K. Modes 100b through 111b selects the maximum
size implied by the size of L1D memory: 16K or 32K.

As a result of this policy, programs wanting no more than a certain amount of cache should program the
value corresponding to this upper bound. Programs desiring "as much cache as possible" should program
111b into L1DMODE.

When programs initiate a cache mode change, the L1D cache itself writes back and invalidates its current
contents without loss of data.

A writeback-invalidate is necessary to ensure correct cache behavior and to ensure no cached data is lost;
however, it is not sufficient to prevent data loss in addressable L1D memory locations becoming cache. To
safely change L1D cache modes, applications must adhere to the procedure in Table 3-3.

Table 3-3. Switching L1D Modes

To switch from. . . To. . . The program must perform the following steps. . .

A mode with no or some L1D cache A mode with more L1D cache 1. DMA, IDMA, or copy any needed data out of the
affected range of L1D RAM.

2. Write the desired cache mode to the L1DMODE
field in the L1DCFG register.

3. Read back L1DCFG. This stalls the CPU until the
mode change completes.

A mode with some L1D cache A mode with less or no L1D cache 1. Write the desired cache mode to the L1DMODE
field in the L1DCFG register.

2. Read back L1DCFG. This stalls the CPU until the
mode change completes.
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3.3.4 L1D Freeze Mode

The L1D cache directly supports a freeze mode of operation for applications. This mode allows real-time
applications to limit the amount of data evicted from L1D during various sections of code, such as interrupt
handlers. L1D freeze mode only affects L1D cache. L1D RAM is not affected by freeze mode.

The L1D cache services read hits and write hits normally while in freeze mode, with the small exception
that the LRU bit is not modified. Read hits return data from the cache. Write hits update the cached data
for the cache line and mark it dirty, as necessary. The LRU bit is not updated. The LRU bit is the bit which
indicates the least recently used way for the affected cache line). In freeze mode, the L1D cache does not
allocate new cache lines on read misses, nor will it evict any existing cache contents in freeze mode.
Write misses in the L1D write buffer are queued normally.

In freeze mode, the L1D cache still responds normally to cache-coherence commands issued from L2
(snoop-read, snoop-write), as well as any program-initiated cache controls (writeback, invalidate,
writeback-invalidate, and mode change). L1D’s freeze mode has no impact on whether L2 allocates cache
lines. Likewise, L2’s freeze mode has no impact on whether L1D allocates cache lines.

The OPER field in the L1DCC register controls the L1D freeze mode. The CPU places L1D into freeze
mode by writing 1 to the OPER field. The CPU returns L1D to normal operation by writing 0 to the OPER
field in the L1DCC register.

The POPER field in the L1DCC register holds the previous value of the OPER field. The value of OPER in
the L1DCC register is copied to the POPER field in the L1DCC register on writes to the L1DCC register.
This alleviates the cycle cost of reading the L1DCC register (in order to save OPER's previous value)
before it is written. If the POPER field is not in the L1DCC register, the program must read, write, and then
read again to fully freeze the cache while recording its previous operating mode. If the POPER field is in
the L1DCC register, this operation only requires a single write followed by a read.

The following operations occur when you perform a write to the L1DCC register:

1. The content of the OPER field copies to the POPER field in the L1DCC register.
2. The POPER field loses its previous value.
3. The OPER field updates according to the value that the CPU writes to bit 0 of the L1DCC register.

Thus, the write to the L1DCC register only modifies the OPER field in the L1DCC register.

In order to ensure that the L1PCC register updates, the software must perform a write to the L1PCC
register followed by a read of the L1PCC register. This guarantees that the requested mode is in effect.

Programs cannot directly modify the POPER field with a single write.

The goal of the OPER and the POPER fields in the L1DCC register is to avoid the CPU cycle penalty and
code size involved in a read-write-reread sequence that would otherwise be necessary. Thus, applications
may quickly freeze L1D and record the previous "freeze" state of L1D with the short sequence of code in
Example 3-1.

Example 3-1. L1D Quick Freeze Example Code Sequence

MVKL L1DCC, A0 ; Point to L1DCC
MVKH L1DCC, A0 ;

|| MVK 1, B0 ; OPER encoding for 'freeze'
STW B0, *A0[0] ; Write 1 to L1DCC.OPER
LDW *A0[0], A1 ; Read L1DCC to get L1DCC.POPER
NOP 4

; At this point, L1D is frozen, and the CPU has the old OPER value ; in bit 16 of A1.
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You can use the L1DCC register for unfreezing the cache in a manner similar to how it was frozen.
Example 3-2 illustrates.

Example 3-2. L1DCC.OPER Restore Example Code Sequence

MVKL L1DCC, A0 ; Point to L1DCC
MVKH L1DCC, A0 ;

|| SHRU A1, 16, A1 ; Shift POPER field into OPER's position
STW A1, *A0[0] ; Write to L1DCC, restoring old value of OPER
LDW *A0[0], A1 ; Read back L1DCC to ensure change is complete
NOP 4

; At this point, L1D is in its previous state (frozen or unfrozen).

NOTE: Both L1D and L1P offer freeze modes via this sort of mechanism. (Refer to Chapter 2 for
more information on implementing L1P). It is often desirable to freeze both caches together.
Therefore, consecutive writes to the L1DCC register and to the L1PCC register followed by
reading both the L1DCC register and the L1PCC register is sufficient to ensure that both L1P
and L1D are frozen. Example 3-3 illustrates a sequence that freezes both L1P and L1D.

Example 3-3. Example Code Sequence for Freezing L1P and L1D Simultaneously

MVKL L1DCC, A0 ; \
|| MVKL L1PCC, B0 ; |__ Generate L1DCC pointer in A0

MVKH L1DCC, A0 ; | and L1PCC pointer in B0
|| MVKH L1PCC, B0 ; /
|| MVK 1, A1 ; \___ OPER encoding for 'freeze'
|| MVK 1, B1 ; / in both A1 and B1.

STW A1, *A0 ; Write to L1DCC.OPER
|| STW B1, *B0 ; Write to L1PCC.OPER

LDW *A0, A1 ; Get old freeze state into A1 from L1DCC
|| LDW *B0, B1 ; Get old freeze state into B1 from L1PCC

NOP 4
; At this point, L1P and L1D are frozen.
; The old value of L1DCC.OPER is in bit 16 of A1.
; The old value of L1PCC.OPER is in bit 16 of B1.
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3.3.5 Program-Initiated Cache Coherence Operations

The C64x+ L1D cache supports program-initiated cache coherence operations. These operations operate
either on a block of addresses, or on the entire L1D cache.

The following cache coherence operations are supported:

• Invalidation: Valid cache lines are made invalid. Content of the affected cache lines is discarded.
• Writeback: The content of all dirty cache lines is written to a lower-level memory.
• Writeback-invalidation: Writeback operation followed by invalidation. Only the content of the dirty cache

lines is written to lower-level memory, but all of the lines are invalidated.

3.3.5.1 Global Coherence Operations

Global cache operations execute on the entire L1D cache. The global coherence operations supported are
invalidation, writeback, and writeback-invalidation.

In order to initiate a global invalidation operation, the program must write a 1 to the I bit of the L1DINV
register.

Upon completion of the global invalidate operation, the I bit of the L1DINV register resets to 0. The
program can poll this bit to detect the completion of the operation.

In order to initiate a global writeback operation, the program needs to write a 1 to the C bit of the L1DWB
register.

The C bit of the L1DWB register resets to 0 upon completion. The program can poll this bit to detect the
completion of the operation.

The writeback-invalidation operation is controlled in a similar way. In order to initiate a global
writeback-invalidation operation, the program must write a 1 to the C bit of the L1DWBINV register.

Table 3-4 provides a summary of the L1D global cache coherence operations.

Table 3-4. Global Coherence Operations

Cache Operation Register L1D Effect
Used

L1D Writeback L1DWB All updated data written back to L2 / external, but left valid on L1D.

L1D Writeback with Invalidate L1DWBINV All updated data written back to L2 / external. All lines invalidated within L1D.

L1D Invalidate L1DINV All lines invalidated in L1D. Updated data is dropped.

CAUTION

The L1D global-invalidate causes all updated data in L1D to be discarded,
rather than written back to the lower levels of memory. This can cause incorrect
operation in programs that expect the updates to be written to the lower levels
of memory. Therefore, most programs use either the L1D block
writeback-invalidate (described in Section 3.3.5.2) or the global L2 operations,
rather than the L1D global-invalidate.

You can also globally invalidate the L1D cache by setting the ID bit in the L2CFG register to 1 for legacy
reasons. The ID field is provided for backward compatibility with C64x and C64x+ devices, but it should
not be used in new applications. New applications should use the L1DINV register.
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3.3.5.2 Block Coherence Operations

Block coherence operations have similar functionality as the global coherence operations; however, they
apply only to a defined block of data. This block is defined by the base address and by the word (32-bit)
size in the associated memory-mapped registers.

The block coherence operations are designed to be as efficient as possible, while minimizing impact to
tasks running concurrently on the CPU. Block coherence operations are usually running in the
“background” of CPU activity.

The block coherence operations supported are invalidation, writeback, and writeback-invalidation. Each
operation has two registers associated with it. The L1DXXBAR register defines the base address of the
block and the L1DXXWC register defines the word size of the block

Writing a non-zero value to the word count field in the L1DXXWC register initiates a block coherence
operation.

The word count field decrements upon completion of the block coherence during the operation, the
operation sets to 0. The program can poll this bit to detect the completion of the operation.

Table 3-5 provides a summary of the L1D block cache coherence operations.

Table 3-5. Block Cache Operations

Cache Operation Register Used L1D Effect

L1D Writeback L1DWBAR Updated data written back to L2 / external, but left valid in L1D.

L1DWWC

L1D Writeback with Invalidate L1DWIBAR Updated data written back to L2 / external. All lines in range
invalidated within L1D.L1DWIWC

L1D Invalidate L1DIBAR All lines in range invalidated in L1D. Updated data is dropped.

L1DIWC

NOTE: Reads or writes to the addresses within the block being operated on while a block cache
operation is in progress may cause those addresses to not be written back or invalidated as
requested. To avoid this, programs should not access addresses within the range of cache
lines affected by a block cache operation while the operation is in progress. Programs may
poll the appropriate word count field to determine when the block operation is complete.

Two simultaneous accesses to the same bank incur a one-cycle stall penalty, except under the following
special cases:

• The memory accesses are both writes to non-overlapping bytes within the same word. Therefore, bits
31-2 of the address are the same.

• The memory accesses are both reads that access all or part of the same word. Thus, bits 31-2 of the
address are the same. In this case, the two accesses may overlap.

• One or both of the memory accesses is a write that misses L1D and is serviced by the write buffer
instead. (See section Section 3.5.3 for information on the write buffer).

• The memory accesses form a single nonaligned access. Nonaligned accesses do not cause
bank-conflict stalls, even though the memory system may subdivide them into multiple accesses.

Notice that a read access and a write access in parallel to the same bank always causes a stall. Two
reads or two writes to the same bank may not stall as long as the above conditions are met.

Simultaneous CPU and DMA/IDMA accesses to distinct L1D memory banks do not stall. Accesses to the
same bank result in a conflict between CPU and DMA/IDMA. One or the other stall based on the rules
described in Chapter 6.
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3.3.6 Cache Coherence Protocol

The C64x+ L1D cache remains coherent with respect to DMA activity in L2 RAM. To support this
paradigm, the L1D cache accepts cache coherence commands arriving from L2.

3.3.6.1 L2 to L1D Cache Coherence Protocol

To support L1D cache coherence with respect to DMA/IDMA traffic in L2 RAM, the L1D controller supports
two cache coherence commands arriving from L2: snoop-read (SNPR) and snoop-write (SNPW). The L2
only sends these snoop commands, when necessary, in response to DMA and IDMA activity in L2 RAM.

Snoop-read is sent to L1D when L2 detects that the L1D cache holds the requested line, and that the line
is dirty. L1D responds by returning the requested data.

Snoop-write is sent to L1D when L2 detects that the L1D holds the requested line. It does not matter if the
line is modified within L1D. The L1D updates its contents accordingly.

3.3.6.2 L1D to L2 Cache Coherence Protocol

In order to reduce excessive snoop traffic to L1D, L2 filters the snoops so that unnecessary snoops are
not sent to L1D.

L2 keeps a shadow copy of L1D's tag memory. L2 consults its local copy of the L1D tags to decide
whether a snoop command to L1D is warranted.

L2 primarily updates its shadow tags in response to L1D read miss requests, and secondarily in response
to L1D victim writebacks. When L1D issues a read request, it also indicates whether or not the line is
allocated within L1D; and if so, what way within the set the line is allocated in. L2 can update the
corresponding set in its shadow tags from this information.

In addition to tracking which addresses are present in L1D cache, L2 tracks also tracks whether or not
those lines are dirty in the C64x+ DSP.
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3.4 L1D Cache Control Registers

3.4.1 Memory Mapped L1D Cache Control Register Overview

The C64x+ memory system provides a set of registers to govern the operation of L1D cache. These
registers allow for changing cache modes and manually initiating cache coherence operations.

Table 3-6 below lists the L1D cache control registers.

Table 3-6. L1D Specific Cache Control Operations

Type of Operation Register Name Address Action Section

Mode Select L1DCFG 0184 0040h Configures the size of L1D cache. Section 3.4.3.1

L1DCC 0184 0044h Controls L1D operating mode Section 3.4.3.2
(freeze/normal).

Block Cache L1DWIBAR 0184 4030h Specified range is written back and Section 3.4.4.2
Operation invalidated within L1D.L1DWIWC 0184 4034h

L1DWBAR 0184 4040h Specified range is written back from
L1D and left valid.L1DWWC 0184 4044h

L1DIBAR 0184 4048h Specified range is invalidated in L1D
without being written back.L1DIWC 0184 404Ch

Global Cache L1DWB 0184 5040h Entire contents of L1D is written Section 3.4.4.1
Operation back, but left valid.

L1DWBINV 0184 5044h Entire contents of L1D is written
back and invalidated.

L1DINV 0184 5048h or ID bit in CCFG Entire contents of L1D is invalidated
without being written back.

In addition to the L1D-specific registers listed above, the L1D cache is directly affected by writes to
L2-specific controls as well. Refer to Chapter 4 for the complete list of cache control operations and their
effect on the L1D cache.

3.4.2 CPU L1D Cache Control Registers

The CPU has a single internal control register that dedicates a field to cache control operations, CSR. The
DCC field in the CSR control register controlled the operation of L1D in various ways in previous devices.

The CSR no longer controls the operation of L1D in the C64x+ DSP. L1D ignores the value held in the
DCC field. The former action of the DCC field is now part of the L1DCC and L1DCFG registers, as
described in Section 3.3.4.
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3.4.3 L1D Cache Configuration Registers

The L1DCFG and L1DCC registers control the operation of L1D.

3.4.3.1 L1D Cache Configuration (L1DCFG) Register

The L1D cache configuration register (L1DCFG) controls the size of L1D cache and is shown in Figure 3-2
and described in Table 3-7.

Figure 3-2. L1D Cache Configuration Register (L1DCFG)
31 16

Reserved

R-0

15 3 2 0

Reserved L1DMODE

R-0 R/W-0h or 7h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-7. L1D Cache Configuration Register (L1DCFG) Field Descriptions

Bit Field Value Description

31-3 Reserved 0 Reserved

2-0 L1DMODE 0-7h Defines the size of the L1D cache. The L1DMODE field powers-up as either 0h or 7h. Refer to
the device-specific data manual for further information.

0h L1D cache disabled.

1h 4K

2h 8K

3h 16K

4h 32K

5h Maximal cache size.

6h Maximal cache size.

7h Maximal cache size.
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3.4.3.2 L1D Cache Control (L1DCC) Register

The L1D cache control register (L1DCC) controls whether L1D is frozen or unfrozen and is shown in
Figure 3-3 and described in Table 3-8.

Figure 3-3. L1D Cache Control Register (L1DCC)
31 17 16

Reserved POPER

R-0 R-0

15 1 0

Reserved OPER

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-8. L1D Cache Control Register (L1DCC) Field Descriptions

Bit Field Value Description

31-17 Reserved 0 Reserved

16 POPER 0-1 Holds the previous value of the OPER field.

15-1 Reserved 0 Reserved

0 OPER Controls the L1D freeze mode.

0 Freeze mode disabled.

1 Freeze mode enabled.
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3.4.4 L1D Cache Coherence Operation Registers

3.4.4.1 Global Coherence Operation Registers

3.4.4.1.1 L1D Invalidate Register (L1DINV)

The L1D invalidate register (L1DINV) controls the global invalidation of the L1D cache and is shown in
Figure 3-4 and described in Table 3-9.

Figure 3-4. L1D Invalidate Register (L1DINV)
31 16

Reserved

R-0

15 1 0

Reserved I

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-9. L1D Invalidate Register (L1DINV) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved.

0 I Controls the global invalidation of L1D cache.

0 Normal operation.

1 All L1D cache lines are invalidated.
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3.4.4.1.2 L1D Writeback Register (L1DWB)

The L1D writeback register (L1DWB) is shown in Figure 3-5 and described in Table 3-10.

Figure 3-5. L1P Writeback Register (L1DWB)
31 16

Reserved

R-0

15 1 0

Reserved C

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-10. L1D Writeback Register (L1DWB) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 C Controls the global writeback operation of L1D cache.

0 Normal L1D operation.

1 Dirty L1D lines are written back.

3.4.4.1.3 L1D Writeback-Invalidate Register (L1DWBINV)

The L1D writeback-invalidate register (L1DWBINV) controls the writeback-invalidate operation of L1D
cache and is shown in Figure 3-6 and described in Table 3-11.

Figure 3-6. L1D Writeback-Invalidate Register (L1DWBINV)
31 16

Reserved

R-0

15 1 0

Reserved C

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-11. L1D Writeback-Invalidate Register (L1DWBINV) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 C Controls the global writeback-invalidate operation of L1D cache.

0 Normal L1D operation.

1 Dirty L1D lines written back, all L1D lines are invalidated.
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3.4.4.2 Block Coherence Operation Registers

3.4.4.2.1 L1D Invalidate Base Address Register (L1DIBAR)

The L1D invalidate base address register (L1DIBAR) defines the base address of the block that will be
invalidated and is shown in Figure 3-7 and described in Table 3-12.

Figure 3-7. L1D Invalidate Base Address Register (L1DIBAR)
31 0

L1D Invalidate Base Address (L1DIBAR)

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

Table 3-12. L1D Invalidate Base Address Register (L1DIBAR) Field Descriptions

Bit Field Value Description

31-0 L1DIBAR 0-FFFF FFFFh Defines the base address for the L1D block invalidate operation.

3.4.4.2.2 L1D Invalidate Word Count Register (L1DIWC)

The L1D invalidate word count register (L1DIWC) defines the size of the block that will be invalidated. The
size is defined in 32-bit words and is shown in Figure 3-8 and described in Table 3-13.

Figure 3-8. L1D Invalidate Word Count Register (L1DIWC)
31 16

Reserved

R-0

15 0

L1D Invalidate Word Count (L1DIWC)

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-13. L1D Invalidate Word Count Register (L1DIWC) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 L1DIWC 0-FFFFh Word count for block invalidation

64 Level 1 Data Memory and Cache SPRU871K–August 2010

Copyright © 2010, Texas Instruments Incorporated



www.ti.com L1D Cache Control Registers

3.4.4.2.3 L1D Writeback Base Address Register (L1DWBAR)

The L1D writeback base address register (L1DWBAR) defines the base address of the block that will be
written back and is shown in Figure 3-9 and described in Table 3-14.

Figure 3-9. L1D Writeback Base Address Register (L1DWBAR)
31 0

L1D Writeback Base Address (L1DWBAR)

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual.

Table 3-14. L1D Writeback Base Address Register (L1DWBAR) Field Descriptions

Bit Field Value Description

31-0 L1DWBAR 0-FFFF FFFFh Defines the base address for the L1D block writeback operation

3.4.4.2.4 L1D Writeback-Invalidate Word Count Register (L1DWIWC)

The L1D writeback-invalidate word count register (L1DWIWC) defines the size of the block that will be
invalidated. The size is defined in 32-bit words and is shown in Figure 3-10 and described in Table 3-15.

Figure 3-10. L1D Writeback-Invalidate Word Count Register (L1DWIWC)
31 16

Reserved

R-0

15 0

L1D Writeback-Invalidate Word Count (L1DWIWC)

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-15. L1D Writeback-Invalidate Word Count Register (L1DWIWC) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 L1DWIWC 0-FFFFh Word count for block invalidation
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3.4.5 Privilege and Cache Control Operations

The impact of privilege on cache control operations can be summarized as follows:

• Supervisor code may change L1D cache size.
• User-mode code may not change L1D cache size.
• Only supervisor code may issue global invalidates to L1D.
• Both supervisor and user modes may freeze or unfreeze L1D at any time.

Table 3-16 summarizes which L1D cache control registers are accessible and what protection checks are
performed in the megamodule according to role.

Table 3-16. Permissions for L1D Cache Control Registers

Register Supervisor User

L1DCFG R/W R

L1DCC R/W R/W

L1DWIBAR W W

L1DWIWC R/W R/W

L1DWBAR W W

L1DWWC R/W R/W

L1DIBAR W W

L1DIWC R/W R/W

L1DWB R/W R/W

L1DWBINV R/W R/W

L1DINV R/W R

3.5 L1D Memory Performance

The performance of the L1D memory depends on several factors. This section describes the impact of the
banking architecture, the write buffer, and the miss pipelining on the performance of the L1D memory.

3.5.1 L1D Memory Banking

The L1D has a least-significant bit (LSB) based memory banking structure that divides memory into eight
32-bit-wide banks. These banks are single-ported, allowing only one access per cycle. L1D RAM and L1D
cache both share the same bank structure.

The banks are interleaved based on the low-order bits of the address. Specifically, for aligned memory
accesses, address bits [4:2] determine the bank number. The mapping of bits to bank number varies with
the device endian mode.

In Figure 3-11, bits 4-2 of the address select the bank and bits 1-0 select the byte within the bank.

Figure 3-11. Address to Bank Number Mapping
31 16

Upper Address Bits

15 5 4 2 1 0

Upper Address Bits Bank Number Offset
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The shaded areas in Figure 3-12 show combinations of parallel accesses that may result in bank-conflict
stalls according to the LSBs of addresses for the two accesses. Two simultaneous accesses to the same
bank incur a one-cycle stall penalty, except under the following special cases:

• The memory accesses are both writes to non-overlapping bytes within the same word. Thus, bits 2
through 31 of the address are the same.

• The memory accesses are both reads that access all or part of the same word. Thus, bits 2 through 31
of the address are the same. In this case, the two accesses may overlap.

• The memory accesses form a single nonaligned access. Nonaligned accesses do not cause
bank-conflict stalls, even though the memory system may subdivide them into multiple accesses.

Notice that a read access and a write access in parallel to the same bank always causes a stall. Two
reads or two writes to the same bank may not stall as long as the above conditions are met.

Simultaneous CPU and DMA/IDMA accesses to distinct L1D memory banks do not stall. Accesses to the
same bank results in a conflict between CPU and DMA/IDMA. One or the other stalls based on the rules
described in Chapter 6.

Figure 3-12. Potentially Conflicting Memory Accesses
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3.5.2 L1D Miss Penalty

The L1D can service up to two data accesses from the CPU every cycle. Accesses that hit L1D complete
without stalls, unless a bank conflict occurs as described in Section 3.3.6.1.

Reads that miss L1D stall the CPU while the requested data is fetched. The L1D is a read-allocate cache,
and so it will allocate a new line for the requested data.

An L1D read miss that also misses L2 stalls the CPU while the L2 retrieves the data from external
memory. Once the data is retrieved, it is stored in L2 and transferred to the L1D. The external miss
penalty varies depending on the type and width of external memory used to hold external data, as well as
other aspects of system loading.

If there are two read misses to the same line in the same cycle, only one miss penalty is incurred.
Similarly, if there are two accesses in succession to the same line and the first one is a miss, the second
access does not incur any additional miss penalty.

The process of allocating a line in L1D can result in a victim writeback. Victim writebacks move updated
data out of L1D to the lower levels of memory. When updated data is evicted from L1D, the cache moves
the data to the victim buffer. Once the data is moved to the victim buffer, the L1D resumes processing of
the current read miss. Further processing of the victim writeback occurs in the background. Subsequent
read and write misses, however, must wait for the victim writeback to process. If the read misses do not
conflict with existing victims, the read misses are pipelined with the victim writebacks in order to reduce
the performance penalty.

The L1D pipelines read misses. Consecutive read misses to different lines may overlap, reducing the
overall stall penalty.

Write misses do not stall the CPU directly. Write misses are queued in the write buffer that is between
L1D and L2. Although the CPU does not always stall for write misses, the write buffer can stall the CPU
under various circumstances. Section 3.5.3 describes the effects of the write buffer.

3.5.3 L1D Write Buffer

The L1D does not write allocate. Rather, write misses are passed directly to L2 without allocating a line in
L1D. A 128-bit wide by 4-entry write buffer exists between the L1D cache and the L2 memory to capture
these write misses. The write buffer provides a 128-bit path for writes from L1D to L2 with room for four
outstanding write requests.

Writes that miss L1D do not stall the CPU unless the write buffer is full. If the write buffer is full, a write
miss can indirectly stall the CPU until there is room in the buffer for the write. The write buffer can also
stall the CPU by extending the time for a read miss. Reads that miss L1D are not processed as long as
the write buffer is not empty. Once the write buffer empties, the read miss processes. This is necessary as
a read miss may overlap an address for which a write is pending in the write buffer.

The L2 can process a new request from the write buffer every L2 cycle (L2 cycle = 2 × CPU cycles),
provided that the requested L2 bank is not busy. You can merge multiple elements within a buffer together
for a single memory access if they are contiguous in memory to reduce the potential for buffer stalls and
DMA contention.

The write buffer allows write requests to merge and merges two write misses into a single transaction,
provided that the write request obeys the following rules:

• The new write miss resides within the same 128-bit quad-word as the immediately preceding write
miss.

• The two writes are to locations in L2 SRAM (not to locations that may be held in L2 cache).
• The first write has just been placed in the write buffer queue.
• The second write is presently being placed in the buffer queue.
• The first write has not yet been presented to the L2 controller.
• Both writes have the same privilege level.
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The previous conditions occur in a number of situations, such as when a program makes a large series of
sequential writes or when it makes a burst of small writes to a structure in memory. Write merging
increases the effective capacity of the write buffer in these cases by reducing the number of independent
stores that are present in the write buffer. This reduces the stall penalty for programs with a large number
of write misses.

As a secondary benefit, write merging reduces the number of memory operations executed in L2. This
improves the overall performance of the L2 memory by reducing the total number of individual write
operations L2 must process. Adjacent accesses are combined into a single access to an L2 bank, rather
than multiple accesses to that bank. This allows other requestors to access that bank more quickly, and it
allows the CPU to move on to the next bank immediately in the next cycle.

3.5.4 L1D Miss Pipelining

The L1D cache pipelines read misses. Miss pipelining can hide much of the miss overhead by overlapping
the processing of several cache misses.

Table 3-16 presents a summary of the L1D performance. Two different configurations are presented. The
first configuration features 0 wait state for L2SRAM, 2 × 128 bit banks. This configuration is available in
the DM644x devices. The second configuration features 1 wait state L2SRAM, 4 × 128 bit banks. This
configuration is available in the C645x devices.

Table 3-17. L1D Performance Summary

L2 Type 0 wait state, 2x128 bit banks 1 wait state, 4x128 bit banks

Parameter L2 SRAM L2 Cache L2 SRAM L2 Cache

Single 10.5 12.5 12.5 14.5
Read Miss

2 Parallel 10.5 + 4 12.5 + 8 12.5 + 4 14.5 + 8
Read Misses
(pipelined)

M Consecutive 10.5 + 3 × (M – 1) 12.5 + 7 × (M – 1) 12.5 + 3 × (M – 1) 14.5 + 7 × (M – 1)
Read Misses
(pipelined)

M Consecutive 10.5 + 4 × (M/2 – 1) + 3 × 12.5 + 8 × (M/2 – 1) + 7 × 12.5 + 4 × (M – 1) 14.5 + 8 × (M/2 – 1) + 7 ×
Parallel M/2 M/2 M/2
Read Misses
(pipelined)

3.6 L1D Power-Down Support

You can set the L1D memory to powered-down mode when the CPU is in idle mode. The following
software sequence is required to power-down the C64x+ megamodule:

1. Enable power-down by setting the MEGPD field in the PDCCMD register to 1.
2. Enable the CPU interrupt(s) that you want to wake-up the megamodule; disable all others.
3. Execute an IDLE instruction.

The megamodule stays in powered-down mode until the interrupt(s) that you enabled in step 2, above
wake them up

If a DMA access occurs to the L1D, L1P, or L2 memory while the megamodule is powered-down, the
power down controller (PDC) wakes up all three memory controllers. When the DMA access has been
serviced, the PDC will power-down the memory controllers again.

Refer to Chapter 9 for more information about the PDCCMD register and the power-down capabilities of
the C64x+ megamodule.

NOTE: Powering-down the megamodule as described here is often called static power-down. This
term is used to describe this mode since it is often used for longer periods of time.
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3.7 L1D Memory Protection

L1D memory supports memory protection to offer the robustness required in many systems. Several levels
of memory protection are available. Not all the levels are available on all the devices. Refer to the
device-specific data manual for more information. Familiarize yourself with Chapter 8 before you read this
section.

3.7.1 Protection Checks on L1D Accesses

3.7.1.1 Protection Checks on CPU, IDMA and Other System Master Accesses

Protection checks are performed for all accesses that are serviced directly by the L1D on devices that
include memory protection support. This includes accesses from the CPU, IDMA other system master
accesses.

The L2 controller determines whether a given CPU request is allowed or disallowed based on the privilege
level associated with the request and the permission settings on the address range that the request
accesses. The exact rules for these checks are set forth in Chapter 8.

The L1D memory controllers feature two exception outputs that are routed to the C64x+ interrupt
controller. One of these exception outputs indicates that a CPU-triggered (“local”) memory exception
occurred. The other indicates that a system master-triggered (“remote”) exception occurred.

3.7.1.2 Additional Protection Checks on Program Initiated Cache Coherence Operations

Protection checks are performed on program initiated cache coherence operations to ensure the integrity
of the memory protection. Both user and supervisor code may issue manual cache coherence operations.

However, user code cannot globally invalidate L1D cache or change the size of L1D cache. Only
supervisor code may initiate a global invalidation or change the amount of memory allocated to cache.

3.7.2 L1D Memory Protection Registers

The following registers govern the operation of the L1D memory protection. They fall into three main
categories:
• Memory Protection Page Attribute Registers (MPPA): These registers store the permissions associated

with each protected page.
• Memory Protection Lock Registers (MPLK): Peripherals may choose to implement a hardware memory

protection lock. When engaged, the lock disables all updates to the memory protection entries for that
peripheral.

• Memory Protection Fault Registers (MPFxR): Each peripheral that generates memory protection faults
provides the MPFAR, MPFSR, and MPFCR registers with recording the details of the fault.

Table 3-18 lists the registers for the memory protection lock. See the device-specific data manual for the
memory address of these registers.

Table 3-18. Memory Protection Lock Registers

Address Acronym Register Description Section

0184 AExxh L1DMPPAxx Memory Protection Page Attribute Register Section 3.7.2.1

0184 AD00h L1DMPLK0 Memory Protection Lock Register 0 Section 3.7.2.2.1

0184 AD04h L1DMPLK1 Memory Protection Lock Register 1 Section 3.7.2.2.2

0184 AD08h L1DMPLK2 Memory Protection Lock Register 2 Section 3.7.2.2.3

0184 AD0Ch L1DMPLK3 Memory Protection Lock Register 3 Section 3.7.2.2.4

0184 AD10h L1DMPLKCMD Memory Protection Lock Command Register Section 3.7.2.2.5

0184 AD14h L1DMPLKSTAT Memory Protection Lock Status Register Section 3.7.2.2.6

0184 AC00h L1DMPFAR Memory Protection Fault Address Register Section 3.7.2.3.1

0184 AC04h L1DMPFSR Memory Protection Fault Set Register Section 3.7.2.3.2

0184 AC08h L1DMPFCR Memory Protection Fault Clear Register Section 3.7.2.3.3
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3.7.2.1 Memory Protection Attribute Registers

L1D implements 32 memory protection pages. L1DMPPA0 through L1DMPPA15 correspond to region 0.
L1DMPPA 16 through L1DMPPA31 correspond to region 1.

Table 3-19. L1D Memory Protection Attribute Register Addresses

L1D Region 0 L1D Region 1

Register Address Register Address

L1DMPPA0 0184 AE00h L1DMPPA16 0184 AE40h

L1DMPPA1 0184 AE04h L1DMPPA17 0184 AE44h

L1DMPPA2 0184 AE08h L1DMPPA18 0184 AE48h

L1DMPPA3 0184 AE0Ch L1DMPPA19 0184 AE4Ch

L1DMPPA4 0184 AE10h L1DMPPA20 0184 AE50h

L1DMPPA5 0184 AE14h L1DMPPA21 0184 AE54h

L1DMPPA6 0184 AE18h L1DMPPA22 0184 AE58h

L1DMPPA7 0184 AE1Ch L1DMPPA23 0184 AE5Ch

L1DMPPA8 0184 AE20h L1DMPPA24 0184 AE60h

L1DMPPA9 0184 AE24h L1DMPPA25 0184 AE64h

L1DMPPA10 0184 AE28h L1DMPPA26 0184 AE68h

L1DMPPA11 0184 AE2Ch L1DMPPA27 0184 AE6Ch

L1DMPPA12 0184 AE30h L1DMPPA28 0184 AE70h

L1DMPPA13 0184 AE34h L1DMPPA29 0184 AE74h

L1DMPPA14 0184 AE38h L1DMPPA30 0184 AE78h

L1DMPPA15 0184 AE3Ch L1DMPPA31 0184 AE7Ch
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3.7.2.1.1 Memory Protection Register (MPPAxx)

The size of each page differs from region to region and from device to device. Some pages cannot be
used on a particular device. Program unused pages to a value of all zeroes for debug purposes.

