
������ �� ������
���� �������
������� ��� ��� �	����
������

1996 Digital Signal Processing Solutions

Application
Report

Printed in U.S.A., June 1996 SPRA042

If the spine is too narrow to print this text on, reduce
ALL spine copy (including TI bug at the top of the spine
and the year at the bottom) the same amount and re-
position at the reference marks as shown for the blue-
line.

If the reduction required is such that the resulting copy
is very small, we may opt to print the spine with no text.

Design of Active Noise Control
Systems With the TMS320 Family

Sen M. Kuo, Ph.D.
Issa Panahi, Ph.D.

Kai M. Chung
Tom Horner

Mark Nadeski
Jason Chyan

Digital Signal Processing Products—Semiconductor Group

SPRA042
June 1996

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

iii

Content
Title Page

ABSTRACT 1.

INTRODUCTION 3.
The General Concept of Acoustic Noise Control 3.
General Applications of Active Noise Control 4.
The Development of Active Techniques for Acoustic Noise Control 5.

EVALUATING THE PERFORMANCE OF ANC SYSTEMS 7.

TYPES OF ANC SYSTEMS 9.
The Broadband Feedforward System 9.
The Narrowband Feedforward System 10.
The Feedback ANC System 11.
The Multiple-Channel ANC System 12.

ALGORITHMS FOR ANC SYSTEMs 13.
Algorithms for Broadband Feedforward ANC Systems 13.

Secondary-Path Effects 14.
Filtered-X Least-Mean-Square (FXLMS) Algorithm 15.
Leaky FXLMS Algorithm 20.
Acoustic Feedback Effects and Solutions (FBFXLMS Algorithm) 20.
Filtered-U Recursive LMS (RLMS) Algorithm 24.

Algorithms for Narrowband Feedforward ANC Systems 27.
Waveform Synthesis Method of Synthesizing the Reference Signal
(Essex Algorithm) 27.
Adaptive Notch Filters 31.

Algorithms for Feedback ANC Systems 35.

DESIGN OF ANC SYSTEMS 39.
System Considerations 39.

Sampling Rate and Filter Length 40.
Coherence Function 41.
Causality 42.
Constraints and Solutions 43.
Automatic Gain Controller 44.
Antialiasing and Reconstruction Analog Filters 45.
Analog Interface 46.

ANC SYSTEM SOFTWARE 47.
Implementation Considerations 47.

Quantization Effects in Digital Adaptive Filters 47.
Real-Time Software Implementation Process 50.
Implementation of Adaptive Filters With the TMS320C25 51.
Using the TMS320C2x Simulator to Observe Noise Cancellation 55.
Understanding How Individual Parameters Affect Algorithm Performance 56.

iv

PHYSICAL SETUP OF EXPERIMENTAL ANC SYSTEM IN AN ACOUSTIC DUCT 59.

OPTIMIZATION OF THE EXPERIMENTAL SYSTEM 61.
Determining the Value of µ 61.
Determining the Value of LEAKY 63.
Determining the Gain of the Preamplifier 64.

Single-Tone Sinusoidal Noise Source Case 66.
Multiple-Tone Sinusoidal Noise Source Case 69.

CONCLUSION 75.

REFERENCES 77.

Appendixes
Title Page

APPENDIX A: PSEUDO RANDOM NUMBER GENERATOR 81.

APPENDIX B: DIGITAL SINE-WAVE GENERATOR 83.
Table Look-Up Method 83.
Digital Oscillator 84.

APPENDIX C: TMS320C25 ARIEL BOARD IMPLEMENTATION OF
ANC ALGORITHMS 85.

The Filtered-X LMS Algorithm 85.
Filtered-U RLMS Algorithm 95.
Filtered-X LMS Algorithm With Feedback Cancellation 107.

APPENDIX D: GENERAL CONFIGURABLE SOFTWARE FOR ANC EVALUATION 121. . . .
Configuration File (config.asm) Description 122.
ANC Algorithm Module Listing (anc.asm) 127.
ANC Linker Command File (anc.cmd) 138.
ANC System Configuration File (config.asm) 139.
TMS320C2x EVM Initialization Command File (evminit.cmd) 141.
Global Constants and Variables (globals.asm) 141.
System Initialization File (init.asm) 144.
Macro Library File (macros.asm) 147.
ANC System Supervisor Program (main.asm) 148.
Memory Definitions File (memory.asm) 149.
Simulation Models and Waveform Generators File (models.asm) 152.
Interrupt Vectors and Interrupt Service Routine Traps File (vectors.asm) 155.

APPENDIX E: SCHEMATIC DIAGRAM OF 8-ORDER BUTTERWORTH
LOW-PASS FILTER 157.

APPENDIX F: ANC UNIT SYSTEM SETUP AND OPERATION PROCEDURE 159.
Hardware 159.
Software 159.
Operation Procedure 160.

APPENDIX G: TMS320C26 DSP STARTER KIT, AN ALTERNATIVE TO THE
SPECTRUM ANALYZER 161.

v

List of Illustrations
Figure Title Page

1 Physical Concept of Active Noise Cancellation 4.

2 Single-Channel Broadband Feedforward ANC System in a Duct 10.

3 Narrowband Feedforward ANC System 10.

4 Feedback ANC System 11.

5 Multiple-Channel ANC System for a 3-D Enclosure 12.

6 System Identification Approach to Broadband Feedforward ANC 14.

7 Block Diagram of ANC System Modified to Include H(z) 14.

8 Block Diagram of the FXLMS Algorithm for ANC 16.

9 Experimental Setup for the Off-Line Secondary-Path Modeling 18.

10 Active Noise Control Using the FXLMS Algorithm 19.

11 ANC System With Acoustic Feedback Cancellation 21.

12 Off-Line Modeling of Secondary and Feedback Paths 22.

13 ANC System With the Filtered-U RLMS Algorithm 25.

14 Spectrum of Original Noise Signal 27.

15 Pole-Zero Placement in z Plane 30.

16 Effect of Pole on Notch Bandwidth 31.

17 Single-Tone ANC System With Adaptive Notch Filter 32.

18 Multiple 2-Weight Adaptive Filters in Parallel 35.

19 Block Diagram of the Feedback ANC System 36.

20 Probe Tube Used to Increase Coherence 41.

21 Microphone Mounting Method to Reduce Flow Turbulence 42.

22 ANC System in Duct-Like Machine Chamber 44.

23 TMS320C25-Based ANC System Hardware 44.

24 Block Diagram of an AGC 45.

25 Fixed-Point Arithmetic Model of the LMS Algorithm 48.

26 Adaptive Filter Implementation Process 51.

27 Memory Layout of Weight Vector and Data Vector 53.

28 TMS320C25 Central Arithmetic Logic Unit (CALU) 54.

29 The Error Signal Imported From MATLAB 56.

30 Error Signal Generated With µ = 2048 56.

31 Experimental Setup of the One-Dimensional Acoustic ANC Duct System 60.

32 Level of Attenuation of the Noise Source Versus µ 62.

33 Overall Performance as a Function of Equation (95) 63.

34 Noise Reduction of System as a Function of LEAKY 64.

35 Noise Reduction of the System as a Function of Preamplifier Gain 65.

36 Error Spectra for FXLMS Algorithm, Noise Source Is a 200-Hz Single-Tone Sinusoid 66.

vi

37 Frequency Response of Primary Path P(z) 68.
38 Frequency Response of Secondary Path H(z) 68.
39 Frequency Response of Feedback Path F(z) 69.
40 Error Spectra for FXLMS Algorithm, Noise Source Is a 3-Tone Sinusoid, Order of W(z) = 64,

Order of C(z) = 64 70.
41 Error Spectra for FXLMS Algorithm, Noise Source Is a 3-Tone Sinusoid, Order of W(z) = 127,

Order of C(z) = 128 71.
42 Error Spectra for FBFXLMS Algorithm, Noise Source Is a 3-Tone Sinusoid, Order of W(z) = 64,

Order of C(z) = 64, Order of D(z) = 64 72.
43 Error Spectra for FURLMS Algorithm, Noise Source Is a 3-Tone Sinusoid, Order of A(z) = 63,

Order of B(z) = 63, Order of C(z) = 64 73.
44 Pseudo Random Number Generator, 16-Bit Case 81.
45 How Constants Are Used in Modeling Acoustic-Channel Transfer Function s126.

List of Tables
Table Title Page
1 Complexity of Broadband ANC and Narrowband ANC 29.
2 Performance of the System as a Function of µ 61.
3 Noise Attenuation for a Single-Tone Sinusoidal Noise Source 67.
4 Filter Orders for 3-Tone Sinusoidal Noise Source 69.
5 Section 1 of the Configuration File 122.
6 Section 2 of the Configuration File 123.
7 Number of Instruction Cycles, DSP Execution Time, and TMS320C25 DSP Overhead

per Algorithm 125.
8 How Output Signal Arrays Are Used With Various Algorithms 126.

Program Listings
Title Page

The Filtered-X LMS Algorithm 85.
Filtered-U RLMS Algorithm 95.
Filtered-X LMS Algorithm With Feedback Cancellation 107.
ANC Algorithm Module Listing (anc.asm) 127.
ANC Linker Command File (anc.cmd) 138.
ANC System Configuration File (config.asm) 139.
TMS320C2x EVM Initialization Command File (evminit.cmd) 141.
Global Constants and Variables (globals.asm) 141.
System Initialization File (init.asm) 144.
Macro Library File (macros.asm) 147.
ANC System Supervisor Program (main.asm) 148.
Memory Definitions File (memory.asm) 149.
Simulation Models and Waveform Generators File (models.asm) 152.
Interrupt Vectors and Interrupt Service Routine Traps File (vectors.asm) 155.

1

ABSTRACT

An active noise control (ANC) system based on adaptive filter theory was developed in the 1980s; however,
only with the recent introduction of powerful but inexpensive digital signal processor (DSP) hardware,
such as the TMS320 family, has the technology become practical. The specialized DSPs were designed for
real-time numerical processing of digitized signals. These devices have enabled the low-cost
implementation of powerful adaptive ANC algorithms and encouraged the widespread development of
ANC systems. ANC that uses adaptive signal processing implemented on a low-cost, high-performance
DSP is an emerging new technology.

This application report presents general background information about ANC methods. Contrasts between
passive and active noise control are described, and the circumstances under which ANC is preferable are
shown. Different types of noise-control algorithms are discussed: feedforward broadband, feedforward
narrowband, and feedback algorithms. The report details the design of a simple ANC system using a
TMS320 DSP and the implementation of that design.

2

3

INTRODUCTION

The General Concept of Acoustic Noise Control

Acoustic noise problems in the environment become more noticeable for several reasons:
• Increased numbers of large industrial equipments being used:

– Engines
– Blowers
– Fans
– Transformers
– Compressors
– Motors

• The growth of high-density housing increases the population’s exposure to noise because of the
proximity to neighbors and traffic

• The use of lighter materials for building and transportation equipment, resulting from cost
constraints in construction and fabrication

Two types of acoustic noise exist in the environment. One is caused by turbulence and is totally random.
Turbulent noise distributes its energy evenly across the frequency bands. It is referred to as broadband
noise, and examples are the low-frequency sounds of jet planes and the impulse noise of an explosion.
Another type of noise, called narrowband noise, concentrates most of its energy at specific frequencies.
This type of noise is related to rotating or repetitive machines, so it is periodic or nearly periodic. Examples
of narrowband noise include the noise of internal combustion engines in transportation, compressors as
auxiliary power sources and in refrigerators, and vacuum pumps used to transfer bulk materials in many
industries.

There are two approaches to controlling acoustic noise: passive and active. The traditional approach to
acoustic noise control uses passive techniques such as enclosures, barriers, and silencers to attenuate the
undesired noise. Passive silencers use either the concept of impedance change caused by a combination
of baffles and tubes to silence the undesired sound (reactive silencers) or the concept of energy loss caused
by sound propagation in a duct lined with sound-absorbing material to provide the silencing (resistive
silencers). Reactive silencers are commonly used as mufflers on internal combustion engines, while
resistive silencers are used mostly for duct-borne fan noise. These passive silencers are valued for their high
attenuation over a broad frequency range. However, they are relatively large, costly, and ineffective at low
frequencies, making the passive approach to noise reduction often impractical. Furthermore, these
silencers often create an undesired back pressure if there is airflow in the duct.

In an effort to overcome these problems, considerable interest has been shown in active noise control. The
active noise control system contains an electroacoustic device that cancels the unwanted sound by
generating an antisound (antinoise) of equal amplitude and opposite phase. The original, unwanted sound
and the antinoise acoustically combine, resulting in the cancellation of both sounds. Figure 1 shows the
waveforms of the unwanted noise (the primary noise), the canceling noise (the antinoise), and the residual
noise that results when they superimpose. The effectiveness of cancellation of the primary noise depends
on the accuracy of the amplitude and phase of the generated antinoise.