Refer to the device-specific data manual to determine the page size and number of pages used on a
particular device.

The memory protection (MPPAxx) register is shown in Figure 3-13 and described in Table 3-20.

Figure 3-13. Memory Protection Register (MPPAxx)
31 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AID5 AID4 AID3 AID2 AID1 AID0 AIDX LOCAL Reserved SR SW Reserved UR UW Reserved

Table 3-20. Memory Protection Register (MPPAxx) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15 AID5 Controls access from ID = 5.

0 Access denied.

1 Access granted.

14 AID4 Controls access from ID = 4.

0 Access denied.

1 Access granted.

13 AID3 Controls access from ID = 3.

0 Access denied.

1 Access granted.

12 AID2 Controls access from ID = 2.

0 Access denied.

1 Access granted.

11 AID1 Controls access from ID = 1.

0 Access denied.

1 Access granted.

10 AID0 Controls access from ID = 0.

0 Access denied.

1 Access granted.

9 AIDX Controls ID >=6.

0 Access denied.

1 Access granted.

8 LOCAL Controls access from CPU to local memories (L1/L2).

0 Access denied.

1 Access granted.

7-6 Reserved 0 Reserved

5 SR Supervisor read access type.

0 Normal operation.

1 Indicates a Supervisor read request.

4 SW Supervisor write access type.

0 Normal operation.

1 Indicates a Supervisor write request.
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Table 3-20. Memory Protection Register (MPPAxx) Field Descriptions (continued)

Bit Field Value Description

3 Reserved 0 Reserved

2 UR User read access type.

0 Normal operation.

1 Indicates a User read request.

1 UW User write access type.

0 Normal operation.

1 Indicates a User write request.

0 Reserved 0 Reserved

In contrast to L2 and L1P, L1D does not implement the SX (supervisor execute) and UX (user execute)
bits. The SX and UX fields in the L1DMPPA register always read as zero and do not respond to writes.

Table 3-21 illustrates the two memory protection default configurations.

Table 3-21. Memory Protection Defaults

Allowed IDs (Bits 15:8) Reserved Bits (Bits 7:6) Access Types (Bits 5:0) Notes

1111 1111 11 110 110 All devices may access, both from User and
Supervisor modes.
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3.7.2.2 Memory Protection Lock Registers

The L1D controller implements a 64-bit lock register for controlling write access to the memory protection
registers. The behavior of these lock registers is defined in Chapter 8.

3.7.2.2.1 Level 1 Data Memory Protection Lock Register 0 (L1DMPLK0)

The level 1 data memory protection lock register 0 (L1DMPLK0) is shown in Figure 3-14.

Figure 3-14. Level 1 Data Memory Protection Lock Register 0 (L1DMPLK0)
31 0

Lock Bits 31:0

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

3.7.2.2.2 Level 1 Data Memory Protection Lock Register 1 (L1DMPLK1)

The level 1 data memory protection lock register 1 (L1DMPLK1) is shown in Figure 3-15.

Figure 3-15. Level 1 Data Memory Protection Lock Register 1 (L1DMPLK1)
31 0

Lock Bits 63:32

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

3.7.2.2.3 Level 1 Data Memory Protection Lock Register 2 (L1DMPLK2)

The level 1 data memory protection lock register 2 (L1DMPLK2) is shown in Figure 3-16.

Figure 3-16. Level 1 Data Memory Protection Lock Register 2 (L1DMPLK2)
31 0

Unused

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

3.7.2.2.4 Level 1 Data Memory Protection Lock Register 3 (L1DMPLK3)

The level 1 data memory protection lock register 3 (L1DMPLK3) is shown in Figure 3-17.

Figure 3-17. Level 1 Data Memory Protection Lock Register 3 (L1DMPLK3)
31 0

Unused

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual
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3.7.2.2.5 Level 1 Data Memory Protection Lock Command Register (L1DMPLKCMD)

The level 1 data memory protection lock command register (L1DMPLKCMD) is shown in Figure 3-18 and
described in Table 3-22.

Figure 3-18. Level 1 Data Memory Protection Lock Command Register (L1DMPLKCMD)
31 16

Reserved

R-0

15 3 2 1 0

Reserved KEYR LOCK UNLOCK

R-0 W-0 W-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 3-22. Level 1 Data Memory Protection Command Register (L1DMPLKCMD) Field Descriptions

Bit Field Value Description

31-3 Reserved 0 Reserved

2 KEYR Reset status.

0 No effect.

1 Reset status.

1 LOCK Interface to complete a lock sequence.

0 No effect.

1 Locks the lock provided that the software executed the sequence correctly.

0 UNLOCK Interface to complete an unlock sequence.

0 No effect.

1 Unlocks the lock provided that the software executed the sequence correctly.
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3.7.2.2.6 Level 1 Data Memory Protection Lock Status Register (L1DMPLKSTAT)

The level 1 data memory protection lock status register (L1DMPLKSTAT) is shown in Figure 3-19 and
described in Table 3-23.

Figure 3-19. Level 1 Data Memory Protection Lock Status Register (L1DMPLKSTAT)
31 16

Reserved

R-0

15 1 0

Reserved LK

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 3-23. Level 1 Data Memory Protection Status Register (L1DMPLKSTAT) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved.

0 LK Indicates the lock's current status.

0 Lock is disengaged.

1 Lock is engaged.

As illustrated above, the memory protection architecture allows for lock sizes up to 128 bits. The L1D
controller only implements a 64-bit lock behind the lock interface. Thus, the values written to L1DMPLCK2
and L1DMPLCK3 are ignored. The behavior of the lock mechanism with respect to this shorter key is
defined in Chapter 8.

3.7.2.3 Memory Protection Fault Registers

In order to allow programs to diagnose a memory protection fault after an exception occurs, the three L1D
registers are dedicated to storing information about the fault. These registers are illustrated in Figure 3-20
through Figure 3-22 below.

3.7.2.3.1 Memory Protection Fault Address Register (L1DMPFAR)

The memory protection fault address register (L1DMPFAR) is shown in Figure 3-20 and described in
Table 3-24.

Figure 3-20. Memory Protection Fault Address Register (L1DMPFAR)
31 0

Fault Address

R-x

LEGEND: R = Read only; -x = value is indeterminate, see your device-specific data manual

Table 3-24. Memory Protection Fault Address Register (L1DMPFAR) Field Descriptions

Bit Field Value Description

31-0 Fault Address 0-FFFF FFFFh Address of the fault.
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3.7.2.3.2 Memory Protection Fault Set Register (L1DMPFSR)

The memory protection fault set register (L1DMPFSR) is shown in Figure 3-21 and described in
Table 3-25.

Figure 3-21. Memory Protection Fault Set Register (L1DMPFSR)
31 16

Reserved

R-0

15 9 8 7 6 5 4 3 2 1 0

FID LOCAL Reserved SR SW Reserved UR UW Reserved

R-0 R-0 R-0 R-0 R/W-config R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3-25. Memory Protection Fault Set Register (L1DMPFSR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved.

15-9 FID 0-7Fh Bits 6:0 of ID of faulting requestor. If ID is narrower than 7 bits, the remaining bits return 0. If
ID is wider than 7 bits, the additional bits get truncated. FID = 0. If LOCAL = 1.

8 LOCAL LOCAL access.

0 Normal operation.

1 Access was a LOCAL access.

7-6 Reserved 0 Reserved

5 SR Supervisor read access type.

0 Normal operation.

1 Indicates a supervisor read request.

4 SW Supervisor write access type.

0 Normal operation.

1 Indicates a supervisor write request.

3 Reserved 0 Reserved

2 UR User read access type.

0 Normal operation.

1 Indicates a user read request.

1 UW User write access type.

0 Normal operation.

1 Indicates a user write request.

0 Reserved 0 Reserved
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3.7.2.3.3 Memory Protection Fault Clear Register (L1DMPFCR)

The memory protection fault clear register (L1DMPFCR) is shown in Figure 3-22 and described in
Table 3-26.

Figure 3-22. Memory Protection Fault Clear Register (L1DMPFCR)
31 16

Reserved

R-0

15 0

MPFCLR

W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 3-26. Memory Protection Fault Clear Register (L1DMPFCR) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved.

0 MPFCLR Command to clear the L1DMPFAR register.

0 No effect.

1 Clear the L1DMPFAR and the L1DMPFCR registers.

Chapter 8 provides the definition and meanings for these registers.

The L1DMPFAR and L1DMPFSR registers only store enough information for one fault. The hardware
records the information about the first fault and generates an exception only for that fault.

The fault information is preserved until software clears it by writing a 1 to the MPFCLR field in the
L1DMPFCR register. Writing a 0 to the MPFCLR field in the L1DMPFCR has no effect. L1D ignores the
value written to bits 31:1 of the L1DMPFCR register.
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3.7.3 Protection Checks on Accesses to Memory Protection Registers

L1D implements permission checks on the memory protection registers themselves. The rules are as
follows:

• All requestors may read any memory protection (MP) register at any time in all circumstances, except
the lock key registers (L1DMPLK0 through L1DMPLK3).

• Supervisor may write the registers.

Table 3-27 summarizes which L1D memory protection registers are accessible and what protection
checks are performed in the megamodule according to role.

Table 3-27. Permissions for L1D Memory Protection Registers

Register Supervisor User

L1DMPFAR R R

L1DMPFSR R R

L1DMPFCR W /

L1DMPLK0 W /

L1DMPLK1 W /

L1DMPLK2 W /

L1DMPLK3 W /

L1DMPLKCMD W /

L1DMPLKSTAT R R

L1DMPPAxx R/W R
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4.1 Introduction

4.1.1 Purpose of the Level 2 (L2) Memory and Cache

The L2 memory controller provides an on-chip memory solution between the faster level 1 memories
(L1D, L1P) and slower external memories. It is advantageous in that it supports larger memory sizes than
the L1 memories, while providing faster access than external memories.

Similar to the L1 memories, you can configure L2 to provide both cached and non-cached (i.e.,
addressable) memories.

4.1.2 Features

The L2 memory and cache provides the memory flexibility required in a device using the C64x+
megamodule:
• Two memory ports, port 0 and port 1.
• Configurable L2 cache size: 32KB, 64KB, 128KB, and 256KB
• Memory protection
• Supports cache block and global coherence operations
• Four configurable power-down pages

4.1.3 Terms and Definitions

Refer to Appendix A and Appendix B of this document for detailed definitions of the terms used in this
chapter. Appendix A describes general terms used throughout this reference guide. Appendix B defines
terms related to the memory and cache architecture.

4.2 Level 2 Memory Architecture

4.2.1 L2 Memory

4.2.1.1 L2 Memory Ports

The L2 memory provides two 256-bit wide memory ports, they are referred to as port 0 and port 1. The
usage of the two ports is device-dependant. In most devices, the two memory ports are used as follows:

• Port 0

– L2 RAM
– L2 cache

• Port 1

– L2 ROM
– L2 RAM
– Shared memory interface

4.2.1.2 L2 Memory Sizes

The L2 controller supports memory sizes in the 64K to 819K range for each port.
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4.2.1.3 L2 Memory Banking

The L2 memory implements two separate memory ports. Each memory port can control one of:

• 4 × 128-bit banks
• 2 × 128-bit banks
• 1 × 256-bit bank

Refer to the device-specific data manual for more information about the banking scheme implemented on
a particular device.

The two memory ports may address memory sections which may or may not be contiguous.

Table 4-1 illustrates how port 0 and port 1 banking looks in the 2 × 128-bit case for the little endian mode.

Table 4-1. C64x+ Megamodule 2 × 128-bit Banking Scheme

Port 1

Bank 1 Bank 0

xx14 xx16 xx15 xx14 xx13 xx12 xx11 xx10

xx0F xx0E xx0D xx0C xx0B xx0A xx09 xx08

xx07 xx06 xx05 xx04 xx03 xx02 xx01 xx00

Port 0

Bank 1 Bank 0

yy17 yy16 yy15 yy14 yy13 yy12 yy11 yy10

yy0F yy0E yy0D yy0C yy0B yy0A yy09 yy08

yy07 yy06 yy05 yy04 yy03 yy02 yy01 yy00

NOTE: The two memory ports may or may not be contiguous.

An L1P read miss (32 bytes) requires all memory banks of a single port. No other access can be made on
that port during the same cycle, or until completion of the access when the L2 memory is high-latency (the
latency of the memory is determined at chip design - refer to the device-specific data manual for more
information). An L1D read miss (64 bytes) and victim writebacks require all memory banks on a single port
for two consecutive accesses.

4.2.1.4 Simultaneous Accesses to L2 Memory

When various requestors such as L1P, L1D, IDMA, etc. try to access the L2 memory simultaneously, their
accesses are arbitrated by the rules defined in Chapter 6.
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4.3 L2 Cache

The C64x+ CPU default configuration maps all L2 memory as RAM/ROM. The L2 controller's port 0
supports 32KB, 64KB, 128KB, or 256KB of 4-way set-associative cache. Any remaining memory beyond
256KB on port 0 and all memory attached to port 1 is always RAM or ROM.

The operation of the L2 cache is controlled through several registers. Table 4-2 provides a summary of
these registers. These registers are mentioned throughout this section and are described in more detail in
Section 4.4.

Table 4-2. Cache Registers Summary

Acronym Register Description Section

L2CFG Level 2 Configuration Register Section 4.4.2

L2WBAR Level 2 Writeback Base Address Register Section 4.4.3.1.1

L2WWC Level 2 Writeback Word Count Register Section 4.4.3.1.2

L2WIBAR Level 2 Writeback-Invalidate Base Address Register Section 4.4.3.1.3

L2WIWC Level 2 Writeback-Invalidate Word Count Register Section 4.4.3.1.4

L2IBAR Level 2 Invalidate Base Address Register Section 4.4.3.1.5

L2IWC Level 2 Invalidate Word Count Register Section 4.4.3.1.6

L2WB Level 2 Writeback Register Section 4.4.3.2.1

L2WBINV Level 2 Writeback-Invalidate Register Section 4.4.3.2.2

L2INV Level 2 Invalidate Register Section 4.4.3.2.3

MARn Memory Attribute Registers Section 4.4.4

4.3.1 L2 Cache Architecture

The L2 cache is a read-and-write allocate, four-way set associative cache. In order to track the line state
of the L2 cache, a four-way tag RAM is included. The address organization within the L2 tags is a function
of the partitioning performed between cache and RAM, controlled via the L2MODE field in the L2CFG
register control register bits.

Figure 4-1 outlines this function for the various sizes of cache supported.

Figure 4-1. L2 Cache Address Organization
31 x+1 x 7 6 0

Tag Set Offset

The offset of 7 bits accounts for the fact that an L2 line size is 128 bytes. The cache control logic ignores
this portion of the address. The set field indicates the L2 cache line address where the data would reside
within each way, if it were cached. The width of the set field depends on the amount of L2 configured as
cache, as defined in Table 4-3. The L2 controller uses the set field to look up and check the tags in each
way for any already-cached data. It also looks up the valid bit, which indicates whether the contents of the
line are considered valid for purposes of a tag compare.
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The L2 cache configuration dictates the size of the set and tag fields, as described in Table 4-3.

Table 4-3. L2MODE Description

L2MODE Setting of the L2CFG Register Amount of L2 Cache X Bit Position Description

000b 0K N/A L2 is all RAM

001b 32K 12 64 L2 cache lines

010b 64K 13 128 L2 cache lines

011b 128K 14 256 L2 cache lines

100b 256K 15 512 L2 cache lines

101b Reserved. Maps to 256K.

110b

111b Maximal cache. Maps to 256K.

NOTE: In general, a larger value of L2MODE specifies a larger cache size, up to the size of the
implemented L2 memory in port 0. The maximum actual L2 cache size is the smaller of the
largest power-of-2 that fits in L2 RAM size and 256K.

The tag field is the upper portion of the address that identifies the true physical location of the cache line.
The cache compares the tag field for a given address to the stored tag in all four ways of the L2 cache.

If any of the tags match and the cached data is valid, then the access is a "hit", and the element is read
directly from or written directly to the L2 cache location. Otherwise, it is a "miss", and the requestor
remains stalled while the L2 fetches a complete line from its system memory location. On read misses, the
data is passed directly to the appropriate L1 cache as part of the fetch. On write misses, the L2 merges
the write with the fetched line.

Since the contents of the L2 can be modified, the L2 cache is able to update the data in its true physical
location. The L2 cache is a writeback cache, meaning that it writes out updates only when it needs to.
Data is evicted from the L2 cache, written back to its proper location in system memory. This occurs when
a new L2 line replaces one that has been modified, or when the L2 controller is told by the CPU (via
software) to write back modified data. In the event of an eviction or writeback, the data is sent to its
location in system memory via the EMC.

4.3.2 Replacement and Allocation Strategy

The L2 cache operates with a fixed four-way set associativity in all cache modes. This means that each
location in system memory can reside in any one of four possible locations in the L2 cache.

The L2 controller implements a read and write-allocate cache. This means that the L2 will fetch a
complete line of 128 bytes on any miss for a cacheable location, regardless of whether it is a read or a
write. The replacement strategy is identical to that of the L1D, in that the least-recently-used (LRU) L2 line
is replaced with the new line.

4.3.3 Reset Behavior

In response to a global reset, the L2 cache is switched to “All-RAM mode.”

In response to a local reset, the L2 cache is left in its current operating mode. However, the entire
contents of the cache are invalidated. All requestors are stalled while this invalidation takes place.

If Level 1 cache support is enabled within the megamodule, then the L2 controller takes the necessary
steps to ensure that the Level 1 caches respond in the same manner as the L2 to hard and soft resets.
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4.3.4 L2 Mode Change Operations

The size of the L2 cache can be configured at run time. Programs select the size of L2 cache by writing
the requested mode to the L2MODE field in the L2CFG register. Table 4-4 illustrates the valid settings for
L2MODE.

Table 4-4. Cache Size Specified by L2CFG.L2MODE

L2MODE setting of the L2CFG Register Amount of L2 Cache

000b 0K

001b 32K

010b 64K

011b 128K

100b 256K

101b Reserved. Maps to 256K on C64x+ Megamodule.

110b

111b Maximal Cache. Maps to 256K on C64x+ Megamodule.

Typically, programs set the L2 mode shortly after reset and leave it unchanged. However, some programs
change the L2 cache mode on the fly, particularly around OS task switches in a complex system. Be
careful to maintain memory system coherence and correct cache operation by ensuring that you follow
this procedure.

Table 4-5 outlines the required steps that you must perform:

Table 4-5. Switching L2 Modes

To Switch From To The Program Must Perform the Following Steps:

A mode with no or some L2 cache A mode with more L2 cache 1. DMA, IDMA or copy any needed data out of the
affected range of L2 RAM (If none requires saving,
no DMA is necessary).

2. Wait for completion of any DMAs/IDMAs issued in
the previous step.

3. Write the desired cache mode to the L2MODE
field in the L2CFG register.

4. Read back the L2CFG register. This stalls the
CPU until the mode change completes.

A mode with some L2 cache A mode with less or no L2 cache 1. Write the desired cache mode to the L2MODE
field in the L2CFG register.

2. Read back the L2CFG register. This stalls the
CPU until the mode change completes.

When a program writes a new cache mode to the L2CFG register, the L2 performs the following steps:
• L2 cache is written back and invalidated if it is enabled.
• The L2 cache sets to the requested mode.

Note: Changing L2's mode does not affect the contents of either L1 cache.

86 Level 2 Memory and Cache SPRU871K–August 2010

Copyright © 2010, Texas Instruments Incorporated



www.ti.com L2 Cache

4.3.5 L2 Freeze Mode

The L2 cache offers a freeze mode. The content of the L2 cache is frozen in this mode (i.e., it will not
update as during normal operation). L2 freeze mode allows real-time applications to limit the amount of
data evicted from L2 during various sections of code, such as interrupt handlers. Use the L2CC field in the
L2CFG register to set this mode.

The freeze mode affects the operation of L2 cache only. L2 RAM is not affected by this mode. L2’s freeze
mode has no impact on L1D or L1P caches. Likewise, the L1's freeze modes have no impact on L2
cache.

The L2 cache responds to read and write hits normally when in freeze mode. L2 sends read and write
misses directly to external memory, as if L2 cache were not present. The L2 never allocates a new cache
line while frozen. Lines may only be evicted from L2 during freeze mode by program-initiated cache
coherence operations, as defined in Section 4.3.6.

Table 4-6 provides a summary of the L2 freeze mode, set through the L2CC field in the L2CFG register.

Table 4-6. Freeze Mode Summary

L2 Mode L2MODE L2 Cache L2 Cache Enabled L2 Cache Freeze
Enabled L2CC = 0 L2CC = 0 L2CC = 1

All RAM 000 No effect, because L2 is all RAM.

Mixed cache and 1000 Cache operates normally. Cache frozen. Hits proceed normally. L1D misses are serviced
RAM, or all cache. as long-distance accesses for requested bytes only. L1P

misses serviced as long-distance fetch for 1 fetch packet. No
LRU updates in this mode.
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4.3.6 Program Initiated Cache Coherence Operations

The L2 memory architecture supports a variety of coherence operations that fall into two primary
categories: block operations that operate on a specific range of addresses, and global operations which
operate on the entire contents of one or more caches.

The following cache coherence operations are supported:

• Invalidation: Valid cache lines are made invalid. Content of the affected cache lines is discarded
• Writeback: The content of a valid and dirty cache line is written to a lower-level memory.
• Writeback-invalidation: Writeback operation followed by invalidation. Only the content of the affected

cache lines is written to lower-level memory, but all the lines are invalidated.

4.3.6.1 Global Coherence Operations

Global coherence operations execute on the entire L2 cache. Some global coherence operations also
affect L1 caches.

Table 4-7 lists all of the L2 global cache commands and the operations they perform on each of the three
caches.

Table 4-7. Global Coherence Operations

Cache Register Used L1P Effect L1D Effect L2 Effect
Operation

L2 Writeback L2WB No effect. All updated data written back to All updated data written back
L2/external, but left valid in L1D. externally, but left valid in L2

cache.

L2 Writeback L2WBINV All lines invalidated All updated data written back to All updated data written back
with Invalidate in L1P. L2/external. All lines invalidated externally. All lines invalidated in

within L1D. L2.

L2 Invalidate L2INV All lines invalidated All lines invalidated in L1D. All lines invalidated in L2. Updated
in L1P. Updated data is dropped. data is dropped.

Programs initiate global cache operations by writing a 1 to the appropriate register bit for each of the
L2WB, L2WBINV, and L2INV registers.

Programs can write a 1 to the control register to initiate the coherence operation for the L2WB, L2WBINV,
and L2INV registers. The control register sets to 0 upon completion of the operation. Programs can poll
this bit to determine when the command completes.

Example 4-1 gives an example of how to use the L2WBINV register.

Example 4-1. Global Coherence Operation Example

/* ---------------------------------------------------------------- */
/* Write back and Invalidate anything held in cache. */
/* ---------------------------------------------------------------- */
L2WBINV = 1;

/* ---------------------------------------------------------------- */
/* OPTIONAL: Spin waiting for operation to complete. */
/* ---------------------------------------------------------------- */
while ((L2WBINV & 1) != 0) ;

The hardware does not require programs to poll for completion of these commands. The hardware may,
however, stall programs while the global commands proceed.

Global cache operations work correctly regardless of the L2 freeze state. Further, global cache operations
do not change the frozen state of the L2 cache.

88 Level 2 Memory and Cache SPRU871K–August 2010

Copyright © 2010, Texas Instruments Incorporated



www.ti.com L2 Cache

4.3.6.2 Block Coherence Operations

Block coherence operations have similar functionality as the global coherence operations; however, they
only apply to a defined block of data. This block is defined by the base address and by the word (32-bit)
size in the associated registers.

Table 4-8 lists all of the block cache commands and the operation they perform on each of the three
caches.

Table 4-8. Block Cache Operations

Cache Operation Register Used L1P Effect L1D Effect L2 Effect

L2 Writeback L2WBAR No effect. Updated data written back to Updated data written back
L2/external, but left valid in externally, but left valid in L2L2WWC
L1D. cache.

L2 Writeback with L2WIBAR All lines in Updated data written back to Updated data written back
Invalidate range L2/external. All lines in range externally. All lines in rangeL2WIWC

invalidated in invalidated within L1D. invalidated in L2.
L1P.

L2 Invalidate L2IBAR All lines in All lines in range invalidated in All lines in range invalidated in
range L1D. Updated data is dropped. L2. Updated data is dropped.L2IWC
invalidated in
L1P.

Programs initiate block cache operations by writing a word address to the base address register first, and
then writing a word count to the word count register. (Writing 1 to WC indicates a length of 4 bytes). If
necessary, C64x+ megamodule enforces one or both of the following:

• Only one program-initiated coherence operation may be in progress at a time.
• Writes to either xxBAR or xxWC stall while another block or global cache coherence operation is in

progress.

The xxBAR/xxWC mechanism for setting up block cache operations allows you to specify ranges down to
word granularity. However, the memory system operates at cache-line granularity. Thus, all cache lines
that overlap the range specified are acted upon.
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Example 4-2 gives an example of how to use the block cache control registers.

Example 4-2. Block Coherence Operation Example

/* ---------------------------------------------------------------- */
/* Write base address of array to Base Address Register. */
/* Then write the length of the array, in words, to the Word */
/* Count register. */
/* ---------------------------------------------------------------- */
L2WBAR = &array[0];
L2WWC = size of(array) / size of(int);

/* . . . */

/* ---------------------------------------------------------------- */
/* The CPU can execute other code here. Block cache operations */
/* proceed in parallel with CPU execution, stalling the CPU */
/* minimally. */
/* ---------------------------------------------------------------- */

/* . . . */

/* ---------------------------------------------------------------- */
/* OPTIONAL: Spin waiting for operation to complete. */
/* ---------------------------------------------------------------- */
while (L2WWC != 0) ;

Writing to the xxBAR register sets up the base address for the next cache coherency operation. Writing a
non-zero value to xxWC initiates the operation. The block cache logic starts the coherence command
based on the specific xxWC register written.

Programs should not rely on the contents of xxBAR after or during a cache control operation; rather,
programs should always write a new value to xxBAR prior to writing xxWC. Reading xxWC returns a
non-zero value while a block cache operation is in progress, and zero when it is complete.

Block cache operations work correctly regardless of the L2 freeze state.

4.3.7 Cacheability Controls

In some applications, some specific addresses may need to be read from their physical locations each
time they are accessed (e.g., a status register within FPGA).

The L2 controller offers registers that control whether certain ranges of memory are cacheable, and
whether one or more requestors are actually permitted to access these ranges. The registers are referred
to as MARs (memory attribute registers). A complete list of MAR registers is provided in section
Section 4.4.4.

Note: Using the volatile keyword in the C language does not protect a variable from being cached.
If an application uses a memory location periodically updated by external hardware, in order
to protect this operation in C code follow these two steps:
• Use the volatile keyword to prevent the code generation tools from incorrectly optimizing

the variable.
• You must program the MAR register of the range containing the variable to prevent

caching.
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4.3.7.1 MAR Functions

Each MAR register implements a single bit. The permit copies (PC) bit in each MAR register controls
whether the cache may hold a copy of the affected address range. If PC = 1, the affected address range is
cacheable. If PC = 0, the affected address range is not cacheable.

MAR registers are run-time programmable, except as noted in Section 4.3.7.2. All MAR register bits reset
to a value of 0, thereby making the entire address space non-cacheable by default (except as noted in
Section 4.3.7.2).

4.3.7.2 Special MAR Registers

MAR0 through MAR15 represent reserved address ranges in the C64x+ megamodule, and therefore are
treated as follows:

1. MAR0 is implemented as a read-only value. The PC of the MAR0 is always read as 1.
2. MAR1 through 15 correspond to internal and external configuration address spaces. Therefore, these

registers are read-only, and their PC field reads as 0.

Because MAR0 through MAR15 are read-only, the software does not need to manipulate these registers.

4.3.7.3 L1 Interaction

When L1P or L1D makes a request to L2 for an address that is not held in L2 RAM or L2 cache, the L2
controller queries the corresponding MAR register for that address. If the permit copies (PC) bit in the
MAR register is 0, the L2 cache controller treats this as a non-cacheable access and initiates a
long-distance access. If the access is a long distance read, the CPU stalls until the read data returns and
the L1D will write-back dirty data if present in the LRU cache set that matches the non-cacheable memory
address.

Concerning L1D long distance requests, the net result of the PC bit in the MAR is to prevent
non-cacheable data from being stored in the L2 and L1D caches. Thus, when PC = 0 in a given MAR
register, neither the L1D nor the L2 cache retains a copy of data accessed within the address range
covered by that MAR.

The MAR registers have no effect on L1P. If L1P is enabled, it will always cache program fetches
regardless of MAR configuration.

4.3.8 L1-L2 Coherence Support

This section describes the interaction imposed by the coherence rules between the L2 cache and the L1D
and L1P caches.

The C64x+ DSP maintains the following coherence model:

1. Coherence between the C64x+ megamodule's L2 RAM segments and L1D cache is maintained.
2. Coherence between the C64x+ megamodule's L2 RAM segments and L1P cache is not maintained.
3. Coherence between the external memory and cached copies in L1 or L2 caches is not maintained.

Items 1 and 3 above are identical to C64x behavior. Item 2 above is different from C64x. Coherence is
provided between DMA writes to L2 RAM and program fetches from L2 RAM on the C64x. C64x+
megamodule-based devices require you to manually issue block invalidates (as described in
Section 4.3.6.2) when transferring in a block of code.

The following sections outline the functions that provide the L2-RAM-to-L1cache coherence.
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4.3.8.1 Cache Coherence Protocol

In order to support coherence between the L1 and L2 caches, snoop-read and snoop-write commands are
used.

The cache coherence protocol implements some features that are different from the ones implemented in
the C64x devices. In the C64x+ protocol, coherence is supported between DMAs and L1D in L2, but not
between DMAs and L1P. Also, in the C64x memory architecture, L1D cache is kept inclusive within L2,
and thus requires snoops in response to L2 cache activity. The C64x+ megamodule removes this
inclusiveness, thus limiting snoops to those triggered by DMA activity. L1 and L2 are still coherent with
respect to each other, even though L1 is not inclusive within L2.

Cache "A" is inclusive in cache "B", if A's contents are always a subset of B's. If a line is held in A, but not
in B, then A is not inclusive in B. A non-cacheable write may hit in L2 if the address was previously
cacheable. This can happen if applications dynamically change the settings of the MAR registers.

Table 4-9 lists the coherence commands L2 can issue to L1D on a per-cache-line basis.

Table 4-9. L2 to L1D Coherence Commands

Snoop Command Name L1D Action Triggered by

SNPR Snoop Read L1D sends L2 the contents of DMA read from L2 RAM when L1D
the requested half-line in L1D. shadow tags say line is present and
Does not modify the modified in L1D.
dirty/valid/LRU state for the
line.

SNPW Snoop Write Up to 256 bits of new data is DMA write to L2 RAM when L1D shadow
sent from L2 to L1D. L1D and tags say line is present in L1D. Whether
L2 both update their respective the line is modified in L1D does not
copies of the data. The dirty matter.
and valid bits for the line in
L1D do not change.

Note: These snoop commands represent hardware activity that is transparent. They are included to
help you understand the cache operation better.

4.3.8.2 L2 Cache Evictions

In the C64x memory architecture, when L2 evicts a line, it snoop-invalidates L1D, thereby keeping L1D
inclusive in L2. In the C64x+ architecture, when L2 evicts a line, it writes the victim out if it is dirty, without
consulting L1D. It does not invalidate the line in L1D. L2 also does not invalidate lines in L1P when
evicting a line. As a result, neither L1D nor L1P is inclusive in L2.

4.3.8.3 Policy Relative to L1D Victims

L1D victim writebacks do not trigger line allocations in L2. L1D victims are written directly to external
memory if they miss L2.

L1D victim writebacks also do not update L2’s LRU if they hit in L2. They do update L2’s dirty status as
needed.

4.3.8.4 DMA/IDMA Write Interaction

When a DMA or IDMA write occurs to L2 RAM, the behavior of L2 depends on whether the data is cached
in L1D. The behavior in the C64x+ architecture is different from the behavior in the C64x architecture. In
the C64x architecture, snoop-invalidate commands are sent to L1P and L1D. In the C64x+ architecture,
DMA/IDMA writes never invalidate lines in L1P. DMA/IDMA writes send snoop-writes to L1D if the address
range is present in L1D and otherwise nothing.
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4.3.8.5 DMA/IDMA Read Interaction

The L2 memory keeps a shadow copy of L1D tags. This shadow includes both 'dirty' and 'valid' status.

When DMA/IDMA read L2 RAM, the L2 consults the shadow tag. If the given address is marked as 'valid'
and 'dirty' in L1D, the L2 sends a snoop-read request for the address to L1D. L1D responds with the
requested data.

The snoop-read leaves the data valid in L1D, and does not evict or write back the data to L2. As a
consequence, a buffer allocated in L1D is to left allocated in L1D so that algorithms running on the CPU
can subsequently refill the buffer without incurring cache miss penalties.

4.4 L2 Cache Control Registers

The C64x+ memory system provides a set of registers to govern the operation of L2 cache. These
registers fall into several categories covered in the following sections:
• Cache Size and Operating Mode Controls. These registers control the size of the cache, and

whether the cache is frozen or operating normally. They are described in Section 4.4.2.
• Block-oriented and Global Coherence Operations. These operations allow programs to manually

move data out of the cache.
• Cacheability Controls. These registers control whether the cache is permitted to store copies of

certain ranges of memory. They are described in Section 4.4.4.

4.4.1 Memory Mapped L2 Cache Control Registers Overview

Table 4-10 below lists the L2 cache registers.

Table 4-10. Cache Control Registers

Address Acronym Register Description Section

0184 0000h L2CFG L2 Configuration Register Section 4.4.2

0184 4000h L2WBAR L2 Writeback Base Address Register Section 4.4.3.1.1

0184 4004h L2WWC L2 Writeback Word Count Register Section 4.4.3.1.2

0184 4010h L2WIBAR L2 Writeback-Invalidate Base Address Register Section 4.4.3.1.3

0184 4014h L2WIWC L2 Writeback-Invalidate Word Count Register Section 4.4.3.1.4

0184 4018h L2IBAR L2 Invalidate Base Address Register Section 4.4.3.1.5

0184 401Ch L2IWC L2 Invalidate Word Count Register Section 4.4.3.1.6

0184 5000h L2WB L2 Writeback Register Section 4.4.3.2.1

0184 5004h L2WBINV L2 Writeback-Invalidate Register Section 4.4.3.2.2

0184 5008h L2INV L2 Invalidate Register Section 4.4.3.2.3

93SPRU871K–August 2010 Level 2 Memory and Cache

Copyright © 2010, Texas Instruments Incorporated



L2 Cache Control Registers www.ti.com

4.4.2 L2 Configuration Register (L2CFG)

The L2CFG register controls operating the L2 cache. The L2CFG sets the amount of L2 memory that acts
as cache, controls L2 freeze modes, and holds L1D/L1P invalidate bits.

The L2 configuration register (L2CFG) is shown in Figure 4-2 and described in Table 4-11.

Figure 4-2. L2 Configuration Register (L2CFG)
31 28 27 24 23 20 19 16

Reserved NUM MM Reserved MMID

R-0 R-config R-0 R-config

15 10 9 8 7 4 3 2 0

Reserved IP ID Reserved L2CC L2MODE

R-0 W-0 W-0 R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset

Table 4-11. L2 Configuration Register (L2CFG) Field Descriptions

Bit Field Value Description

31-28 Reserved 0 Reserved

27-24 NUM MM 0-Fh Number of megamodules minus 1. Used in multi-processing environment.

23-20 Reserved 0 Reserved

19-16 MMID 0-Fh Contains the megamodule ID number. Used in a multiprocessing environment where several
megamodules are present.

15-10 Reserved 0 Reserved

9 IP L1P global invalidate bit. Provided for backward compatibility, new applications should use the
L1PINV register described in the Chapter 2.

0 Normal L1P operation.

1 All L1P lines are invalidated.

8 ID L1D global invalidate bit. Provided for backward compatibility, new applications should use the
L1DINV register described in the Chapter 3.

0 Normal L1D operation.

1 All L1D lines are invalidated.

7-4 Reserved 0 Reserved

3 L2CC Controls the freeze mode

0 Normal operation

1 L2 cache frozen

2-0 L2MODE 0-7h Defines the size of L2 cache.

0h L2 cache disabled.

1h 32K

2h 64K

3h 128K

4h 256K

5h Maximum cache

6h Maximum cache

7h Maximum cache
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4.4.3 L2 Cache Coherence Operation Registers

4.4.3.1 Block Coherence Operation Registers

4.4.3.1.1 L2 Writeback Base Address Register (L2WBAR)

The L2 writeback base address register (L2WBAR) is shown in Figure 4-3 and described in Table 4-12.

Figure 4-3. L2 Writeback Base Address Register (L2WBAR)
31 0

L2 Writeback Base Address (L2WBAR)

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

Table 4-12. L2 Writeback Base Address Register (L2WBAR) Field Descriptions

Bit Field Value Description

31-0 L2WBAR 0-FFFF FFFFh Defines the base address for the L2 block writeback operation.

4.4.3.1.2 L2 Writeback Word Count Register (L2WWC)

The L2 writeback word count register (L2WWC) defines the size of the block that will be invalidated. The
size is defined in 32-bit words. Writing a number greater than FFE0h results in nothing being modified.

The L2 writeback word count register (L2WWC) is shown in Figure 4-4 and described in Table 4-13.

Figure 4-4. L2 Writeback Word Count Register (L2WWC)
31 16

Reserved

R-0

15 0

L2 Writeback Word Count (L2WWC)

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-13. L2 Writeback Word Count Register (L2WWC) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 L2WWC 0-FFE0h Word count for block invalidation. Writing FFE1h-FFFFh results in zero words being affected.
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4.4.3.1.3 L2 Writeback-Invalidate Base Address (L2WIBAR)

The L2 writeback-invalidate base address register (L2WIBAR) is shown in Figure 4-5 and described in
Table 4-14.

Figure 4-5. L2 Writeback-Invalidate Base Address Register (L2WIBAR)
31 0

L2 Writeback-Invalidate Base Address(L2WIBAR)

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

Table 4-14. L2 Writeback-Invalidate Base Address Register (L2WIBAR) Field Descriptions

Bit Field Value Description

31-0 L2WIBAR 0-FFFF FFFFh Defines the base address for the L2 block writeback-invalidate operation

4.4.3.1.4 L2 Writeback-Invalidate Word Count Register (L2WIWC)

The L2 writeback-invalidate word count register (L2WIWC) defines the size of the block that will be
invalidated. The size is defined in 32-bit words. Writing a number greater than FFE0h results in nothing
being modified.

The L2 writeback-invalidate word count register (L2WIWC) is shown in Figure 4-6 and described in
Table 4-15.

Figure 4-6. L2 Writeback-Invalidate Word Count Register (L2WIWC)
31 16

Reserved

R-0

15 0

L2 Writeback-Invalidate Word Count (L2WIWC)

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-15. L2 Writeback-Invalidate Word Count Register (L2WIWC) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 L2WIWC 0-FFE0h Word count for block invalidation. Writing FFE1h-FFFFh results in zero words being affected.
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4.4.3.1.5 L2 Invalidate Base Address Register (L2IBAR)

The L2 invalidate base address register (L2IBAR) defines the base address of the block that will be
invalidated.

The L2 invalidate base address register (L2IBAR) is shown in Figure 4-7 and described in Table 4-16.

Figure 4-7. L2 Invalidate Base Address Register (L2IBAR)
31 0

L2 Invalidate Base Address (L2IBAR)

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

Table 4-16. L2 Invalidate Base Address Register (L2IBAR) Field Descriptions

Bit Field Value Description

31-0 L2IBAR 0-FFFF FFFFh Defines the base address for the L2 block invalidate operation

4.4.3.1.6 L2 Invalidate Word Count Register (L2IWC)

The L2 invalidate word count register (L2IWC) defines the size of the block that will be invalidated. The
size is defined in 32-bit words. Writing a number greater than FFE0h results in nothing being modified.

The L2 invalidate word count register (L2IWC) is shown in Figure 4-8 and described in Table 4-17.

Figure 4-8. L2 Invalidate Word Count Register (L2IWC)
31 16

Reserved

R-0

15 0

L2 Invalidate Word Count (L2IWC)

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-17. Invalidate Word Count Register (L2IWC) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-0 L2IWC 0-FFE0h Word count for block invalidation. Writing FFE1h-FFFFh results in zero words being affected.
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4.4.3.2 Global Coherence Operation Registers

4.4.3.2.1 L2 Writeback Register (L2WB)

The L2 writeback register (L2WB) controls the global writeback operation of the L2 cache.

The L2 writeback register (L2WB) is shown in Figure 4-9 and described in Table 4-18.

Figure 4-9. L2 Writeback Register (L2WB)
31 16

Reserved

R-0

15 1 0

Reserved C

R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-18. L2 Writeback Register (L2WB) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 C Controls the global writeback operation of L2 cache as described in Section 4.3.6.1.

0 Normal operation

1 Dirty L2 cache lines are written back

4.4.3.2.2 L2 Writeback-Invalidate Register (L2WBINV)

The L2 writeback-invalidate register (L2WBINV) controls the writeback-invalidate operation of L2 cache.

The L2 writeback-invalidate register (L2WBINV) is shown in Figure 4-10 and described in Table 4-19.

Figure 4-10. L2 Writeback-Invalidate Register (L2WBINV)
31 16

Reserved

R-0

15 1 0

Reserved C

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-19. L2 Writeback-Invalidate Register (L2WBINV) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 C Controls the global writeback-invalidate operation of L2 cache as described in Section 4.3.6.1.

0 Normal L2 operation

1 Dirty L2 cache lines are written back. All L2 cache lines invalidated.
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4.4.3.2.3 L2 Invalidate Register (L2INV)

The L2 invalidate register (L2INV) controls the global invalidation of the L2 cache and is shown in
Figure 4-11 and described in Table 4-20.

Figure 4-11. L2 Invalidate Register (L2INV)
31 16

Reserved

R-0

15 1 0

Reserved I

R-0 R/SW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; R/SW = Read/writeable by the supervisor only.

Table 4-20. L2 Invalidate Register (L2INV) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 I Controls the global invalidation of L2 cache.

0 Normal operation

1 All L2 cache lines are invalidated.
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4.4.4 Memory Attribute Registers (MARn)

The L2 memory includes a set of registers to define the cacheability of external (to the megamodule)
memory space(s). The registers, referred to as MARs (Memory Attribute Registers), are defined as shown
in Table 4-33. The MAR registers are only writeable by Supervisor code.

Table 4-21 below lists the memory attribute memory mapped control registers.

Table 4-21. Memory Attribute Registers

Address Acronym Register Description Defines Attributes for. . .

0184 8000h MAR0 Memory Attribute Register 0 Local L2 RAM (fixed)

0184 8004h MAR1 Memory Attribute Register 1 0100 0000h - 01FF FFFFh

0184 8008h MAR2 Memory Attribute Register 2 0200 0000h - 02FF FFFFh

0184 800Ch MAR3 Memory Attribute Register 3 0300 0000h - 03FF FFFFh

0184 8010h MAR4 Memory Attribute Register 4 0400 0000h - 04FF FFFFh

0184 8014h MAR5 Memory Attribute Register 5 0500 0000h - 05FF FFFFh

0184 8018h MAR6 Memory Attribute Register 6 0600 0000h - 06FF FFFFh

0184 801Ch MAR7 Memory Attribute Register 7 0700 0000h - 07FF FFFFh

0184 8020h MAR8 Memory Attribute Register 8 0800 0000h - 08FF FFFFh

0184 8024h MAR9 Memory Attribute Register 9 0900 0000h - 09FF FFFFh

0184 8028h MAR10 Memory Attribute Register 10 0A00 0000h - 0AFF FFFFh

0184 802Ch MAR11 Memory Attribute Register 11 0B00 0000h - 0BFF FFFFh

0184 8030h MAR12 Memory Attribute Register 12 0C00 0000h - 0CFF FFFFh

0184 8034h MAR13 Memory Attribute Register 13 0D00 0000h - 0DFF FFFFh

0184 8038h MAR14 Memory Attribute Register 14 0E00 0000h - 0EFF FFFFh

0184 803Ch MAR15 Memory Attribute Register 15 0F00 0000h - 0FFF FFFFh

0184 8040h MAR16 Memory Attribute Register 16 1000 0000h - 10FF FFFFh

0184 8044h MAR17 Memory Attribute Register 17 1100 0000h - 11FF FFFFh

0184 8048h MAR18 Memory Attribute Register 18 1200 0000h - 12FF FFFFh

0184 804Ch MAR19 Memory Attribute Register 19 1300 0000h - 13FF FFFFh

0184 8050h MAR20 Memory Attribute Register 20 1400 0000h - 14FF FFFFh

0184 8054h MAR21 Memory Attribute Register 21 1500 0000h - 15FF FFFFh

0184 8058h MAR22 Memory Attribute Register 22 1600 0000h - 16FF FFFFh

0184 805Ch MAR23 Memory Attribute Register 23 1700 0000h - 17FF FFFFh

0184 8060h MAR24 Memory Attribute Register 24 1800 0000h - 18FF FFFFh

0184 8064h MAR25 Memory Attribute Register 25 1900 0000h - 19FF FFFFh

0184 8068h MAR26 Memory Attribute Register 26 1A00 0000h - 1AFF FFFFh

0184 806Ch MAR27 Memory Attribute Register 27 1B00 0000h - 1BFF FFFFh

0184 8070h MAR28 Memory Attribute Register 28 1C00 0000h - 1CFF FFFFh

0184 8074h MAR29 Memory Attribute Register 29 1D00 0000h - 1DFF FFFFh

0184 8078h MAR30 Memory Attribute Register 30 1E00 0000h - 1EFF FFFFh

0184 807Ch MAR31 Memory Attribute Register 31 1F00 0000h - 1FFF FFFFh

0184 8080h MAR32 Memory Attribute Register 32 2000 0000h - 20FF FFFFh

0184 8084h MAR33 Memory Attribute Register 33 2100 0000h - 21FF FFFFh

0184 8088h MAR34 Memory Attribute Register 34 2200 0000h - 22FF FFFFh

0184 808Ch MAR35 Memory Attribute Register 35 2300 0000h - 23FF FFFFh

0184 8090h MAR36 Memory Attribute Register 36 2400 0000h - 24FF FFFFh

0184 8094h MAR37 Memory Attribute Register 37 2500 0000h - 25FF FFFFh

0184 8098h MAR38 Memory Attribute Register 38 2600 0000h - 26FF FFFFh

0184 809Ch MAR39 Memory Attribute Register 39 2700 0000h - 27FF FFFFh

0184 80A0h MAR40 Memory Attribute Register 40 2800 0000h - 28FF FFFFh
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Table 4-21. Memory Attribute Registers (continued)

Address Acronym Register Description Defines Attributes for. . .

0184 80A4h MAR41 Memory Attribute Register 41 2900 0000h - 29FF FFFFh

0184 80A8h MAR42 Memory Attribute Register 42 2A00 0000h - 2AFF FFFFh

0184 80ACh MAR43 Memory Attribute Register 43 2B00 0000h - 2BFF FFFFh

0184 80B0h MAR44 Memory Attribute Register 44 2C00 0000h - 2CFF FFFFh

0184 80B4h MAR45 Memory Attribute Register 45 2D00 0000h - 2DFF FFFFh

0184 80B8h MAR46 Memory Attribute Register 46 2E00 0000h - 2EFF FFFFh

0184 80BCh MAR47 Memory Attribute Register 47 2F00 0000h - 2FFF FFFFh

0184 80C0h MAR48 Memory Attribute Register 48 3000 0000h - 30FF FFFFh

0184 80C4h MAR49 Memory Attribute Register 49 3100 0000h - 31FF FFFFh

0184 80C8h MAR50 Memory Attribute Register 50 3200 0000h - 32FF FFFFh

0184 80CCh MAR51 Memory Attribute Register 51 3300 0000h - 33FF FFFFh

0184 80D0h MAR52 Memory Attribute Register 52 3400 0000h - 34FF FFFFh

0184 80D4h MAR53 Memory Attribute Register 53 3500 0000h - 35FF FFFFh

0184 80D8h MAR54 Memory Attribute Register 54 3600 0000h - 36FF FFFFh

0184 80DCh MAR55 Memory Attribute Register 55 3700 0000h - 37FF FFFFh

0184 80E0h MAR56 Memory Attribute Register 56 3800 0000h - 38FF FFFFh

0184 80E4h MAR57 Memory Attribute Register 57 3900 0000h - 39FF FFFFh

0184 80E8h MAR58 Memory Attribute Register 58 3A00 0000h - 3AFF FFFFh

0184 80ECh MAR59 Memory Attribute Register 59 3B00 0000h - 3BFF FFFFh

0184 80F0h MAR60 Memory Attribute Register 60 3C00 0000h - 3CFF FFFFh

0184 80F4h MAR61 Memory Attribute Register 61 3D00 0000h - 3DFF FFFFh

0184 80F8h MAR62 Memory Attribute Register 62 3E00 0000h - 3EFF FFFFh

0184 80FCh MAR63 Memory Attribute Register 63 3F00 0000h - 3FFF FFFFh

0184 8100h MAR64 Memory Attribute Register 64 4000 0000h - 40FF FFFFh

0184 8104h MAR65 Memory Attribute Register 65 4100 0000h - 41FF FFFFh

0184 8108h MAR66 Memory Attribute Register 66 4200 0000h - 42FF FFFFh

0184 810Ch MAR67 Memory Attribute Register 67 4300 0000h - 43FF FFFFh

0184 8110h MAR68 Memory Attribute Register 68 4400 0000h - 44FF FFFFh

0184 8114h MAR69 Memory Attribute Register 69 4500 0000h - 45FF FFFFh

0184 8118h MAR70 Memory Attribute Register 70 4600 0000h - 46FF FFFFh

0184 811Ch MAR71 Memory Attribute Register 71 4700 0000h - 47FF FFFFh

0184 8120h MAR72 Memory Attribute Register 72 4800 0000h - 48FF FFFFh

0184 8124h MAR73 Memory Attribute Register 73 4900 0000h - 49FF FFFFh

0184 8128h MAR74 Memory Attribute Register 74 4A00 0000h - 4AFF FFFFh

0184 812Ch MAR75 Memory Attribute Register 75 4B00 0000h - 4BFF FFFFh

0184 8130h MAR76 Memory Attribute Register 76 4C00 0000h - 4CFF FFFFh

0184 8134h MAR77 Memory Attribute Register 77 4D00 0000h - 4DFF FFFFh

0184 8138h MAR78 Memory Attribute Register 78 4E00 0000h - 4EFF FFFFh

0184 813Ch MAR79 Memory Attribute Register 79 4F00 0000h - 4FFF FFFFh

0184 8140h MAR80 Memory Attribute Register 80 5000 0000h - 50FF FFFFh

0184 8144h MAR81 Memory Attribute Register 81 5100 0000h - 51FF FFFFh

0184 8148h MAR82 Memory Attribute Register 82 5200 0000h - 52FF FFFFh

0184 814Ch MAR83 Memory Attribute Register 83 5300 0000h - 53FF FFFFh

0184 8150h MAR84 Memory Attribute Register 84 5400 0000h - 54FF FFFFh

0184 8154h MAR85 Memory Attribute Register 85 5500 0000h - 55FF FFFFh

0184 8158h MAR86 Memory Attribute Register 86 5600 0000h - 56FF FFFFh

0184 815Ch MAR87 Memory Attribute Register 87 5700 0000h - 57FF FFFFh
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Table 4-21. Memory Attribute Registers (continued)

Address Acronym Register Description Defines Attributes for. . .

0184 8160h MAR88 Memory Attribute Register 88 5800 0000h - 58FF FFFFh

0184 8164h MAR89 Memory Attribute Register 89 5900 0000h - 59FF FFFFh

0184 8168h MAR90 Memory Attribute Register 90 5A00 0000h - 5AFF FFFFh

0184 816Ch MAR91 Memory Attribute Register 91 5B00 0000h - 5BFF FFFFh

0184 8170h MAR92 Memory Attribute Register 92 5C00 0000h - 5CFF FFFFh

0184 8174h MAR93 Memory Attribute Register 93 5D00 0000h - 5DFF FFFFh

0184 8178h MAR94 Memory Attribute Register 94 5E00 0000h - 5EFF FFFFh

0184 817Ch MAR95 Memory Attribute Register 95 5F00 0000h - 5FFF FFFFh

0184 8180h MAR96 Memory Attribute Register 96 6000 0000h - 60FF FFFFh

0184 8184h MAR97 Memory Attribute Register 97 6100 0000h - 61FF FFFFh

0184 8188h MAR98 Memory Attribute Register 98 6200 0000h - 62FF FFFFh

0184 818Ch MAR99 Memory Attribute Register 99 6300 0000h - 63FF FFFFh

0184 8190h MAR100 Memory Attribute Register 100 6400 0000h - 64FF FFFFh

0184 8194h MAR101 Memory Attribute Register 101 6500 0000h - 65FF FFFFh

0184 8198h MAR102 Memory Attribute Register 102 6600 0000h - 66FF FFFFh

0184 819Ch MAR103 Memory Attribute Register 103 6700 0000h - 67FF FFFFh

0184 81A0h MAR104 Memory Attribute Register 104 6800 0000h - 68FF FFFFh

0184 81A4h MAR105 Memory Attribute Register 105 6900 0000h - 69FF FFFFh

0184 81A8h MAR106 Memory Attribute Register 106 6A00 0000h - 6AFF FFFFh

0184 81ACh MAR107 Memory Attribute Register 107 6B00 0000h - 6BFF FFFFh

0184 81B0h MAR108 Memory Attribute Register 108 6C00 0000h - 6CFF FFFFh

0184 81B4h MAR109 Memory Attribute Register 109 6D00 0000h - 6DFF FFFFh

0184 81B8h MAR110 Memory Attribute Register 110 6E00 0000h - 6EFF FFFFh

0184 81BCh MAR111 Memory Attribute Register 111 6F00 0000h - 6FFF FFFFh

0184 81C0h MAR112 Memory Attribute Register 112 7000 0000h - 70FF FFFFh

0184 81C4h MAR113 Memory Attribute Register 113 7100 0000h - 71FF FFFFh

0184 81C8h MAR114 Memory Attribute Register 114 7200 0000h - 72FF FFFFh

0184 81CCh MAR115 Memory Attribute Register 115 7300 0000h - 73FF FFFFh

0184 81D0h MAR116 Memory Attribute Register 116 7400 0000h - 74FF FFFFh

0184 81D4h MAR117 Memory Attribute Register 117 7500 0000h - 75FF FFFFh

0184 81D8h MAR118 Memory Attribute Register 118 76000000h - 76FFFFFFh

0184 81DCh MAR119 Memory Attribute Register 119 7700 0000h - 77FF FFFFh

0184 81E0h MAR120 Memory Attribute Register 120 7800 0000h - 78FF FFFFh

0184 81E4h MAR121 Memory Attribute Register 121 7900 0000h - 79FF FFFFh

0184 81E8h MAR122 Memory Attribute Register 122 7A00 0000h - 7AFF FFFFh

0184 81ECh MAR123 Memory Attribute Register 123 7B00 0000h - 7BFF FFFFh

0184 81F0h MAR124 Memory Attribute Register 124 7C00 0000h - 7CFF FFFFh

0184 81F4h MAR125 Memory Attribute Register 125 7D00 0000h - 7DFF FFFFh

0184 81F8h MAR126 Memory Attribute Register 126 7E00 0000h - 7EFF FFFFh

0184 81FCh MAR127 Memory Attribute Register 127 7F00 0000h - 7FFF FFFFh

0184 8200h MAR128 Memory Attribute Register 128 8000 0000h - 80FF FFFFh

0184 8204h MAR129 Memory Attribute Register 129 8100 0000h - 81FF FFFFh

0184 8208h MAR130 Memory Attribute Register 130 8200 0000h - 82FF FFFFh

0184 820Ch MAR131 Memory Attribute Register 131 8300 0000h - 83FF FFFFh

0184 8210h MAR132 Memory Attribute Register 132 8400 0000h - 84FF FFFFh

0184 8214h MAR133 Memory Attribute Register 133 8500 0000h - 85FF FFFFh

0184 8218h MAR134 Memory Attribute Register 134 8600 0000h - 86FF FFFFh
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Table 4-21. Memory Attribute Registers (continued)

Address Acronym Register Description Defines Attributes for. . .

0184 821Ch MAR135 Memory Attribute Register 135 8700 0000h - 87FF FFFFh

0184 8220h MAR136 Memory Attribute Register 136 8800 0000h - 88FF FFFFh

0184 8224h MAR137 Memory Attribute Register 137 8900 0000h - 89FF FFFFh

0184 8228h MAR138 Memory Attribute Register 138 8A00 0000h - 8AFF FFFFh

0184 822Ch MAR139 Memory Attribute Register 139 8B00 0000h - 8BFF FFFFh

0184 8230h MAR140 Memory Attribute Register 140 8C00 0000h - 8CFF FFFFh

0184 8234h MAR141 Memory Attribute Register 141 8D00 0000h - 8DFF FFFFh

0184 8238h MAR142 Memory Attribute Register 142 8E00 0000h - 8EFF FFFFh

0184 823Ch MAR143 Memory Attribute Register 143 8F00 0000h - 8FFF FFFFh

0184 8240h MAR144 Memory Attribute Register 144 9000 0000h - 90FF FFFFh

0184 8244h MAR145 Memory Attribute Register 145 9100 0000h - 91FF FFFFh

0184 8248h MAR146 Memory Attribute Register 146 9200 0000h - 92FF FFFFh

0184 824Ch MAR147 Memory Attribute Register 147 9300 0000h - 93FF FFFFh

0184 8250h MAR148 Memory Attribute Register 148 9400 0000h - 94FF FFFFh

0184 8254h MAR149 Memory Attribute Register 149 9500 0000h - 95FF FFFFh

0184 8258h MAR150 Memory Attribute Register 150 9600 0000h - 96FF FFFFh

0184 825Ch MAR151 Memory Attribute Register 151 9700 0000h - 97FF FFFFh

0184 8260h MAR152 Memory Attribute Register 152 9800 0000h - 98FF FFFFh

0184 8264h MAR153 Memory Attribute Register 153 990 00000h - 99FF FFFFh

0184 8268h MAR154 Memory Attribute Register 154 9A00 0000h - 9AFF FFFFh

0184 826Ch MAR155 Memory Attribute Register 155 9B00 0000h - 9BFF FFFFh

0184 8270h MAR156 Memory Attribute Register 156 9C00 0000h - 9CFF FFFFh

0184 8274h MAR157 Memory Attribute Register 157 9D00 0000h - 9DFF FFFFh

0184 8278h MAR158 Memory Attribute Register 158 9E00 0000h - 9EFF FFFFh

0184 827Ch MAR159 Memory Attribute Register 159 9F00 0000h - 9FFF FFFFh

0184 8280h MAR160 Memory Attribute Register 160 A000 0000h - A0FF FFFFh

0184 8284h MAR161 Memory Attribute Register 161 A100 0000h - A1FF FFFFh

0184 8288h MAR162 Memory Attribute Register 162 A200 0000h - A2FF FFFFh

0184 828Ch MAR163 Memory Attribute Register 163 A300 0000h - A3FF FFFFh

0184 8290h MAR164 Memory Attribute Register 164 A400 0000h - A4FF FFFFh

0184 8294h MAR165 Memory Attribute Register 165 A500 0000h - A5FF FFFFh

0184 8298h MAR166 Memory Attribute Register 166 A600 0000h - A6FF FFFFh

0184 829Ch MAR167 Memory Attribute Register 167 A700 0000h - A7FF FFFFh

0184 82A0h MAR168 Memory Attribute Register 168 A800 0000h - A8FF FFFFh

0184 82A4h MAR169 Memory Attribute Register 169 A900 0000h - A9FF FFFFh

0184 82A8h MAR170 Memory Attribute Register 170 AA00 0000h - AAFF FFFFh

0184 82ACh MAR171 Memory Attribute Register 171 AB00 0000h - ABFF FFFFh

0184 82B0h MAR172 Memory Attribute Register 172 AC00 0000h - ACFF FFFFh

0184 82B4h MAR173 Memory Attribute Register 173 AD00 0000h - ADFF FFFFh

0184 82B8h MAR174 Memory Attribute Register 174 AE00 0000h - AEFF FFFFh

0184 82BCh MAR175 Memory Attribute Register 175 AF00 0000h - AFFF FFFFh

0184 82C0h MAR176 Memory Attribute Register 176 B000 0000h - B0FF FFFFh

0184 82C4h MAR177 Memory Attribute Register 177 B100 0000h - B1FF FFFFh

0184 82C8h MAR178 Memory Attribute Register 178 B20 00000h - B2FF FFFFh

0184 82CCh MAR179 Memory Attribute Register 179 B300 0000h - B3FF FFFFh

0184 82D0h MAR180 Memory Attribute Register 180 B400 0000h - B4FF FFFFh

0184 82D4h MAR181 Memory Attribute Register 181 B500 0000h - B5FF FFFFh
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Table 4-21. Memory Attribute Registers (continued)

Address Acronym Register Description Defines Attributes for. . .

0184 82D8h MAR182 Memory Attribute Register 182 B600 0000h - B6FF FFFFh

0184 82DCh MAR183 Memory Attribute Register 183 B700 0000h - B7FF FFFFh

0184 82E0h MAR184 Memory Attribute Register 184 B800 0000h - B8FF FFFFh

0184 82E4h MAR185 Memory Attribute Register 185 B900 0000h - B9FF FFFFh

0184 82E8h MAR186 Memory Attribute Register 186 BA00 0000h - BAFF FFFFh

0184 82ECh MAR187 Memory Attribute Register 187 BB00 0000h - BBFF FFFFh

0184 82F0h MAR188 Memory Attribute Register 188 BC00 0000h - BCFF FFFFh

0184 82F4h MAR189 Memory Attribute Register 189 BD00 0000h - BDFF FFFFh

0184 82F8h MAR190 Memory Attribute Register 190 BE00 0000h - BEFF FFFFh

0184 82FCh MAR191 Memory Attribute Register 191 BF00 0000h - BFFF FFFFh

0184 8300h MAR192 Memory Attribute Register 192 C000 0000h - C0FF FFFFh

0184 8304h MAR193 Memory Attribute Register 193 C100 0000h - C1FF FFFFh

0184 8308h MAR194 Memory Attribute Register 194 C200 0000h - C2FF FFFFh

0184 830Ch MAR195 Memory Attribute Register 195 C300 0000h - C3FF FFFFh

0184 8310h MAR196 Memory Attribute Register 196 C400 0000h - C4FF FFFFh

0184 8314h MAR197 Memory Attribute Register 197 C500 0000h - C5FF FFFFh

0184 8318h MAR198 Memory Attribute Register 198 C600 0000h - C6FF FFFFh

0184 831Ch MAR199 Memory Attribute Register 199 C700 0000h - C7FF FFFFh

0184 8320h MAR200 Memory Attribute Register 200 C800 0000h - C8FF FFFFh

0184 8324h MAR201 Memory Attribute Register 201 C900 0000h - C9FF FFFFh

0184 8328h MAR202 Memory Attribute Register 202 CA00 0000h - CAFF FFFFh

0184 832Ch MAR203 Memory Attribute Register 203 CB00 0000h - CBFF FFFFh

0184 8330h MAR204 Memory Attribute Register 204 CC00 0000h - CCFF FFFFh

0184 8334h MAR205 Memory Attribute Register 205 CD00 0000h - CDFF FFFFh

0184 8338h MAR206 Memory Attribute Register 206 CE00 0000h - CEFF FFFFh

0184 833Ch MAR207 Memory Attribute Register 207 CF00 0000h - CFFF FFFFh

0184 8340h MAR208 Memory Attribute Register 208 D000 0000h - D0FF FFFFh

0184 8344h MAR209 Memory Attribute Register 209 D100 0000h - D1FF FFFFh

0184 8348h MAR210 Memory Attribute Register 210 D200 0000h - D2FF FFFFh

0184 834Ch MAR211 Memory Attribute Register 211 D300 0000h - D3FF FFFFh

0184 8350h MAR212 Memory Attribute Register 212 D400 0000h - D4FF FFFFh

0184 8354h MAR213 Memory Attribute Register 213 D500 0000h - D5FF FFFFh

0184 8358h MAR214 Memory Attribute Register 214 D600 0000h - D6FF FFFFh

0184 835Ch MAR215 Memory Attribute Register 215 D700 0000h - D7FF FFFFh

0184 8360h MAR216 Memory Attribute Register 216 D800 0000h - D8FF FFFFh

0184 8364h MAR217 Memory Attribute Register 217 D900 0000h - D9FF FFFFh

0184 8368h MAR218 Memory Attribute Register 218 DA00 0000h - DAFF FFFFh

0184 836Ch MAR219 Memory Attribute Register 219 DB00 0000h - DBFF FFFFh

0184 8370h MAR220 Memory Attribute Register 220 DC00 0000h - DCFF FFFFh

0184 8374h MAR221 Memory Attribute Register 221 DD00 0000h - DDFF FFFFh

0184 8378h MAR222 Memory Attribute Register 222 DE00 0000h - DEFF FFFFh

0184 837Ch MAR223 Memory Attribute Register 223 DF00 0000h - DFFF FFFFh

0184 8380h MAR224 Memory Attribute Register 224 E000 0000h - E0FF FFFFh

0184 8384h MAR225 Memory Attribute Register 225 E10 00000h - E1FF FFFFh

0184 8388h MAR226 Memory Attribute Register 226 E200 0000h - E2FF FFFFh

0184 838Ch MAR227 Memory Attribute Register 227 E300 0000h - E3FFF FFFh

0184 8390h MAR228 Memory Attribute Register 228 E400 0000h - E4FF FFFFh
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Table 4-21. Memory Attribute Registers (continued)

Address Acronym Register Description Defines Attributes for. . .