4

Antinoise Waveform

Residual Noise

Primary Noise Waveform

+ =

Figure 1. Physical Concept of Active Noise Cancellation

General Applications of Active Noise Control

The successful application of active control is determined on the basis of its effectiveness compared with
passive attenuation techniques. Active attenuation is an attractive means to achieve large amounts of noise
reduction in a small package, particularly at low frequencies (below 600 Hz). At low frequencies, where
lower sampling rates are adequate and only plane wave propagation is allowed, active control offers real
advantages.

From a geometric point of view, active noise control applications can be classified in the following four
categories:

• Duct noise: one-dimensional ducts such as ventilation ducts, exhaust ducts, air-conditioning
ducts, pipework, etc.

• Interior noise: noise within an enclosed space
• Personal hearing protection: a highly compacted case of interior noise
• Free space noise: noise radiated into open space

Specific applications for active noise control now under development include attenuation of unavoidable
noise sources in the following end-equipment:

• Automotive (car, van, truck, earth-moving machine, military vehicle)
– Single-channel (one-dimensional) systems: Electronic muffler for exhaust system,

induction system, etc.
– Multiple-channel (three-dimensional) systems: Noise attenuation inside passenger

compartment and heavy-equipment operator cabin, active engine mount, hands-free
cellular phone, etc.

• Appliance
– Single-channel systems: Air conditioning duct, air conditioner, refrigerator, washing

machine, furnace, dehumidifier, etc.
– Multiple-channel systems: Lawn mower, vacuum cleaner, room isolation (local quiet zone),

etc.
• Industrial: fan, air duct, chimney, transformer, blower, compressor, pump, chain saw, wind

tunnel, noisy plant (at noise sources or many local quiet zones), public phone booth, office
cubicle partition, ear protector, headphones, etc.

• Transportation: airplane, ship, boat, helicopter, snowmobile, motorcycle, diesel locomotive, etc.

5

The algorithms developed for active noise control can also be applied to active vibration control. Active
vibration control can be used for isolating the vibrations from a variety of machines and to stabilizing
various platforms in the presence of vibration disturbances. As the performance and reliability continue
to improve and the initial cost continues to decline, active systems may become the preferred solution to
a variety of vibration-control problems.

The Development of Active Techniques for Acoustic Noise Control

Active noise control is developing rapidly because it permits significant improvements in noise control,
often with potential benefits in size, weight, volume, and cost of the system. The book Active Control of
Sound [1] provides detailed information on active noise control with an emphasis on the acoustic point of
view.

The design of an active noise canceler using a microphone and an electronically driven loudspeaker to
generate a canceling sound was first proposed and patented by Lueg in 1936 [2]. While the patent outlined
the basic idea of ANC, the concept did not have real-world applications at that time. Because the
characteristics of an acoustic noise source and the environment are not constant, the frequency content,
amplitude, phase, and velocity of the undesired noise are nonstationary (time varying). An active noise
control system must be adaptive in order to cope with these changing characteristics.

In the field of digital signal processing, there is a class of adaptive systems in which the coefficients of a
digital filter are adjusted to minimize an error signal (the desired signal minus the actual signal; the desired
signal is typically defined to be zero). A duct-noise cancellation system based on adaptive filter theory was
developed by Burgess in 1981 [3]. Later in the 1980s, research on active noise control was dramatically
affected by the development of powerful DSPs and the development of adaptive signal processing
algorithms [4]. The specialized DSPs were designed for real-time numerical processing of digitized
signals. These devices enabled the low-cost implementation of powerful adaptive algorithms [5] and
encouraged the widespread development and application of active noise control systems based on digital
adaptive signal processing technology.

Many modern active noise cancelers rely heavily on adaptive signal processing—without adequate
consideration of the acoustical elements. If the acoustical design of the system is not optimized, the digital
controller may not be able to attenuate the undesired noise adequately. Therefore, it is necessary to
understand the acoustics of the installation and to design the system to assist the adaptive active noise
controller to carry out its work. For electrical engineers involved in the development of active control
systems, Nelson’s book [1] provides an excellent introduction to acoustics from the active noise control
point of view.

6

7

EVALUATING THE PERFORMANCE OF ANC SYSTEMS

Analysis of the performance of a given DSP-based controller for different types of source noise and
different ANC algorithms is an integral part of successful and optimal design methodology.

An approach to adaptive ANC performance analysis that involves a hierarchy of techniques, starting with
an ideal simplified problem and progressively adding practical constraints and other complexities, was
developed by Morgan [8]. Performance analysis provides answers to the following questions:

• What are the fundamental performance limitations?
• What are the practical constraints that limit performance?
• How is performance balanced against complexity?
• What is a practical design architecture?

To aid in answering these questions, four levels of performance analysis are defined:
• Level I derives fundamental performance limits, given continuous measurements over the entire

performance surface.
• Level II adds the practical constraint of a fixed number of sensors at discrete locations.
• Level III incorporates knowledge of the transfer function structure between sensor(s) and

activator(s).
• Level IV adds in all of the other practical effects and design constraints required for detailed

performance calculations.

At each step, a degree of confidence is gained and a benchmark is established for comparison and
cross-checking with the next level of complexity.

The principle of ANC is simple; however, when it is applied in the real world, the following questions must
be answered [9]:

• Which algorithm should be adopted?
• Where should speakers and microphones be located?
• How is the flow noise (the noise of air passing over the surface of the microphone) going to be

reduced?
• How is the power of the speakers going to be increased?
• How is the durability of the microphones and the speakers going to be increased?
• How is the cost of the hardware (controller, microphone, and speaker) going to be reduced?

To be suitable for industrial or commercial use, the ANC system must have certain properties [10]:
• Maximum efficiency over the desired frequency band
• Autonomy with regard to the installation (the system could be built and preset at the time of

manufacture and then installed on site)
• Self-adaptability of the system to deal with any variations in the physical parameters

(temperature, airflow, etc.)
• Robustness and reliability of the elements of the system and simplification of the control

electronics

The continuous progress of active noise control involves the development of improved adaptive signal
processing algorithms, transducers, and digital signal processing hardware. More sophisticated adaptive

8

filtering algorithms allow faster convergence (the equalization of the phase and magnitude of the undesired
noise and the antinoise so that cancellation occurs), greater noise attenuation, and are more resistant to
interference. The DSP hardware implementation allows these more sophisticated algorithms to be applied
in real time to improve system performance.

9

TYPES OF ANC SYSTEMS

Broadband noise cancellation requires knowledge of the noise source (the primary noise) in order to
generate the antinoise signal. The measurement of the primary noise is used as a reference input to the noise
canceler. Primary noise that correlates with the reference input signal is canceled downstream of the noise
generator (a loudspeaker) when phase and magnitude are correctly modeled in the digital controller.

For narrowband noise cancellation (reduction of periodic noise caused by rotational machinery), active
techniques have been developed that are very effective and that do not rely on causality (having prior
knowledge of the noise signal). Instead of using an input microphone, a tachometer signal provides
information about the primary frequency of the noise generator. Because all of the repetitive noise occurs
at harmonics of the machine’s basic rotational frequency, the control system can model these known noise
frequencies and generate the antinoise signal. This type of control system is desirable in a vehicle cabin,
because it will not affect vehicle warning signals, radio performance, or speech, which are not normally
synchronized with the engine rotation.

Active noise control systems are based on one of two methods. Feedforward control is where a coherent
reference noise input is sensed before it propagates past the canceling speaker. Feedback control [6, 7] is
where the active noise controller attempts to cancel the noise without the benefit of an upstream reference
input.

Feedforward ANC systems are the main techniques used today. Systems for feedforward ANC are further
classified into two categories:

• Adaptive broadband feedforward control with an acoustic input sensor
• Adaptive narrowband feedforward control with a nonacoustic input sensor

The Broadband Feedforward System

A considerable amount of broadband noise is produced in ducts such as exhaust pipes and ventilation
systems. A relatively simple feedforward control system for a long, narrow duct is illustrated in Figure 2.
A reference signal x(n) is sensed by an input microphone close to the noise source before it passes a
loudspeaker. The noise canceler uses the reference input signal to generate a signal y(n) of equal amplitude
but 180° out of phase. This antinoise signal is used to drive the loudspeaker to produce a canceling sound
that attenuates the primary acoustic noise in the duct.

The basic principle of the broadband feedforward approach is that the propagation time delay between the
upstream noise sensor (input microphone) and the active control source (speaker) offers the opportunity
to electrically reintroduce the noise at a position in the field where it will cause cancellation. The spacing
between the microphone and the loudspeaker must satisfy the principles of causality and high coherence,
meaning that the reference must be measured early enough so that the antinoise signal can be generated
by the time the noise signal reaches the speaker. Also, the noise signal at the speaker must be very similar
to the measured noise at the input input microphone, meaning the acoustic channel cannot significantly
change the noise. The noise canceler uses the input signal to generate a signal y(n) that is of equal amplitude
and is 180° out of phase with x(n). This noise is output to a loudspeaker and used to cancel the unwanted
noise.

10

Controller
ANCx(n)

y(n)
e(n) Error MicrophoneInput Microphone

Noise
Primary

Noise Source
Canceling Speaker

L

Figure 2. Single-Channel Broadband Feedforward ANC System in a Duct

The error microphone measures the error (or residual) signal e(n), which is used to adapt the filter
coefficients to minimize this error. The use of a downstream error signal to adjust the adaptive filter
coefficients does not constitute feedback, because the error signal is not compared to the reference input.

Actual implementations require additional considerations to handle acoustic effects in the duct. These
considerations are discussed in the section Algorithms for ANC Systems, page 13.

The Narrowband Feedforward System

In applications where the primary noise is periodic (or nearly periodic) and is produced by rotating or
reciprocating machines, the input microphone can be replaced by a nonacoustic sensor such as a
tachometer, an accelerometer, or an optical sensor. This replacement eliminates the problem of acoustic
feedback (described in the subsection Acoustic Feedback Effects and Solutions, page 20).

The block diagram of a narrowband feedforward active noise control system is shown in Figure 3. The
nonacoustic sensor signal is synchronous with the noise source and is used to simulate an input signal that
contains the fundamental frequency and all the harmonics of the primary noise. This type of system controls
harmonic noises by adaptively filtering the synthesized reference signal to produce a canceling signal. In
many cars, trucks, earth moving vehicles, etc., the revolutions per minute (RPM) signal is available and
can be used as the reference signal. An error microphone is still required to measure the residual acoustic
noise. This error signal is then used to adjust the coefficients of the adaptive filter.

Sensor
Nonacoustic

Generator
Signal x(n)

y(n) e(n)
Error Microphone

Noise
Primary

Noise Source
Canceling Speaker

Synchronization

Controller
ANC

Figure 3. Narrowband Feedforward ANC System

11

Generally, the advantage of narrowband ANC systems is that the nonacoustic sensors are insensitive to the
canceling sound, leading to very robust control systems. Specifically, this technique has the following
advantages:

• Environmental and aging problems of the input microphone are automatically eliminated. This
is especially important from the engineering viewpoint, because it is difficult to sense the
reference noise in high temperatures and in turbulent gas ducts like an engine exhaust system.

• The periodicity of the noise enables the causality constraint to be removed. The noise waveform
frequency content is constant. Only adjustments for phase and magnitude are required. This
results in more flexible positioning of the canceling speaker and allows longer delays to be
introduced by the controller.

• The use of a controller-generated reference signal has the advantage of selective cancellation;
that is, it has the ability to control each harmonic independently.

• It is necessary to model only the part of the acoustic plant transfer function relating to the
harmonic tones. A lower-order FIR filter can be used, making the active periodic noise control
system more computationally efficient.

• The undesired acoustic feedback from the canceling speaker to the input microphone [16] is
avoided.

The Feedback ANC System

Feedback active noise control was proposed by Olson and May in 1953 [6]. In this scheme, a microphone
is used as an error sensor to detect the undesired noise. The error sensor signal is returned through an
amplifier (electronic filter) with magnitude and phase response designed to produce cancellation at the
sensor via a loudspeaker located near the microphone. This configuration provides only limited attenuation
over a restricted frequency range for periodic or band-limited noise. It also suffers from instability, because
of the possibility of positive feedback at high frequencies. However, due to the predictable nature of the
narrowband signals, a more robust system that uses the error sensor’s output to predict the reference input
has been developed (see Figure 4). The regenerated reference input is combined with the narrowband
feedforward active noise control system.

ANC
Controller

y(n) e(n)

Error Microphone

Noise
Primary

Noise Source

Canceling Speaker

Figure 4. Feedback ANC System

One of the applications of feedback ANC recognized by Olson [7] is controlling the sound field in
headphones and hearing protectors [27]. In this application, a system reduces the pressure fluctuations in
the cavity close to a listener’s ear. This application has been developed and made commercially available.

12

The Multiple-Channel ANC System

Many applications can display complex modal behavior. These applications include:
• Active noise control in large ducts or enclosures
• Active vibration control on rigid bodies or structures with multiple degrees of freedom
• Active noise control in passenger compartments of aircraft or automobiles

When the geometry of the sound field is complicated, it is no longer sufficient to adjust a single secondary
source to cancel the primary noise using a single error microphone. The control of complicated acoustic
fields requires both the exploration and development of optimum strategies and the construction of an
adequate multiple-channel controller. These tasks require the use of a multiple-input multiple-output
adaptive algorithm. The general multiple-channel ANC system involves an array of sensors and actuators.
A block diagram of a multiple-channel ANC system for a three-dimensional application is shown in
Figure 5.

e(n)

y(n)x(n)

Sensor
Nonacoustic

eM(n)

e2(n)

e1(n)

SL

S2

S1

yL(n)

y2(n)

y1(n)

xJ(n)

x2(n)

x1(n)

MM

M2

M1
Enclosure

MJ

M2

M1

Source
Noise

.

.

.

.

.

.

.

.

.

ANC
Controller

Figure 5. Multiple-Channel ANC System for a 3-D Enclosure

13

ALGORITHMS FOR ANC SYSTEMS

This section discusses the algorithms used in three kinds of ANC systems:
• Broadband feedforward ANC systems that use acoustic sensor (microphone) input
• Narrowband feedforward ANC systems that use nonacoustic sensor input
• Feedback ANC systems that use only an error sensor

 Adaptive filters can be realized as:
• Transversal—finite impulse response (FIR)
• Recursive—infinite impulse response (IIR)
• Lattice filters
• Transform-domain filters

The most common algorithm applied to adaptive filters is the transversal filter using the least mean-squared
(LMS) algorithm. The residual noise can be used as an error signal input to an adaptive algorithm that
adjusts the filter coefficients to model (estimate) the acoustic-channel effects.

Algorithms for Broadband Feedforward ANC Systems

Broadband active noise control can be described in a system identification framework, as shown in
Figure 6. Using a digital frequency-domain representation of the problem, the ideal active noise control
system uses an adaptive filter W(z) to estimate the response of an unknown primary acoustic path P(z)
between the reference input sensor and the error sensor. The z-transform of e(n) can be expressed as:

E(z)� D(z)� Y(z)� X(z)[P(z)�W(z)] (1)

where E(z) is the error signal, X(z) is the input signal, and Y(z) is the adaptive filter output. After the
adaptive filter W(z) has converged, E(z) � 0. Equation (1) becomes:

W(z)� –P(z) (2)

which implies that:

y(n)� –d(n) (3)

Therefore, the adaptive filter output y(n) has the same amplitude but is 180° out of phase with the primary
noise d(n). When d(n) and y(n) are acoustically combined, the residual error becomes zero, resulting in
cancellation of both sounds based on the principle of superposition.

14

x(n)

y(n)

d(n)

e(n)

Duct
Acoustic

LMS

W(z)

System P(z)
Unknown

ANC Controller

Input Microphone Error Microphone
e(n)

Figure 6. System Identification Approach to Broadband Feedforward ANC

Secondary-Path Effects

The error signal e(n) is measured at the error microphone downstream of the canceling speaker. The
summing junction in Figure 6 represents the acoustical environment between the canceling speaker and
the error microphone, where the primary noise d(n) is combined with the antinoise y(n) output from the
adaptive filter. The antinoise signal can be modified by the secondary-path function H(z) in the acoustic
channel from y(n) to e(n), just as the primary noise is modified by the primary path P(z) from the noise
source to the error sensor. Therefore, it is necessary to compensate for H(z). A more detailed block diagram
of an active noise control system that includes the secondary path H(z) is shown in Figure 7.

P(z)

H(z)

x(n)

y(n)

d(n) e(n)
Duct

Acoustic

LMS

W(z)

ANC Controller

e(n)

Figure 7. Block Diagram of ANC System Modified to Include H(z)

15

From Figure 7, the z-transform of error signal e(n) is:

E(z)� X(z) P(z)� X(z) W(z) H(z) (4)

Assuming that W(z) has sufficient order, after the convergence of the adaptive filter, the residual error is
zero (that is, E(z) � 0). This result requires W(z) to be:

W(z)�
–P(z)
H(z)

(5)

to realize the optimal transfer function.

Thus, the adaptive filter W(z) has to model the primary path P(z) and inversely model the secondary path
H(z). However, it is impossible to invert the inherent delay caused by H(z) if the primary path P(z) does
not contain a delay of at least equal length. This is the overall limiting causality constraint in broadband
feedforward control systems. Furthermore, from equation (5), the control system is unstable if there is a
frequency ω such that H(ω) � 0. Also, the control system is ineffective if there is a frequency ω where
P(ω) � 0, (that is, a zero in the primary path causes an unobservable control frequency). Therefore, the
characteristics of the secondary path H(z) have significant effects on the performance of an ANC system.

Filtered-X Least-Mean-Square (FXLMS) Algorithm

To account for the effects of the secondary-path transfer function H(z), the conventional least-mean-square
(LMS) algorithm [4] needs to be modified [3]. To ensure convergence of the algorithm, the input to the error
correlator is filtered by a secondary-path estimate C(z). This results in the filtered-X LMS (FXLMS)
algorithm developed by Morgan [11]. Burgess [3] has suggested using this FXLMS algorithm to
compensate for the effects of the secondary path in ANC applications.

The FXLMS algorithm is illustrated in Figure 8, where the output y(n) is computed as:

y(n)� w T (n)x(n) ��
N – 1

i� 0

wi(n)x(n – i) (6)

where wT(n) � [w0(n) w1(n) … wN – 1 (n)]T is the coefficient vector of W(z) at time n and
x (n) � [x(n) x(n – 1) … x(n – N + 1)]T is the reference signal vector at time n.

The filter is implemented on a DSP in the form:

y(n)��
N – 1

i� 0

wi(n)x(n – i)

16

y′(n)

x′(n)

C(z)

P(z)

H(z)

x(n)

y(n)

d(n) e(n)
Duct

Acoustic

LMS

W(z)

ANC Controller

Figure 8. Block Diagram of the FXLMS Algorithm for ANC

The FXLMS algorithm can be expressed as:

w(n� 1) � w(n) – �e(n)x(n)h(n) (7)

where µ is the step size of the algorithm that determines the stability and convergence of the algorithm and
h(n) is the impulse response of H(z). Therefore, the input vector x(n) is filtered by H(z) before updating
the weight vector. However, in practical applications, H(z) is unknown and must be estimated by the filter,
C(z). Therefore:

(8)wi(n� 1) � wi(n) – �e(n)x�(n – i) i � 0, 1 , . . . , N – 1

and:

(9)w(n� 1) � w(n) – �e(n)x�(n)

where:

x�(n) � cTx(n) � �
M – 1

i�0

cix(n – i) (10)

is the vector for the filtered version of reference input x′(n) that is computed as:

(11)x�(n) � [x�(n) x�(n – 1) ��� x�(n – N� 1)]T

17

and:

(12)c � [c0 c1 ��� CM–1]
T

is the coefficient vector of the secondary-path estimate, C(z).

When this algorithm is implemented, the convergence of the filter can be achieved much more quickly than
theory suggests, and the algorithm appears to be very tolerant of errors made in the estimation of the
secondary path H(z) by the filter C(z). As shown by Morgan [11], the algorithm still converges with nearly
90° of phase error between C(z) and H(z).

It is important that in equation (7), a minus sign is used for ANC applications instead of a plus sign as in
a conventional LMS algorithm. This is because the error signal in an ANC system is e(n) � d(n) + y′(n),
due to the fact that the residual error e(n) is the result of acoustic superposition (addition) instead of
electrical subtraction.

The transfer function H(z) is unknown and is time-varying due to effects such as aging of the loudspeaker,
changes in temperature, and air flow in the secondary path. Thus, several on-line modeling techniques were
developed by Eriksson [12]. Assuming the characteristics of H(z) are unknown but time-invariant, an
off-line modeling technique can be used to estimate H(z) during a training stage. At the end of training,
the estimated model C(z) is fixed and used for active noise control. The experimental setup for the direct
off-line system modeling is shown in Figure 9, where an uncorrelated white noise is internally generated
by the DSP. The training procedure is summarized following the figure. The algorithm of the white noise
generator is given in Appendix A, Pseudo Random Number Generator.

18

H(z)
Path
Secondary

e′(n)

e(n)

r(n)y(n)

ADC

Antialiasing
Filter

LMS

C(z)

DAC

Reconstruction
Filter

Canceling Speaker

Error Microphone

PreamplifierAmplifier
Power

Generator
Noise
White

Figure 9. Experimental Setup for the Off-Line Secondary-Path Modeling

1. Generate a sample of white noise y(n) using the algorithm given in Appendix A. Output y(n) to
drive the canceling loudspeaker. This internally generated white noise is used as the reference
input for the adaptive filter C(z) and the LMS coefficient adaptation algorithm.

2. Input the secondary-path response e(n) from the error microphone.

3. Compute the response of the adaptive model r(n):

(13)r(n) � �
M – 1

i�0

ci(n)y(n – i)

where ci(n) is the ith coefficient of the adaptive filter C(z) at time n and M is the order of filter.

4. Compute the difference:

(14)e�(n) � e(n) – r(n)

19

5. Update the coefficients of the adaptive filter C(z) using the LMS algorithm:

(15)ci(n� 1) � ci(n)� �e�(n)y(n – i), i � 0, 1, . . . , M – 1

where µ is the step size that must satisfy the following stability condition:

(16)0 � �� 1
MPy

where Py is the power of the generated white noise y(n).

6. Repeat the procedure for about 10 seconds. Save the coefficients of the adaptive filter C(z) and
use them in the following noise cancellation mode.

After the off-line modeling is completed, the system is operated in the active noise cancellation mode. The
algorithm is illustrated in Figure 10, and the procedure of on-line noise control is summarized following
the figure.

Primary Noise

Input Microphone

C(z)

y(n) e(n)

LMS

W(z)
x(n)

Error MicrophoneCanceling Speaker

ANC Controller

Figure 10. Active Noise Control Using the FXLMS Algorithm

1. Input the reference signal x(n) (from the input microphone) and the error signal e(n) (from the
error microphone) from the input ports.

2. Compute the antinoise y(n):

(17)y(n) ��
N – 1

i�0

wi(n)x(n – i)

where wi(n) is the ith coefficient of the adaptive filter W(z) at time n and N is the order of filter
w(z).

3. Output the antinoise y(n) to the output port to drive the canceling loudspeaker.

20

4. Compute the filtered-X version of x′(n):

x�(n) ��
M

i�0

cix(n – 1) (18)

5. Update the coefficients of adaptive filter W(z) using the FXLMS algorithm:

wi(n� 1) � wi(n) – �e(n)x�(n – i), i � 0, 1, . . . , N – 1 (19)

6. Repeat the procedure for the next iteration. Note that the total number of memory locations
required for this algorithm is 2(N + M) plus some parameters.

Assembly language implementations of the FXLMS algorithm are given in Appendix C, TMS320C25 Ariel
Board Implementation of ANC Algorithms, and Appendix D, General Configurable Software for ANC
Evaluation.

Leaky FXLMS Algorithm
When an adaptive filter is implemented on a signal processor with fixed word lengths, roundoff noise is
fed back to the filter weights and accumulates continuously. This can cause the coefficients to grow larger
than the dynamic range of the processor (overflow), which results in inaccurate filter performance. One
solution to the problem is based on adding a small forcing function, which tends to bias each filter weight
toward zero. According to equation (9), this leaky FXLMS algorithm can be expressed as [5]:

w(n� 1) � vw(n) – �e(n)x�(n) (20)

where v (the leakage factor) is slightly less than 1 and x′(n) is defined in equation (11).

The leaky FXLMS algorithm can not only reduce numerical error in the finite precision implementation
but also limit the output power of the loudspeaker to avoid nonlinear distortion, which is caused by
overdriving the canceling speaker.

Acoustic Feedback Effects and Solutions (FBFXLMS Algorithm)
Referring again to the simple system shown in Figure 2 on page 10, the antinoise output to the loudspeaker
not only cancels acoustic noise downstream, but unfortunately, it also radiates upstream to the input
microphone, resulting in a contaminated reference input x(n). This acoustic feedback introduces a feedback
loop or poles in the response of the model and results in potential instability in the control system.

This problem has been intensively studied in active noise and vibration control literature. Solutions such
as the following have been proposed:

1. Using directional microphones and speakers [14]. (This has a limitation in that directional arrays
are usually highly dependent on the spacing of the array elements and are directional over only
a relatively narrow frequency range.)

2. Using fixed compensating signals (generated from the compensating filter whose coefficients
are determined off-line by using a training signal) to cancel the effects of the acoustic feedback

3. Using a second off-line adaptive filter in parallel with the feedback path [15]
4. Using an adaptive IIR filter [16]

This report examines methods 2 and 4. An adaptive feedforward controller with feedback compensation
is shown in Figure 11. The filter D(z) is an estimate of the feedback path F(z) from the adaptive filter output

21

y(n) to the output of the reference input microphone u(n). Filter D(z) removes the acoustic feedback from
the reference sensor input; the filter C(z) compensates the secondary-path transfer function H(z) in the
FXLMS algorithm. Removal of the acoustic feedback from the reference input adds a considerable margin
of stability to the system if the model D(z) is accurate. The models C(z) and D(z) can be estimated
simultaneously by an off-line modeling technique using an internally generated white noise.