0184 8394h MAR229 Memory Attribute Register 229 E500 0000h - E5FF FFFFh

0184 8398h MAR230 Memory Attribute Register 230 E600 0000h - E6FF FFFFh

0184 839Ch MAR231 Memory Attribute Register 231 E700 0000h - E7FF FFFFh

0184 83A0h MAR232 Memory Attribute Register 232 E800 0000h - E8FF FFFFh

0184 83A4h MAR233 Memory Attribute Register 233 E900 0000h - E9FF FFFFh

0184 83A8h MAR234 Memory Attribute Register 234 EA00 0000h - EAFF FFFFh

0184 83ACh MAR235 Memory Attribute Register 235 EB00 0000h - EBFF FFFFh

0184 83B0h MAR236 Memory Attribute Register 236 EC00 0000h - ECFF FFFFh

0184 83B4h MAR237 Memory Attribute Register 237 ED00 0000h - EDFF FFFFh

0184 83B8h MAR238 Memory Attribute Register 238 EE00 0000h - EEFF FFFFh

0184 83BCh MAR239 Memory Attribute Register 239 EF00 0000h - EFFF FFFFh

0184 83C0h MAR240 Memory Attribute Register 240 F000 0000h - F0FF FFFFh

0184 83C4h MAR241 Memory Attribute Register 241 F100 0000h - F1FF FFFFh

0184 83C8h MAR242 Memory Attribute Register 242 F200 0000h - F2FF FFFFh

0184 83CCh MAR243 Memory Attribute Register 243 F300 0000h - F3FF FFFFh

0184 83D0h MAR244 Memory Attribute Register 244 F400 0000h - F4FF FFFFh

0184 83D4h MAR245 Memory Attribute Register 245 F500 0000h - F5FF FFFFh

0184 83D8h MAR246 Memory Attribute Register 246 F600 0000h - F6FF FFFFh

0184 83DCh MAR247 Memory Attribute Register 247 F700 0000h - F7FF FFFFh

0184 83E0h MAR248 Memory Attribute Register 248 F800 0000h - F8FF FFFFh

0184 83E4h MAR249 Memory Attribute Register 249 F900 0000h - F9FF FFFFh

0184 83E8h MAR250 Memory Attribute Register 250 FA00 0000h - FAFF FFFFh

0184 83ECh MAR251 Memory Attribute Register 251 FB00 0000h - FBFF FFFFh

0184 83F0h MAR252 Memory Attribute Register 252 FC00 0000h - FCFF FFFFh

0184 83F4h MAR253 Memory Attribute Register 253 FD00 0000h - FDFF FFFFh

0184 83F8h MAR254 Memory Attribute Register 254 FE00 0000h - FEFF FFFFh

0184 83FCh MAR255 Memory Attribute Register 255 FF00 0000h - FFFF FFFFh
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4.4.5 Memory Attribute Registers (MARn)

The general structure of the L2 memory attribute register (MARn) is shown in Figure 4-12 and described in
Table 4-22.

Figure 4-12. Memory Attribute Register (MARn)
31 16

Reserved

R-0

15 0

Reserved PC

R-0 R-S/W

LEGEND: R = Read only; -n = value after reset; R/SW = Read/Writeable by supervisor only

Table 4-22. Memory Attribute Register (MARn) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 PC Permit copies field enables/disables the cacheability of the affected address range.

0 Memory range not cacheable.

1 Memory range cacheable.

4.4.6 Privilege and Cache Control Registers

The L2 memory architecture provides memory protection support. The L2 memory protection architecture
is described in more detail in Section 4.6.

Table 4-23 summarizes which L2 cache control registers are accessible according to role.

Table 4-23. Permissions for L2 Cache Control Registers

Register Supervisor User

L2CFG R/W R

L2INV R/W R

L2WB R/W R/W

L2WBINV R/W R/W

L2WBAR/WC R/W R/W

L2WIBAR/WC R/W R/W

L2IBAR/WC R/W R/W

MARxx R/W R
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4.5 L2 Power-Down

The C64x+ megamodule architecture provides several power-down features. Some power-down features
are transparent. Others are controlled through software. The user-controlled power-down features can be
divided into two groups: dynamic and static. Dynamic power-down features are used at run-time for a
limited period of time, whereas static power-down features are used for a longer period of time when the
CPU is in idle mode. These power-down features are controlled through registers that are local to the
specific module or part of the power-down controller (PDC). Read Chapter 9 prior to reading this section in
order to understand this section better.

The L2 memory architecture provides support for dynamically powering-down portions of memory attached
to Port 0 and Port 1 while a program is active. Programs can put pages of L2 memory to sleep and
subsequently wake them manually. The C64x+ will also wake sleeping pages automatically when
programs access them while sleeping.

4.5.1 L2 Memory Dynamic Power-Down

L2 memory is divided into four logical pages-two for each port-that can be powered independently. The
power-of-2 size of the logical pages is device-specific. The power-of-2 size of the logical pages is half the
power-of-2 size of the memory attached to each L2 port. Devices that implement a non-power-of-2
memory size on a given L2 port will have one page larger than the other. Refer to the device-specific data
manual for more information.

The dynamic power-down features are programmable throughout a set of registers. Table 4-24 provides a
summary. These registers are mentioned through the next sections and described in more detail in
Section 4.5.3.

Table 4-24. L2 Memory Power-Down Register Summary

Address Acronym Register Description Section

0184 C040h L2PDWAKE0 Level 2 Power Down Wake Register 0 Section 4.5.3.1

0184 C044h L2PDWAKE1 Level 2 Power Down Wake Register 1 Section 4.5.3.1

0184 C050h L2PDSLEEP0 Level 2 Power Down Sleep Register 0 Section 4.5.3.2

0184 C054h L2PDSLEEP1 Level 2 Power Down Sleep Register 1 Section 4.5.3.2

0184 C060h L2PDSTAT0 Level 2 Power Down Status Register 0 Section 4.5.3.3

0184 C064h L2PDSTAT1 Level 2 Power Down Status Register 1 Section 4.5.3.3

4.5.1.1 Manual Sleep Control

Programs can put certain logical memory pages to sleep, or wake-up certain logical pages. This allows the
program to manually control what portions of L2 memory are powered-up or sleeping.

4.5.1.2 Wake and Sleep Commands

To put logical pages of L2 memory to sleep, programs write 1s to the page-sleep bits in the appropriate
L2PDSLEEP register. For instance, to put 1 to sleep on port 1, the program writes the value 0000 0002
(bits 1 set to 1) to the L2PDSLEEP1 register.

Likewise, to wake logical pages in L2 memory, programs write 1s to the page-wake bits in the appropriate
L2PDWAKE register. This procedure of waking up pages enables you to wake up multiple pages ahead of
any accesses to those pages. Thus, part of the stall penalty associated with this wake-up process is
hidden from the program.

Zero bits written to the L2PDWAKE and L2PDSLEEP registers have no effect on the corresponding logical
pages.

A page put to sleep may be awakened by activity to addresses that are within that page. The page does
not go back to sleep unless another L2PDSLEEP command is issued for it.
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The L2 controller may drop sleep requests for a page if it is currently servicing accesses for that page, or
if other requests for that page arrive within a short time window of receiving the sleep request. This
prevents L2 from storing the sleep request until all outstanding requests are complete. Therefore,
programs should check the L2PDSTATx register to determine whether or not a given sleep request was
honored.

4.5.1.3 Power-Down Status Reporting

The L2PDSTAT0 and L2PDSTAT1 memory-mapped registers report the current sleep-status of each L2
memory page. These registers allow an application to determine which pages are placed to sleep. The
registers report sleep status for both logical pages on each L2 port.

4.5.2 L2 Memory Static Power-Down

You can power-down the L2 memory at the same time that you power-down the entire megamodule. The
L2 memory can also be powered-down when the entire megamodule is powered-down. The following
software sequence is required to power-down the C64x+ megamodule:

1. Set the MEGPD field in the PDCCMD register to 1 to enable power-down mode.
2. Enable the CPU interrupt(s) that you want to wake the megamodule up; disable all others.
3. Execute an IDLE instruction.

The megamodule stays in powered-down until awakened by the interrupt(s) enabled in step 2, above.

If a DMA access occurs to the L1D, L1P, or L2 memory while the megamodule is powered-down, the PDC
wakes all three memory controllers. When the DMA access has been serviced, the PDC will again
power-down the memory controllers.

Note: Powering-down the megamodule as described here is often called static power-down. This
term is used to describe this mode since it is often used for longer periods of time. The use
of dynamic power-down elsewhere in this chapter implies that they are used for limited
periods of time.

Refer to Chapter 9 for more information about the PDCCMD register and the power-down capabilities of
the C64x+ megamodule.
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4.5.3 L2 Power-Down Control Registers

Table 4-25 provides a summary of the L2 memory power-down registers.

Table 4-25. L2 Memory Power-Down Register Summary

Address Acronym Register Description Section

0184 C040h L2PDWAKE0 Level 2 Power Down Wake Register 0 Section 4.5.3.1

0184 C044h L2PDWAKE1 Level 2 Power Down Wake Register 1 Section 4.5.3.1

0184 C050h L2PDSLEEP0 Level 2 Power Down Sleep Register 0 Section 4.5.3.2

0184 C054h L2PDSLEEP1 Level 2 Power Down Sleep Register 1 Section 4.5.3.2

0184 C060h L2PDSTAT0 Level 2 Power Down Status Register 0 Section 4.5.3.3

0184 C064h L2PDSTAT1 Level 2 Power Down Status Register 1 Section 4.5.3.3

4.5.3.1 Level 2 Power-Down Wake Register (L2PDWAKEn)

The four logical L2 pages can be awakened from a power-down state by programming the registers
described in Figure 4-13.

The level 2 power-down wake register (L2PDWAKEn) is shown in Figure 4-13 and described in
Table 4-26.

Figure 4-13. Level 2 Power-Down Wake Register (L2PDWAKEn)
31 16

Reserved

R-0

15 2 1 0

Reserved P1 P0

R-0 W-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 4-26. Level 2 Power-Down Wake Register (L2PDWAKEn) Field Descriptions

Bit Field Value Description

31-2 Reserved 0 Reserved

1 P1 Wakes-up page 1, port 0 or port 1.

0 Writing to this field has no effect on page 1.

1 Writing a 1 to this field wakes-up the page from the power-down state.

0 PO Wakes-up page 0, port 0 or port 1.

0 Writing 0 to this field has no effect on page 0.

1 Writing a 1 to this field wakes-up the page from power-down state.
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4.5.3.2 Level 2 Power-Down Sleep Register (L2PDSLEEPn)

The four logical L2 pages can be powered-down by programming the two registers described in
Figure 4-14 and Figure 4-13.

The level 2 power-down sleep register (L2PDSLEEPn) is shown in Figure 4-14 and described in
Table 4-27.

Figure 4-14. Level 2 Power-Down Sleep Register (L2PDSLEEPn)
31 16

Reserved

R-0

15 2 1 0

Reserved P1 P0

R-0 W-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 4-27. Level 2 Power-Down Sleep Register (L2PDSLEEPn) Field Descriptions

Bit Field Value Description

31-2 Reserved 0 Reserved

1 P1 Places page 1, port 0 or port 1 in a power-down state.

0 Writing 0 to this field has no effect on page 1.

1 Writing a 1 to this field places the page in power-down state.

0 P0 Places page 0, port 0 or port 1 in a power-down state.

0 Writing 0 to this field has no effect on page 0.

1 Writing a 1 to this field places the page in power-down state.
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4.5.3.3 Level 2 Power-Down Status Register (L2PDSTATn)

The power-down state of the four L2 pages is reported in two status registers.

The level 2 power-down status register (L2PDSTATn) is shown in Figure 4-15 and described in
Table 4-28.

Figure 4-15. Level 2 Power-Down Status Register (L2PDSTATn)
31 16

Reserved

R-0

15 2 1 0

Reserved P1 P0

R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 4-28. Level 2 Power-Down Status Register (L2PDSTATn) Field Descriptions

Bit Field Value Description

31-2 Reserved 0 Reserved

1 P1 Reports power-down status for page 1, port n.

0 Page 1 is a normal state.

1 Page 1 is in a power-down state.

0 P0 Reports power-down status for page 0, port n.

0 Page 0 is a normal state.

1 Page 0 is a power-down state.

4.5.3.4 Privilege and L2 Power-Down Control Registers

The impact of privilege on power-down control operations can be summarized as follows:
• Supervisor or user code may power-down and wake-up any of the L2 logical pages.

Table 4-29 summarizes who may access which power-down control registers:

Table 4-29. Permissions for L2 Power-Down Control Registers

Register Supervisor User

L2PDWAKE0 R/W R/W

L2PDWAKE1 R/W R/W

L2PDSLEEP0 R/W R/W

L2PDSLEEP1 R/W R/W

L2PDSTAT0 R R

L2PDSTAT1 R R
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4.6 L2 Memory Protection

L2 memory supports memory protection to offer the robustness required in many systems. Several levels
of memory protection are available. Not all the levels are available on all the devices. Refer to the
device-specific data manual for more information. Familiarize yourself with Chapter 8 before reading this
section.

4.6.1 Protection Checks on CPU, IDMA and Other System Master Accesses

Memory protection checks are performed for accesses that are serviced directly by the L2 from L1P, L1D,
IDMA, and other system masters on devices that include memory protection support.

All three memory controllers feature two exception outputs which are routed to the C64x+ megamodule
interrupt controller. One of these exception outputs indicates that a CPU-triggered (“local”) memory
exception occurred. The other indicates that an exception triggered by a system master occurred. It is
expected that most programs route the CPU-triggered exception input to the CPU’s exception input and
the system master triggered input to an interrupt input.

L2 does not perform protection checks on CPU reads that arrive in L2, regardless of whether they hit or
miss in L2. Reads ultimately return the access permissions to the requestor, thereby deferring the check
to L1D or L1P. In contrast, L2 checks all CPU writes that hit L2, or that miss L2 and subsequently allocate
a line in the L2 cache. L2 does not check permissions on non-cacheable writes that miss L2. Therefore,
L2 checks all CPU accesses that end at L2, and defers checks for other access to the controller (L1P,
L1D, or external peripheral) that ultimately services the access.

All system masters and IDMA accesses (reads and writes) to L2 memory are always checked. System
masters and IDMA accesses to addresses held in L2 cache are not checked. L2 (or EMC) performs
protection checks before issuing snoop-write commands to L1D for addresses held in L1D cache.

The L2 controller determines whether a given request is allowed or not allowed based on the privilege
associated with the request, and the permission settings on the address range that the request accesses.
Chapter 8 sets the exact rules for these checks forth.

L2 asserts an exception and denies the request if a given request has insufficient permission. Reads that
are not allowed return garbage and writes that are not allowed are killed before the underlying memory is
written. The L2 only permission-checks CPU writes that miss L2 if they are cacheable within L2 or later
stages of the memory system if they are not cacheable.
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4.6.2 L2 Memory Protection Registers

The following registers govern the operation of L2 memory protection. The registers fall into three main
categories:

• Memory Protection Page Attribute (MPPA) registers. These registers store the permissions associated
with each protected page.

• Memory Protection Lock (MPLK) registers. These registers implement a hardware memory protection
lock. When engaged, the lock disables all updates to the memory protection entries for that peripheral.

• Memory Protection Fault (MPFxR) registers. Each peripheral that generates memory protection faults
provides MPFAR, MPFSR, and MPFCLR registers for recording the details of the fault.

4.6.2.1 L2 Memory Protection Registers

Table 4-30 below lists the memory attribute registers.

Table 4-30. L2 Memory Protection Registers

Address Acronym Register Description Section

0184 A2xxh L2MPPAxx Level 2 Memory Protection Page Attribute Registers Section 4.6.2.2

0184 A100h L2MPLK0 Level 2 Memory Protection Lock Register 0 Section 4.6.2.3.1.1

0184 A104h L2MPLK1 Level 2 Memory Protection Lock Register 1 Section 4.6.2.3.1.2

0184 A108h L2MPLK2 Level 2 Memory Protection Lock Register 2 Section 4.6.2.3.1.3

0184 A10Ch L2MPLK3 Level 2 Memory Protection Lock Register 3 Section 4.6.2.3.1.4

0184 A110h L2MPLKCMD Level 2 Memory Protection Lock Command Register Section 4.6.2.3.1.5

0184 A114h L2MPLKSTAT Level 2 Memory Protection Lock Status Register Section 4.6.2.3.1.6

0184 A000h L2MPFAR Level 2 Memory Protection Fault Address Register Section 4.6.2.4.1

0184 A004h L2MPFSR Level 2 Memory Protection Fault Set Register Section 4.6.2.4.2

0184 A008h L2MPFCR Level 2 Memory Protection Fault Clear Register Section 4.6.2.4.3
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4.6.2.2 Memory Protection Page Attribute Registers (L2MPPAxx)

L2 implements 64 memory protection pages, with 32 pages per memory port. L2MPPA0 through
L2MPPA31 correspond to port 0 and L2MPPA32 through L2MPPA63 correspond to port 1. The size of
each page differs from port to port and from one device to another. Some pages may not be used on a
particular device. Program unused pages to a value of all zeroes for debug purposes.

Refer to the device-specific data manual to determine the page size and number of pages used on a
particular device.

Each page in L2 has 16 memory protection bits associated with it, as shown in Figure 4-16. The default
value of the protection bits in these 64 memory protection pages is determined at reset. Table 4-33
illustrates the default configuration.

Table 4-31 below lists the memory attribute registers.

Table 4-31. Level 2 Memory Protection Page Attribute Registers

Address Acronym Register Description Section

0184 A200h L2MPPA0 Level 2 Memory Protection Page Attribute Register 0 Section 4.6.2.2.1

0184 A204h L2MPPA1 Level 2 Memory Protection Page Attribute Register 1 Section 4.6.2.2.1

0184 A208h L2MPPA2 Level 2 Memory Protection Page Attribute Register 2 Section 4.6.2.2.1

0184 A20Ch L2MPPA3 Level 2 Memory Protection Page Attribute Register 3 Section 4.6.2.2.1

0184 A210h L2MPPA4 Level 2 Memory Protection Page Attribute Register 4 Section 4.6.2.2.1

0184 A214h L2MPPA5 Level 2 Memory Protection Page Attribute Register 5 Section 4.6.2.2.1

0184 A218h L2MPPA6 Level 2 Memory Protection Page Attribute Register 6 Section 4.6.2.2.1

0184 A21Ch L2MPPA7 Level 2 Memory Protection Page Attribute Register 7 Section 4.6.2.2.1

0184 A220h L2MPPA8 Level 2 Memory Protection Page Attribute Register 8 Section 4.6.2.2.1

0184 A224h L2MPPA9 Level 2 Memory Protection Page Attribute Register 9 Section 4.6.2.2.1

0184 A228h L2MPPA10 Level 2 Memory Protection Page Attribute Register 10 Section 4.6.2.2.1

0184 A22Ch L2MPPA11 Level 2 Memory Protection Page Attribute Register 11 Section 4.6.2.2.1

0184 A230h L2MPPA12 Level 2 Memory Protection Page Attribute Register 12 Section 4.6.2.2.1

0184 A234h L2MPPA13 Level 2 Memory Protection Page Attribute Register 13 Section 4.6.2.2.1

0184 A238h L2MPPA14 Level 2 Memory Protection Page Attribute Register 14 Section 4.6.2.2.1

0184 A23Ch L2MPPA15 Level 2 Memory Protection Page Attribute Register 15 Section 4.6.2.2.1

0184 A240h L2MPPA16 Level 2 Memory Protection Page Attribute Register 16 Section 4.6.2.2.1

0184 A244h L2MPPA17 Level 2 Memory Protection Page Attribute Register 17 Section 4.6.2.2.1

0184 A248h L2MPPA18 Level 2 Memory Protection Page Attribute Register 18 Section 4.6.2.2.1

0184 A24Ch L2MPPA19 Level 2 Memory Protection Page Attribute Register 19 Section 4.6.2.2.1

0184 A250h L2MPPA20 Level 2 Memory Protection Page Attribute Register 20 Section 4.6.2.2.1

0184 A254h L2MPPA21 Level 2 Memory Protection Page Attribute Register 21 Section 4.6.2.2.1

0184 A258h L2MPPA22 Level 2 Memory Protection Page Attribute Register 22 Section 4.6.2.2.1

0184 A25Ch L2MPPA23 Level 2 Memory Protection Page Attribute Register 23 Section 4.6.2.2.1

0184 A260h L2MPPA24 Level 2 Memory Protection Page Attribute Register 24 Section 4.6.2.2.1

0184 A264h L2MPPA25 Level 2 Memory Protection Page Attribute Register 25 Section 4.6.2.2.1

0184 A268h L2MPPA26 Level 2 Memory Protection Page Attribute Register 26 Section 4.6.2.2.1

0184 A26Ch L2MPPA27 Level 2 Memory Protection Page Attribute Register 27 Section 4.6.2.2.1

0184 A270h L2MPPA28 Level 2 Memory Protection Page Attribute Register 28 Section 4.6.2.2.1

0184 A274h L2MPPA29 Level 2 Memory Protection Page Attribute Register 29 Section 4.6.2.2.1

0184 A278h L2MPPA30 Level 2 Memory Protection Page Attribute Register 30 Section 4.6.2.2.1

0184 A27Ch L2MPPA31 Level 2 Memory Protection Page Attribute Register 31 Section 4.6.2.2.1

0184 A280h L2MPPA32 Level 2 Memory Protection Page Attribute Register 32 Section 4.6.2.2.1

0184 A284h L2MPPA33 Level 2 Memory Protection Page Attribute Register 33 Section 4.6.2.2.1

0184 A288h L2MPPA34 Level 2 Memory Protection Page Attribute Register 34 Section 4.6.2.2.1
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Table 4-31. Level 2 Memory Protection Page Attribute Registers (continued)

Address Acronym Register Description Section

0184 A28Ch L2MPPA35 Level 2 Memory Protection Page Attribute Register 35 Section 4.6.2.2.1

0184 A290h L2MPPA36 Level 2 Memory Protection Page Attribute Register 36 Section 4.6.2.2.1

0184 A294h L2MPPA37 Level 2 Memory Protection Page Attribute Register 37 Section 4.6.2.2.1

0184 A298h L2MPPA38 Level 2 Memory Protection Page Attribute Register 38 Section 4.6.2.2.1

0184 A29Ch L2MPPA39 Level 2 Memory Protection Page Attribute Register 39 Section 4.6.2.2.1

0184 A2A0h L2MPPA40 Level 2 Memory Protection Page Attribute Register 40 Section 4.6.2.2.1

0184 A2A4h L2MPPA41 Level 2 Memory Protection Page Attribute Register 41 Section 4.6.2.2.1

0184 A2A8h L2MPPA42 Level 2 Memory Protection Page Attribute Register 42 Section 4.6.2.2.1

0184 A2ACh L2MPPA43 Level 2 Memory Protection Page Attribute Register 43 Section 4.6.2.2.1

0184 A2B0h L2MPPA44 Level 2 Memory Protection Page Attribute Register 44 Section 4.6.2.2.1

0184 A2B4h L2MPPA45 Level 2 Memory Protection Page Attribute Register 45 Section 4.6.2.2.1

0184 A2B8h L2MPPA46 Level 2 Memory Protection Page Attribute Register 46 Section 4.6.2.2.1

0184 A2BCh L2MPPA47 Level 2 Memory Protection Page Attribute Register 47 Section 4.6.2.2.1

0184 A2C0h L2MPPA48 Level 2 Memory Protection Page Attribute Register 48 Section 4.6.2.2.1

0184 A2C4h L2MPPA49 Level 2 Memory Protection Page Attribute Register 49 Section 4.6.2.2.1

0184 A2C8h L2MPPA50 Level 2 Memory Protection Page Attribute Register 50 Section 4.6.2.2.1

0184 A2CCh L2MPPA51 Level 2 Memory Protection Page Attribute Register 51 Section 4.6.2.2.1

0184 A2D0h L2MPPA52 Level 2 Memory Protection Page Attribute Register 52 Section 4.6.2.2.1

0184 A2D4h L2MPPA53 Level 2 Memory Protection Page Attribute Register 53 Section 4.6.2.2.1

0184 A2D8h L2MPPA54 Level 2 Memory Protection Page Attribute Register 54 Section 4.6.2.2.1

0184 A2DCh L2MPPA55 Level 2 Memory Protection Page Attribute Register 55 Section 4.6.2.2.1

0184 A2E0h L2MPPA56 Level 2 Memory Protection Page Attribute Register 56 Section 4.6.2.2.1

0184 A2E4h L2MPPA57 Level 2 Memory Protection Page Attribute Register 57 Section 4.6.2.2.1

0184 A2E8h L2MPPA58 Level 2 Memory Protection Page Attribute Register 58 Section 4.6.2.2.1

0184 A2ECh L2MPPA59 Level 2 Memory Protection Page Attribute Register 59 Section 4.6.2.2.1

0184 A2F0h L2MPPA60 Level 2 Memory Protection Page Attribute Register 60 Section 4.6.2.2.1

0184 A2F4h L2MPPA61 Level 2 Memory Protection Page Attribute Register 61 Section 4.6.2.2.1

0184 A2F8h L2MPPA62 Level 2 Memory Protection Page Attribute Register 62 Section 4.6.2.2.1

0184 A2FCh L2MPPA63 Level 2 Memory Protection Page Attribute Register 63 Section 4.6.2.2.1
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4.6.2.2.1 Memory Protection Page Attribute Registers (L2MPPAn)

The level 2 memory protection page attribute registers (L2MPPAn) are shown in Figure 4-16 and
described in Table 4-32.

Figure 4-16. L2 Memory Protection Page Attribute Registers (L2MPPAn)
31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AID5 AID4 AID3 AID2 AID1 AID0 AIDX LOCAL Reserved SR SW SX UR UW UX

R/W-config input

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4-32. Memory Protection Page Attribute Registers (MPPAn) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15 AID5 Controls access from ID = 5.

0 Access denied.

1 Access granted.

14 AID4 Controls access from ID = 4.

0 Access denied.

1 Access granted.

13 AID3 Controls access from ID = 3.

0 Access denied.

1 Access granted.

12 AID2 Controls access from ID = 2.

0 Access denied.

1 Access granted.

11 AID1 Controls access from ID = 1.

0 Access denied.

1 Access granted.

10 AID0 Controls access from ID = 0.

0 Access denied.

1 Access granted.

9 AIDX Controls access from ID >= 6.

0 Access denied.

1 Access granted.

8 LOCAL Controls access from CPU to local memories (L1/L2)

0 Access denied.

1 Access granted.

7-6 Reserved 0 Reserved

5 SR Supervisor read access type.

0 Normal operation.

1 Indicates a supervisor read request.

4 SW Supervisor write access type.

0 Normal operation.

1 Indicates a supervisor write request.
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Table 4-32. Memory Protection Page Attribute Registers (MPPAn) Field Descriptions (continued)

Bit Field Value Description

3 SX Supervisor execute access type.

0 Normal operation.

1 Indicates a supervisor execute request.

2 UR User read access type.

0 Normal operation.

1 Indicates a user read request.

1 UW User write access type.

0 Normal operation.

1 Indicates a user write request.

0 UX User execute access type.

0 Normal operation.

1 Indicates a user execute request.

Table 4-33. Default Page Attribute Fields

Allowed IDs (Bits 15:8) Reserved Bits (Bits 7:6) Access Types (Bits 5:0)

1111 1111 11 111 111

4.6.2.3 Memory Protection Lock Registers

The L2 implements a 64-bit lock register for controlling write access to the memory protection registers.
The behavior of these lock registers is defined in Chapter 8.

Table 4-34 below lists the memory protection lock registers.

Table 4-34. Memory Protection Lock Registers

Address Acronym Register Description Section

0184 A100h L2MPLK0 Level 2 Memory Protection Lock Register 0 Section 4.6.2.3.1.1

0184 A104h L2MPLK1 Level 2 Memory Protection Lock Register 1 Section 4.6.2.3.1.2

0184 A108h L2MPLK2 Level 2 Memory Protection Lock Register 2 Section 4.6.2.3.1.3

0184 A10Ch L2MPLK3 Level 2 Memory Protection Lock Register 3 Section 4.6.2.3.1.4

0184 A110h L2MPLKCMD Level 2 Memory Protection Lock Command Register Section 4.6.2.3.1.5

0184 A114h L2MPLKSTAT Level 2 Memory Protection Lock Status Register Section 4.6.2.3.1.6

4.6.2.3.1 Level 2 Memory Protection Lock Registers (L2MPLKn)

The level 2 memory protection lock registers (L2MPLKn) are shown in Figure 4-17 through Figure 4-21
and described in Table 4-35.

4.6.2.3.1.1 Level 2 Memory Protection Lock 0 Register (L2MPLK0)

The level 2 memory protection lock 0 register (L2MPLK0) is shown in Figure 4-17.

Figure 4-17. Level 2 Memory Protection Lock 0 Register (L2MPLK0)
31 0

Lock Bits 31:0

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual
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4.6.2.3.1.2 Level 2 Memory Protection Lock 1 Register (L2MPLK1)

The level 2 memory protection lock register 1 (L2MPLK1) is shown in Figure 4-18.

Figure 4-18. Level 2 Memory Protection Lock 1 Register (L2MPLK1)
31 0

Lock Bits 63:32

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

4.6.2.3.1.3 Level 2 Memory Protection Lock 2 Register (L2MPLK2)

The level 2 memory protection lock 2 register (L2MPLK2) is shown in Figure 4-19.

Figure 4-19. Level 2 Memory Protection Lock 2 Register (L2MPLK2)
31 0

Lock Bits 95:64

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

4.6.2.3.1.4 Level 2 Memory Protection Lock 3 Register (L2MPLK3)

The level 2 memory protection lock 3 register (L2MPLK3) is shown in Figure 4-20.

Figure 4-20. Level 2 Memory Protection Lock 3 Register (L2MPLK3)
31 0

Lock Bits 127:96

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual
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4.6.2.3.1.5 Level 2 Memory Protection Lock Command Register (L2MPLKCMD)

The level 2 memory protection lock command register (L2MPLKCMD) is shown in Figure 4-21.

Figure 4-21. Level 2 Memory Protection Lock Command Register (L2MPLKCMD)
31 16

Reserved

R-0

15 3 2 1 0

Reserved KEYR LOCK UNLOCK

R-0 W-0 W-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 4-35. Level 2 Memory Protection Lock Command Register (L2MPLKCMD) Field Descriptions

Bit Field Value Description

31-3 Reserved 0 Reserved

2 KEYR Reset status.

0 No effect.

1 Reset status.

1 LOCK Interface to complete a lock sequence.

0 No effect.

1 Locks the lock provided that the software executed the sequence correctly.

0 UNLOCK Interface to complete an unlock sequence.

0 No effect.

1 Unlock the lock provided that the software executed the sequence correctly.
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4.6.2.3.1.6 Level 2 Memory Protection Lock Status Register (L2MPLKSTAT)

The level 2 memory protection lock status register (L2MPLKSTAT) is shown in Figure 4-22 and described
in Table 4-36.

Figure 4-22. Level 2 Memory Protection Lock Status Register (L2MPLKSTAT)
31 16

Reserved

R-0

15 1 0

Reserved LK

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 4-36. Level 2 Memory Protection Lock Status Register (L2MPLKSTAT) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 LK Indicates the lock's current status.

0 Lock is disengaged.

1 Lock is engaged.

As illustrated above, the memory protection architecture allows for lock sizes up to 128 bits. The L2
implements only a 64-bit lock behind the Lock interface. Thus, the values written to the L2MPLCK2 and
the L2MPLCK3 registers are ignored. The behavior of the lock mechanism with respect to this shorter key
is defined in Chapter 8.
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4.6.2.4 Memory Protection Fault Registers

In order to allow programs to diagnose a memory protection fault after an exception occurs, the L2
implements two registers dedicated to storing information about the fault, and an additional register to
allow clearing the fault information.

Table 4-37 below lists the memory attribute registers.

Table 4-37. Memory Protection Fault Registers

Address Acronym Register Description Section

0184 A000h L2MPFAR Level 2 Memory Protection Fault Address Register Section 4.6.2.4.1

0184 A004h L2MPFSR Level 2 Memory Protection Fault Set Register Section 4.6.2.4.2

0184 A008h L2MPFCR Level 2 Memory Protection Fault Clear Register Section 4.6.2.4.3

4.6.2.4.1 Level 2 Memory Protection Fault Address Register (L2MPFAR)

The level 2 memory protection fault address register (L2MPFAR) is shown in Figure 4-23 and described in
Table 4-38.

Figure 4-23. Level 2 Memory Protection Fault Address Register (L2MPFAR)
31 0

Fault Address

R-0

LEGEND: R = Read only; -n = value after reset

Table 4-38. Level 2 Memory Protection Fault Address Register (L2MPFAR) Field Descriptions

Bit Field Value Description

31-0 Fault Address 0-FFFF FFFFh Fault Address
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4.6.2.4.2 Level 2 Memory Protection Fault Set Register (L2MPFSR)

The level 2 memory protection fault set register (L2MPFSR) is shown in Figure 4-24 and described in
Table 4-39.

Figure 4-24. Level 2 Memory Protection Fault Set Register (L2MPFSR)
31 16

Reserved

R-0

15 9 8 7 6 5 4 3 2 1 0

FID LOCAL Reserved SR SW Reserved UR UW Reserved

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 4-39. Level 2 Memory Protection Fault Set Register (L2MPFSR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-9 FID 0-7Fh Bit 6:0 of ID of faulting requestor. If ID is narrower than 7 bits, the remaining bits return 0. If
ID is wider than 7 bits, the additional bits get truncated. FID = 0 if LOCAL = 1.

8 LOCAL 0 Normal operation.

1 Access was a "LOCAL" access

7-6 Reserved 0 Reserved

5 SR Supervisor read access type.

0 Normal operation.

1 Indicates a supervisor read request.

4 SW Supervisor write access type.

0 Normal operation.

1 Indicates a supervisor write request.

3 Reserved 0 Reserved

2 UR User read access type.

0 Normal operation.

1 Indicates a user read request.

1 UW User write access type.

0 Normal operation.

1 Indicates a user write request.

0 Reserved 0 Reserved
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4.6.2.4.3 Level 2 Memory Protection Fault Clear Register (L2MPFCLR)

The level 2 memory protection fault clear register (L2MPFCLR) is shown in Figure 4-25 and described in
Table 4-40.