The expressions for the antinoise y(n), filtered-X signal x′(n), and the adaptation equation for the
FBFXLMS algorithm are the same as that for the FXLMS ANC system, except that x(n) in FBFXLMS
algorithm is a feedback-free signal that can be expressed as:

x(n) � u(n) –�
L

i�1

diy(n – i) (21)

where u(n) is the signal from input microphone, di is the ith coefficient of D(z), and L is the order of D(z).

In the case of a perfect model of the feedback path (that is, D(z) � F(z)), the acoustic feedback is
completely canceled by D(z). The adaptive filter converges to the transfer function given in equation (5),
the ideal case without acoustic feedback. The function of D(z) is similar to the acoustic echo cancellation
that is used in teleconferencing applications [16].

x′(n)

e(n)y(n)

x(n)

u(n)

C(z)

LMS

W(z)

D(z)

ANC Controller

H(z)
u(n)

F(z)

Figure 11. ANC System With Acoustic Feedback Cancellation

22

The system performs the off-line modeling first to estimate the secondary-path transfer function H(z) from
the canceling speaker to the error microphone and the feedback path transfer function F(z) from the
canceling speaker to the input microphone. The off-line modeling algorithm is illustrated in Figure 12 and
the procedure is summarized following the figure.

e′(n)

Generator
White Noise

x(n)

y(n)

C(z)D(z)

LMS
f(n)

e(n)

Error MicrophoneCanceling SpeakerInput Microphone

LMS

ANC Controller

Figure 12. Off-Line Modeling of Secondary and Feedback Paths
1. a. Generate a white noise sample y(n).

b. Output this excitation signal y(n) to drive the canceling loudspeaker.
c. Send y(n) to the adaptive filters C(z) and D(z).
d. Send y(n) to the LMS algorithm for updating C(z) and D(z).

2. Input x(n) from the input microphone and e(n) from the error microphone.
3. Compute e′(n) and f(n):

(22)e�(n) � e(n) –�
M – 1

i�0

ci(n)y(n – i)

and

(23)f(n) � x(n) –�
L – 1

j�0

dj(n)y(n – j)

23

4. Update the coefficients of the adaptive filters C(z) and D(z) using the LMS algorithm:

(24)ci(n� 1) � ci(n)� �e�(n)y(n – i), i � 0, 1, . . . , M – 1

and

(25)dj(n� 1) � dj(n)� � f(n)y(n – j), j � 0, 1, . . . , L – 1

5. Repeat the off-line modeling for about 10 seconds. Save the coefficients of adaptive filters C(z)
and D(z) and use them in the following active noise cancellation mode.

After the off-line modeling, the ANC system is operated in active noise cancellation mode. The algorithm
(illustrated in Figure 11) is summarized as follows:

1. Input u(n) and e(n) from the input ports.

2. Compute the feedback-free reference input x(n):

(26)x(n) � u(n) –�
L – 1

j�0

diy(n – j)

3. Compute the antinoise y(n):

(27)y(n) � �
N – 1

i�1

wi(n)x(n – i)

where wi(n) is the ith coefficient of the adaptive filter W(z) at time n and N is the order of filter
W(z).

4. Output the antinoise y(n) to the output port to drive the canceling loudspeaker.

5. Compute the filtered-X version of x′(n):

(28)x�(n) ��
M

i�0

cix(n – i)

6. Update the coefficients of adaptive filter W(z) using the following FXLMS algorithm:

(29)wi(n� 1) � wi(n)� �e(n)x�(n – i), i � 0, 1, . . . , N – 1

7. Repeat the algorithm for the next iteration. Note that the total number of memory locations
required in this algorithm is 2(N + M + L) plus some parameters.

Assembly language implementations of this algorithm are given in Appendix C, TMS320C25 Ariel Board
Implementation of ANC Algorithms, and Appendix D, General Configurable Software for ANC
Evaluation.

24

Filtered-U Recursive LMS (RLMS) Algorithm

The adaptive infinite impulse response (IIR) filter (method 4 on page 20) was proposed by Eriksson [17]
for use in active noise control. This approach considers the acoustic feedback as a part of the whole acoustic
plant, and the poles introduced by the acoustic feedback are removed by the poles of the adaptive IIR filter.
This control system dynamically tracks changes in the secondary and feedback paths during cancellation
operations. Also, as shown in equation (5), the IIR structure has the ability to model transfer functions
directly with poles and zeros. Although there are various adaptive IIR algorithms that can be used, the
recursive LMS (RLMS) algorithm developed by Feintuch [18] is selected here for reasons of
computational simplicity.

The RLMS algorithm must also be modified to compensate for the transfer function of the secondary and
feedback paths. A block diagram of an ANC system using an adaptive IIR filter is shown in Figure 13,
where y(n) is the output signal of IIR filter computed by:

y(n) � aT(n)x(n)� bT(n)y(n – 1) � �
N – 1

i � 0

ai(n)x(n – i) � �
M

j � 1

bj(n)y(n – j) (30)

where:

a (n) = [a0 (n) a1 (n) … aN – 1 (n)]T is the weight vector of A(z) at time n
b (n) = [b1 (n) b2 (n) … bM (n)]T is the weight vector of B(z) at time n
y (n – 1) = [y (n – 1) y (n – 2) … y (n – M)]T is the signal vector containing output feedback with one delay
N = order of A(z)
M = order of B(z)

The filtered-U RLMS algorithm [12] can be expressed by two vector equations for adaptive filters A(z)
and B(z) as follows:

a(n� 1) � a(n) – �e(n) x�(n) (31)

and

(32)b(n� 1) � b(n) – �e(n) y�(n – 1)

where:

(33)y�(n – 1) � [y�(n – 1) y�(n – 2) ��� y�(n – M)]T

and

(34)y�(n) � �
M

j � 1

cjy(n – j)

is the filtered y(n) from C(z), and x′(n) is defined in equation (11).

25

x(n)

y′(n)

F(z) H(z)

C(z)

LMS
x′(n)

e(n)

C(z)

LMS

ANC Controller

x(n)

y(n)

P(z)

W(z)

A(z)

B(z)

Figure 13. ANC System With the Filtered-U RLMS Algorithm

After both A(z) and B(z) converge, the measured residual error signal e(n) is equal to zero. Now:

W(z)�
A(z)

1 – B(z)
�

–P(z)
H(z) – P(z) F(z)

(35)

Given the complexities and pole-zero structure of P(z), H(z), and F(z), the convergence of A(z) and B(z)
cannot be generalized. The optimum solutions A*(z) and B*(z) are not unique; however, the algorithm will
converge to a solution that minimizes the residual error signal e(n). Based on equation (35), one possible
set of solutions is:

(36)A * (z)�
–P(z)
H(z)

and

(37)B * (z)�
P(z) F(z)

H(z)

Therefore, it is reasonable to use a higher order for B(z) than for A(z).

26

The system performs the off-line modeling to estimate the secondary-path transfer function using the
algorithm summarized in the section on the FXLMS algorithm. After the off-line modeling, the ANC
system is operated in noise cancellation mode. The detailed algorithm, shown in Figure 13, is summarized
as follows:

1. Input the reference signal x(n) and the error signal e(n) from the input ports.

2. Compute the antinoise y(n):

(38)y(n)��
N – 1

i�0

ai(n)x(n – i)��
J

j�1

bj(n)y(n – j)

where N is the order of the filter A(z) and J is the order of the filter B(z).

3. Output the antinoise y(n) to the output port to drive the canceling speaker.

4. Perform the filtered-U operation:

(39)x�(n) � �
M – 1

i�0

cix(n – i)

and

(40)y�(n) � �
M – 1

i�0

ciy(n – i – 1)

where M is the order of the filter C(z).

5. Update the coefficients of the adaptive filters A(z) and B(z) using the filtered-U RLMS
algorithm:

(41)ai(n� 1) � ai(n)� �a e(n)x�(n – i), i � 0, 1, . . . , N – 1

and

(42)bj(n� 1) � bj(n) – �b e(n)y�(n – j), j � 1, 2, . . . , J

6. Repeat the algorithm for the next iteration.

Assembly language implementations of the filtered-U RLMS algorithm are given in Appendix C,
TMS320C25 Ariel Board Implementation of ANC Algorithms, and Appendix D, General Configurable
Software for ANC Evaluation.

27

Algorithms for Narrowband Feedforward ANC Systems

In many practical applications, the acoustic measurement of the reference signal is not feasible, such as
when the primary noise is produced by rotating machines and is periodic as illustrated in Figure 14. In these
cases, an alternative method can be used. This method estimates the acoustic signal using an indirect
measurement from a nonacoustic sensor in place of the reference microphone.

Frequency

5f14f13f12f1f1

A
m

pl
itu

de

Figure 14. Spectrum of Original Noise Signal
The synthesis of a reference signal is triggered by the synchronized input pulse from the noise source, such
as a tachometer signal synthesized from an automotive engine. In general, there are two types of reference
signals that are commonly used in the narrowband ANC systems:

• Impulse train with a period equal to the inverse of the fundamental frequency of the periodic
noise

• Sine waves that have the same frequencies as the corresponding harmonics to be canceled

The first technique is called the waveform synthesis method (also called the Essex algorithm), which was
proposed by Chaplin [19]. This technique can be analyzed as the adaptive transversal filter excited by the
impulse train and updated by the FXLMS algorithm [20]. The second technique is called the adaptive notch
filter for interference cancellation. The single-frequency notch filter uses two adaptive weights and a 90°
phase shifter [21] to cancel an undesired sinusoidal interference in the primary input. The application of
this technique to the active periodic noise control was proposed by Ziegler [22].

Waveform Synthesis Method of Synthesizing the Reference Signal (Essex Algorithm)
A waveform synthesizer produces a canceling signal y(n) to drive the canceling speaker. The generated
waveform is output sequentially to the canceling speaker and is synchronized with the pulse from the
nonacoustic sensor. A microphone in the area of the quiet zone senses the residual sound and feeds this back
to the adaptation unit that is used to modify the waveform synthesizer. Cancellation occurs only at the
frequencies of the harmonics; the frequency bands between the harmonics remain unaffected. This enables,
for example, normal speech to be heard clearly in an otherwise impossibly noisy room, or enables the radio
to be heard through a headset while the wearer is riding a motorcycle. Another reason for removing only
some parts of the noise spectrum is that in a car the driver needs some audible indication of engine speed
to be able to control the vehicle safely.

The preferred synchronization signal is derived from a toothed wheel driven by the engine, generating an
impulse train of perhaps a hundred equally spaced pulses in each cycle of the source. The waveform

28

synthesizer stores canceling waveform samples {wj(n), j = 0, 1, …, N – 1}, where N is the number of
samples for one cycle of the waveform. The synchronization signal is used to derive a memory address
pointer, which can be a software-incremented counter controlled by interrupts generated from the
synchronization signal. These samples represent the required waveform to be generated and are presented
sequentially to a digital-to-analog converter to produce the actual antinoise waveform for the canceling
speaker. That is:

y(n)� wj(n), 0 � j� N – 1 (43)

represents the jth element of {wj (n)}, where j is a pointer. Some advanced digital signal processors such
as TMS320C50, TMS320C30, and TMS320C40 have circular pointers for this type of addressing.

The residual noise picked up by the error microphone is sampled in synchronization with the reference and
canceling signals. The sampled error signal e(n) is then used by the adaptation unit to adjust the values of
the canceling waveform {wj (n)} by the following algorithm:

wj(n� 1)� wj(n) – � sign[e(n)] (44)

This algorithm is the sign-error LMS algorithm (since the reference input x(n) � 1), which is derived based
on the criterion to minimize the absolute value of the instantaneous error signal. In order to provide faster
convergence, the traditional LMS algorithm can be used:

wj (n� 1)� wj (n) – �e(n) (45)

where µ is less than unity.

In practice, the current error signal e(n) does not correspond to the jth element of the canceling waveform
wj(n). For a practical system, there is a delay of several milliseconds between the time the signal
[y(n) � wj(n)] is fed to the speaker and the time it is received at the error microphone. This delay can be
accommodated by subtracting a time offset from the circular pointer j that is pointing to the waveform:

wj – � (n� 1)� wj – � (n) – �e(n) (46)

where ∆ is the time delay of data samples between the output of the signal from the waveform synthesizer
and its reception at the residual error microphone; that is:

�� �t
T

(47)

where δt is the time delay (which is constant for a given speaker-microphone arrangement) and T is the
sampling period. Because the sampling rate is synchronized with the noise source, this offset number is
updated in correspondence with the changing sampling rate.

Greater degrees of cancellation can be achieved in the presence of unsynchronized background noise if the
residual waveforms are averaged over a number of cycles. The performance improves by 3–5 dB per

29

frequency component. However, the necessary number of averages strongly depends on the characteristics
of the noise. Thus, there is a tradeoff between the degree of cancellation and the adaptation time required
for canceling stationary waveforms.

The complexity of the broadband ANC system discussed previously and the narrowband ANC system
using the waveform synthesis method is summarized in Table 1, where N is the order of the filter and
complexity is given in terms of the number of coefficients that must be updated per sample period.

Table 1. Complexity of Broadband ANC and Narrowband ANC

ÁÁÁÁÁÁOPERATIONÁÁÁÁÁÁÁBROADBAND ANCÁÁÁÁÁÁÁNARROWBAND ANCÁÁÁÁÁÁ
ÁÁÁÁÁÁMultiplication

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ2N + 1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ1ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Addition

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2N – 1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1

The concept of the waveform synthesis method can be analyzed as if the adaptive FIR filter were excited
by a periodic impulse train of period L [20]. To analyze the canceler output e(n) for a given input d(n),
consider the transfer function G(z) between the initial input D(z) and the error output E(z). It is shown that
[20]:

G(z)�
E(z)
D(z)

�

1 – z – N

1 – (1 – �)z – N (48)

The properties of the transfer function G(z), given in equation (48), are those of a comb filter with notches
at each harmonic frequency of the interference. Therefore, the tonal components of the periodic noise at
the fundamental and the harmonic frequencies can be attenuated by this multiple notch filter.

Equation (48) also shows the location of the poles and zeros of G(z). For a generic fundamental frequency
ω0 � 2π / L, the poles and the zeros are aligned exactly at the same angles for any given value of step size
µ. The zeros are at

zk� e�j k�
0 (49)

and the poles are at

(50)Pk� (1 – �)e�j k�
0

where 0 ≤ k ≤ N – 1 is a frequency index. The pole-zero placement in the z plane is shown in Figure 15.

30

Real

N = 8
z Plane

Imaginary

r = 1

r = 1 – M

Figure 15. Pole-Zero Placement in z Plane

The zeros must have constant amplitude (|z| = 1) and be equally spaced (2π / N) on the unit circle of the
z-plane to create nulls in the frequency response at frequencies kω0. The poles have the same angle
(frequency) as the zeros but are equally spaced on the circle at distance (1 – µ) from the origin. The effect
of the poles is to introduce a resonance in the vicinity for the null, reducing the bandwidth of the notch. If
µ << 1 is used, the 3-dB bandwidth of each notch can be shown to be:

BW�
�

�T
(Hz) (51)

Therefore, the smaller the step size µ, the closer the poles are to the zeros and the narrower the bandwidths
of the notches that can be achieved. This effect of a pole on notch bandwidth is shown in Figure 16.

31

With Pole

Without Pole

Frequency

M
ag

ni
tu

de

Figure 16. Effect of Pole on Notch Bandwidth

Adaptive Notch Filters

The second type of reference signal used in the narrowband ANC system is a sine wave with the same
frequency as the narrowband noise to be canceled. When a sine wave is employed as the reference input,
the LMS algorithm becomes an adaptive notch filter to remove the primary spectral components within
a narrow band centered about the reference frequency. A very narrow notch is usually desired to filter out
the interference without distorting the signal and can be realized by an adaptive noise canceler. The
advantages of the adaptive notch filter are that it offers easy control of bandwidth, an infinite null, and the
capability of adaptively tracking the exact frequency of the interference. This is especially true when the
frequency of the interfering sinusoid changes slowly.

The application of the adaptive notch filter to active periodic noise control was developed by Ziegler [22].
A block diagram of this narrowband ANC system with two adaptive weights is shown in Figure 17. The
timing signal sensor, such as an engine tachometer, is used to determine the fundamental frequency at
which the repetitive noise is being generated. For example, an electric motor running at 1800 RPM
completes 30 revolutions per second with a fundamental frequency of 30 Hz. A four-cylinder engine
running at 1800 RPM also completes 30 revolutions per second but with only 15 complete firing cycles
per second, and thus has a fundamental frequency 15 Hz.

32

d(n)

Signal
Synchronizing

H(z)

LMS

x1(n)

w1(n) e(n)

y(n)

w0(n)

x0(n)

90°

Secondary-Path
Delay Unit z–∆

Generator
Sine Wave

x1′(n)x0′(n)

ANC Controller

W(z)

Figure 17. Single-Tone ANC System With Adaptive Notch Filter

The single-frequency active noise controller shown in Figure 17 can be configured in parallel or cascade
structures [23] to cancel the narrowband noise at the fundamental frequency and its harmonics. A sine
wave generator provides a sinusoidal reference signal at the desired frequency. Employing a Hilbert
transform [24] as the 90° phase shifter, the sine wave is split into two orthogonal components, x0(n) and
x1(n), which can be used as reference inputs for the adaptive filter. These two signals are separately
weighted and then summed to produce the canceling signal y(n):

y(n)� w0 (n) x0 (n)� w1 (n) x1 (n) (52)

where

x0 (n)� A cos(k�0n) (53)

and

(54)x1 (n)� A sin(k�0n)

where ω0 is the fundamental frequency, k is the harmonic index, A is the amplitude of the reference signal,
and n is the time index. The sine-wave generator can be implemented by a ROM table look-up technique
or by a digital resonator [24]. Algorithms of a sine-wave generator using both the table look-up and the
digital oscillator are given in Appendix B, Digital Sine-Wave Generator.

33

The magnitude and the phase of this reference signal are adjusted in the controller, which feeds one or more
loudspeakers serving as the control source to cancel the corresponding noise components. The LMS
algorithm updates the filter weights to minimize the residual error e(n):

w0(n� 1) � w0(n) – �e(n) x0(n – �k) (55)

and

(56)w1(n� 1) � w1(n) – �e(n) x1(n – �k)

where ∆k is used to compensate for the effects of the secondary path at harmonic k. This delay represents
the delay introduced between the adaptive filter output and the residual error input.

When the system time delay is fixed, the values can be estimated by an off-line secondary-path modeling
technique (described previously; see page 18) and then built into the controller. In general, the values of
the delay depend on the frequency. These delays can be determined by converting the impulse response
of C(z) into the frequency domain by the discrete Fourier transform and then by calculating the delays from
the phase values. That is:

tf �
–�f

2�f
(57)

where tf is the time delay at frequency f in seconds, �f is the phase at frequency f in radians, and f is the
frequency in Hz. The values of ∆k in equations (55) and (56) are then determined by:

�k � tf fs (58)

where fs is the sampling rate.

As mentioned previously, the secondary-path delay unit z–∆ in Figure 17 can be replaced by the estimate
of the secondary path. The adaptive notch filter algorithm using the FXLMS algorithm can be expressed
as:

wi (n� 1) � wi (n) – �e(n)xi
�(n) (59)

for i � 0 or 1 and where xi′ (n) is the filtered version of xi (n) by the secondary-path estimation C(z).

34

Structure for Multiple Frequency Cancellation

In practical applications, the periodic noise usually contains tones at the fundamental frequency and several
harmonic frequencies. This type of noise can be attenuated by a filter with multiple notches. In general,
realization of multiple notches requires a filter with higher order, which also can be realized by a parallel
or cascade connection of multiple second-order sections. A method for eliminating multiple sinusoidals
or other periodic interference was proposed by Glover [25]. The application of this technique to active
periodic noise control is to generate the reference input as a sum of M sinusoids. That is:

x(n)��
M

m�1

Am cos(�mn) (60)

where Am and ωm are the amplitude and the frequency of the mth sinusoid, respectively.

When a sum of sinusoids is applied to an adaptive filter, the filter converges to a time-varying, tunable notch
filter with a notch located at each of the reference frequencies. As long as a reference is available that
includes every sinusoidal interference, the narrowband ANC system creates a notch over each sinusoid and
follows it if it changes in frequency. This adaptive notch filter provides a simple method for the tracking
and elimination of sinusoidal interferences. The application of Glover’s method for actively attenuating
engine-generated noise was patented by Pfaff [26]. The reference signal representing the selected multiple
harmonic noise components is generated from a predetermined table of values.

A single-frequency sinusoid can be canceled by the simple 2-weight adaptive filter. For the case where the
undesired primary noise contains M sinusoids, M 2-weight adaptive filters can be connected in parallel to
attenuate these narrowband components. A set of closely spaced reference sinusoids is synthesized from
the information provided by the synchronization signal. A specific sinusoid is used as the reference input
for the corresponding channel of the 2-weight adaptive filter Wm(z), which is connected in parallel with
the other filters, as shown in Figure 18.

The structure of each individual channel is shown in Figure 17. The overall transfer function of this parallel
configuration is:

(61)W(z) ��
M

m�1

Wm(z)

where m � 1, 2, … and M is the channel index. The canceling signal is a sum of M adaptive filter outputs.
That is:

(62)y(n) ��
M

m�1

wm(n)

Each reference input is filtered by the secondary-path estimate C(z) as:

(63)xm(n) ��
L – 1

i�0

cixm(n – 1), m � 1, 2, ��� , M

Because only one error microphone is used, there is only one error signal e(n) used to update M adaptive
filters based on the FXLMS algorithm.

35

e(n)

d(n)

xM(n)
WM(z)

yM(n)

y(n)
H(z)

y1(n)
W1(z)

x1(n)

x0(n) y0(n)
W0(z)

Sine
Wave

Generator

.

.

.

Figure 18. Multiple 2-Weight Adaptive Filters in Parallel

Algorithms for Feedback ANC Systems

The principle of feedback ANC for a single-channel case, which can be formulated as an adaptive predictor,
is shown in Figure 19. Because this system requires only one error microphone, it avoids the acoustic
feedback problem inherent in the 2-microphone feedforward systems that were discussed previously.
Feedback ANC schemes depend on the signal having a periodic characteristic. Several nonadaptive
feedback ANC systems have been described in the literature in recent years, as reviewed in Nelson’s book
[1].

Burgess [3] suggests the use of this configuration with the FXLMS algorithm to avoid the use of the input
microphone. The basic idea of this algorithm is to estimate the primary noise d(n) and to use this as the
reference input for the adaptive filter. As shown in Figure 19 and using the FXLMS algorithm, the primary
noise is estimated as:

(64)x(n) � e(n) –�
M – 1

i� 0

ci y(n – i)

where ci (i � 0, 1, … M – 1) is the coefficient of the secondary-path estimation filter C(z) and M is the
order of the filter C(z).

36

x(n)

y(n)

d(n)

H(z)W(z)

P(z)

C(z)

x′(n)

e(n)

C(z)

LMS

ANC Controller

Figure 19. Block Diagram of the Feedback ANC System

From Figure 19:

(65)D(z)� E(z) – H(z)Y(z)

where both E(z) and Y(z) are available. If the transfer function H(z) of the secondary path is modeled by
C(z):

(66)D(z)� X(z)� E(z) – C(z)Y(z)

The error signal can be shown as:

(67)E(z)� D(z) – W(z)H(z)X(z)

The error signal for this feedback ANC system is 0 when:

(68)W(z) H(z)X(z)� D(z)

which is possible if the primary noise D(z) is periodic and the transfer function W(z)H(z) is equal to a delay
equivalent to a multiple of the signal period.

37

Off-line modeling is conducted first to estimate the secondary-path transfer function H(z) using the
FXLMS algorithm. The noise canceling mode begins after the training. The feedback ANC algorithm
illustrated in Figure 19 is summarized as follows:

1. Input the error signal e(n) from the error microphone.

2. Compute (estimate) the reference input signal x(n):

(69)x(n)� e(n) –�
M – 1

i�0

ciy (n – i)

3. Compute the antinoise y(n):

(70)y(n) ��
N – 1

i�1

wi(n)x(n – i)

where wi(n) is the ith coefficient of the adaptive filter W(z) at time n and N is the order of filter
W(z).

4. Output the antinoise y(n) to the output port to drive the canceling loudspeaker.

5. Compute the filtered-X version of x′(n):

(71)x�(n) ��
M

i�0

cix (n – i)

6. Update the coefficients of adaptive filter W(z) using the FXLMS algorithm:

(72)wi(n� 1) � wi(n) – �e(n)x�(n – i), i � 0, 1, . . . , N – 1

7. Repeat the procedure for the next iteration.

Assembly language implementations of the feedback ANC algorithm are given in Appendix C,
TMS320C25 Ariel Board Implementation of ANC Algorithms, and Appendix D, General Configurable
Software for ANC Evaluation.

38

39

DESIGN OF ANC SYSTEMS

System Considerations

While numerous DSP devices with varying degrees of signal processing capability are becoming
available, a particularly suitable choice for ANC is the TMS320C25 [42]. It combines the power of high
speed, flexibility, low cost, and an architecture optimized for adaptive signal processing. The
TMS320C25 can execute an instruction in as little as 80 ns, and the processor’s architecture makes it
possible to execute more than one operation per instruction cycle. For example, in one cycle the processor
can generate an instruction address and fetch that instruction, decode the instruction, perform one or two
data moves (if the second data is from program memory), update one address pointer, and perform one
or two computations (multiplication and accumulation). A broad base of software support exists, and
technical articles indicating the potential of the TMS320C25 have been published. The implementation
of a variety of adaptive filter structures and adaptive algorithms can be found in the application report
by Kuo and Chen [5].