Figure 4-25. Level 2 Memory Protection Fault Clear Register (L2MPFCLR)
31 16

Reserved

R-0

15 1 0

Reserved MPFCLR

R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 4-40. Level 2 Memory Protection Fault Clear Register (L2MPFCLR) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 MPFCLR Command to clear the L2MPFCR register.

0 No effect.

1 Clear the L2MPFAR and the L2MPFCR registers.

The memory access protection fault registers in Chapter 8 defines the definition and meanings of these
registers.

The L2MPFAR and L2MPFSR registers only store enough information for one fault. Generally, the
hardware records the information about the first fault and generates an exception only for that fault. L2 has
a notion of “local” (CPU triggered) and “remote” (system masters/IDMA triggered) faults. A “local” fault is
allowed to replace a “remote” fault and generate a new exception: this rule can be stated succinctly as: If
the LOCAL field of the MPFSR register = 0, and the pending exception sets it to 1, the hardware records
the new fault and signals the new exception.

The fault information is held until software clears it by writing a 1 to the MPFCLR field in the L2MPFCR
register. There is no effect if software writes a 0 to the MPFCLR field in the L2MPFCR register. L2 ignores
the value written to bits 1 through 31 L2MPFCR register.
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4.6.3 Protection Checks on Accesses to Memory Protection Registers

L2 implements permission checks on the memory protection registers themselves. The rules are as
follows:
• All requestors may read any memory protection (MP) register at any time in all circumstances, except

L2MPLK0 through L2MPLK3 (these registers are not readable).
• Supervisor can write all the registers that are writable.

Table 4-41 summarizes which L2 memory protection registers are accessible by role and what protection
checks are performed in the megamodule.

Table 4-41. Permissions for L2 Memory Protection Registers

Register Supervisor User

L2MPFAR R R

L2MPFSR R R

L2DMPFCR W /

L2DMPLK0 W /

L2DMPLK1 W /

L2DMPLK2 W /

L2DMPLK3 W /

L2DMPLKCMD W /

L2DMPLKSTAT R R

L2DMPPAxx R/W R

124 Level 2 Memory and Cache SPRU871K–August 2010

Copyright © 2010, Texas Instruments Incorporated



Chapter 5
SPRU871K–August 2010

Internal Direct Memory Access (IDMA) Controller

Topic ........................................................................................................................... Page

5.1 Introduction .................................................................................................... 126
5.2 Terms and Definitions ...................................................................................... 126
5.3 IDMA Architecture ........................................................................................... 127
5.4 Registers ........................................................................................................ 131
5.5 Privilege Levels and IDMA Operation ................................................................. 141

125SPRU871K–August 2010 Internal Direct Memory Access (IDMA) Controller

Copyright © 2010, Texas Instruments Incorporated



Introduction www.ti.com

5.1 Introduction

This section provides the purpose and discusses the features of the IDMA controller.

5.1.1 Purpose of the Internal Direct Memory Access (IDMA) Controller

The purpose of the IDMA controller is to perform fast block transfers between any two memory locations
local to the C64x+ megamodule. Local memory locations are defined as those in Level 1 program (L1P),
Level 1 data (L1D), and Level 2 (L2) memories, or in the external peripheral configuration (CFG) memory.
The IDMA cannot transfer data to or from the internal MMR space.

5.1.2 Features

The IDMA controller allows rapid data transfers between all local memories. It provides a fast way to page
code and data sections into any memory-mapped RAM local to the megamodule. The key advantage of
the IDMA controller is that it allows for transfers between slower (Level 2 - L2) and faster (Level 1 - L1D
and L1P) memory. IDMA can provide lower latency than the cache controller since the transfers take
place in the background of CPU operation, thereby removing stalls due to cache.

Additionally, the IDMA controller facilitates rapid programming of peripheral configuration registers
accessed through the external configuration space (CFG) port of the megamodule. The IDMA controller
view of the external configuration space that has a 32-word granularity and allows any register within a
32-word block to be individually accessed.

In summary:
• Optimized for burst transfers of memory blocks (contiguous data).
• Allows access to and from any local memory (L1P, L1D, L2 (pages 0 and 1), and external CFG (but,

source and destination cannot both be in CFG). CFG is only accessible to channel 0. No CFG to CFG
transfers.

• Indicates transfer completion through programmable interrupts to the CPU.

IDMA controller also provides the ability to do a block fill of memory, where the IDMA controller issues a
block of writes using a fill value that you program.

5.2 Terms and Definitions

Refer to Appendix B of this document for a detailed definition of the terms used in this chapter.
Appendix B describes general terms used throughout this reference guide.
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5.3 IDMA Architecture

The IDMA controller allows both a means to rapidly transfer data between local memories and to rapidly
program configuration registers. To fully support this, the IDMA controller consists of two channels,
channel 0 and channel 1. The two channels are fully orthogonal to one another allowing concurrent
operation.

The operation of the IDMA is controlled through several registers. Table 5-1 provides a summary of these
registers. These registers are mentioned throughout this section and are described in more detail in
Section 5.4.

Table 5-1. IDMA Register Description

Register Description

IDMA0_STAT IDMA0 Status Register

IDMA0_MASK IDMA0 Mask Register

IDMA0_SOURCE IDMA0 Source Address Register

IDMA0_DEST IDMA0 Destination Address Register

IDMA0_COUNT IDMA0 Block Count Register

IDMA1_STAT IDMA1 Status Register

IDMA1_SOURCE IDMA1 Source Address Register

IDMA1_DEST IDMA1 Destination Address Register

IDMA1_COUNT IDMA1 Block Count Register

5.3.1 IDMA Channel 0

IDMA channel 0 is intended for quick programming of configuration registers located in the external
configuration space (CFG). It transfers data from a local memory (L1P, L1D, and L2) to the external
configuration space.

The external configuration space includes the peripheral registers located outside of the megamodule
whereas the internal configuration space includes the registers located inside of the megamodule. Any
register described in this document belongs to the internal configuration space. For example, the registers
that are used to control the level 1 data (L1D) cache are part of the internal configuration space. The
internal configuration space is only accessible by the CPU using direct load/store instructions.

IDMA channel 0 can only access the external configuration space. It accesses blocks of 32 contiguous
registers at a time. To implement this, IDMA channel 0 has five registers: status, mask, source address,
destination address, and block count.

5.3.1.1 IDMA Channel 0 Operation

The source and destination addresses that are used for IDMA channel 0 must be 32-byte aligned for
proper operation. Figure 5-1 shows one possible transfer using IDMA channel 0.

Define a block of 32 words that contain the values to initialize the CFG registers in a local memory (L1P,
L1D, and L2) . Then, the IDMA channel 0 is programmed to transfer these values to the CFG registers.

A mask register is provided since it is not always desirable to program all of the 32 contiguous locations.
That is, some locations may be reserved and may not represent actual registers; thus, you should not
program them.

The mask register is a 32-bit register. Each bit in this register maps to one of the 32 words in the block
that is going to be transferred. For example, bit 0 maps to word 0, bit 1 maps to word 1, etc. If you set the
mask bit to 1, then the corresponding word in the block does not transfer.
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Figure 5-1. IDMA Channel 0 Transaction

5.3.1.2 IDMA Channel 0 Exception

IDMA channel 0 generates an exception, routed to the C64x+ megamodule interrupt controller, when both
the source and the destination addresses are to the CFG.

On the first cycle of operation that the IDMA controller operation is stopped, an exception is generated and
any pending IDMA channel 0 requests are then processed. An exception on IDMA channel 0 does not in
affect IDMA channel 1 in any way.

5.3.1.3 Programming IDMA Channel 0

IDMA transfers are automatically submitted when the CPU writes to the respective configuration registers.
The CPU must write to all of the channel's registers, in sequential incrementing order, for an IDMA
transfer to trigger. For channel 0, the CPU should write to the mask in this order: source address,
destination address, and then count registers. The submission occurs following the write to the count
register.

For each of the IDMA channels, one transfer can be active at any given time. The CPU can update the
parameters to queue a subsequent transfer; but, the transfer is not initiated until the active transfer
completes. This allows two transfers (active and pending) to be outstanding from the CPU at any given
time.

Upon completion of the transfer, a CPU interrupt is optionally set.

5.3.1.3.1 IDMA Channel 0 Example 1

An example of making an update to configuration registers using IDMA channel 0 is shown in the following
pseudo-code in Example 5-1.

Example 5-1. Update to Configuration Registers using IDMA Channel 0

IDMA0_MASK = 0x00000F0F ; //Set mask for 8 regs -- 11:8, 3:0
IDMA0_SOURCE = MMR_ADDRESS ; //Set source to config location
IDMA0_DEST = reg_ptr ; //Set destination to data memory address
IDMA0_COUNT = 0 ; //Set mask for 1 block

while (IDMA0_STATUS) ; //Wait for transfer completion

... update register values ...

IDMA0_MASK = 0x00000F0F ; //Set mask for 8 regs -- 11:8, 3:0
IDMA0_SOURCE = reg_ptr ; //Set source to updated value pointer
IDMA0_DEST = MMR_ADDRESS ; //Set destination to config location
IDMA0_COUNT = 0 ; //Set mask for 1 block
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5.3.1.3.2 IDMA Channel 0 Example 2

EDMA is a peripheral commonly available on C64x+ devices. An example of submitting multiple QDMA
requests is illustrated in Example 5-2. There are sixteen 8-word locations in configuration space within the
EDMA that can correspond to the QDMA. Each QDMA submits a transfer request, as defined by an
8-word parameter entry.

Example 5-2 shows how 32 QDMAs can be issued, modifying only the source address, destination
address, and options for each QDMA, as is possible in a video application.

Refer to the EDMA documentation for more information about the QDMA.

Example 5-2. Update to 32 QDMAs using IDMA Channel 0

IDMA0_MASK = 0x4F4F4F4F ; //Set mask for 0, 1, 2, 3, 6 for each QDMA
IDMA0_SOURCE = &qdma_list[0] ; //Set source to transfer list
IDMA0_DEST = &QDMA[0] ; //Set destination to base address of QDMAs
IDMA0_COUNT = 3 ; //Set mask for 4 blocks (16 QDMAs)

IDMA0_MASK = 0x4F4F4F4F ; //Set mask for 0, 1, 2, 3, 6 for each QDMA
IDMA0_SOURCE = &qdma_list[16] ; //Set source to second half of transfer list
IDMA0_DEST = &QDMA[0] ; //Set destination to base address of QDMAs
IDMA0_COUNT = 3 ; //Set mask for 4 blocks (16 QDMAs)

while (IDMA0_STATUS) ; //Wait for transfer completion

5.3.2 IDMA Channel 1

IDMA channel 1 is intended for transferring data between local memories. It moves data and program
sections in the background without CPU operation to set up processing from fast memory. To allow this,
IDMA channel 1 has four registers: status, source address, destination address, and count.

5.3.2.1 IDMA Channel 1 Operation

All source and destination addresses increment linearly throughout the transfer. The size (in bytes) of the
transfer is set by the COUNT field in the IDMA channel 1 count register (IDMA1_COUNT). Following the
transfer, a CPU interrupt is optionally set. Arbitration during any conflicts with the cache or EDMA is based
on the priority set in the options field of the count register. Figure 5-2 shows a transfer using IDMA
channel 1.

Figure 5-2. IDMA Channel 1 Transaction
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5.3.2.2 Programming IDMA Channel 1

IDMA transfers are automatically submitted when the CPU writes to the respective configuration registers.
The CPU must write to all of the channel's registers, in sequential incrementing order, for an IDMA
transfer to trigger. For channel 1, the CPU should write to the source address, destination address, then to
the count registers (in that order). The submission occurs following the write to the count register.

For each of the IDMA channels, one transfer can be active at any given time. The CPU can update the
parameters to queue a subsequent transfer, but the transfer does not initiate until the active transfer
completes. This allows two transfers per channel to be outstanding from the CPU at any given time.

5.3.2.2.1 IDMA Channel 1 Example

Example pseudo-code for paging in new data and paging out old data using IDMA channel 1 is shown in
Example 5-3.

Example 5-3. Paging In New Data and Paging Out Old Data Using IDMA Channel 1

//Transfer ping buffers to/from L1D
//Return output buffer n - 1 to slow memory
IDMA1_SOURCE = outBuffFastA ; //Set source to fast memory output (L1D)
IDMA1_DEST = &outBuff[n-1] ; //Set destination to output buffer (L2)
IDMA1_COUNT = 7 << IDMA_PRI_SHIFT | //Set priority to low

0 << IDMA_INT_SHIFT | //Do not interrupt CPU
buffsize ; //Set count to buffer size

//Page in input buffer n + 1 to fast memory
IDMA1_SOURCE = inBuff[n+1] ; //Set source to buffer location (L2)
IDMA1_DEST = inBuffFastA ; //Set destination to fast memory (L1D)
IDMA1_COUNT = 7 << IDMA_PRI_SHIFT | //Set priority to low

1 << IDMA_INT_SHIFT | //Interrupt CPU on completion
buffsize ; //Set count to buffer size

... Process input buffer n in Pong -- inBuffFastB -> outBuffFastB ...

This example depicts using the IDMA return output data at its location in memory and to page in new data
to fast memory for processing, as shown in Figure 5-3.

Figure 5-3. Example of IDMA Channel 1
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5.3.2.2.2 Using IDMA Channel 1 to Perform Memory Fill

You can use the IDMA channel 1 to fill a section of a local memory with a specific value. Set the FILL field
in the IDMA1_COUNT register to 1 to accomplish this. When the FILL field is set to 1, the value contained
in the IDMA1 source address register is used as the fill value. This value is copied to the memory buffer
that the IDMA1 destination address register points to. The COUNT field in the IDMA1_COUNT register
defines the number of times that this value is copied.

5.4 Registers

The IDMA controller is programmed through a set of registers, listed in Table 5-2. See the device-specific
data manual for the memory address of these registers.

Each of the registers is accessible for read/write access by the CPU. Access to each of the IDMA
registers must be 32-bit aligned. Half word and byte writes to the IDMA registers write the entire register,
and thus you should avoid them for proper operation. Nonaligned word and double word accesses result
in unpredictable operation, and so you should avoid them as well.

Table 5-2 lists all of the registers in the IDMA.

Table 5-2. Internal Direct Memory Access (IDMA) Registers

Address Acronym Register Description Section

0182 0000h IDMA0_STAT IDMA Channel 0 Status Register Section 5.4.1

0182 0004h IDMA0_MASK IDMA Channel 0 Mask Register Section 5.4.2

0182 0008h IDMA0_SOURCE IDMA Channel 0 Source Address Register Section 5.4.3

0182 000Ch IDMA0_DEST IDMA Channel 0 Destination Address Register Section 5.4.4

0182 0010h IDMA0_COUNT IDMA Channel 0 Block Count Register Section 5.4.5

0182 0100h IDMA1_STAT IDMA Channel 1 Status Register Section 5.4.6

0182 0108h IDMA1_SOURCE IDMA Channel 1 Source Address Register Section 5.4.7

0182 010Ch IDMA1_DEST IDMA Channel 1 Destination Address Register Section 5.4.8

0182 0110h IDMA1_COUNT IDMA Channel 1 Block Count Register Section 5.4.9
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5.4.1 IDMA Channel 0 Status Register (IDMA0_STAT)

The IDMA channel 0 status register (IDMA0_STAT) provides the activity state of the channel. There are
two bits to denote whether a transfer is in progress (ACTV) and whether a transfer is pending (PEND).

The IDMA channel 0 status register (IDMA0_STAT) is shown in Figure 5-4 and described in Table 5-3.

Figure 5-4. IDMA Channel 0 Status Register (IDMA0_STAT)
31 16

Reserved

R-0

15 2 1 0

Reserved PEND ACTV

R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 5-3. IDMA Channel 0 Status Register (IDMA0_STAT) Field Descriptions

Bit Field Value Description

31-2 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

1 PEND Pending transfer. The PEND bit sets when the CPU writes control registers and an active transfer is
already in progress (ACTV = 1). The PEND bit clears when the transfer becomes active.

0 No pending transfer

1 Transfer is pending

0 ACTV Active transfer. The ACTV bit sets when channel 0 begins reading data from the source address
register (IDMA0_SOURCE) and clears following the last write to the destination address register
(IDMA0_DEST).

0 No active transfer

1 Active transfer
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5.4.2 IDMA Channel 0 Mask Register (IDMA0_MASK)

The IDMA channel 0 mask register (IDMA0_MASK) allows unwanted registers within the transfer block to
be masked. There are 32 bits that allow individual control over the registers within the 32-word memory
block identified by the source/destination address registers.

The IDMA channel 0 mask register (IDMA0_MASK) is shown in Figure 5-5 and described in Table 5-4.

Figure 5-5. IDMA Channel 0 Mask Register (IDMA0_MASK)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

M31 M30 M29 M28 M27 M26 M25 M24 M23 M22 M21 M20 M19 M18 M17 M16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-4. IDMA Channel 0 Mask Register (IDMA0_MASK) Field Descriptions

Bit Field Value Description

31-0 Mn Register mask bit.

0 Register access permitted (not masked).

1 Register access blocked (masked).
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5.4.3 IDMA Channel 0 Source Address Register (IDMA0_SOURCE)

The IDMA channel 0 source address register (IDMA0_SOURCE) identifies the source address for the
IDMA transfer. The source of the transfer must be local to the C64x+ megamodule, either in L1P, L1D, L2,
or CFG. The source address for the transfer must be a local RAM location, if the destination address is to
CFG. Conversely, the source address must be to CFG, if the destination address is to a local RAM
location. Additionally, the source address must be 32-byte aligned.

The IDMA channel 0 source address register (IDMA0_SOURCE) is shown in Figure 5-6 and described in
Table 5-5.

Figure 5-6. IDMA Channel 0 Source Address Register (IDMA0_SOURCE)
31 16

SOURCEADDR

R/W-0

15 5 4 0

SOURCEADDR Reserved

R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5-5. IDMA Channel 0 Source Address Register (IDMA0_SOURCE) Field Descriptions

Bit Field Value Description

31-5 SOURCEADDR 0-7FF FFFFh Source address. Must point to a 32-byte aligned (for example, block-aligned) memory
location local to the megamodule or to a valid configuration register space.

4-0 Reserved 0 Reserved
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5.4.4 IDMA Channel 0 Destination Address Register (IDMA0_DEST)

The IDMA channel 0 destination address register (IDMA0_DEST) identifies the destination address for the
IDMA transfer. The destination of the transfer must be local to the C64x+ megamodule, either in L1P,
L1D, L2 or CFG. The destination address for the transfer must be a local RAM location, if the source
address is to CFG. Conversely, the destination address must be to CFG, if the source address is to a local
RAM location. Additionally, the source address must be 32-byte aligned.

The IDMA channel 0 destination address register (IDMA0_DEST) is shown in Figure 5-7 and described in
Table 5-6.

Figure 5-7. IDMA Channel 0 Destination Address Register (IDMA0_DEST)
31 16

DESTADDR

R/W-0

15 5 4 0

DESTADDR Reserved

R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5-6. IDMA Channel 0 Destination Address Register (IDMA0_DEST) Field Descriptions

Bit Field Value Description

31-5 DESTADDR 0-7FF FFFFh Destination address. Must point to a 32-byte (window) aligned memory location local to the
megamodule or to a valid configuration register space.

4-0 Reserved 0 Reserved

135SPRU871K–August 2010 Internal Direct Memory Access (IDMA) Controller

Copyright © 2010, Texas Instruments Incorporated



Registers www.ti.com

5.4.5 IDMA Channel 0 Count Register (IDMA0_COUNT)

The IDMA channel 0 count register (IDMA0_COUNT) identifies the number of 32-word blocks that are
accessible during the data transfer. The 4-bit COUNT field allows up to 16 blocks to be accessed in
succession. The mask field is applied to all blocks, allowing for repeated patterns to be accessed. All
blocks are of contiguous 32-word regions and the source and destination addresses increment
accordingly. Additionally, th eIDMA0_COUNT register allows a CPU interrupt (IDMA_INT0) to be enabled
to notify the CPU that a transfer has completed.

The IDMA channel 0 count register (IDMA0_COUNT) is shown in Figure 5-8 and described in Table 5-7.

Figure 5-8. IDMA Channel 0 Count Register (IDMA0_COUNT)
31 29 28 27 16

Reserved INT Reserved

R-0 R/W-0 R-0

15 4 3 0

Reserved COUNT

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5-7. IDMA Channel 0 Count Register (IDMA0_COUNT) Field Descriptions

Bit Field Value Description

31-29 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

28 INT CPU interrupt enable.

0 Do not interrupt CPU on completion.

1 Interrupt CPU (IDMA_INT0) on completion.

27-4 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

3-0 COUNT 0-Fh 4-bit block count.

0 Transfer to/from one 32-word blocks.

1h-Fh Transfer to/from n+1 32-word blocks.
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5.4.6 IDMA Channel 1 Status Register (IDMA1_STAT)

The IDMA channel 1 status register (IDMA1_STAT) provides the activity state of the channel. There are
two bits to denote whether a transfer is in progress (ACTV) and whether a transfer is pending (PEND).

The IDMA channel 1 status register (IDMA1_STAT) is shown in Figure 5-9 and described in Table 5-8.

Figure 5-9. IDMA Channel 1 Status Register (IDMA1_STAT)
31 16

Reserved

R-0

15 2 1 0

Reserved PEND ACTV

R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 5-8. IDMA Channel 1 Status Register (IDMA1_STAT) Field Descriptions

Bit Field Value Description

31-2 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

1 PEND Pending transfer. Set when control registers are written to the CPU and there is already an active
transfer in progress (ACTV = 1) and cleared when the transfer becomes active.

0 No pending transfer.

1 Transfer is pending.

0 ACTV Active transfer. ACTV is set when channel 0 begins reading data from the source address register
(IDMA1_SOURCE) and is cleared following the last write to the destination address register
(IDMA1_DEST).

0 No active transfer.

1 Active transfer.
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5.4.7 IDMA Channel 1 Source Address Register (IDMA1_SOURCE)

The IDMA channel 1 source address register (IDMA1_SOURCE) identifies the source address for the
IDMA transfer. The source of the transfer must be local to the C64x+ megamodule, either in L1P, L1D, L2
or CFG. The source address must also be to a different port than the destination address (L2 port 0 and
L2 port 1 are considered the same port) to obtain full throughput of 256 bits per EMC cycle.

If performing a block fill (FILL = 1 in IDMA1_COUNT) rather than a data transfer, IDMA1_SOURCE is
used to program the fill value. Rather than reading from a source address, the IDMA transfers the
programmed value to all locations in the destination buffer.

The IDMA channel 1 source address register (IDMA1_SOURCE) is shown in Figure 5-10 and described in
Table 5-9.

Figure 5-10. IDMA Channel 1 Source Address Register (IDMA1_SOURCE)
31 16

SOURCEADDR

R/W-0

15 0

SOURCEADDR

R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 5-9. IDMA Channel 1 Source Address Register (IDMA1_SOURCE) Field Descriptions

Bit Field Value Description

31-0 SOURCEADDR 0-FFFF FFFFh Source address. Must point to a word-aligned memory location local to the megamodule.
When performing a block fill (FILL = 1 in IDMA1_COUNT), the source address is the fill
value. Note that when performing a fill mode transfer, all 32-bits of the SOURCEADDR field
are used when performing a memory transfer, the two LSBs are implemented as 00b.
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5.4.8 IDMA Channel 1 Destination Address Register (IDMA1_DEST)

The IDMA channel 1 destination address register (IDMA1_DEST) identifies the destination address for the
IDMA transfer. The destination of the transfer must be local to the C64x+ megamodule, either in L1P,
L1D, L2 or CFG. The destination address must also be to a different port than the source address (L2 port
0 and L2 port 1 are considered the same port) to obtain full throughput of 256 bits per EMC cycle.

The IDMA channel 1 destination address register (IDMA1_DEST) is shown in Figure 5-11 and described
in Table 5-10.

Figure 5-11. IDMA Channel 1 Destination Address Register (IDMA1_DEST)
31 16

DESTADDR

R/W-0

15 2 1 0

DESTADDR Reserved

R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5-10. IDMA Channel 1 Destination Address Register (IDMA1_DEST) Field Descriptions

Bit Field Value Description

31-2 DESTADDR 0-3FFF FFFFh Destination address. Must point to a word-aligned memory location local to the megamodule.

1-0 Reserved 0 Reserved
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5.4.9 IDMA Channel 1 Count Register (IDMA1_COUNT)

The IDMA channel 1 count register (IDMA1_COUNT) identifies the transfer length in bytes. In addition,
IDMA1_COUNT allows a CPU interrupt (IDMA_INT1) to be enabled and identifies the priority level
(relative to CPU and other DMA accesses) to be specified.

The IDMA channel 1 count register (IDMA1_COUNT) is shown in Figure 5-12 and described in
Table 5-11.

Figure 5-12. IDMA Channel 1 Count Register (IDMA1_COUNT)
31 29 28 27 17 16

PRI INT Reserved FILL

R/W-0 R/W-0 R-0 R/W-0

15 0

COUNT

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5-11. IDMA Channel 1 Count Register (IDMA1_COUNT) Field Descriptions

Bit Field Value Description

31-29 PRI 0-7h Transfer priority. Used for arbitration between CPU and DMA accesses when there are conflicts. Note
that priority can be any value between 0 (highest priority) and 7 (lowest priority).

28 INT CPU interrupt enable.

0 Do not interrupt CPU on completion.

1 Interrupt CPU (IDMA_INT1) on completion.

27-17 Reserved 0 These reserved bit locations are always read as zeros. A value written to this field has no effect.

16 FILL Block fill

0 Block transfer from the source address register (IDMA1_SOURCE) to the destination address register
(IDMA1_DEST).

1 Perform a block fill using the source address register (IDMA1_SOURCE) as the fill value to the memory
buffer pointed to by the destination address register (IDMA1_DEST).

15-0 COUNT 0-FFh Byte count. A 16-bit count that defines the transfer length in bytes. Must be a multiple of 4 bytes. A
transfer count of zero will not transfer any data, but generates an interrupt if requested by the INT bit.
For correct operation, the two ISBs must always be 0.

A transfer count of zero is a possible programming option. The IDMA engine handles a count of zero by
"completing" the transfer immediately (i.e., if the INT bit in the IDMA1_COUNT register asserts
IDMA_INT1 to the CPU even though no data actually transfers). If a subsequent transfer is pending, it
begins immediately.
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5.5 Privilege Levels and IDMA Operation

Table 5-12 summarizes which who IDMA registers are accessible and what protection checks are
performed in the megamodule based on role.

Table 5-12. Permissions for IDMA Registers

Register Supervisor User

IDMA0_STAT R R

IDMA0_MASK R/W R/W

IDMA0_SOURCE R/W R/W

IDMA0_DEST R/W R/W

IDMA0_COUNT R/W R/W

IDMA1_STAT R R

IDMA1_SOURCE R/W R/W

IDMA1_DEST R/W R/W

IDMA1_COUNT R/W R/W
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6.1 Introduction

6.1.1 Purpose of the Bandwidth Management

The purpose of the bandwidth management is to assure that some of the requestors do not block the
resources that are available in the C64x+ megamodule for extended periods of time.

Similar to the memory protection capability of the C64x+ CPU, bandwidth management (BWM) is defined
globally (for the entire C64x+ megamodule), but implemented locally by each C64x+ megamodule
resource. To this end, initializing bandwidth management consists of programming a common set of
registers found in each of the C64x+ megamodule's resources.

6.1.2 Resource Bandwidth Protected by Bandwidth Management

The BWM control hardware manages the following four resources:
• Level 1 program (L1P) SRAM/cache
• Level 1 data (L1D) SRAM/cache
• Level 2 (L2) SRAM/cache
• Memory-mapped registers configuration bus

6.1.3 Requestors Managed by Bandwidth Management

Each of the following are potential requestors for the C64x+ megamodule resources listed in
Section 6.1.2:
• CPU-initiated transfers:

– Data access (for example, load/store)
– Program access

• Programmable cache coherency operations (for example, writeback):

– Block-based
– Global

• Internal DMA (IDMA)-initiated transfers (and resulting coherency operations)
• Externally-initiated slave DMA (SDMA) transfers (and resulting coherency operations)

6.1.4 Terms and Definitions

See Appendix A for the terms and definitions used in this chapter.
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6.2 Architecture

The bandwidth management scheme is viewable as weighted-priority-driven bandwidth allocation.

6.2.1 Bandwidth Arbitration via Priority Levels

Each requestor (DMA, IDMA, CPU, etc.) is assigned a priority level on a per-transfer basis. There are a
total of 9 priority levels. They are:

Highest Priority 0

Priority 1

Priority 2

Priority 3

Priority 4

Priority 5

Priority 6

Priority 7

Lowest Priority 8

When multiple requestors contend for a single resource, granting access to the highest priority requestor
solves the conflict. When the contention occurs for multiple successive cycles, a contention counter
guarantees that the lower priority requestor gets access to the resource every 1 out of n arbitration cycles,
where n is programmable by the MAXWAIT bit (described in Section 6.3).

The BWM works by incrementing a contention counter every time a resource request is blocked. When a
request is allowed to proceed, the stall count resets to 0. When the stall count reaches the MAXWAIT
value, then the lower priority requestor’s value sets to -1 and is allowed to perform at least one transfer.
(The contention counter is not visible to you).

6.2.2 Priority Level: -1

In addition to the 9 priority levels described previously, the hardware uses a priority level of -1 to represent
a transfer whose priority has been increased due to expiration of the contention counter (as explained
below), or a transfer that is fixed as the highest priority transfer to a given resource. You cannot program a
value of -1 into the BWM arbitration control registers.

6.2.3 Priority Declaration

Use various methods to declare priorities by the requestors as described in Table 6-1. For consistency,
the priority values used in BWM arbitration registers are weighted equally with those defined in associated
modules (for example, IDMA).

Table 6-1. Priority Declaration Methods

Requestor Priority Declaration In …

CPU BWM arbitration register (PRI field)

IDMA IDMA transfer parameters

SDMA Dictated by the external system master transfer parameters

User defined cache coherency Fixed priorities
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6.3 Registers

A set of registers called arbitration registers implement the bandwidth management architecture. The
registers are implemented in the following blocks: L1D, L2, and extended memory controller (EMC).
Table 6-2 lists the registers and their base address.

Table 6-2. Arbitration Registers

Block Acronym Register Name Address Section

L1P None NA N/A NA

L1D CPUARBD CPU Arbitration Control Register 0184 1040h Section 6.3.1

IDMAARBD IDMA Arbitration Control Register 0184 1044h Section 6.3.3

SDMAARBD Slave DMA Arbitration Control Register 0184 1048h Section 6.3.4

UCARBD User Coherence Arbitration Control Register 0184 104Ch Section 6.3.2

L2 CPUARBU CPU Arbitration Control Register 0184 1000h Section 6.3.1

IDMAARBU IDMA Arbitration Control Register 0184 1004h Section 6.3.3

SDMAARBU Slave DMA Arbitration Control Register 0184 1008h Section 6.3.4

UCARBU User Coherence Arbitration Control Register 0184 100Ch Section 6.3.2

EMC CPUARBE CPU Arbitration Control Register 0182 0200h Section 6.3.1

IDMAARBE IDMA Arbitration Control Register 0182 0204h Section 6.3.3

SDMAARBE Slave DMA Arbitration Control Register 0182 0208h Section 6.3.4

MDMAARBE Master DMA Arbitration Control Register 0182 020Ch Section 6.3.5

Table 6-3 shows no arbitration registers for L1P. Indeed, there are no programmable-bandwidth
management registers for the L1P; however, there are fixed-bandwidth management features in the L1P
controller.

Notice that there are a set of arbitration registers for each resource. Each register corresponds to a
different requestor.

The arbitration registers that belong to the same group (CPU, IDMA, SDMA, UC) have identical default
values. They are generalized in Table 6-3 by calling the CPUARB, IDMAARB, SDMAARB, and UCARB
registers.

Table 6-3. Arbitration Register Default Values

Register Bit Default
Value Register Exists In ...

Acronym Register Name PRI MAXWAIT L1P L1D L2 EMC

CPUARB CPU Arbitration Control Register 1 16 No Yes Yes Yes

IDMAARB IDMA Arbitration Control Register NA 16 No Yes Yes Yes

SDMAARB Slave DMA Arbitration Control Register NA 1 No Yes Yes Yes

UCARB User Coherence Arbitration NA 32 No Yes Yes No
Control Register

MDMAARB Master DMA Arbitration 7 NA No No No Yes
Control Register

The default values of CPUARB, IDMAARB, SDMAARB, and UCARB are sufficient for most applications.
These registers define priorities that are internal to the C64x+ megamodule. The MDMAARBE register
defines a priority for data transfers outside of the C64x+ megamodule. You may need to change its priority
by programming the MDMAARBE register (as described in Section 6.3.5), depending on the system
design. In most cases, MDMARBE should be programmed to a higher priority (lower value).
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6.3.1 CPU Arbitration Control Register (CPUARBD, CPUARBU, CPUARBE)

The CPU arbitration control register (CPUARBD, CPUARBU, and CPUARBE) controls the bandwidth
management of the CPU operations. The CPUARB register is shown in Figure 6-1 and described in
Table 6-4. CPU-initiated transfers consist of two components:

1. The CPU issues program fetch transfers to the L1P controller, and the resulting L1P cache coherency
operations (such as alloc/evict).

2. The CPU issues data/load store transfers to the L1D controller. The resulting L1D cache coherency
operations (such as alloc/evict/long distance accesses) are in turn issued to the L2 controller.

Both program and data requests use CPUARB values to define the maximum wait time (MAXWAIT) and
priority (PRI). CPUARB values do not only have an affect local to L1P or L1D. The priority/maximum wait
time applied to L1D/L1P cache transactions is programmed at each block. These values are used to
control arbitration at each relevant access within the C64x+ megamodule.