Active noise control is a real-time application of adaptive filtering that requires extensive computations.
The frequency bandwidth is 500 Hz–1000 Hz, which allows only 1–2 ms to perform all the calculations.
The electronic hardware implementation in an ANC system requires tradeoffs that have a substantial
impact on system performance. System hardware must allow software flexibility as well as fully
automatic operation of the complete active noise control system [29]. Self-calibration and self-modeling
are important system functions. The physical factors that limit the performance of ANC systems, such
as spatial matching, coherence, filter length, stability, and causality [30], are discussed in this section as
part of the implementation of active noise and vibration control systems using the TMS320C25 DSP.

In the broadband feedforward ANC system shown in Figure 2 on page 10, the input microphone should
not be placed at the node (point of little or no sound magnitude) of any standing wave that may be present
before or during cancellation [1]. The placement of the error microphone should also avoid nodal
locations before cancellation. The microphones are selected to satisfy requirements of low cost, low
impedance, large signal-to-noise ratio, nondirectivity, and high sensitivity. The loudspeaker is required
to be able to generate a sound pressure level higher than the noise source pressure level, have good
frequency response at low frequencies, have good humidity resistance, have a low cost, and be compact.

40

Sampling Rate and Filter Length

The task of the controller is to estimate precisely the delay and any amplitude changes that occur as the
unwanted noise travels from the input microphone to the loudspeaker. This includes delays in the
microphones, loudspeakers, and electronics. The controller must complete the entire signal processing
task before the primary noise arrives at the loudspeaker. Real-time digital signal processing requires that
the processing time t be less than the sampling period T. That is:

(73)t� T� 1
fs

where fs is the sampling rate, which must be held high enough to satisfy the Nyquist criterion. That is:

(74)fs� 2fM

where fM is the highest frequency of interest—approximately 500 Hz for most practical ANC
applications. This yields a minimum sampling rate of 1 kHz and a maximum processing time of 1 ms.

The sampling rate can be expressed in terms of the physical distance and the ability of the system to
resolve this distance at room temperature. The sampling resolution can be expressed as:

(75)�s�
c0

fs

where c0 is the speed of sound in air, which is 343 meters per second at 75°F.

The modeling of the primary plant is done in the time domain using the FXLMS algorithm or the
filtered-U RLMS algorithm. The number of direct weights (W(z) in the FXLMS algorithm and A(z) in
the filtered-U RLMS algorithm) times the sampling resolution determines the model length in time or
an equivalent distance. That is:

(76)l� N�s�
Nc0

fs

where l is the length of duct from the input microphone to the canceling loudspeaker that can be modeled
by an adaptive filter. For example, N � 64 and a sampling rate of 2 kHz results in a 32-ms model, which
corresponds to a duct length of 10.976 meters.

The length of the noise control filter depends upon the acoustics of the duct. The required length is
reduced by the addition of passive damping material. The number of coefficients required also depends
upon the sampling rate. This creates a conflict with the causality constraint, which is described later. To
achieve broadband random noise cancellation, it is necessary that the filters be long enough to account
for the physical distances within the plants. For periodic signals such as sine waves, this constraint no
longer applies, because only adjustments to phase over one cycle of the sine wave are required. Another
limitation imposed on the system is that the direct modeling filter must be sufficiently long to ensure
adequate accuracy in the phase and amplitude response of the filter at the lowest frequency of interest.

41

Coherence Function

The structure shown in Figure 2 (see page 10) assumes that any noise that appears at the input microphone
will appear at the loudspeaker after a delay. Unfortunately, both the input and the error microphones
detect the primary noise plus the self-generated flow noise of the air passing over the surface of the
microphone. Therefore, flow noise and turbulent pressure fluctuations at the microphones can limit
cancellation effectiveness. This problem is rather significant for ducts of low sound pressure levels such
as those in an air conditioner. A convenient measure of the amount of primary noise as compared with
the flow noise is the coherence function [1] of the two microphone signals. The coherence, or similarity
of phase relationship in the sound waves, between the sensors can be improved by reducing the flow
velocity, using multiple distributed sensors, and by good fluid-mechanical design to minimize localized
turbulent noise.

In heating, ventilating, and air conditioning (HVAC) systems, air flow velocities are around 13 meters
per second. Therefore, flow microphones that reduce flow noise are required when active noise control
is applied these systems [31]. Coherence can be improved dramatically by two methods:

• Using probe tubes that allow the propagating sound to reach the microphone while damping
the turbulent pressure fluctuations (see Figure 20) [32]. Proper location of the probe tubes in
the duct, away from the most turbulent part of the air stream, helps coherence. However, this
has the disadvantage that the microphones and their supports generate turbulence and increase
the flow noise of the microphone downstream.

• Nishimura shows [33] that placing the microphone in a small, outer turbulence tube connected
with the duct through a small slit (see Figure 21) can significantly increase coherence. The
placement of the microphone in the outer turbulence tube also has advantages in component
protection and maintenance.

Turbulence

Protected Sensor
Arrangement

Normal Sensor

Air Flow

Figure 20. Probe Tube Used to Increase Coherence

42

Slit

Duct

Small Cavity With
Sound-Absorbing Material

Microphone

Figure 21. Microphone Mounting Method to Reduce Flow Turbulence

When the ANC system is applied to reduce the exhaust noise of an engine, the canceling speakers are
located outside the exhaust duct but close to the outlet of a pipe to avoid exposure to high temperature
gas. The resulting action is that the pipe outlet, a monopole, is converted to a dipole by the adjacent
negative source and hence has a reduction in radiation efficiency at low frequencies [1]. Changing the
location of the control sources from inside to outside the duct also significantly reduces the problem of
acoustic feedback. In this system, the error microphone is placed outside and close to the end of the duct.
This reduces the effect of flow noise, improving coherence. It also removes the possibility of the error
microphone being at an acoustic node in the duct. Proper placement of the error sensor produces a global
canceling effect at the end of the duct. The durability of speakers and microphones can be improved by
planning for optimum arrangement and protection.

Causality

From Figure 2, the acoustic delay from the input microphone to the loudspeaker is given in seconds as:

(77)�A�
L
c0

where L is the distance from the input microphone to the canceling speaker. The electrical delay can be
expressed as:

(78)�E� �W� �t

where δt, is the total delay in the antialiasing filter, the analog-to-digital converter (ADC), the
digital-to-analog converter (DAC), the reconstruction filter, and the loudspeaker, plus the processing
time (one sampling period, T). δw is the group delay of the digital filter W(z). The loudspeaker delay has
a great influence on causality, especially at low frequency, and should be selected carefully.

To ensure that the adaptive filter has causal response, ensure that:

(79)�A� �E

43

This condition is called causality and it sets the minimum length for a system that cancels random noise
above a certain frequency. That is, the distance from the input microphone to the output speaker is:

(80)Lmin � c0�E

The total delay is approximately [1]:

(81)�t� T (1� 3M
8

)

where M is the number of poles in both the antialiasing and the reconstruction filters. For example,
assuming that the sampling rate is 2 kHz and that each analog filter has 6 poles, M = 12 and δt = 2.75 ms.

The response of the controller is noncausal when the electrical delay is longer than the acoustic delay.
To reduce the electrical delay, a higher sampling rate is required for a given length. However, this
potentially reduces the model length if the maximum shown in equation (76) is required. To attenuate
random noise in ducts, the standard ANC approach is to use a long duct. However, packaging constraints
of commercial systems usually prevent this. Periodic noises (tones) are a special case where causality
is not required and shorter systems are possible.

Typical HVAC noise spectra are broadband with prominent low frequencies (pink noise) and a few
moderate-amplitude sinusoids [30]. This requires causality at low frequencies for good cancellation. The
degree of antialiasing filtering required is determined by the high-frequency content of the noise, so it
is desirable to include some passive damping material in the duct. This passive attenuation also helps
to reduce the length of the filters [1].

Constraints and Solutions

The industrial applications of active noise control impose a different set of constraints from those of
consumer applications. These different limitations include the power of the canceling loudspeaker due
to high sound power levels inside the ducts and protection requirements for components due to the harsh
environment. The noise is primarily narrowband or periodic and loud, produced by fans, vacuum pumps,
compressors, or blowers. Gas flow rate is high, and there are sometimes suspended solids in the stream.
Temperatures are often high and the gas stream is sometimes wet and corrosive.

These problems can be solved by using a range of high-power loudspeakers separated from the duct gas
stream by a protective membrane that allows transmission of the sound energy into and out of the duct
while maintaining a clean, dry environment that ensures long component life [34]. More than one
loudspeaker (two or four connected to a single output from the controller) can be used, both to provide
extra output power and for redundancy. Industrial systems are more often judged by performance on
tones and are not limited by the length of systems. Protection of the loudspeakers and the microphones
from a wet and/or dirty environment is essential for long term performance.

Active noise control is typically limited to low-frequency noise; therefore, when HVAC duct
cross-sections are large, hybrid active-passive techniques (which use sound-absorptive lining inside the
duct wall with the active components built into the absorptive duct section) are needed to attenuate noise
over the full audible range. The electronics unit can be mounted either on the duct or on a nearby wall.
The passive absorption also helps to reduce feedback from the canceling speaker to the input microphone.

44

To apply active noise control techniques to compressor noise in appliances such as refrigerators, the
machine compartment structure in the appliance must be changed into a duct form [35, 36], as illustrated
in Figure 22. With the noise source (compressor) is located in the duct, the low-frequency noise radiates
like a plane wave. The machine chamber is sealed, excluding the opening for the heat radiation of the
compressor. Sound radiation from the compressor can also be effectively reduced by controlling the shell
vibration using piezoelectric actuators bonded to the surface of the compressor shell [37].

Accelerometer

Compressor

ANC
Controller

Error Microphone

Canceling Speaker

Figure 22. ANC System in Duct-Like Machine Chamber

Automatic Gain Controller

The block diagram of the TMS320C25-based hardware system is shown in Figure 23. The hardware is
designed to accept two input signals, one from the input microphone and one from the error microphone.
The output signal is converted to analog form to drive a canceling loudspeaker using a power amplifier.
Since the DSP has a fixed-point data format, one analog automatic gain controller (AGC) must be used
at each input to take advantage of the ADC’s dynamic range and to avoid input saturation.

Speaker
Canceling

Power Amplifier

Memory

TMS320C25

DACLPF

ADCMUX

Error
Microphone

LPFAGC

LPF

Input
Microphone

AGC

Preamplifiers

Figure 23. TMS320C25-Based ANC System Hardware

The input and error signals have slightly different requirements. When the noise cancellation mode starts,
the error signal decreases substantially. In some systems, the input signal may increase slightly due to

45

acoustic feedback from the canceling speaker. Signal statistics also affect usable dynamic range; the
maximum amplitude of a broadband signal that does not saturate a given system is less than the
corresponding value for a sinusoid.

In general, an L-bit ADC typically has a dynamic range of 6L dB. If the input changes by more than that
amount, a high-resolution ADC can be used, or an AGC can be used to keep the analog signal within the
usable dynamic range of the existing ADC.

8

x(t)
24 dB

y(t)

TMS320C25

Buffer

DAC
8-Bit

Figure 24. Block Diagram of an AGC

To account for the large dynamic range of sound pressure levels measured by microphones, the AGC can
be implemented by using an 8-bit multiplying DAC. The analog output system has the same requirements
as the analog input system, except that instead of programmable gain A, there is usually programmable
attenuation. The block diagram of the AGC is shown in Figure 24, where an 8-bit DAC is used as an
attenuator with a 48-dB dynamic range. The gain of the AGC is software-controlled by the TMS320C25,
which writes an 8-bit value into the buffer of the 8-bit DAC. The algorithm of the AGC sets the gains
on the input and the output signals. The implementation of the AGC maximizes the ADC signal-to-noise
ratio and maintains the overall system dynamic range when used in different environments.

Antialiasing and Reconstruction Analog Filters

As shown in equation (74), to recover the original time-domain waveform from its sampled form, the
original signal spectrum must be entirely constrained within a bandwidth of less than half the sampling
rate. If the band limitation is not sufficient, the signal component over one half of the sampling frequency
is folded into the signal band. This phenomenon is called aliasing, which cannot be isolated after
sampling. Even if the input signal is naturally band limited, an antialiasing filter is still advisable to
reduce out-of-band noise aliasing into the wanted frequency band.

Ideally, the antialiasing filter should have a flat amplitude and linear phase response over the bandwidth
of the signal and infinite attenuation at half the sampling rate and beyond. In ANC systems, since the
sampling rate is low (1 kHz to 2 kHz), a very-high-order antialiasing filter must be used. Unfortunately,
these high-order filters have long group delays, as shown in equation (81). This can create a causality
problem in the ANC system, particularly for broadband noise control in short ducts. The duct length from
input microphone to canceling speaker must be increased to account for the extra delay.

46

If a low-order filter with a better phase response is used, such as a Butterworth filter, a lower group delay
can be achieved. However, the filter transition to high attenuation occurs more slowly, thus a higher
sampling rate is required. This method is known as oversampling and can be used if sufficient processing
time is available. The decimation and interpolation methods can be used to reduce the internal processing
rate; however, multirate signal processing increases complexity of the algorithm. Otherwise, the higher
sampling rate puts more demand on the processor and also shortens the model length of the digital filter,
degrading its ability to model the unknown system. High-order adaptive filters can be used to counteract
this effect if there is sufficient processor power and memory available.

Furthermore, if some small negative dc component is present in the measured error signal e(n), an
adaptive algorithm can gradually increase its output in an attempt to cancel the dc error component.
However, the physical secondary path generally has no response to dc because of the frequency response
of the loudspeaker and microphone. This dc output to the control source can reach a level high enough
to saturate the controller and power amplifier. When the LMS algorithm is implemented using
fixed-point arithmetic, a bandpass filter can be used to prevent dc and low-frequency elements from
growing in the filter coefficients during the updating process. This dc offset can also be eliminated by
an adaptive bias canceler [4], which is simply a first-order recursive high-pass filter.

A continuous signal can be recovered without distortion from its ideally sampled version by low-pass
filtering. The ideal reconstruction filter has a flat gain response and linear phase characteristic in the
passband, extending from dc to half of the sampling frequency, and infinite attenuation in the stopband
and beyond. Any departure of the filter characteristic from the ideal introduces spectral distortion.
Furthermore, due to the high levels of low-frequency noise, the very large, high-power amplifiers are
required. High-pass filters may be required to prevent very low-frequency energy from overdriving the
loudspeaker and causing premature failures.

Analog Interface

Interfacing a DSP to an analog environment involves a waveform conversion as illustrated in Figure 23.
There are two main types of ADCs and DACs: parallel and serial. If the system requires more than one
analog input, there are two types of architecture to consider. Figure 23 shows a multiplexed system in
which the ADC is shared among the input channels. The input and error signals are sampled
simultaneously and multiplexed using an analog multiplexer.

The digital ANC system assumes that the sampling period between samples is uniform. The spectrum
distortion caused by the sampling jitters results in line broadening, or spectral smearing. In an adaptive
ANC system, the performance loss can be significant and in severe cases may result in instability. One
way to reduce sampling jitters is to initiate the analog-to-digital and digital-to-analog conversions with
hardware instead of software. This hardware-initiated conversion is standard practice today.

47

ANC SYSTEM SOFTWARE

The test hardware is designed so that the system function is determined principally by the software,
allowing the system to be modified and improved without hardware redesign. The software
implementation of ANC comprises three stages: initialization, off-line secondary-path modeling or
off-line secondary-path and feedback path modeling, and on-line active noise cancellation. A
software-based start-up procedure is automatically performed by the system when it is turned on. This
procedure includes processor initialization and gain adjustment of all input and output signals, and
secondary-path modeling using additional white noise, which is discontinued after the on-line noise
control begins.

The program is coded in assembly language and is optimized to minimize computation time and
maximize the number of filter weights. An additional constraint is to yield a sampling rate high enough
to give good resolution in the models and a filter length sufficient to model the real plants.

Implementation Considerations

In discrete-time signals and systems, the digital filter structures and algorithms are derived on the basis
of infinite-precision arithmetic. However, when these filters are implemented in digital hardware, only
finite precision is available. These effects can either cause deviations from the original design criteria
or create an effective noise at the filter output. The difference in performance between a digital filter and
its discrete model is said to be due to finite word length effects (or quantization effects). Previous sections
dealt principally with the mathematical development of adaptive filtering and did not really address
many practical details. This section discusses some practical considerations of the implementation of
adaptive filters in digital hardware systems.

Quantization Effects in Digital Adaptive Filters

Finite word length effects are found in many forms. In general, the major finite word length effects that
result in degradation of digital adaptive filter performance can be broadly categorized into the following
classes:

• Quantization errors
– Input quantization
– Coefficient quantization

• Arithmetic errors
– Roundoff (or truncation) noise
– Overflow

An excellent treatment of these topics is available in digital signal processing books by Oppenheim [41]
and Jackson [24].

In the digital implementation of adaptive algorithms, the filter coefficients and the computational results
are quantized to a certain limited precision. This quantization error leads to degradation in the
performance of the adaptive filter from the theoretically expected performance of an infinite-precision
implementation. Therefore, digital adaptive filter implementation in limited precision requires special

48

attention. The goal is to minimize the potential accumulation of quantization errors in the filter
coefficient adaptation algorithm computation so that they do not reach unacceptable levels. Effects of
finite precision in adaptive filters have been reported in the literature [38, 39, 40].

Assuming that the input data samples are properly scaled, their values lie between –1 and 1. Each data
sample and its filter coefficient are represented by B + 1 bits. The quantizer can be modeled as
introducing an additive noise to the unquantized value x′. Thus, the following equation can be written:

(82)x(n)� Q[x�(n)] � x�(n)� �(n)

where x′(n) is an unquantized value and the associated quantization error γ(n) is a uniformly distributed
random noise with zero mean (that is, E[γ(n)] � 0) and a variance of:

(83)�
2
� �

2–2B

12

Therefore, the longer the word length, the smaller the quantization noise. Each additional bit in the ADC
results in a 6-dB gain of signal-to-quantization noise ratio or dynamic range.

Assuming that the input sequences and filter coefficients have been properly normalized, there is no error
introduced in addition. However, the sum can become larger than 1; this is known as overflow. The
technique used to inhibit the probability of overflow is scaling; that is, constraining the signal at each
node within a digital filter to a magnitude less than unity. Since reducing the amplitude of the signal
reduces the signal-to-noise ratio, which can cause early termination of the adaptive algorithm [39], the
signals must be kept as large as possible.

For adaptive filters, the feedback path makes scaling far more complicated. The dynamic range of the
filter output is determined by the time-varying filter coefficients, which are unknown at the design stage.
For the LMS transversal filter, the scaling of the filter output and coefficients is set by scaling of the
desired signal d(n) [40]. Figure 25 shows a block diagram of the traditional LMS algorithm using
fixed-point arithmetic. This scaling technique uses the scale factor s, where 0 < s < 1, implemented by
a shift to the right of the desired signal (instead of the input signal) to prevent the overflow of filter
coefficients during the weight updating. Reducing the power of d(n) reduces the gain demand on the
filter, therefore reducing the magnitude of the tap values. Usually, the required value of s is not expected
to be very small. Since s scales the desired signal, it does not affect the rate of convergence. An alternative
method to prevent the occurrence of overflow is to use the leaky LMS algorithm, as discussed previously.

1/sy(n)

_

x(n)

d(n)

y(n)/s

e(n)

W(z)

s

Figure 25. Fixed-Point Arithmetic Model of the LMS Algorithm

49

From Figure 10, the digitally implemented FXLMS algorithm is summarized as follows:

� Q��N – 1

i�0

wi(n)x(n – i)� (84)

y(n) � Q[wT(n)x(n)]

(85)

x
(n) � Q[cT x(n)]

� Q�� c
M – 1

i�0

ix(n – i)�

(86)w(n � 1) � w(n) – Q��e(n) x
(n)�

or

(87)wi(n � 1) � wi(n) – Q�Q��e(n)�x
(n – i)	, i � 0, 1, . . . , N – 1

where Q[x] denotes fixed-point quantization of the quantity x.

Assuming a scaling factor sj is used to scale the reference input x(n) to prevent overflow during the
computation of x
(n) in equation (85), the output x
(n) can be bounded as:

|x
(n)|� sj� �M – 1

i�0

cix(n – 1)� � sjxmax �
M – 1

i � 0

|ci| � 1 (88)

where x(n – i) is replaced by its maximum value, xmax, and due to the fact that the magnitude of a sum
is less than or equal to the sum of magnitudes.

From equations (86) and (87), a scaling factor sj is chosen to satisfy:

sj �
1

xmax �
M – 1

i � 0

|ci|
(89)

where ci can be determined at the end of the off-line modeling. Scaling the input in this way assures that
overflow never occurs at any of the nodes in the filter.

Assuming that the input signal is a narrowband signal, overflow can be avoided for all sinusoidal signals
if the input is scaled [42] by:

(90)sj �
1

xmax max|C(ejω)|
, |�| � �

50

As mentioned earlier, for the traditional LMS transversal filter, the scaling of the entire process (filter
output and coefficients) is set by scaling of the desired signal d(n), which is inaccessible in an ANC
system. The same effect can be achieved by scaling e(n). This scaling technique uses the scaling factor
s, where 0 < s < 1, to prevent overflow. To compensate for the power loss, the compensation factor 1/s
is inserted in the filter output to drive the control source. This scheme is equivalent to scaling the desired
signal by a factor s. Note that scaling on x(n), e(n), and y(n) by the scaling factors can be implemented
in AGC blocks shown in Figure 23.

When the convolution sum in equations (84) and (85) is calculated using a multiplier with an internal
double-precision accumulator, the internal quantization noise is avoided. When the product is transferred
out of the accumulator, the result is quantized to single precision and a roundoff error is produced if the
rounding operation is used. When updating weights according to equations (86) and (87), the product of
�e(n) produces a double-precision number, and this is quantized and multiplied by x(n – i). This result
is quantized again and then added to the original stored weight value, wi(n), to form the updated value,
wi(n + 1).

Real-Time Software Implementation Process

The adaptive structures and algorithms described previously can be implemented on the ’C25. Figure 26
shows the flowchart of a process that can be used to minimize the amount of time spent on finite
word-length effects analysis and real-time debugging.

In the first stage, algorithm design and study is performed on the general-purpose computer in a
nonreal-time environment. Once the algorithm is understood, the filter is implemented using a high-level
C program or MATLAB with double-precision coefficients and arithmetic. This filter is considered an
ideal filter.

In the second stage, the C program is rewritten on the general-purpose computer in a way that emulates
the same sequence of operations with the same parameters and state variables as will be implemented
on the ’C25. It is carefully redesigned and restructured, tailoring it to the architecture, the I/O timing
structure, and the speed and memory constraints of the ’C25. This program then serves as a detailed
outline for the ’C25 assembly language program, or it can be compiled using the TMS320 fixed-point
DSP C compiler.

In the third stage, the ’C25 assembly program is developed, assembled, and tested on the general-purpose
computer, using the ’C2x software simulator with test data from a disk file. This test data is either a short
version of the data used in the second stage that can be internally generated from the program or digitized
data emulating a real application environment. Output from the simulator is saved as another disk file
and is compared with the equivalent output of the C program from the second stage. Since the simulator
requires data to be in some particular finite precision format, certain precision is lost during data
conversion. Once an agreement is obtained between these two outputs within a tolerable range, the DSP
assembly program is essentially correct.

The final stage is to download this assembled and linked program into the target hardware and bring it
to real-time operation. Thus, the real-time debugging process is primarily constrained to debugging the
I/O timing structure of the algorithm and testing the long-term stability of the algorithm. Once the
algorithm is running, the parameters can be tuned again in a real-time environment.

51

Target System
Real-Time Testing in

Testing by Simulator
Implementation and

’C25 Assembly Program

to Emulate ’C25 DSP
Rewrite C Program

Implementation
and C Program

Algorithm Analysis

Figure 26. Adaptive Filter Implementation Process

Implementation of Adaptive Filters With the TMS320C25

The complexity of an adaptive filter is usually measured in terms of its multiplication rate and storage
requirement. However, when these algorithms are implemented on commercially available DSP chips,
data flow and handling considerations are also major factors in efficiently implementing adaptive filter
systems. The parallel hardware multiplier, the pipeline architecture, and the amount of fast on-chip
memory are important. High-speed parallel and serial ports enable fast data flow on and off chip.
Implementation can be made more efficient by taking advantage of these attributes in the DSP’s
architecture. Adaptive transversal filters with the two most widely used algorithms in active noise control
(LMS and leaky LMS) are implemented here using the ’C25.

The ’C25 has 544 words of fast on-chip data RAM divided into three blocks: B0 (256 words), B1 (256
words), and B2 (32 words). Block B0 is configurable as either data memory or program memory. To
produce the fastest possible adaptive filtering routine, all data buffer memories and filter coefficients are
stored in data RAM. In general, B0 is used to store adaptive weights, B1 is used as data buffer memory,
and B2 is used for constants and temporary storage.

52

The transversal filter generates its output y(n) by performing a convolution (or inner product) operation:

(91)y(n)��
N – 1

i� 0

wi(n)x(n – i)

The implementation of equation (91) is illustrated using C language as:

y[n] = 0;

for (i=0; i<N; i++)

{y[n] += wn[i]*xn[i]; }

where wn[i] represents wi(n) and xn[i] represents x(n – i).