Similar to L1D/L1P (via CPUARBD), memory accesses made directly in L2 and EMC blocks (via the
CPUARBU and CPUARBE registers, respectively) use the PRI and MAXWAIT field values locally for
those blocks, and any further transactions resulting from these requests.

The default value of PRI is set so that the CPU transactions are the second to highest in the system. This
should be a relatively typical value used in most systems, resulting in the CPU receiving highest priority
most of the time, but, a short-real time deadline peripheral, such as a high speed serial port (that is
typically programmed as the highest-priority transfer for SDMA requests) can interrupt the CPU transfers
on a nearly immediate basis.

The CPU priority is run-time programmable, although you are expected to initialize the CPUARB registers
at system initialization or accept the default values and leave them unchanged thereafter.
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Figure 6-1. CPU Arbitration Control Register (CPUARBD, CPUARBU, CPUARBE)
31 19 18 16

Reserved PRI

R-0 R/W-1h

15 6 5 0

Reserved MAXWAIT

R-0 R/W-10h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-4. CPU Arbitration Control Register (CPUARBD, CPUARBU, CPUARBE)
Field Descriptions

Bit Field Value Description

31-19 Reserved 0 Reserved

18-16 PRI 0-7h Priority field. Not all requestors support PRI = 8 (lowest). The PRI field used to make background
transfers lower than all other real-time requests.

0 Priority 0 (highest)

1h Priority 1

2h Priority 2

3h Priority 3

4h Priority 4

5h Priority 5

6h Priority 6

7h Priority 7 (lowest)

15-6 Reserved 0 Reserved

5-0 MAXWAIT 0-3Fh Maximum wait time in EMC cycles. EMC cycle = 2 × CPU cycle.

0 Always stalls due to higher priority requestor.

1h Maximum wait of 1 cycle (1/2 = 50% access)

2h Maximum wait of 2 cycles (1/3 = 33% access)

3h Reserved

4h Maximum wait of 4 cycles (1/5 = 20% access)

5h-7h Reserved

8h Maximum wait of 8 cycles (1/9 = 11% access)

9h-Fh Reserved

10h Maximum wait of 16 cycles (1/17 = 6% access)

11h-1Fh Reserved

20h Maximum wait of 32 cycles (1/33 = 3% access)

21h-3Fh Reserved

148 Bandwidth Management Architecture SPRU871K–August 2010

Copyright © 2010, Texas Instruments Incorporated



www.ti.com Registers

6.3.2 User Coherence Arbitration Control Register (UCARBD, UCARBU)

The user coherence arbitration control register (UCARBD and UCARBU) controls the bandwidth
management of the user coherency operations. These operations consist of cache writeback and
invalidate commands specified in a user’s program. For more information about user coherency
operations, see the Chapter 2, Chapter 3, and Chapter 4.

User coherency operations are broken into two types. They are listed with their fixed priorities relative to
other requests in the system:
• Global user coherence is always the highest priority.
• Block-oriented coherence is always the lowest priority.

Since the user coherence priority is fixed the UCARB register does not include a priority (PRI) bit. Since
the global user coherence operations are inherently highest priority, the MAXWAIT programmability does
not apply to global cache operations and only applies to block-oriented user coherence operations.
Block-oriented user coherency cache operations can affect both L1D and L2 memories; therefore, a
version of the UCARB only exists only in the L2 (UCARBU) and L1D (UCARBD) registers.

The MAXWAIT bit (and the implied priorities) does not control the priority of coherency operations that
result from DMA transactions or CPU transactions, which have their own registers.

The user coherence arbitration control register (UCARBD, UCARBU) is shown in Figure 6-2 and described
in Table 6-5.

Figure 6-2. User Coherence Arbitration Control Register (UCARBD, UCARBU)
31 16

Reserved

R-0

15 6 5 0

Reserved MAXWAIT

R-0 R/W-20h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-5. User Coherence Arbitration Control Register (UCARBD, UCARBU)
Field Descriptions

Bit Field Value Description

31-6 Reserved 0 Reserved

5-0 MAXWAIT 0-3Fh Maximum wait time in EMC cycles. EMC cycle = 2 × CPU cycle.

0 Always stalls due to a higher priority requestor

1h Maximum wait of 1 cycle (1/2 = 50% access)

2h Maximum wait of 2 cycles (1/3 = 33% access)

3h Reserved

4h Maximum wait of 4 cycles (1/5 = 20% access)

5h-7h Reserved

8h Maximum wait of 8 cycles (1/9 = 11% access)

9h-Fh Reserved

10h Maximum wait of 16 cycles (1/17 = 6% access)

11h-1Fh Reserved

20h Maximum wait of 32 cycles (1/33 = 3% access)

21h-3Fh Reserved
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6.3.3 IDMA Arbitration Control Register (IDMAARBD, IDMAARBU, IDMAARBE)

The IDMA arbitration control register (IDMAARBD, IDMAARBU, and IDMAARBE) controls the bandwidth
management of the IDMA operations. IDMA supports two active transfers at any point in time via IDMA
channel 0 (used for memory to/from CFG space) and IDMA channel 1 (used for memory-to-memory
transfers). For more information about the operation of the IDMA, see Chapter 5.

Use the MAXWAIT field to determine the maximum wait time for IDMA transactions. The priority level is
not programmed using the IDMAARB register; therefore, the IDMAARB register does not include a PRI
field. Instead, the priority level is programmed as part of the IDMA transfer parameters (that is, directly
using the IDMA control registers, described in Chapter 5). In summary, the IDMA transfer priority is as
follows:
• IDMA channel 0 is always the highest priority.
• IDMA channel 1 has a programmable priority using the PRI field in the IDMA channel 1 count register

(IDMA1_COUNT).

IDMA transactions can affect L1D, L2, and EMC resources; therefore, the MAXWAIT field exists for each
of these resources: L1D (IDMAARBD), L2 (IDMAARBU), and EMC (IDMAARBE).

The IDMA arbitration control register (IDMAARBD, IDMAARBU, IDMAARBE) is shown in Figure 6-3 and
described in Table 6-6.

Figure 6-3. IDMA Arbitration Control Register (IDMAARBD, IDMAARBU, IDMAARBE)
31 16

Reserved

R-0

15 6 5 0

Reserved MAXWAIT

R-0 R/W-10h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-6. IDMA Arbitration Control Register (IDMAARBD, IDMAARBU, IDMAARBE)
Field Descriptions

Bit Field Value Description

31-6 Reserved 0 Reserved

5-0 MAXWAIT 0-3Fh Maximum wait time in EMC cycles. EMC cycle = 2 × CPU cycle.

0 Always stalls due to higher priority requestor.

1h Maximum wait of 1 cycle (1/2 = 50% access)

2h Maximum wait of 2 cycles (1/3 = 33% access)

3h Reserved

4h Maximum wait of 4 cycles (1/5 = 20% access)

5h-7h Reserved

8h Maximum wait of 8 cycles (1/9 = 11% access)

9h-Fh Reserved

10h Maximum wait of 16 cycles (1/17 = 6% access)

11h-1Fh Reserved

20h Maximum wait of 32 cycles (1/33 = 3% access)

21h-3Fh Reserved
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6.3.4 Slave DMA Arbitration Control Register (SDMAARBD, SDMAARBU, SDMAARBE)

The slave DMA arbitration control register (SDMAARBD, SDMAARBU, and SDMAARBE) controls the
bandwidth management of the slave DMA (SDMA) operations.

The SDMA can support multiple active transfers at any point in time. The MAXWAIT field controls the
maximum wait time for all slave DMA transaction. The priority level is not programmed using SDMAARB;
therefore, SDMAARB does not include a PRI field. The system master dictates the priority level instead.
Since priority settings outside the C64x+ megamodule are DMA/chip/peripheral specific, see the
device-specific documentation for the priority allocation information.

NOTE: The SDMA priorities for all externally-generated DMA transactions (received from outside
the C64x+ megamodule) are propagated through the C64x+ megamodule, including all
resulting cache coherence operations (snoop, snoop-write).

SDMA transactions can affect L1D, L2, and EMC resources; therefore, the MAXWAIT field exists for L1D
(SDMAARBD), L2 (SDMAARBU), and EMC (SDMAARBE).

The slave DMA arbitration control register (SDMAARBD, SDMAARBU, SDMARBE) is shown in Figure 6-4
and described in Table 6-7.

Figure 6-4. Slave DMA Arbitration Control Register (SDMAARBD, SDMAARBU, SDMAARBE)
31 16

Reserved

R-0

15 6 5 0

Reserved MAXWAIT

R-0 R/W-01h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-7. Slave DMA Arbitration Control Register ((SDMAARBD, SDMAARBU, SDMARBE)
Field Descriptions

Bit Field Value Description

31-6 Reserved 0 Reserved

5-0 MAXWAIT 0-3Fh Maximum wait time in EMC cycles. EMC cycle = 2 × CPU cycle.

0 Always stalls due to higher priority requestor

1h Maximum wait of 1 cycle (1/2 = 50% access)

2h Maximum wait of 2 cycles (1/3 = 33% access)

3h Reserved

4h Maximum wait of 4 cycles (1/5 = 20% access)

5h-7h Reserved

8h Maximum wait of 8 cycles (1/9 = 11% access)

9h-Fh Reserved

10h Maximum wait of 16 cycles (1/17 = 6% access)

11h-1Fh Reserved

20h Maximum wait of 32 cycles (1/33 = 3% access)

21h-3Fh Reserved
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6.3.5 Master DMA Arbitration Control Register (MDMAARBE)

The master DMA arbitration control register (MDMAARBE) controls the bandwidth management of the
master DMA (MDMA) operations.

The priority (PRI) field controls the submission priority for the following:
• MDMA transactions: the result of cache misses or long distance accesses to non-CFG space
• Configuration bus transactions: long distance accesses to CFG space or IDMA transfers to CFG space

The MDMAARBE priority is different than the other programmable priorities in the system, in that there are
two parts to the transaction. Each part is handled differently, as described below:
• Arbitration for the internal half of the transfer is dependent upon the initiator (that could be CPU (L1P

or L1D), user coherence (L2), or IDMA, etc.) as defined in other sections.
• Arbitration for the external half of the transfer is DMA-dependent and the PRI field defines it. The PRI

field value does not affect any of the internal arbitration for resources. This priority value is simply used
for all transactions initiated via the DMA master interface or configuration interface.

NOTE: Since there is no internal arbitration resulting from the DMA arbitration control register
(MDMAARBE), there is no MAXWAIT field.

The master DMA arbitration control register (MDMAARBE) is shown in Figure 6-5 and described in
Table 6-8.

Figure 6-5. Master DMA Arbitration Control Register (MDMAARBE)
31 19 18 16

Reserved PRI

R-0 R/W-7h

15 0

Reserved

R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6-8. Master DMA Arbitration Control Register (MDMAARBE) Field Descriptions

Bit Field Value Description

31-19 Reserved 0 Reserved

18-16 PRI 0-7h Priority field: Not all requestors support PRI = 8 (lowest), this is used to make background transfers
lower than all other real-time requests.

0 Priority 0 (highest)

1h Priority 1

2h Priority 2

3h Priority 3

4h Priority 4

5h Priority 5

6h Priority 6

7h Priority 7 (lowest)

15-0 Reserved 0 Reserved
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6.4 Privilege and Bandwidth Management Registers

Table 6-9 summarizes which bandwidth management registers are accessible according to a person's role
(supervisor or user).

Table 6-9. Permissions for Bandwidth Management Registers

Register Supervisor User

CPUARBD R/W R

IDMAARBD R/W R

SDMAARBD R/W R

UCARBD R/W R

CPUARBU R/W R

IDMAARBU R/W R

SDMAARBU R/W R

UCARBU R/W R

CPUARBE R/W R

IDMAARBE R/W R

SDMAARBE R/W R

MDMAARBE R/W R
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7.1 Introduction

This section provides the purpose and discusses the features of the interrupt controller.

7.1.1 Purpose of the C64x+ Megamodule Interrupt Controller (INTC)

The C64x+ system provides a large assortment of system events. The interrupt controller provides a way
to select the necessary events and route them to the appropriate CPU interrupt and exception inputs.

While you can use many of these same system events to drive other peripherals, such as the EDMA, the
megamodule’s interrupt controller is dedicated to managing the CPU.

7.1.2 Features

NOTE: The nonmaskable interrupt (NMI) is not supported on all C6000 devices, see the
device-specific data manual for more information.

The interrupt controller interfaces the system events to the CPU’s interrupt and exceptions inputs. The
interrupt controller supports up to 128 system events.

There are 128 system events that act as inputs to the interrupt controller. They consist of both
internally-generated events (within the megamodule) and chip-level events. The list of events are
enumerated later in Section 7.3. In addition to these 128 events, the INTC register also receives the
non-maskable and reset events and routes straight through to the CPU.

The interrupt controller outputs signals to the C64x+ CPU from these event inputs:

• One maskable, hardware exception (EXCEP)
• Twelve maskable hardware interrupts (INT4 through INT15)
• One non-maskable signal that you can use as either an interrupt or an exception (NMI)
• One reset signal (RESET)

For more information on these CPU interrupt/exception signals, Refer to the TMS320C64x/C64x+ DSP
CPU and Instruction Set Reference Guide (SPRU732) .

The interrupt controller includes the following modules to facilitate the routing of events to interrupts and
exceptions:

• Interrupt Selector - routes any of the system events to the 12 maskable interrupts
• Event Combiner - reduces the large number of system events down to four
• Exception Combiner - lets any of the system events be grouped together for the single hardware

exception input
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7.1.3 Functional Block Diagram

Figure 7-1. C64x+ Megamodule Interrupt Controller Block Diagram

7.1.4 Terms and Definitions

Terms of specific importance in this chapter are:

System Event: any signal that generates internally or externally that is intended to notify the CPU that
some activity has occurred and/or requires a response.

Interrupts: provide the means to redirect normal program flow due to the presence of an external or
internal hardware signal (event).

Exceptions are similar to interrupts in that they also redirect program flow, but exceptions are normally
associated with error conditions in the system.

Refer to Appendix A and Appendix B of this document for additional definitions of the terms used in this
chapter. Appendix A describes general terms used throughout this reference guide and Appendix B
defines terms related to the memory and cache architecture.
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7.2 Interrupt Controller Architecture

The C64x+ megamodule interrupt controller is designed to provide flexible management of system events.
This functionality is implemented using the set of registers listed in Table 7-1. These registers are
mentioned throughout this chapter. Detailed descriptions for these registers are provided in Section 7.5.

Table 7-1. Interrupt Controller Registers

Register Description Type

EVTFLAG [3:0] Event Flag Registers Status

EVTCLR [3:0] Event Clear Registers Command

EVTSET [3:0] Event Set Registers Command

EVTMASK [3:0] Event Mask Registers Control

MEVTFLAG [3:0] Masked Event Flag Registers Status

EXPMASK [3:0] Exception Mask Registers Control

MEXPFLAG [3:0] Masked Exception Flag Registers Status

INTMUX [3:1] Interrupt Mux Registers Control

AEGMUX [1:0] Advanced Event Generator Mux Registers Control

INTXSTAT Interrupt Exception Status Register Status

INTXCLR Interrupt Exception Clear Register Command

INTDMASK Dropped Interrupt Mask Register Control

7.2.1 Event Registers

The interrupt controller contains a set of registers to manage the status of the system events received by
the controller. The registers can be grouped as follows:

• Event flag registers (EVTFLAGx)
• Clear flag registers (EVTCLRx)
• Set flag registers (EVTSETx)

The event flag registers capture all system events that are received by the Interrupt Controller. There are
four 32-bit registers to cover the 124 system event inputs. Each system event is mapped to a specific flag
bit (EFxx) in one of the event flag registers.

The generic event flag register structure is shown in Figure 7-2.

Figure 7-2. Event Flag Register Structure
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF EF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

All 124 system events are individually mapped to a bit of the four 32-bit EVTFLAGx registers. This leaves
the least significant four bits of EVTFLAG0 (EF03:EF00) not associated with a system event. These four
bits are reserved and always zero. That is, there are no system event inputs that correspond to these
fields. Instead, the system events associated with events 00 through 03 are generated internal (to the
Interrupt Controller) by the Event Combiner, which are routed to the Interrupt Selector, as shown in
Figure 7-1.
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The event flags (EFxx) are latched register bits; that is, they retain the value of 1 for any event received.
The EVTFLAGx registers are read-only and must be cleared through the write-only Event Clear registers
EVTCLR[3:0].

Use the event clear registers to clear the event flag registers. There are four 32-bit event clear registers.
The fields of these registers map one-to-one with the fields of the event flag registers. Writing a 1 to a
specific field in an event clear register causes the corresponding event flag register field to clear.

The event clear register structure is shown in Figure 7-3.

Figure 7-3. Event Clear Register Structure
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EC EC EC EC EC EC EC EC EC EC EC EC EC EC EC EC

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC EC EC EC EC EC EC EC EC EC EC EC EC EC EC EC

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

LEGEND: W = Write only; -n = value after reset

The event set registers are conceptually similar to the event clear registers. Use the event set registers to
manually set any bit(s) within the event flag registers (e.g., it may be beneficial to use the event set
registers to generate interrupts when testing interrupt service routines). There are four 32-bit event set
registers whose fields map one-to-one to the fields of the event flag registers. Writing a 1 to a specific field
in an event set register causes the corresponding event flag register to set to 1.

The event set register structure is shown in Figure 7-4.

Figure 7-4. Event Set Register Structure
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ES ES ES ES ES ES ES ES ES ES ES ES ES ES ES ES

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ES ES ES ES ES ES ES ES ES ES ES ES ES ES ES ES

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

LEGEND: W = Write only; -n = value after reset

The interrupt controller uses the event clear and event set registers, rather than writing directly to the
event flag registers to prevent potential race conditions. Without these additional registers, the CPU might
have otherwise accidentally cleared event flags set during a read-modify-write operation of the flag bits.

If a new event is received during the same cycle, a clear is specified via an EVTCLRx register, the new
event input takes precedence as an additional precaution against missing events.
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7.2.2 Event Combiner

The event combiner (Figure 7-5) allows multiple system events to be combined into a single event. The
combined events are routed to the interrupt selector. This allows the CPU to service all available system
events even though the CPU only has twelve available interrupts.

Figure 7-5. Event Combiner

The basic concept of the event combiner is to perform an OR operation on a subset of the system event
flags (described in Table 7-2). The results of the OR operation are provided as a new “combined” event).

The event combiner divides the 124 system events into four groups. The first group includes events 4
through 31, the second group includes events 32 through 63, the third group includes events 64 through
95, and the fourth group includes events 96 through 127. You can combine events within each group to
provide a new “combined” event. These new events are designated EVT0, EVT1, EVT2, and EVT3. These
events are routed to the interrupt selector along with the original 124 system events for a combined total
of 128 events.

For each group there is an event mask register.

The general structure of the event mask register is shown in Figure 7-6.

Figure 7-6. Event Mask Register Structure
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM EM

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

The event mask bits within the event mask registers act to enable/mask which received system events
should be combined. The register is zero by default, thus all system events are unmasked and combined
to form the associated EVTx. To mask out an event source (for example, disable an event from being
combined), the corresponding mask bit must be set to 1. Note that the event mask bits for events 0
through 3 are reserved, and are always masked.

Example 7-1.

Assume an application requires the events 124-127 to be combined.
In order to accomplish this, EVTMASK3 will need to be programmed as follows:
EVTMASK3 = 00001111111111111111111111111111
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In addition to generating a combined output event based on programmable event combinations, the event
combiner provides a masked view of the event flag registers.

The structure of the masked event flag register is shown in Figure 7-7.

Figure 7-7. 32-Masked Event Flag Register Structure
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

The content of the masked event flag registers is identical to the content of the event flag registers for the
events that are enabled in the event mask registers. By reading the masked event flag registers, the CPU
only sees the event flags pertaining to the corresponding combined event (EVT [3:0]), which can be useful
in interrupt routines servicing combined events.

Example 7-2.

Assuming the following configuration:
EVTFLAG3 = 01101010010011001110001110010101
EVTMASK3 = 00001111111111111111111111111111

The Masked Event Flag register 3 will be:
MEVTFLAG3 = 01100000000000000000000000000000

When servicing a combined interrupt, you must:

1. Read the MEVTFLAGx register corresponding to the combined event EVTx
2. Check for the first pending (i.e., flagged) events
3. Write this MEVTFLAGx value to the EVTCLRx register
4. Service the event indicated in step 2
5. Repeat steps 1 through 4 until the MEVTFLAGx register = 0

This procedure only evaluates and clears those events combined on EVTx. Further, any events that are
masked in the EVTMASKx register are not be cleared (and they do not need to clear), even if they are set
in the EVTFLAGx register (this allows you to use them to generate an exception).

NOTE: The CPU should iterate steps 1 to 4 until no pending events are found before returning
within the interrupt service routine. This ensures that any events that are received during the
interrupt service routine are captured (also remember that if an event EVTx is received at the
same time that its flag is cleared in the EVTCLRy [x] register, then it will not clear).
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7.2.3 Interrupt Selector

7.2.3.1 Interrupt Selector Operation

The CPU has twelve maskable interrupts (CPUINT4 through 15) are available. The interrupt selector
allows any of the 128 system events to route to any of the twelve CPU interrupt inputs, as shown in
Figure 7-8.

Figure 7-8. Interrupt Selector Block Diagram

The 128 system events are either event inputs or event combinations generated by the event combiner.
The event combiner logic has the capability of grouping multiple event inputs to four possible event
outputs. These outputs are then provided to the interrupt selector and treated as additional system events
(EVT0 through EVT3).

The event combiner allows for a flexible interrupt routing scheme in addition to the interrupt selector. This
flexibility the INTC module allows a large number of system interrupts to be serviced within the
megamodule. It also allows a large number of interrupts to be simultaneously serviced within a CPU, thus
increasing interrupt efficiency.

Figure 7-9. CPU Interrupt Routing Diagram

The interrupt selector contains interrupt multiplexing registers, INTMUX[3:1] that allow you to program the
source for each of the 12 available CPU interrupts. Each of the events that are presented to the interrupt
selector has an event number that is used to program these registers.

The order of the CPU interrupts (CPUINT4 through CPUINT15) determines the priority for pending
interrupts. Since any interrupt service routine can be atomic (not nestable), the CPU interrupt priority only
applies to pending interrupts. For more information regarding the CPU's interrupt features, refer to the
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732) .
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7.2.3.2 Interrupt Error Event

The C64x+ CPU along with the interrupt controller can generate a system event (EVT96) whenever the
CPU detects that an interrupt has been dropped. This event is generated when a CPU interrupt is
received while the associated CPU's interrupt flag bit is already set. This error event might indicate the
programmer of possible problems in the code such as whether interrupts were disabled for an extended
period of time or whether non-interruptible code sections were too long.

Since the interrupt drop detection logic is within the CPU, only interrupts that are sourced from a single
system event can be detected. The dropping of interrupts based on combined events can only indicate
that one or more of the interrupts in that group caused the error.

When the CPU detects the dropped error condition, it passes the information back to the interrupt
controller’s interrupt exception status register (INTXSTAT) which records the dropped interrupt’s number
and asserts a system event. This register is described in Section 7.5.3.2.

A block diagram including the signals related to exception generation is shown in Figure 7-10.

Figure 7-10. Interrupt Exception Event Block Diagram

The INTERR event is output from the interrupt controller and is internally routed back to the system event
EVT96, as shown in Figure 7-10.

As INTXERR can only hold a single dropped CPU ID, only the first dropped interrupt detected is reported
by INTERR (EVT96). The interrupt exception status is cleared through the exception clear register
(INTXCLR), which is comprised of only a single clear bit. Writing a 1 to the CLEAR field in the INTXCLR
register resets the INTXSTAT register to 0. A new IDROPx event can only be detected after the status is
cleared by the hardware.

When servicing the dropped interrupt error event, the service routine should:

1. Read the INTXSTAT register.
2. Check the error condition.
3. Clear the error through the INTXCLR register.

To prevent one or more CPU interrupts from generating dropped interrupt errors, ignore them by
programming the dropped interrupt mask register (INTDMASK).
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7.2.4 Exception Combiner

The C64x+ CPU has a single event input for system-level, maskable, exceptions. This input is denoted by
EXCEP. The exception combiner allows multiple system events to be combined into the single exception
event in Figure 7-12. This allows the CPU to service all available system events even though only one
CPU exception input is available.

The exception combiner allows the system designer to select a subset of the system event flags in which
to perform an OR operation to determine the EXCEP value.

A block diagram showing the routing of system exceptions through the exception combiner is shown in
Figure 7-11.

Figure 7-11. System Exception Routing Diagram

NOTE: Reset and NMI are also shown in this diagram. In fact, when exceptions are enabled within
the C64x+ CPU, the NMI signal is used as a non-maskable exception input. These two
signals are combined within the CPU along with a variety of other CPU exceptions. For more
information on CPU exceptions, refer to the TMS320C64x/C64x+ DSP CPU and Instruction
Set Reference Guide (SPRU732) .

To allow only a subset of system events to generate an exception to the CPU, the exception combiner
provides a set of four mask registers, EXPMASK[3:0] which are used to disable the events that are not
desired. Since there is only one exception input to the CPU, all mask registers work in concert to combine
up to 128 events to a single EXCEP output. This allows the CPU to service all available system
exceptions.

The general structure of the exception mask register is provided in Figure 7-12:

Figure 7-12. Exception Mask Register Structure
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XM XM XM XM XM XM XM XM XM XM XM XM XM XM XM XM

R/W-FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XM XM XM XM XM XM XM XM XM XM XM XM XM XM XM XM

R/W-FFFFh

LEGEND: R/W = Read/Write; -n = value after reset
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The default value of the EXPMASKx registers are all 1s. This means that all events are masked; therefore,
no system events generate an exception unless you program this register.

Similar to the event combiner discussed in Section 7.2.2, the exception combiner provides a set of
masked exception flags (MEXPFLAGx) in combination with the exception mask registers. The masked
exception flag registers provide a masked view of the event flag registers (from Section 7.2.1). By reading
the masked exception flag registers, the only CPU sees the event flags pertaining to the CPU’s EXCEP
input.

The general structure of the masked exception flag registers is shown in Figure 7-13.

Figure 7-13. Masked Exception Flag Register Structure
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF MXF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

The CPU should run an exception service routine to determine the cause of the exception and respond to
the appropriate events upon receiving an exception. When servicing exceptions, the service routine must
first determine whether the exception was generated internal to the CPU, by the non-maskable exception,
or by the EXCEP signal.

If EXCEP was found to be the cause of the exception, the routine should read the masked exception flag
registers (MEXPFLAG [3:0]) to determine which unmasked events triggered the exception.

When servicing a combined interrupt, you must:

1. Read the MEXPFLAG [3:0] registers.
2. Check the pending events to be serviced.
3. Write the MEXPFLAG [3:0] values to the EVTCLR [3:0] registers.

Using the MEXPFLAGx values with the EVTCLRx registers only clears those events that were
combined to generate EXCEP. Any events that are masked in EXPMASKx would not need to be
cleared, even if set in the EVTFLAGx register; this allows them to be used to generate a combined
interrupt event.

4. The CPU should iterate on steps 1 to 3 until no pending events are found before returning from the
exception service routine. This ensures that any events received during the exception service routine
are captured.

NOTE: Step 4 is critical if the CPU is required to respond to any new exceptions.
Two facts indicate why this is the case:

• The output of the exception combiner is active when any unmasked event flag inputs are active.
• The CPU recognizes an exception request as a 0 to 1 transition.

Therefore, all unmasked event flags must clear before the CPU can recognize a new low to high transition
on EXCEP.
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7.3 C64x+ Megamodule Events

There are a number of events that the various components of the C64x+ megamodule generates. These
events are routed to the interrupt controller so that when asserted, they can be serviced by the CPU.
These events are listed in Table 7-2, along with their event mapping.

NOTE: The events that are shown as available events (4 through 8, 10, and 15 through 95) are to
the megamodule for chip-level events. Therefore, each new C64x+ device can use these
event inputs as necessary. Refer to the device-specific data manual for more information
about how these available events are used.

Table 7-2. System Event Mapping

EVT Number Event From Description

0 EVT0 INT controller Output of event combiner 0, for events 1 through 31.

1 EVT1 INT controller Output of event combiner 1, for events 32 through 63.

2 EVT2 INT controller Output of event combiner 2, for events 64 through 95.

3 EVT3 INT controller Output of event combiner 3, for events 96 through 127.

4-8 Available events.

9 Reserved

10 Available events.

11-12 Reserved

13 IDMAINT0 EMC IDMA channel 0 interrupt

14 IDMAINT1 EMC IDMA channel 1 interrupt

15-95 Available events.

96 INTERR INT controller Dropped CPU interrupt event

97 EMC_IDMAERR EMC Invalid IDMA parameters

98-117 Reserved

118 PDC_INT PDC PDC sleep interrupt

119 SYS_CMPA SYS CPU memory protection fault

120 L1P_CMPA L1P CPU memory protection fault

121 L1P_DMPA L1P DMA memory protection fault

122 L1D_CMPA L1D CPU memory protection fault

123 L1D_DMPA L1D DMA memory protection fault

124 L2_CMPA L2 CPU memory protection fault

125 L2_DMPA L2 DMA memory protection fault

126 EMC_CMPA EMC CPU memory protection fault

127 EMC_BUSERR EMC Bus error interrupt
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7.4 Interrupt Controller - CPU Interaction

7.4.1 CPU – Interrupt Controller Interface

The interrupt controller’s outputs, as produced by the exception combiner and the interrupt selector, are
provided to the C64x+ CPU.

The twelve interrupt signals are reflected in the CPU’s interrupt flag register (IFR), as shown in
Figure 7-14.

Figure 7-14. CPU Event Routing Diagram

You must enable interrupts in order for the CPU to recognize them. The CPU requires individual enables
via the interrupt enable register (IER) and via the global interrupt enable field in the interrupt task register
(ITSR.GIE).

Also note that the exception signal (EXCEP) is recorded in the CPU’s exception flag register (EFR) in
Figure 7-15. You must enable exception before the exception flag registers (EFR) shown can be
recognized. Exception recognition is disabled after device reset for ease of system design and for
backward compatibility. You can turn on exceptions by setting the global exceptions enable field (GEE) in
the ITSR register (ITSR). You should enable exceptions prior to enabling any interrupts to ensure that an
NMI is not received while its mode (exception vs. interrupt) is changing.

When system exceptions are not enabled in the CPU, the non-maskable interrupt (NMI) acts as an
interrupt and when received will post a flag to the BIT1 field in the IFR register. When system exceptions
are enabled in the CPU; however, this flag is not set. Rather, the exception source is identified in the
exception flag register (EFR) to denote whether the source is NMI, EXCEP, an internal exception, or a
software exception (SWE/SWENR).

All NMI processing shares the NMI interrupt vector, regardless of whether you are using it as an interrupt
or it represents an exception. The CPU only uses its REP register as a vector as opposed to the NMI
vector in the case where the SWENR generates an exception rather than SWE instruction.

For more detailed information, refer to the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference
Guide (SPRU732) .
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7.4.2 CPU Servicing of Interrupt Events

For the case where the CPU services single-event interrupts (where system events are specified directly
in the Interrupt Selector), there is no need to read or clear the Event Flag (EVTFLAGx) registers in the
Interrupt Controller.

However, you must use event flags within an interrupt service routine or an exception service routine
when servicing combined system events. These flags are used to determine the event (s) that initiated an
interrupt or exception. In other words, the CPU’s interrupt flag register (or exception flag register) tell the
CPU a combined event has occurred, then the service routine must use the event flag register to
determine the exact cause(s).

It is also important to note that within the service routine, the appropriate event flag register bits must be
cleared by software in order to receive a subsequent event. If the event flag(s) does not clear, then a new
system event will not be recognized. The new system event can not even be recognized as a dropped
interrupt. This is because the CPU dropped interrupt logic applies to the CPU interrupt input (not the
interrupt controller event input). Since the events are combined in the Interrupt Controller, the CPU has no
visibility here.

In many systems, it may be tempting to have the service routine read, then clear the entire event flag
register (EVTFLAGx). While this can work fine for some systems, you must take care that some of the
event flags are not being polled by any of the system’s code. If a particular event must be polled (read
occasionally by some code within the system rather than allowing that event to interrupt the CPU), then
indiscriminately clearing all of the event flag bits may cause unexpected results.
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7.5 Registers

The C64x+ megamodule interrupt controller registers are listed in Table 7-3.

Table 7-3. Interrupt Controller Registers

Address Acronym Register Description Section

0180 0000h to 0180 000Ch EVTFLAG0 Event flag register 0 Section 7.5.1.1

EVTFLAG1 Event flag register 1 Section 7.5.1.1

EVTFLAG2 Event flag register 2 Section 7.5.1.1

EVTFLAG3 Event flag register 3 Section 7.5.1.1

0180 0020h to 0180 002Ch EVTSET0 Event set register 0 Section 7.5.1.2

EVTSET1 Event set register 1 Section 7.5.1.2

EVTSET2 Event set register 2 Section 7.5.1.2

EVTSET3 Event set register 3 Section 7.5.1.2

0180 0040h to 0180 004Ch EVTCLR0 Event clear register 0 Section 7.5.1.3

EVTCLR1 Event clear register 1 Section 7.5.1.3

EVTCLR2 Event clear register 2 Section 7.5.1.3

EVTCLR3 Event clear register 3 Section 7.5.1.3

0180 0080h to 0180 008Ch EVTMASK0 Event mask register 0 Section 7.5.2.1

EVTMASK1 Event mask register 1 Section 7.5.2.1

EVTMASK2 Event mask register 2 Section 7.5.2.1

EVTMASK3 Event mask register 3 Section 7.5.2.1

0180 00A0h to 0180 00ACh MEVTFLAG0 Masked event flag register 0 Section 7.5.2.2

MEVTFLAG1 Masked event flag register 1 Section 7.5.2.2

MEVTFLAG2 Masked event flag register 2 Section 7.5.2.2

MEVTFLAG3 Masked event flag register 3 Section 7.5.2.2

0180 0104h to 0180 010Ch INTMUX1 Interrupt mux register 1 Section 7.5.3.1

INTMUX2 Interrupt mux register 2 Section 7.5.3.1

INTMUX3 Interrupt mux register 3 Section 7.5.3.1

0181 0140h AEGMUX0 Advanced event generator mux register 0 Section 7.5.5

0181 0144h AEGMUX1 Advanced event generator mux register 1 Section 7.5.5

0180 0180h INTXSTAT Interrupt exception status register Section 7.5.3.2

0180 0184h INTXCLR Interrupt exception clear register Section 7.5.3.3

0180 0188h INTDMASK Dropped interrupt mask register Section 7.5.3.4

0180 00C0h to 0180 00CCh EXPMASK0 Exception Mask register 0 Section 7.5.4.1

EXPMASK1 Exception Mask register 1 Section 7.5.4.1

EXPMASK2 Exception Mask register 2 Section 7.5.4.1

EXPMASK3 Exception Mask register 3 Section 7.5.4.1

0180 00E0h to 0180 00ECh MEXPFLAG0 Masked Exception Flag register 0 Section 7.5.4.2

MEXPFLAG1 Masked Exception Flag register 1 Section 7.5.4.2

MEXPFLAG2 Masked Exception Flag register 2 Section 7.5.4.2

MEXPFLAG3 Masked Exception Flag register 3 Section 7.5.4.2
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7.5.1 Event Registers

The interrupt controller contains a set of status and control registers to manage the system events that are
received by the controller. These include flag, set, and clear registers covering all 128 system events.

NOTE: Event flag bits 0 through 3 are reserved and are always 0. There are no events
corresponding to these fields that get routed to the event flag register.

7.5.1.1 Event Flag Registers (EVTFLAGn)

The event flags in the event flag registers (EVTFLAGn) retain a value of 1 for any of the 128 system
events received and are read-only registers. Use the write-only event clear registers (EVTCLRn) to clear
the registers. Use the event set registers (EVTSETn) to manually set any bit(s) within EVTFLAGn,
including masked bits. The event flag registers (EVTFLAGn) are shown in Figure 7-15 through Figure 7-18
and described in Table 7-4.

Figure 7-15. Event Flag Register 0 (EVTFLAG0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EF31 EF30 EF29 EF28 EF27 EF26 EF25 EF24 EF23 EF22 EF21 EF20 EF19 EF18 EF17 EF16

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EF15 EF14 EF13 EF12 EF11 EF10 EF9 EF8 EF7 EF6 EF5 EF4 EF3 EF2 EF1 EF0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 7-16. Event Flag Register 1 (EVTFLAG1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EF63 EF62 EF61 EF60 EF59 EF58 EF57 EF56 EF55 EF54 EF53 EF52 EF51 EF50 EF49 EF48

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EF47 EF46 EF45 EF44 EF43 EF42 EF41 EF40 EF39 EF38 EF37 EF36 EF35 EF34 EF33 EF32

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 7-17. Event Flag Register 2 (EVTFLAG2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EF95 EF94 EF93 EF92 EF91 EF90 EF89 EF88 EF87 EF86 EF85 EF84 EF83 EF82 EF81 EF80

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EF79 EF78 EF77 EF76 EF75 EF74 EF73 EF72 EF71 EF70 EF69 EF68 EF67 EF66 EF65 EF64

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset
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Figure 7-18. Event Flag Register 3 (EVTFLAG3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EF127 EF126 EF125 EF124 EF123 EF122 EF121 EF120 EF119 EF118 EF117 EF116 EF115 EF114 EF113 EF112

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EF111 EF110 EF109 EF108 EF107 EF106 EF105 EF104 EF103 EF102 EF101 EF100 EF99 EF98 EF97 EF96

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 7-4. Event Flag Registers (EVTFLAGn) Field Descriptions

Bit Field Value Description

31-0 EFyyy Captures the state of event EVTyyy

0 EVTyyy did not occur.

1 EVTyyy occurred.
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7.5.1.2 Event Set Registers (EVTSETn)

Use the event set registers (EVTSETn) to manually set any bit(s) within the event flag registers
(EVTSETn).

The event set registers (EVTSETn) are shown in Figure 7-19 through Figure 7-22 and described in
Table 7-5.

Figure 7-19. Event Set Register 0 (EVTSET0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ES31 ES30 ES29 ES28 ES27 ES26 ES25 ES24 ES23 ES22 ES21 ES20 ES19 ES18 ES17 ES16

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ES15 ES14 ES13 ES12 ES11 ES10 ES9 ES8 ES7 ES6 ES5 ES4 ES3 ES2 ES1 ES0

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

LEGEND: W = Write only; -n = value after reset

Figure 7-20. Event Set Register 1 (EVTSET1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ES63 ES62 ES61 ES60 ES59 ES58 ES57 ES56 ES55 ES54 ES53 ES52 ES51 ES50 ES49 ES48

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ES47 ES46 ES45 ES44 ES43 ES42 ES41 ES40 ES39 ES38 ES37 ES36 ES35 ES34 ES33 ES32

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

LEGEND: W = Write only; -n = value after reset

Figure 7-21. Event Set Register 2 (EVTSET2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ES95 ES94 ES93 ES92 ES91 ES90 ES89 ES88 ES87 ES86 ES85 ES84 ES83 ES82 ES81 ES80

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ES79 ES78 ES77 ES76 ES75 ES74 ES73 ES72 ES71 ES70 ES69 ES68 ES67 ES66 ES65 ES64

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

LEGEND: W = Write only; -n = value after reset

Figure 7-22. Event Set Register 3 (EVTSET3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ES127 ES126 ES125 ES124 ES123 ES122 ES121 ES120 ES119 ES118 ES117 ES116 ES115 ES114 ES113 ES112

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ES111 ES110 ES109 ES108 ES107 ES106 ES105 ES104 ES103 ES102 ES101 ES100 ES99 ES98 ES97 ES96

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

LEGEND: W = Write only; -n = value after reset

Table 7-5. Event Set Registers (EVTSETn) Field Descriptions

Bit Field Value Description

31-0 ESyyy Sets EFyyy in the event flag registers (EVTFLAGn).

0 No effect.

1 Set EFyyy = 1
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7.5.1.3 Event Clear Registers (EVTCLRn)

Use the event clear registers (EVTCLRn) to clear the event flags in the event flag registers (EVTCLRn).

The event clear registers (EVTCLRn) are shown in Figure 7-23 through Figure 7-26 and described in
Table 7-6.

Figure 7-23. Event Clear Register 0 (EVTCLR0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EC31 EC30 EC29 EC28 EC27 EC26 EC25 EC24 EC23 EC22 EC21 EC20 EC19 EC18 EC17 EC16

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC15 EC14 EC13 EC12 EC11 EC10 EC9 EC8 EC7 EC6 EC5 EC4 EC3 EC2 EC1 EC0

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

LEGEND: W = Write only; -n = value after reset

Figure 7-24. Event Clear Register 1 (EVTCLR1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EC63 EC62 EC61 EC60 EC59 EC58 EC57 EC56 EC55 EC54 EC53 EC52 EC51 EC50 EC49 EC48

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC47 EC46 EC45 EC44 EC43 EC42 EC41 EC40 EC39 EC38 EC37 EC36 EC35 EC34 EC33 EC32

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

LEGEND: W = Write only; -n = value after reset

Figure 7-25. Event Clear Register 2 (EVTCLR2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EC95 EC94 EC93 EC92 EC91 EC90 EC89 EC88 EC87 EC86 EC85 EC84 EC83 EC82 EC81 EC80

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC79 EC78 EC77 EC76 EC75 EC74 EC73 EC72 EC71 EC70 EC69 EC68 EC67 EC66 EC65 EC64

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

LEGEND: W = Write only; -n = value after reset

Figure 7-26. Event Clear Register 3 (EVTCLR3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EC127 EC126 EC125 EC124 EC123 EC122 EC121 EC120 EC119 EC118 EC117 EC116 EC115 EC114 EC113 EC112

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC111 EC110 EC109 EC108 EC107 EC106 EC105 EC104 EC103 EC102 EC101 EC100 EC99 EC98 EC97 EC96

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

LEGEND: W = Write only; -n = value after reset

Table 7-6. Event Clear Registers (EVTCLRn) Field Descriptions

Bit Field Value Description

31-0 ECyyy Clears EFyyy in the event flag registers (EVTFLAGn).

0 No effect.

1 Set EFyyy = 0.
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7.5.2 Event Combiner Registers

There are a set of event mask registers (EVTMASK [3:0]) to program the event combiner. These registers
allow up to 32 events to be combined into a single combined event which can then be used by the
interrupt selector. The event mask bits within the EVTMASK [3:0] registers act to mask (or enable) the
received system events. There are four event signals presented to the interrupt selector (EVT [3:0]).

The event mask registers are shown below (Bits EM [3:0] are unused).

7.5.2.1 Event Mask Registers (EVTMASKn)

There are a set of event mask registers (EVTMASK0 through EVTMASK3) to program the event
combiner. These registers allow up to 32 events to be combined into a single event output that is used as
a single CPU interrupt or AET event. The event mask bits within the EVTMASKn register act as enablers
for the received system events to be combined on the event outputs. There are four event outputs to the
event and AET event selectors (EVT [3:0]).

The event mask registers (EVTMASKn) are shown in Figure 7-27 through Figure 7-30 and described in
Table 7-7.

Figure 7-27. Event Mask Register 0 (EVTMASK0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EM31 EM30 EM29 EM28 EM27 EM26 EM25 EM24 EM23 EM22 EM21 EM20 EM19 EM18 EM17 EM16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EM15 EM14 EM13 EM12 EM11 EM10 EM9 EM8 EM7 EM6 EM5 EM4 EM3 EM2 EM1 EM0

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-1 R-1 R-1 R-1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 7-28. Event Mask Register 1 (EVTMASK1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EM63 EM62 EM61 EM60 EM59 EM58 EM57 EM56 EM55 EM54 EM53 EM52 EM51 EM50 EM49 EM48

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EM47 EM46 EM45 EM44 EM43 EM42 EM41 EM40 EM39 EM38 EM37 EM36 EM35 EM34 EM33 EM32

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 7-29. Event Mask Register 2 (EVTMASK2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EM95 EM94 EM93 EM92 EM91 EM90 EM89 EM88 EM87 EM86 EM85 EM84 EM83 EM82 EM81 EM80

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EM79 EM78 EM77 EM76 EM75 EM74 EM73 EM72 EM71 EM70 EM69 EM68 EM67 EM66 EM65 EM64

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset
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Figure 7-30. Event Mask Register 3 (EVTMASK3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EM127 EM126 EM125 EM124 EM123 EM122 EM121 EM120 EM119 EM118 EM117 EM116 EM115 EM114 EM113 EM112

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EM111 EM110 EM109 EM108 EM107 EM106 EM105 EM104 EM103 EM102 EM101 EM100 EM99 EM98 EM97 EM96

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Table 7-7. Event Mask Registers (EVTMASKn) Field Descriptions

Bit Field Value Description

31-0 EMyyy Disables event EVTyyy from being used as input to the event combiner.

0 EVTyyy will be combined.

1 EVTyyy is disabled from being combined.
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7.5.2.2 Masked Event Flag Registers (MEVTFLAGn)

The event combiner provides a set of four masked event flag registers (a masked view of the event flag
registers).

The masked event flag registers (MEVTFLAGn) are shown in Figure 7-31 through Figure 7-34 and
described in Table 7-8.

Figure 7-31. Masked Event Flag Register 0 (MEVTFLAG0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 7-32. Masked Event Flag Register 1 (MEVTFLAG1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 7-33. Masked Event Flag Register 2 (MEVTFLAG2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 7-34. Masked Event Flag Register 3 (MEVTFLAG3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF MEF

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset
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Table 7-8. Masked Event Flag Registers (MEVTFLAGn) Field Descriptions

Bit Field Value Description

31-0 MEFyyy 0-FFFF FFFFh Displays content of EFyyy when EMyyy = 0 in the event mask registers (EVTMASKn).

If (EMyyy = 0)

MEFyyy = EFyyy

Else

MEFyyy = 0
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7.5.3 CPU Interrupt Selector Registers

7.5.3.1 Interrupt Mux Registers (INTMUXn)

The interrupt selector contains interrupt mux registers that allow you to program the source for each of the
12 available CPU interrupts.

The interrupt mux registers are shown in Figure 7-35 through Figure 7-37 and described in Table 7-9.

Figure 7-35. Interrupt Mux Register 1 (INTMUX1)
31 30 24 23 22 16

Reserved INTSEL7 Reserved INTSEL6

R-0 R/W-7h R-0 R/W-6h

15 14 8 7 6 0

Reserved INTSEL5 Reserved INTSEL4

R-0 R/W-5h R-0 R/W-4h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 7-36. Interrupt Mux Register 2 (INTMUX2)
31 30 24 23 22 16

Reserved INTSEL11 Reserved INTSEL10

R-0 R/W-Bh R-0 R/W-Ah

15 14 8 7 6 0

Reserved INTSEL9 Reserved INTSEL8

R-0 R/W-9h R-0 R/W-8h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 7-37. Interrupt Mux Register 3 (INTMUX3)
31 30 24 23 22 16

Reserved INTSEL15 Reserved INTSEL14

R-0 R/W-Fh R-0 R/W-Eh

15 14 8 7 6 0

Reserved INTSEL13 Reserved INTSEL12

R-0 R/W-Dh R-0 R/W-Ch

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7-9. Interrupt Mux Registers (INTMUXn) Field Descriptions

Field Value Description

INTSELnn 0-7Fh Contains the number of the event that maps to CPUINTnn.

178 Interrupt Controller SPRU871K–August 2010

Copyright © 2010, Texas Instruments Incorporated



www.ti.com Registers

7.5.3.2 Interrupt Exception Status Register (INTXSTAT)

The interrupt exception status register (INTXSTAT) provides information to determine what caused the
exception that was generated. The INTXSTAT register holds the CPU interrupt and the system event
number of the dropped event.

The interrupt exception status register (INTXSTAT) is shown in Figure 7-38 and described in Table 7-10.

Figure 7-38. Interrupt Exception Status Register (INTXSTAT)
31 24 23 16

SYSINT CPUINT

R-0 R-0

15 1 0

Reserved DROP

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 7-10. Interrupt Exception Status Register (INTXSTAT) Field Descriptions

Bit Field Value Description

31-24 SYSINT 0-FFh System Event number

0-7Fh EVT0 to EVT128

80h-FFh Reserved

23-16 CPUINT 0-FFh CPU interrupt number

0-Fh CPUINT0 to CPUINT15

10h-FFh Reserved

15-1 Reserved 0 Reserved

0 DROP Dropped event flag

0 No events dropped

1 Event was dropped by the CPU
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7.5.3.3 Interrupt Exception Clear Register (INTXCLR)

The interrupt exception status is cleared through the exception clear register, which is essentially a single
clear bit, as shown below. A new IDROPx event can only be detected by the hardware after the status
clears.

The interrupt exception clear register is shown in Figure 7-39 and described in Table 7-11.

Figure 7-39. Interrupt Exception Clear Register (INTXCLR)
31 1

Reserved

R-0

0

CLEAR

W-0

LEGEND: R = Read only; W= Write only; -n = value after reset

Table 7-11. Interrupt Exception Clear Register (INTXCLR) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 CLEAR Clears the interrupt exception status.

0 No effect

1 Clear interrupt exception status.

7.5.3.4 Dropped Interrupt Mask Register (INTDMASK)

The dropped interrupts that generate the INTERR event can be filtered by a mask register. Those CPU
interrupts that are to be ignored by the drop detection hardware can be masked out in the dropped
interrupt mask register (INTDMASK).

The dropped interrupt mask register (INTDMASK) is shown in Figure 7-40 and described in Table 7-12.

Figure 7-40. Dropped Interrupt Mask Register (INTDMASK)
31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 0

IDM15 IDM14 IDM13 IDM12 IDM11 IDM10 IDM9 IDM8 IDM7 IDM6 IDM5 IDM4 Reserved

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 7-12. Dropped Interrupt Mask Register (INTDMASK) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved

15-4 IDMnn Disables CPUINTnn from being detected by the drop detection hardware.

0 No effect.

1 CPUINTnn ignored by the drop detection hardware.

3-0 Reserved 0 Reserved
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7.5.4 CPU Exception Registers

7.5.4.1 CPU Exception Combiner Mask Registers (EXPMASKn)

Like the event combiner, the exception combiner has mask registers that are used to gate which events
trigger EXCEP.

NOTE: The exception masks for events 0 through 3 are reserved and always masked.

The exception combiner mask register (EXPMASKn) is shown in Figure 7-41 through Figure 7-44 and
described in Table 7-13.

Figure 7-41. Exception Combiner Mask Register 0 (EXPMASK0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XM31 XM30 XM29 XM28 XM27 XM26 XM25 XM24 XM23 XM22 XM21 XM20 XM19 XM18 XM17 XM16

R/W-FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XM15 XM14 XM13 XM12 XM11 XM10 XM9 XM8 XM7 XM6 XM5 XM4 XM3 XM2 XM1 XM0

R/W-FFFFh

LEGEND: R/W = Read/Write; -n = value after reset

Figure 7-42. Exception Mask Register 1 (EXPMASK1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XM63 XM62 XM61 XM60 XM59 XM58 XM57 XM56 XM55 XM54 XM53 XM52 XM51 XM50 XM49 XM48

R/W-FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XM47 XM46 XM45 XM44 XM43 XM42 XM41 XM40 XM39 XM38 XM37 XM36 XM35 XM34 XM33 XM32

R/W-FFFFh

LEGEND: R/W = Read/Write; -n = value after reset

Figure 7-43. Exception Mask Register 2 (EXPMASK2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XM95 XM94 XM93 XM92 XM91 XM90 XM89 XM88 XM87 XM86 XM85 XM84 XM83 XM82 XM81 XM80

R/W-FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XM79 XM78 XM77 XM76 XM75 XM74 XM73 XM72 XM71 XM70 XM69 XM68 XM67 XM66 XM65 XM64

R/W-FFFFh

LEGEND: R/W = Read/Write; -n = value after reset

Figure 7-44. Exception Mask Register 3 (EXPMASK3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XM127 XM126 XM125 XM124 XM123 XM122 XM121 XM120 XM119 XM118 XM117 XM116 XM115 XM114 XM113 XM112

R/W-FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XM111 XM110 XM109 XM108 XM107 XM106 XM105 XM104 XM103 XM102 XM101 XM100 XM99 XM98 XM97 XM96

R/W-FFFFh

LEGEND: R/W = Read/Write; -n = value after reset
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Table 7-13. Exception Mask Registers (EXPMASKn) Field Descriptions

Bit Field Value Description

31-0 XMyyy Enables event EVTyyy from being used in the exception combiner.

0 EVTyyy will be combined.

1 EVTyyy is disabled from being combined.
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7.5.4.2 Masked Exception Flag Registers (MEXPFLAGn)

The exception combiner provides a set of four masked exception flag registers (a masked view of the
exception flag registers).

The masked exception flag registers (MEXPFLAGn) are shown in Figure 7-45 through Figure 7-48 and
described in Table 7-14.

Figure 7-45. Masked Exception Flag Register 0 (MEXPFLAG0)
31 30 29 28 27 26 25 24

MXF31 MXF30 MXF29 MXF28 MXF27 MXF26 MXF25 MXF24

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

23 22 21 20 19 18 17 16

MXF23 MXF22 MXF21 MXF20 MXF19 MXF18 MXF17 MXF16

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8

MXF15 MXF14 MXF13 MXF12 MXF11 MXF10 MXF9 MXF8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

MXF7 MXF6 MXF5 MXF4 MXF3 MXF2 MXF1 MXF0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 7-46. Masked Exception Flag Register 1 (MEXPFLAG1)
31 30 29 28 27 26 25 24

MXF63 MXF62 MXF61 MXF60 MXF59 MXF58 MXF57 MXF56

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

23 22 21 20 19 18 17 16

MXF55 MXF54 MXF53 MXF52 MXF51 MXF50 MXF49 MXF48

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8

MXF47 MXF46 MXF45 MXF44 MXF43 MXF42 MXF41 MXF40

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

MXF39 MXF38 MXF37 MXF36 MXF35 MXF34 MXF33 MXF32

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset
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Figure 7-47. Masked Exception Flag Register 2 (MEXPFLAG2)
31 30 29 28 27 26 25 24

MXF95 MXF94 MXF93 MXF92 MXF91 MXF90 MXF89 MXF88

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

23 22 21 20 19 18 17 16

MXF87 MXF86 MXF85 MXF84 MXF83 MXF82 MXF81 MXF80

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8

MXF79 MXF78 MXF77 MXF76 MXF75 MXF74 MXF73 MXF72

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

MXF71 MXF70 MXF69 MXF68 MXF67 MXF66 MXF65 MXF64

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Figure 7-48. Masked Exception Flag Register 3 (MEXPFLAG3)
31 30 29 28 27 26 25 24

MXF127 MXF126 MXF125 MXF124 MXF123 MXF122 MXF121 MXF120

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

23 22 21 20 19 18 17 16

MXF119 MXF118 MXF117 MXF116 MXF115 MXF114 MXF113 MXF112

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

15 14 13 12 11 10 9 8

MXF111 MXF110 MXF109 MXF108 MXF107 MXF106 MXF105 MXF104

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

MXF103 MXF102 MXF101 MXF100 MXF99 MXF98 MXF97 MXF96

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 7-14. Masked Exception Flag Registers (MEXPFLAGn) Field Descriptions

Bit Field Value Description

31-0 MXFyyy 0-FFFF FFFFh Displays content of EFyyy when XMyyy = 0 in the exception mask registers (EXPMASKn).

If (XMyyy = 0)

MXFyyy = EFyyy

else

MXFyyy = 0

7.5.5 Advanced Event Generator Mux Registers (AEGMUXn)

The Advanced Event Generator (AEG) allows any event to act as emulation triggers. The events that are
sent to the AEG block are configured in the AEG mux registers (AEGMUX0 and AEGMUX1).

The AEGMUX registers are similar to the interrupt selector registers, in that the event to be passed on is
simply encoded into a selector bitfield. The encoded value selects between the available system events
(EVT[127:4], combined system events (EVT[3:0], the CPU interrupts (CPUINT[15:4], any interrupt
acknowledge (IACK), and exception acknowledge (EACK). The combined events (EVT[3:0] are available
and are set as the default events.
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NOTE: The AEGMUX0 and AEGMUX1 registers are supported on AET enabled devices only. Refer
to your device-specific datasheet to determine if your device supports AET.

The advanced event generator mux registers are shown in Figure 7-49 through Figure 7-50 and described
in Table 7-15.

Figure 7-49. Advanced Event Generator Mux Register 0 (AEGMUX0)
31 24 23 16

AEGSEL3 AEGSEL2

R/W-3h R/W-2h

15 8 7 0

AEGSEL1 AEGSEL0

R/W-1h R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 7-50. Advanced Event Generator Mux Register 1 (AEGMUX1)
31 24 23 16

AEGSEL7 AEGSEL6

R/W-7h R/W-6h

15 8 7 0

AEGSEL5 AEGSEL4

R/W-5h R/W-4h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7-15. Advanced Event Generator Mux Registers (AEGMUXn) Field Descriptions

Bit Field Value Description

31-0 AEGSELn 0-FFh Advanced event generator (AEG) select.

0-7Fh EVT [127:0]: System events 0 to 127

80-BFh Reserved

C0h EXCEP: CPU Exception

C1h NMI: Non-maskable CPU interrupt

C2-C3h Reserved

C4-CFh CPUINT [15:4]: CPU interrupts

D0-DFh Reserved

E0h IACK: Interrupt acknowledge (for any interrupt)

E1h EACK: Exception acknowledge

E2-E3h Reserved

E4-EFh IACK [15:4]: Interrupt acknowledge for specific CPU interrupts

F0-FFh Reserved
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7.5.6 Privilege and Interrupt Controller Registers

The C64x+ architecture provides memory protection support.

Table 7-16 summarizes which interrupt controller registers are accessible according to role.

Table 7-16. Permissions for Interrupt Controller Registers

Register Supervisor User

EVTFLAGx R R

EVTCLRx W R

EVTSETx W R

EVTMASKx R/W R

MEVTFLAGx R R

EXPMASKx R/W R

MEXPFLAGx R R

INTMUXx R/W R

AEGMUXx R/W R

INTSTAT R R

INTXCLR W R

INTDMASK R/W R
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8.1 Introduction

8.1.1 Purpose of the Memory Protection

Memory protection provides many benefits to a system. Memory protection functionality can:

• Protect operating system data structures from poorly behaving code.
• Aid in debugging by providing greater information about illegal memory accesses.
• Allow the operating system to enforce clearly defined boundaries between supervisor and user mode

accesses, leading to greater system robustness.

The C64x+ megamodule memory protection architecture provides these benefits through a combination of
CPU privilege levels and a memory system permission structure.

8.1.2 Privilege Levels

The privilege of a thread determines what level of permissions that thread might have.

Code running on the CPU executes in one of two privilege modes: supervisor mode or user mode.
Supervisor code is considered more trusted than user code. Examples of supervisor threads include
operating system kernels and hardware device drivers. Examples of user threads include vocoders and
end applications.

Supervisor mode is generally granted access to peripheral registers and the memory protection
configuration. User mode is generally confined to the memory spaces that the OS specifically designates
for its use.

CPU accesses as well as internal DMA and other accesses have a privilege level associated with them.
The CPU privilege level is determined as described above. The Internal DMA accesses that are initiated
by the CPU inherit the CPU's privilege level at the time they are initiated.

8.2 Terms and Definitions

Refer to Appendix A of this document for a detailed definition of the terms that are used in this chapter.
Appendix A describes general terms that are used throughout the this reference guide.

8.3 Memory Protection Architecture

8.3.1 Memory Protection Pages

The C64x+ memory protection architecture divides the DSP internal memory (L1P, L1D, L2) into pages.
Each page has an associated set of permissions. Section 8.3.2 and its subsections describe the
permission sets.

Memories typically have power-of-2 page sizes. The sizes of the L1 and the L2 memory pages are specific
to the device. Refer to the device-specific data manual for more information.
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8.3.2 Permission Structure

The memory protection architecture defines a per-page permission structure with two permission fields in
a 16-bit permission entry. Figure 8-1 shows the structure of a permission entry.

Figure 8-1. Permission Fields
31 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Allowed IDs Reserved Access Types

AID5 AID4 AID3 AID2 AID1 AID0 AIDX LOCAL SR SW SX UR UW UX

8.3.2.1 Requestor-ID Based Access Controls

Each requestor on the device has an N-bit code associated with it that identifies it for privilege purposes.
This ID accompanies all memory accesses and IDMAs made on behalf of that requestor. That is, when a
requestor triggers an IDMA transfer directly by writing to IDMA registers, the IDMA engine will provide that
ID alongside the transfer. Each CPU and every mastering peripheral (RapidIO, HPI, and EMAC) has an
ID. Multiple system masters may share an ID in the same device. Each memory protection entry has an
allowed ID field associated with it that indicates which requestors may access the given page. The
memory protection hardware maps the IDs of all the possible requestors to bits in the allowed IDs field in
the memory protection entries. The allowed IDs field discriminates between various CPUs, non-CPU
requestors, and a given CPU's accesses to its own local memories.

• AID0 through AID5 map small-numbered IDs to allowed ID bits.
• An additional allowed ID bit, AIDX, captures access made by higher-numbered PrivIDs.
• The LOCAL bit treats CPU accesses to its local L1s and L2 specially.

Figure 8-2 illustrates and Table 8-1 describes the allowed IDs bit field.

Figure 8-2. Allowed IDs Bit Fields
15 14 13 12 11 10 9 8

AID5 AID4 AID3 AID2 AID1 AID0 AIDX LOCAL

The allowed ID field is 8 bits.

When set to 1, the AID bit grants access to the corresponding ID. When cleared to 0, the AID bit denies
access to the corresponding requestor.

Table 8-1. Allowed IDs Bit Field Descriptions

Bit Field Description

15 AID5 Allow accesses from ID = 5

14 AID4 Allow accesses from ID = 4

13 AID3 Allow accesses from ID = 3

12 AID2 Allow accesses from ID = 2

11 AID1 Allow accesses from ID = 1

10 AID0 Allow accesses from ID = 0

9 AIDX Allow accesses from ID> = 6

8 LOCAL Allow access from CPU to its local memories (L1/L2 only)
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The above ID assignments for bits AID0 through AID5 apply to all IDMA and CPU memory accesses other
than to the CPU's local L1 and L2 memories. The LOCAL bit governs CPU accesses to its own local L1
and L2 memories. The AIDX bit maps to IDs that do not have dedicated AID bits associated with them.

8.3.2.2 Request-Type Based Permissions

The memory protection model defines three fundamental functional access types: read, write, and
execute. Read and write refer to data accesses -- accesses originating via the load/store units on the CPU
or via the IDMA engine. Execute refers to accesses associated with program fetch.

The memory protection model allows controlling read, write, and execute permissions independently for
both user and supervisor mode. This results in 6 permission bits, shown in Table 8-2.

Table 8-2. Request Type Access Controls

Bit Field Description

5 SR Supervisor may read

4 SW Supervisor may write

3 SX Supervisor may execute

2 UR User may read

1 UW User may write

0 UX User may execute

For each bit, a 1 permits the access type, and a 0 denies it. Thus UX = 1 means that User Mode may
execute from the given page. The memory protection architecture allows you to specify all six of these bits
separately. 64 different encodings are permitted altogether, although programs might not use all of them.

8.3.3 Invalid Accesses and Exceptions

When it encounters an invalid access, the memory protection hardware has two distinct duties:

• Prevent the access from occurring.
• Report the error to the operating environment.

Invalid accesses are those memory accesses which require greater permissions than those specified for
the page or register involved. The following sections cover the behavior of the memory protection in the
presence of invalid accesses.

8.3.3.1 Handling Invalid Accesses

When presented with an invalid access, the memory protection prevents the requestor from making the
access and will make sure that the memory being protected does not change its state due to the invalid
access.

8.3.3.2 Exception Generation

Upon detecting an invalid access, the memory protection hardware reports the error to the operating
environment.
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8.4 Memory Protection Architecture Registers

The memory protection architecture defines several sets of memory-mapped registers (MMRs). Each
hardware block that implements memory protection architecture (MPA), implements these MMRs as part
of its own register set. As a result, these MMRs reside within its configuration register address space.

The peripherals that implement the MMRs govern accesses to those MMRs.

The MMRs fall into three main categories:

• Memory Protection Page Attribute (MPPA) Registers: These registers store the permissions associated
with each protected page. These are defined in Section 8.4.1.

• Memory Protection Fault (MPFxR) Registers: Each peripheral that generates memory protection faults
provides MPFAR, MPFSR, and MPFCR registers for recording the details of the fault. These are
defined in Section 8.4.2 and Section 8.4.2.1.

• Memory Protection Lock (MPLK) Registers: When engaged, the lock disables all updates to the
memory protection entries for that peripheral. The MPLK register is defined in Section 8.4.3.
Because each memory implements its own memory protection registers, refer to the device-specific
data manual for more information about the memory map.

Table 8-3 lists the memory-mapped registers for the memory protection architecture. See the
device-specific data manual for the memory address of these registers.

Table 8-3. Memory Protection Architecture Registers

Acronym Register Description Section

MPPA Memory Protection Page Attribute Section 8.4.1

MPFAR Memory Protection Fault Address Register Section 8.4.2

MPFSR Memory Protection Fault Status Register Section 8.4.2

MPFCR Memory Protection Fault Command Register Section 8.4.2

MPLK Memory Protection Lock Registers Section 8.4.3
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8.4.1 Memory Protection Page Attribute (MPPA) Registers

Each memory that implements a notion of configurable memory protection pages provides a set of
memory protection page attribute (MPPA) registers. One MPPA register covers each page that the
peripheral implements. These registers typically appear in a contiguous block within the memory's MMR
memory map.

Each MPPA register occupies 32 bits in the memory map, but only 16 of these bits are used. Section 8.3.2
describes the layout and definition of the MPPA register fields.

The reset value of the MPPA register is device-dependant.

8.4.2 Memory Protection Fault Registers (MPFAR, MPFSR, MPFCR)

All memories that implement the memory protection architecture and that generate exceptions provide a
set of memory protection fault registers to report the details of a memory protection violation.

The C64x+ memory protection architecture (MPA) specifies three registers: memory protection fault
address register (MPFAR), memory protection fault status register (MPFSR), and memory protection fault
command register (MPFCR).

Memories that implement the memory protection architecture, but cannot generate exceptions, do not
implement these registers.

8.4.2.1 Memory Access Protection Fault Registers

When a given piece of memory protection hardware detects a privilege violation, it captures some basic
information about the violation as part of the exception-triggering process. Specifically, it captures the
address of the fault, and the type of access that generated the fault.

The hardware records the address of the fault in the memory's memory protection fault address register
(MPFAR). It records the rest of the information regarding the fault in the memory's memory protection fault
status register (MPFSR). Software can write to the memory protection fault command register (MPFCR) to
clear the fault.

8.4.2.1.1 Memory Protection Fault Address Register (MPFAR)

The memory protection fault address register (MPFAR) is shown in Figure 8-3 and described in Table 8-4.

Figure 8-3. Memory Protection Fault Address Register (MPFAR)
31 0

Faulting Address

R-0

LEGEND: R = Read only; -n = value after reset

Table 8-4. Memory Protection Fault Address Register (MPFAR) Field Descriptions

Bit Field Value Description

31-0 Faulting Address 0-FFFF FFFFh Address of the fault.
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8.4.2.1.2 Memory Protection Fault Status Register (MPFSR)

The memory protection fault status register (MPFSR) is shown in Figure 8-4 and described in Table 8-5.

Figure 8-4. Memory Protection Fault Status Register (MPFSR)
31 16

Reserved

R-0

15 9 8 7 6 5 4 3 2 1 0

FID LOCAL Reserved SR SW SX UR UW UX

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 8-5. Memory Protection Fault Status Register (MPFSR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved.

15-9 FID 1Fh Bits 6:0 ID of faulting requestor. If ID is narrower than 7 bits, the remaining bits return 0. If ID is
wider than 7 bits, the additional bits are truncated. FID = 0 if LOCAL = 1.

8 LOCAL 0-1 Access was a “LOCAL” access.

7-6 Reserved 0 Reserved.

5 SR 0-1 When set, indicates a supervisor read request.

4 SW 0-1 When set, indicates a supervisor write request.

3 SX 0-1 When set, indicates a supervisor program fetch request.

2 UR 0-1 When set, indicates a user read request.

1 UW 0-1 When set, indicates a user write request.

0 UX 0-1 When set, indicates a user program fetch request.
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8.4.2.1.3 Memory Protection Fault Command Register (MPFCR)

The memory protection fault command register (MPFCR) is shown in Figure 8-5 and described in
Table 8-6.

Figure 8-5. Memory Protection Fault Command Register (MPFCR)
31 16

Reserved

R-0

15 1 0

Reserved MPFCLR

R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset; -n = value after reset

Table 8-6. Memory Protection Fault Command Register (MPFCR) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved.

0 MPFCLR Command to clear the L1DMPFAR register.

0 No effect.

1 Clear the L1DMPFAR and the L1DMPFCR registers.

MPFAR records the address of the protection violation MPFSR records the access type, in a register
formatted similarly to the memory protection page attribute register. The MPFCLR register includes a
single command bit for clearing the MPFAR and the MPFCLR registers.

Caches generate two special access types (line fills and writebacks) that are distinct from normal
functional accesses. The protection hardware indicates faults on cache transactions by encoding special
patterns into the access type fields.

• Faulting line fill sets SR = SW = = UR = UW = UX = 1.
• Faulting victim writeback sets SW = UW = 1.

You can decode a memory protection fault as follows using this scheme in software:

• If the LOCAL field is set, the request was a local CPU request to its own memories. Otherwise, the ID
of the faulting requestor is in bits 9 through 15 of the fault status register.

• The value of the access type field (SR, SW, SX, UR, UW, and UX) indicates the type of access that
was at fault, as shown in Table 8-7.

Table 8-7. Interpretation of MPFSR Access Type Field

SR SW SX UR UW UX Meaning

1 0 0 0 0 0 Fault due to supervisor read

0 1 0 0 0 0 Fault due to supervisor write

0 0 1 0 0 0 Fault due to supervisor program fetch

0 0 0 1 0 0 Fault due to user read

0 0 0 0 1 0 Fault due to user write

0 0 0 0 0 1 Fault due to user program fetch

1 1 1 1 1 1 Fault due to cache line fill

0 1 0 0 1 0 Fault due to cache victim writeback

Others Reserved -- may be defined by endpoint
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The megamodule only generates the line-fill and victim writeback encodings if another master caches the
content of the megamodule, and experiences a fault while doing so.

Each memory protection block captures its own memory protection fault information. Thus, each potential
memory protection exception source has an associated MPFAR/MPFSR/MPFCR register set.

The MPFAR and MPFSR registers only store information for one fault. As a result of the fault, an
exception generates. The fault information is held until software clears it by writing to MPFCR.

The supervisor clears the recorded fault by writing to a 1 to the MPFCLR (bit 0) in the MPFCR register.
Writing a 1 to this bit clears both the MPFAR and the MPFSR registers. The MPFAR and MPFCR
registers do not respond to writes. Once the supervisor clears the fault, the hardware records the next
protection violation and signal an exception when it occurs. Writing a 1 to any other bit of the MPFCR
register has no effect on the memory protection registers. Writing a 0 to the MPFCLR field in the MPFCR
register also has no effect.

The various distinct memory protection blocks do not directly coordinate with each other. Some operations
(such as cache line fills) can generate an exception at the endpoint and in the cache hierarchy. Therefore,
a single invalid memory access may generate multiple exceptions in different blocks before a CPU
acknowledges even the first exception. Nonetheless, each individual memory generates no more than one
exception until the CPU clears that memory's MPFAR and MPFSR registers.
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8.4.3 Memory Protection Lock Registers (MPLKn)

As an additional layer of security, the memory protection architecture defines a hardware "protection lock."
Hardware locks provide an additional layer over all other access controls to a given memory's protection
registers.

Devices that implement hardware locks on their protection entries implement the six registers shown in
Figure 8-6 through Figure 8-11.

The memory protection lock registers are shown in Figure 8-6 through Figure 8-10 and described in
Table 8-8.

Figure 8-6. Memory Protection Lock Register (MPLK0)
31 0

Lock Bits 31:0

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

Figure 8-7. Memory Protection Lock Register (MPLK1)
31 0

Lock Bits 63:32

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

Figure 8-8. Memory Protection Lock Register (MPLK2)
31 0

Lock Bits 95:64

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual

Figure 8-9. Memory Protection Lock Register (MPLK3)
31 0

Lock Bits 127:96

W-x

LEGEND: W = Write only; -x = value is indeterminate, see your device-specific data manual
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8.4.3.1 Memory Protection Lock Command Register (MPLKCMD)

The memory protection lock command register (MPLKCMD) is shown in Figure 8-10 and described in
Table 8-8.

Figure 8-10. Memory Protection Lock Command Register (MPLKCMD)
31 16

Reserved

R-0

15 3 2 1 0

Reserved KEYR LOCK UNLOCK

R-0 W-0 W-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 8-8. Memory Protection Lock Command Register (MPLKCMD) Field Descriptions

Bit Field Value Description

31-3 Reserved 0 Reserved.

2 KEYR Reset status.

0 No effect.

1 Reset status.

1 LOCK Interface to complete a lock sequence.

0 No effect.

1 Locks the lock provided that the software executed the sequence correctly.

0 UNLOCK Interface to complete an unlock sequence.

0 No effect.

1 Unlocks the lock provided that software executed the sequence correctly.
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8.4.3.2 Memory Protection Lock Status Register (MPLKSTAT)

The memory protection lock status register (MPLKSTAT) is shown in Figure 8-11 and described in
Table 8-9.

Figure 8-11. Memory Protection Lock Status Register (MPLKSTAT)
31 16

Reserved

R-0

15 1 0

Reserved LK

R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 8-9. Memory Protection Lock Status Register (MPLKSTAT) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 LK Indicates the lock's current status.

0 Lock is disengaged.

1 Lock is engaged.

The lock may exist in one of two states: locked or unlocked. Reset places the lock in the unlocked state
via the LK field in the MPLKSTAT register.

Software may engage the lock as long as the lock is currently unlocked. To engage the lock, the
application must perform the following steps exactly:

1. Write a 1 to the KEYR field of the MPLKCMD register. This resets some internal status for the MPLK0
through MPLK3 registers.

2. Write the key to MPLK0 through MPLK3. All four registers must be written exactly once. They may be
written in any order.

3. Write a 1 to the LOCK field of the MPLKCMD register. This engages the lock.

If programs follow this sequence, the memory protection hardware engages the lock. The hardware
performs the following actions when it engages the lock:

• Sets the LK field of the MPLKSTAT register to 1.
• Establishes the written key (or some subset) as the "unlock" key
• Blocks future writes to all MPPA and MPCFG registers for this memory

The hardware signals an exception if it detects an incorrect lock sequence. The hardware reports the
address of the MPLK register written at the point of failure as the exception address in the MPFAR
register.

Software executes a sequence similar to the locking sequence to unlock the peripheral's protection
registers when they are currently locked:

1. Write a 1 to the KEYR field in the MPLKCMD register. This resets some internal status for the MPLK0
through the MPLK3 registers.

2. Write the unlock key to MPLK0 through the MPLK3 registers. The hardware compares the written
value with the stored key value. Software must write to all four registers exactly once. The writes can
arrive in any order.

3. Write a 1 to the UNLOCK field in the MPLKCMD register. If the key written in step 2 matches the
stored key, the hardware disengages the lock. If the key written in step 2 does not match, the
hardware signals an exception. The hardware reports the fault address as the address of the
MPLKCMD register.
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8.4.4 Keys Shorter than 128 Bits

In some devices, memories may implement keys shorter than 128 bits. In this case, applications that
manipulate the lock should write the full 128 bit key when locking and unlocking the lock, even if the
hardware does not take the full 128 bits into account.

8.5 Permission Checks on Accesses to Memory Protection Registers

Memories implementing the memory protection architecture implement permission checks on the memory
protection registers. Table 8-10 summarizes these checks:

Table 8-10. Allowed Accesses to Memory Protection Registers

Supervisor User

Register Set Read Write Read Write

MPPAx Always Unlocked Always Never

MPFAR, MPFSR Always Never Always Never

MPFCR Never Always Never Always

MPLK0-MPLK3 Never During lock/unlock Never Never
sequence

MPLKSTAT Always Never Always Never

MPLKCMD Never Start/end of lock/unlock Never Never
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9.1 Introduction

This section provides the purpose and discusses the features of the power-down controller.

9.1.1 C64x+ Megamodule Power Down-Management

The C64x+ megamodule supports the ability to power-down various parts of the C64x+ megamodule. You
can power-down the entire C64x+ megamodule using the C64x+ megamodule power-down controller. You
can use these features to design systems for lower rate system power requirements.

NOTE: Peripherals located outside of the C64x+ megamodule may also provide their own
power-down capabilities. These are not covered in this chapter, since they are outside the
scope of this document.

9.1.2 Power-Down Capabilities Overview

Table 9-1 lists the power-down features available in the C64x+ megamodule and a brief description of
how and when they are applied:

Table 9-1. C64x+ Megamodule Power-Down Features

Power-Down Feature How/When Applied

L1P memory During SPLOOP instruction execution

L2 memory Software programmable via L2 control registers

Cache control hardware When caches are disabled

CPU Upon issuing an IDLE instruction

Entire C64x+ megamodule Enabled by PDC and IDLE

9.2 Power-Down Features

9.2.1 L1P Memory

L1P memory is powered-down dynamically during the execution of instructions from the SPLOOP buffer.
This feature is enabled automatically and is transparent to you. Upon completion of the SPLOOP
instruction, the CPU resumes fetching from the L1P memory and the RAMs are awakened. In other words,
the L1P is powered-down when it is not being accessed. For more information about the SPLOOP
instruction, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732) .

NOTE: This L1P is also powered-down when the entire C64x+ megamodule is powered-down, as
described in Section 9.2.5.
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9.2.2 L2 Memory

L2 memory supports run-time power-down capability under software control. You can use this to
temporarily power-down portions of the L2 that are not needed.

The L2 memory is divided into four logical pages (two per L2 port) from a power management perspective.
You can power-down each page independently by programming the appropriate field in the level 2
power-down sleep register (L2PDSLEEP). Similarly, level 2 power-down wake register (L2PDWAKEn)
allows for powering-up each page; L2 also wakes a page if it is accessed.

The power-down and wake-up procedures are further described in Section 4.5.

NOTE: This L2 is also powered-down when the entire C64x+ megamodule is powered-down (as
described in Section 9.2.5).

9.2.3 Cache Power-Down Modes

When the L1D, L1P, or L2 caches are not enabled, they are kept in power-down mode.

NOTE: The three cache controllers are powered-down when the entire C64x+ megamodule is
powered-down (as described in Section 9.2.5).

9.2.4 CPU Power-Down

While technically outside of the scope of this document, the CPU can be powered-down by issuing an
IDLE instruction. The CPU is awakened via interrupt(s). For additional information on the IDLE instruction,
see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732) .

The IDLE instruction is also used as part of the procedure for powering-down the entire C64x+
megamodule, as described in Section 9.2.5.

9.2.5 C64x+ Megamodule Power-Down

NOTE: Powering-down the C64x+ megamodule as described in this section is often called static
power-down. This term is used to describe this power-down mode since this mode is often
used for longer periods of time. The term dynamic power-down used in this chapter implies
that the power-down mode is used for limited periods of time.

The entire C64x+ megamodule can be powered-down using the following procedure. Other than the
options previously specified, it is not possible to power-down only part of the C64x+ megamodule.
Powering-down the C64x+ megamodule is completely under software control by programming the
megamodule power-down (MEGPD) bit in the power-down controller command register (PDCCMD).

The following software sequence is required to power-down the C64x+ megamodule:

1. Enable power-down by setting the MEGPD field to 1 in the PDCCMD register.
2. Enable the CPU interrupt(s) that you want to wake-up the C64x+ megamodule. Disable all other

interrupts.
3. Execute the IDLE instruction.

The C64x+ megamodule stays in a power-down state until awakened by the interrupt(s) that are enabled
in step 2.

If a DMA access occurs to the L1D, L1P, or L2 memory while the C64x+ megamodule is powered-down,
the PDC wakes all three memory controllers. When the DMA access has been serviced, the PDC will
again power-down the memory controllers.
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9.2.6 Miscellaneous Power-Down

9.2.6.1 Externally-Requested Power-Down

It may be desirable in some systems for the C64x+ megamodule to respond to an externally-driven
power-down request. This can be accomplished, but only under CPU control, using the procedure
described in Section 9.2.5.

External power-down requests are typically accomplished by using external hardware
interrupts/exceptions. The interrupt service routine could follow the C64x+ megamodule power-down
procedure to honor the external request.

9.2.6.2 C62x/C64x/C67x DSP Power-Down Modes

The power-down modes found in legacy devices (set through the control status register (CSR) in the CPU)
are not supported within the C64x+ megamodule. Since these signals are exported to the C64x+
megamodule boundary, some C64x+ devices may provide additional power-down features that make use
of the PWRD bits in the CSR register. See the device-specific data manual for more information about
these features.

9.3 Power-Down Controller Command Register (PDCCMD)

Use the power-down command register (PDCCMD) to program the PDC (located at address 0181 0000h).
By setting the MEGPD bit to 1 in the PDCCMD register, the C64x+ megamodule global static power-down
mode is enabled; when the MEGPD register is set to 1, the C64x+ megamodule global static power-down
mode is activated when the CPU enters the idle state. PDCCMD is only writeable when the CPU is in
supervisor mode; PDCCMD is readable regardless of supervisor/user status.

The power-down controller command register (PDCCMD) is shown in Figure 9-1 and described in
Table 9-2.

Figure 9-1. Power-Down Controller Command Register (PDCCMD)
31 17 16

Reserved MEGPD

R-0 R/W-0

15 0

Reserved

R-FFFFh

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9-2. Power-Down Controller Command Register (PDCCMD) Field Descriptions

Bits Field Value Description

31-17 Reserved 0 Reserved.

16 MEGPD Power-down during IDLE

0 Normal operation. Do not power-down the CPU or the C64x+ megamodule when the CPU is IDLE.

1 Sleep mode. Power-down the CPU and the C64x+ megamodule when the CPU enters the IDLE
state.

15-0 Reserved 1 Reserved. These bits are always read as 1.
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Table 9-3 summarizes who may access the power-down controller command register.

Table 9-3. Permissions for PDC Command Register

Register Supervisor User

PDCCMD R/W R
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10.1 Introduction

Table 10-1 lists miscellaneous memory-mapped registers.

Table 10-1. Miscellaneous Registers

Address Acronym Register Description Section

0181 2000h MM_REVID Megamodule Revision ID. Section 10.2

0182 0400h BUSERR Bus Error Status Section 10.3

0182 0404h BUSERRCLR Bus Error Clear Section 10.4

10.2 Megamodule Revision ID Register (MM_REVID)

The C64x+ megamodule revision ID register (MM_REVID) provides information about the revision of the
megamodule.

The megamodule revision ID register (MM_REVID) is shown in Figure 10-1 and described in Table 10-2.

Figure 10-1. Megamodule Revision ID Register (MM_REVID)
31 16

Reserved

R-0

15 0

REVID

R-x

LEGEND: R = Read only; -n = value after reset; -x, value is indeterminate, see your device-specific data manual

Table 10-2. Megamodule Revision ID Register (MM_REVID) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved bit locations.

15-0 REVID Revision of the megamodule version implemented on the device. The megamodule revision is
dependant on the silicon revision being that you are using. For more information, see your
device-specific data manual.
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10.3 Bus Error Register (BUSERR)

The bus error register (BUSERR) signals errors for external transactions on either the MDMA bus or the
CFG bus.

The bus error register (BUSERR) is shown in Figure 10-2 and described in Table 10-3.

Figure 10-2. Bus Error Register (BUSERR)
31 29 28 16

ERR Reserved

R-0 R-0

15 12 11 8 7 3 2 0

Reserved XID Reserved STAT

R-0 R-0 R-0 R-0

LEGEND: R = Read only; -n = value after reset

Table 10-3. Bus Error Register (BUSERR) Field Descriptions

Bit Field Value Description

31-29 ERR 0-7h Error detected

0 No error

1h MDMA read status error detected

2h MDMA write status error detected

3h CFG read status error detected

4h CFG write status error detected

5h-7h Reserved

28-12 Reserved 0 Reserved

11-8 XID 0-Fh Transaction ID

Stores the transaction ID (RID or WID) when a read or write error is detected.

7-3 Reserved 0 Reserved

2-0 STAT 0-7h Transaction status

0 Success (should not cause error to be latched), or unrecognized RID/WID (should cause error to be
latched)

1h Addressing error

2h Privilege error

3h Timeout error

4h Data error

5h-6h Reserved

7h Exclusive - operation failure
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10.4 Bus Error Details Register (BUSERRCLR)

The bus error details register (BUSERRCLR) is shown in Figure 10-3 and described in Table 10-4.

Figure 10-3. Bus Error Details Register (BUSERRCLR)
31 16

Reserved

R-0

15 1 0

Reserved CLR

R-0 W-0

LEGEND: R = Read only; W = Write only; -n = value after reset

Table 10-4. Bus Error Details Register (BUSERRCLR) Field Descriptions

Bit Field Value Description

31-1 Reserved 0 Reserved

0 CLR Clear register

0 Writes have no effect

1 Writing a 1 to the CLR register clears all bits in the BUSERR register. Once an error is detected,
you must clear the error register before additional errors can be detected and stored.
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General Terms and Definitions

Table A-1 lists the general terms used throughout this document.

Table A-1. List of General Terms and Definitions

Term Definition

C64x+ Generic name for the new C6000 DSP architecture.

C64x+ CPU Designates the CPU hardware (functional units and registers).

C64x+ megamodule Includes the C64x+ CPU plus all the supporting hardware for memory, bandwidth management, interrupt,
memory protection, and power-down support.

CFG External configuration space, includes the memory-mapped registers outside the C64x+ megamodule.

EMC Extended memory controller. The EMC is a bridge from the C64x+ megamodule to the external world. EMC
implements the ports that communicate with the external DMA. The EMC clock is half the CPU clock.

IDMA Internal DMA. It is a DMA engine that is local to the C64x+ megamodule. It allows transfer of data between
memories local to the C64x+ megamodule (L1P, L1D, L2) and the external configuration space.

L1D Generic name for the level 1 data memory. This term may refer to the memory itself or the memory
controller.

L1P Generic name for the level 1 program memory. This term may refer to the memory itself or the memory
controller.

L2 Generic name for the level 2 memory. This term may refer to the memory itself or the memory controller.
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Cache Terms and Definitions

Table B-1 lists the cache-related terms used throughout this document that relate to the C64x+ memory
architecture.

Table B-1. List of Cache-Related Terms and Definitions

Term Definition

Allocation The process of finding a location in the cache to store newly cached data. This process can include evicting
data that is presently in the cache to make room for the new data.

Associativity The number of line frames in each set. This is specified as the number of ways in the cache.

Capacity miss A cache miss that occurs because the cache does not have sufficient room to hold the entire working set for
a program. Compare with compulsory miss and conflict miss.

Clean A cache line that is valid and that has not been written to by upper levels of memory or the CPU. The
opposite state for a valid cache line is dirty.

Coherence Informally, a memory system is coherent if any read of a data item returns the most recently written value of
that data item. This includes accesses by the CPU and the EDMA.

Compulsory miss Sometimes referred to as a first-reference miss. A compulsory miss is a cache miss that must occur
because the data has had no prior opportunity to be allocated in the cache. Typically, compulsory misses for
particular pieces of data occur on the first access of that data. However, some cases can be considered
compulsory even if they are not the first reference to the data. Such cases include repeated write misses on
the same location in a cache that does not write allocate, and cache misses to non-cacheable locations.
Compare with capacity miss and conflict miss.

Conflict miss A cache miss that occurs due to the limited associativity of a cache, rather than due to capacity constraints.
A fully-associative cache is able to allocate a newly cached line of data anywhere in the cache. Most caches
have much more limited associativity (see set-associative cache), and so are restricted in where they may
place data. This results in additional cache misses that a more flexible cache would not experience.

Direct-mapped A direct-mapped cache maps each address in the lower-level memory to a single location in the cache.
cache Multiple locations may map to the same location in the cache. This is in contrast to a multi-way

set-associative cache, which selects a place for the data from a set of locations in the cache. A
direct-mapped cache can be considered a single-way set-associative cache.

Dirty In a writeback cache, writes that reach a given level in the memory hierarchy may update that level, but not
the levels below it. Thus, when a cache line is valid and contains updates that have not been sent to the
next lower level, that line is said to be dirty. The opposite state for a valid cache line is clean.

DMA Direct Memory Access. Typically, a DMA operation copies a block of memory from one range of addresses
to another, or transfers data between a peripheral and memory. On the C64x+ DSP, DMA transfers are
performed by the enhanced DMA (EDMA) engine. These DMA transfers occur in parallel to program
execution. From a cache coherence standpoint, EDMA accesses can be considered accesses by a parallel
processor.

Eviction The process of removing a line from the cache to make room for newly cached data. Eviction can also occur
under user control by requesting a writeback-invalidate for an address or range of addresses from the
cache. The evicted line is referred to as the victim. When a victim line is dirty (that is, it contains updated
data), the data must be written out to the next level memory to maintain coherency.

Execute packet A block of instructions that begin execution in parallel in a single cycle. An execute packet may contain
between 1 and 8 instructions.

Fetch packet A block of 8 instructions that are fetched in a single cycle. One fetch packet may contain multiple execute
packets, and thus may be consumed over multiple cycles.

First-reference miss A cache miss that occurs on the first reference to a piece of data. First-reference misses are a form of
compulsory miss.
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Table B-1. List of Cache-Related Terms and Definitions (continued)

Term Definition

Fully-associative A cache that allows any memory address to be stored at any location within the cache. Such caches are
cache very flexible, but usually not practical to build in hardware. They contrast sharply with direct-mapped caches

and set-associative caches, both of which have much more restrictive allocation policies. Conceptually,
fully-associative caches are useful for distinguishing between conflict misses and capacity misses when
analyzing the performance of a direct-mapped or set-associative cache. In terms of set-associative caches,
a fully-associative cache is equivalent to a set-associative cache that has as many ways as it does line
frames, and that has only one set.

Higher-level memory In a hierarchical memory system, higher-level memories are memories that are closer to the CPU. The
highest level in the memory hierarchy is usually the Level 1 (L1) caches. The memories at this level exist
directly next to the CPU. Higher-level memories typically act as caches for data from lower-level memory.

Hit A cache hit occurs when the data for a requested memory location is present in the cache. The opposite of a
hit is a miss. A cache hit minimizes stalling, since the data can be fetched from the cache much faster than
from the source memory. The determination of hit versus miss is made on each level of the memory
hierarchy separately-a miss in one level may hit in a lower level.

Invalidate The process of marking valid cache lines as invalid in a particular cache. Alone, this action discards the
contents of the affected cache lines, and does not write back any updated data. When combined with a
writeback, this effectively updates the next lower level of memory that holds the data, while completely
removing the cached data from the given level of memory. Invalidates combined with writebacks are referred
to as writeback-invalidates, and are commonly used for retaining coherence between caches.

Least-Recently Used For set-associative caches and fully-associative caches, the least-recently used allocation refers to the
(LRU) allocation method used to choose among line frames in a set when allocating space in the cache. When all of the line

frames in the set that the address maps to contain valid data, the line frame in the set that was read or
written the least recently (furthest back in time) is selected to hold the newly cached data. The selected line
frame is then evicted to make room for the new data.

Line A cache line is the smallest block of data that the cache operates on. The cache line is typically much larger
than the size of data accesses from the CPU or the next higher level of memory. For instance, although the
CPU may request single bytes from memory, on a read miss the cache reads an entire line’s worth of data
to satisfy the request.

Line frame A location in a cache that holds cached data (one line), an associated tag address, and status information
for the line. The status information can include whether the line is valid, dirty, and the current state of that
line’s least-recently used (LRU).

Line size The size of a single cache line, in bytes.

Load through When a CPU request misses both the first-level and second-level caches, the data is fetched from the
external memory and stored to both the first-level and second-level cache simultaneously. A cache that
stores data and sends that data to the upper-level cache at the same time is a load-through cache. Using a
load-through cache reduces the stall time compared to a cache that first stores the data in a lower level and
then sends it to the higher-level cache as a second step.

Long-distance Accesses made by the CPU to a non-cacheable memory. Long-distance accesses are used when accessing
access external memory that is not marked as cacheable.

Lower-level memory In a hierarchical memory system, lower-level memories are memories that are further from the CPU. In a
C64x+ DSP system, the lowest level in the hierarchy includes the system memory below Level 2 (L2) and
any memory-mapped peripherals.

LRU Least Recently Used. See least-recently used allocation for a description of the LRU replacement policy.
When used alone, LRU usually refers to the status information that the cache maintains for identifying the
least-recently used line in a set. For example, consider the phrase “accessing a cache line updates the LRU
for that line.”

Memory ordering Defines what order the effects of memory operations are made visible in memory. (This is sometimes
referred to as consistency). Strong memory ordering at a given level in the memory hierarchy indicates it is
not possible to observe the effects of memory accesses in that level of memory in an order different than
program order. Relaxed memory ordering allows the memory hierarchy to make the effects of memory
operations visible in a different order. Note that strong ordering does not require that the memory system
execute memory operations in program order, only that it makes their effects visible to other requestors in an
order consistent with program order. Section 8.3 covers the memory ordering assurances that the C64x+
DSP memory hierarchy provides.

Miss A cache miss occurs when the data for a requested memory location is not in the cache. A miss may stall
the requestor while the line frame is allocated and data is fetched from the next lower level of memory. In
some cases, such as a CPU write miss from L1D, it is not strictly necessary to stall the CPU. Cache misses
are often divided into three categories: compulsory misses, conflict misses, and capacity misses.

Miss pipelining The process of servicing a single cache miss is pipelined over several cycles. By pipelining the miss, it is
possible to overlap the processing of several misses, should many occur back-to-back. The net result is that
much of the overhead for the subsequent misses is hidden, and the incremental stall penalty for the
additional misses is much smaller than that for a single miss taken in isolation.
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Table B-1. List of Cache-Related Terms and Definitions (continued)

Term Definition

Read allocate A read-allocate cache only allocates space in the cache on a read miss. A write miss does not cause an
allocation to occur unless the cache is also a write-allocate cache. For caches that do not write allocate, the
write data would be passed on to the next lower-level cache.

Set A collection of line frames in a cache that a single address can potentially reside. A direct-mapped cache
contains one line frame per set, and an N-way set-associative cache contains N line frames per set. A
fully-associative cache has only one set that contains all of the line frames in the cache.

Set-associative A set-associative cache contains multiple line frames that each lower-level memory location can be held in.
cache When allocating room for a new line of data, the selection is made based on the allocation policy for the

cache. The C64x+ devices employ a least-recently used allocation policy for its set-associative caches.

Snoop A method by which a lower-level memory queries a higher-level memory to determine if the higher-level
memory contains data for a given address. The primary purpose of snoops is to retain coherency, by
allowing a lower-level memory to request updates from a higher-level memory. A snoop operation may
trigger a writeback, or more commonly, a writeback-invalidate. Snoops that trigger writeback-invalidates are
sometimes called snoop-invalidates.

Tag A storage element containing the most-significant bits of the address stored in a particular line. Tag
addresses are stored in special tag memories that are not directly visible to the CPU. The cache queries the
tag memories on each access to determine if the access is a hit or a miss.

Thrash An algorithm is said to thrash the cache when its access pattern causes the performance of the cache to
suffer dramatically. Thrashing can occur for multiple reasons. One possible situation is that the algorithm is
accessing too much data or program code in a short time frame with little or no reuse. That is, its working set
is too large, and thus the algorithm is causing a significant number of capacity misses. Another situation is
that the algorithm is repeatedly accessing a small group of different addresses that all map to the same set
in the cache, thus causing an artificially high number of conflict misses.

Touch A memory operation on a given address is said to touch that address. Touch can also refer to reading array
elements or other ranges of memory addresses for the sole purpose of allocating them in a particular level of
the cache. A CPU-centric loop used for touching a range of memory in order to allocate it into the cache is
often referred to as a touch loop. Touching an array is a form of software-controlled pre-fetch for data.

Valid When a cache line holds data that has been fetched from the next level memory, that line frame is valid. The
invalid state occurs when the line frame holds no data, either because nothing has been cached yet, or
because previously cached data has been invalidated for whatever reason (coherence protocol, program
request, etc.). The valid state makes no implications as to whether the data has been modified since it was
fetched from the lower-level memory; rather, this is indicated by the dirty or clean state of the line.

Victim When space is allocated in a set for a new line, and all of the line frames in the set that the address maps to
contain valid data, the cache controller must select one of the valid lines to evict in order to make room for
the new data. Typically, the least-recently used (LRU) line is selected. The line that is evicted is known as
the victim line. If the victim line is dirty, its contents are written to the next lower level of memory using a
victim writeback.

Victim Buffer A special buffer that holds victims until they are written back. Victim lines are moved to the victim buffer to
make room in the cache for incoming data.

Victim Writeback When a dirty line is evicted (that is, a line with updated data is evicted), the updated data is written to the
lower levels of memory. This process is referred to as a victim writeback.

Way In a set-associative cache, each set in the cache contains multiple line frames. The number of line frames in
each set is referred to as the number of ways in the cache. The collection of corresponding line frames
across all sets in the cache is called a way in the cache. For instance, a 4-way set-associative cache has 4
ways, and each set in the cache has 4 line frames associated with it, one associated with each of the 4
ways. As a result, any given cacheable address in the memory map has 4 possible locations it can map to in
a 4-way set-associative cache.

Working set The working set for a program or algorithm is the total set of data and program code that is referenced within
a particular period of time. It is often useful to consider the working set on an algorithm-by-algorithm basis
when analyzing upper levels of memory, and on a whole-program basis when analyzing lower levels of
memory.

Write allocate A write-allocate cache allocates space in the cache when a write miss occurs. Space is allocated according
to the cache’s allocation policy (LRU, for example), and the data for the line is read into the cache from the
next lower level of memory. Once the data is present in the cache, the write is processed. For a writeback
cache, only the current level of memory is updated—the write data is not immediately passed to the next
level of memory.

Writeback The process of writing updated data from a valid but dirty cache line to a lower-level memory. After the
writeback occurs, the cache line is considered clean. Unless paired with an invalidate (as in
writeback-invalidate), the line remains valid after a writeback.
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Table B-1. List of Cache-Related Terms and Definitions (continued)

Term Definition

Writeback cache A writeback cache will only modify its own data on a write hit. It will not immediately send the update to the
next lower-level of memory. The data will be written back at some future point, such as when the cache line
is evicted, or when the lower-level memory snoops the address from the higher-level memory. It is also
possible to directly initiate a writeback for a range of addresses using cache control registers. A write hit to a
writeback cache causes the corresponding line to be marked as dirty-that is, the line contains updates that
have yet to be sent to the lower levels of memory.

Writeback-invalidate A writeback operation followed by an invalidation. See writeback and invalidate. On the C64x+ devices, a
writeback-invalidate on a group of cache lines only writes out data for dirty cache lines, but invalidates the
contents of all of the affected cache lines.

Write merging Write merging combines multiple independent writes into a single, larger write. This improves the
performance of the memory system by reducing the number of individual memory accesses it needs to
process. For instance, on the C64x+ device, the L1D write buffer can merge multiple writes under some
circumstances if they are to the same double-word address. In this example, the result is a larger effective
write-buffer capacity and a lower bandwidth impact on L2.

Write-through cache A write-through cache passes all writes to the lower-level memory. It never contains updated data that it has
not passed on to the lower-level memory. As a result, cache lines can never be dirty in a write-through
cache. The C64x+ devices do not utilize write–through caches.
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Revision History

Table C-1 lists the changes made since the previous version of this document.

Table C-1. Document Revision History

Reference Additions/Modifications/Deletions

Section 2.3.1.2 Changed paragraph.

Table 3-17 Changed table.

Section 4.4.3.1.2 Added last sentence to first paragraph.

Table 4-13 Changed Value range of L2WWC bit.

Changed Description of L2WWC bit.

Section 4.4.3.1.4 Added last sentence to first paragraph.

Table 4-15 Changed Value range of L2WIWC bit.

Changed Description of L2WIWC bit.

Section 4.4.3.1.6 Added last sentence to first paragraph.

Table 4-17 Changed Value range of L2IWC bit.

Changed Description of L2IWC bit.
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