The architecture of the ’C25 is optimized to implement a sum of products, such as an FIR filter. The
MACD instruction enables complete multiply/accumulate, data move, and pointer update operations to
be accomplished in a single instruction cycle (80 ns) if the filter coefficients are stored in on-chip RAM.
An N-weight transversal filter can be implemented as:

LARP

LRLK ARn,LASTAP ; point to the x(n–N+1)

RPTK N–1 ; repeat next instruction N times

MACD COEFFP,*– ; multiply/accumulate

APAC

where ARn is an address register that points to x(n – N + 1) and the prefetch counter (PFC) points to the
last weight, wN – 1(n). When the MACD instruction is repeated, the coefficient address contained in the
PFC is incremented by 1 during its operation. Therefore, the components of weight vector w(n) are stored
in B0, as shown in Figure 27. The MACD in repeat mode also copies data pointed to by ARn, the next
(higher) on-chip RAM location. The buffer memories of the transversal filter are stored as shown in
Figure 27.

In general, roundoff noise occurs after each multiplication. However, the ’C25 has a 16-bit multiplier
and a 32-bit accumulator, so there is no roundoff when summing the set of product terms. All
multiplication products are presented in full precision, and rounding is performed after they are summed,
so that we get y(n) from the accumulator with only one roundoff, which minimizes the roundoff noise
in the output y(n).

The most widely used LMS algorithm is expressed as:

(92)wi (n� 1)� wi (n)� �e(n)x(n – i)

for i � 0, 1, ... , N – 1. Since �e(n) is constant for N weight updates, the error signal e(n) is first multiplied
by µ to get µe(n). This constant can be stored in the T register and then multiplied by x(n – i) to update
wi(n). An implementation method in C of the LMS algorithm in equation (92) is illustrated as

uen = u*e[n];

for (i=0; i<N; i++)

{wn[i] += uen * xn[i]; }

where e[n] represents e(n).

53

ARn

PFC

High AddressHigh Address

B1

x(n – 1)

x(n)

Low Address

x(n – N + 2)

x(n – N + 1)w0(n)

w1(n)

wN – 2(n)

wN – 1(n)

Low Address
B0

Figure 27. Memory Layout of Weight Vector and Data Vector

The ’C25 provides two powerful instructions to perform the updates in equation (92). The ZALR
instruction loads a data memory value into the high-order half of the accumulator and rounds the value.
This rounding occurs by setting bit 15 of the accumulator to 1 and clearing bits 0–14 of the accumulator
to 0s. The MPYA instruction accumulates the previous product in the P register and multiplies the
operand with the data in the T register. Assuming that ue(n) is stored in the T register and the current
address pointer is AR3, the adaptation of each weight is shown in the following instruction sequence:

LRLK AR1,N–1 ; load loop counter
LRLK AR2,COEFFD ; point to Equation
LRLK AR3,LASTAP+1 ; point to x(n–N+1), since MACD already move

; elements of current x(n – i) to the next higher
; location

LARP AR3 ;
MPY *–,AR2 ; P = ue(n) * x(n–N+1)

ADAP ZALR *,AR3 ; load Equation
MPYA *–,AR2 ; ACC = P+Equation
SACH *+,0,AR1 ; store Equation
BANZ ADAP,*–,AR2 ; loop again if counter not expired

54

Figure 28 shows the architecture of the ’C25’s central arithmetic logic unit, including the multiplier, the
accumulator, and the T and P registers.

Shifter
(0–16)

Multiplier

P Register (32)

T Register (16)

MUX

MUX

MUX

ALU(32)
A B

ACCL(16)ACCH(16)C

SFL(0–7)

Data Bus

Data Bus

Program Bus

16

16

16

16

16

3232

32

32

16

SX or 0 0

16

16

0

0

16

SX
or 0

32

SX

32

16

Shifter(–6, 0, 1, 4)

Figure 28. TMS320C25 Central Arithmetic Logic Unit (CALU)

55

The leaky LMS algorithm used in many fixed-point implementations has the form:

(93)wi(n� 1)� vwi(n)� �e(n)x(n – i)

where v is slightly less than 1. Another way to realize this algorithm is to let v � 1 – c and c << 1, which
gives:

(94)wi(n� 1)� wi(n) – cwi(n)� �e(n)x(n – i)

The barrel shifter can be used to implement this modification of the leaky LMS algorithm efficiently.

To achieve the highest throughput using ZALR and MPYA, cwi(n) can be implemented by right-shifting
wi(n) M bits, where 2–M is close to c. Since the length of the accumulator is 32 bits and the high word
(bits 16 to 31) is used for updating wi(n), shifting wi(n) right M bits can be implemented by loading wi(n)
and shifting left 16 – M bits. The sequence of ’C25 instructions to implement equation (94) is:

LRLK AR1,N–1 ; load loop counter
LRLK AR2,COEFFD ; point to Equation
LRLK AR3,LASTAP+1 ; point to x(n–N+1)
LT ERRF ; T = ERRF = u*e(n)
MPY *–,AR2

ADAPT ZALR *,AR3
MPYA *–,AR2
SUB *,LEAKY ; LEAKY=16–M
SACH *+,0,AR1
BANZ ADAPT,*–,AR2

Using the TMS320C2x Simulator to Observe Noise Cancellation

TI’s debugging tools can be an invaluable asset in understanding the operation of the included code. The
’C2x simulator provides the ability to single-step through a program and observe the contents of registers
and memory locations and the states of status bits as they change from step to step. The simulator also
provides features for watching variables, for viewing code simultaneously in both C and assembly
language, and for setting breakpoints. Stepping through the provided code and observing the state of the
DSP dictated by the program flow helps provide a quicker and deeper understanding of the programming
involved in an ANC system.

The simulator has a feature that allows the programmer to send data to an output file. The ANC code uses
this feature and creates an output file containing the error signal. This signal is the residual noise left after
the original noise source has been summed with the canceling wave. If the code is working properly, this
signal should get smaller and smaller as the noise is canceled.

The advantage of creating an output file stems from the ability to display the information graphically.
The file created from the simulator is in the form of a stream of hexadecimal numbers. This data can be
displayed in a variety of ways. For example, converting the file into binary (using TISIMDAT.EXE)
allows the data to be displayed on the monitor using a program called SG (for Show Graphics; contact
the DSP lab at Northern Illinois University at 815-753-9967 for a copy). Even more useful is to convert
the file into ASCII and then load it into MATLAB. Once there, the data can not only be plotted graphically
but can also be imported easily into documents and manipulated mathematically with MATLAB’s
extensive capabilities. Figure 29 shows a plot of the error signal as obtained using MATLAB.

56

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8
0 200 400 600 800 1000

A
m

pl
itu

de

Time

µ = 512

Figure 29. The Error Signal Imported From MATLAB

Understanding How Individual Parameters Affect Algorithm Performance

It is important to investigate how certain parameters affect the performance of the algorithm. For
example, the value of µ alone can drastically affect the results of the system. µ is the step size of the
adaptive filter used in active noise control. The size of µ determines the stability and convergence rate
of the algorithm. As the step size of the filter increases, the algorithm converges more rapidly. However,
if the step size is too large, the system may not converge at all. Even if the system avoids divergence,
too large a µ value may produce an intolerable amount of residual error on the signal. The error signal
shown in Figure 29 was generated using a µ value of 512. Notice the difference between it and the signal
shown in Figure 30, which was generated using a µ value of 2048. Notice that the convergence is much
quicker with the increased step size.

µ is just one of the many parameters that can be changed to vary performance. The role of each and how
it affects the performance of the system must be investigated for any individual application.

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8
0 200 400 600 800 1000

A
m

pl
itu

de

Time

µ = 2048

Figure 30. Error Signal Generated With µ = 2048

57

Understanding the function of the parameters and tracing through the code on the simulator allows the
user to gain enough knowledge about the program to implement basic changes in the code itself. The code
can be manipulated to implement active noise control in slightly different ways. Experiments can be done
and performance can be optimized. In short, the code can now be customized to perform in various
applications.

As an example of a simple modification, consider that the code created for the simulator allows for 16-bit
precision on the data stream. What happens to the signal and the performance of the system if a lower
precision ADC were used instead? How does the performance vary with precision? One way to find out
is to modify the included code so that when the ADC is being used, a lower precision is fed in. This can
be done by placing the following line of code in the appropriate places in the FIR filter and when updating
the coefficients.

ANDK 0FFC0h,15 ; Takes the 10 most significant bits

The hexadecimal number in the ANDK instruction determines the number of bits of precision to be
obtained. In the example line of code above, the precision is set for ten bits. By taking a logical AND
with 0FFC0h (equivalent to binary 1111 1111 1100 0000), the ten most significant bits are preserved and
the rest are set to zero.

This and other modifications can be tested and debugged on the simulator to aid in the evaluation and
optimization of the alteration done.

58

59

PHYSICAL SETUP OF EXPERIMENTAL ANC SYSTEM IN AN ACOUSTIC DUCT

The acoustic duct system has been widely used for modeling the acoustic cavity in many applications such
as exhaust systems, HVAC, and the motor/generator housings. The three feedforward ANC algorithms
discussed previously are used for noise attenuation: the filtered-X LMS (FXLMS) algorithm [3], the
filtered-X LMS algorithm with feedback cancellation (FBFXLMS) [15], and the filtered-U recursive LMS
(FURLMS) algorithm [l2]. The coefficients of the adaptive filters in these algorithms are modified with
the leakage factor [5] to reduce the effect of the overflow and quantization errors.

The simplest experimental system to set up is a one-dimensional duct system such as as that shown in
Figure 2 on page 10. However, in addition to the components shown in the figure, several other pieces of
equipment are necessary in order to make the system functional. The success of an ANC system strongly
depends on the ability to manipulate the gain of the involved signals. Thus, it is vitally important to run
the signals detected with the microphones through a preamplifier whose gain can be controlled. It is also
necessary to have a power amplifier to control the strength of the antinoise sent through the canceling
speaker. The gains of these amplifiers must be carefully adjusted if maximum performance of the system
is to be achieved.

The entire setup of this simple ANC system is shown in Figure 31. The two microphone-detected signals
are fed into the preamplifier before they are sent to the ANC hardware. The adaptive filtering occurs in the
ANC hardware, resulting in the creation of the antinoise waveform. This signal is output through the power
amplifier before being sent through the speaker to cancel the incoming noise signal. In this test system, the
noise signal is created using a function generator and is passed through the power amplifier before
emerging from the speaker.

This experimental ANC duct system is realized using the low-cost 16-bit fixed-point TMS320C25 DSP.
Single- and multiple-tone sinusoids of different frequencies are applied to the system as the input noise
source signals. The performance of the DSP-based system for each algorithm is analyzed. The
experimental results are compared and practical factors in achieving high level of noise attenuation are
discussed. It is shown that the best noise attenuation at a reasonable overhead to the DSP is obtained by
using the FBFXLMS algorithm. The system using the FBFXLMS algorithm provides a feedback-free
reference signal, which improves the system performance in the range where strong frequency response
exists in the feedback path.

The 8-order Butterworth low-pass filters have a 500-Hz bandwidth. For the schematic diagram of this
low-pass filter, refer to Appendix E. Because 500 Hz is the highest frequency of interest in ANC
applications, the function of these low-pass filters is to eliminate the aliasing problem and the unwanted
harmonics. The Ariel DSP board has two input and output ports, each using 16-bit ADCs and DACs,
respectively.

For a complete description of the system setup and a list of the components used, see Appendix F, ANC
Unit System Setup and Operation Procedure.

60

Low-Pass Filter (ANC System)

Preamplifier

Amplifier
Power

Loudspeaker
Canceling

Microphone
Error

Loudspeaker
Noise

Microphone
Input

Analyzer
Signal

Ariel
Board

+
PC

Supply
Power

Generator
Function

Figure 31. Experimental Setup of the One-Dimensional Acoustic ANC Duct System

61

OPTIMIZATION OF THE EXPERIMENTAL SYSTEM
The process of optimization begins when the designed hardware system is working as expected. The system
parameters must be manipulated so that maximum performance is achieved. The key variables to be set
for the system are the value of µ, the gain of the preamplifier, and the value of LEAKY. Data is gathered
while varying one of these variables and holding all others at a constant value to best isolate its effect on
the system. Unless otherwise noted, all data for this example were obtained with the following parameter
values:

• Error-path filter C(z) order (NCz) � 127
• FIR filter W(z) order (NWz) � 127
• LEAKY � 2
• µ (off) � 128
• Preamplifier gain � 36 dB
• Input noise � 2 V sine wave (before power amplifier)

Determining the Value of µ

µ was the first parameter that was checked to see how it affected the performance of the system. The ability
of the noise cancellation unit to reduce sound was measured at three different input levels: –30 dB, –26 dB,
and –22 dB. The quietest setting was –30 dB, and –22 dB was the loudest. The frequency of the original
noise source and the gain of the power amplifier for the canceling speaker were adjusted to get the
maximum performance possible at each setting (see Table 2).

Table 2. Performance of the System as a Function of µ

ÁÁÁ
ÁÁÁ

µÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

dB REDUCTION FOR
–30 dB INPUT

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

dB REDUCTION FOR
–26 dB INPUT

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

dB REDUCTION FOR
–22 dB INPUT

ÁÁÁ
ÁÁÁ

64ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

21.19 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

29.57 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

34.94
ÁÁÁ
ÁÁÁ

96ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

22.91 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

30.05 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

34.85

ÁÁÁ
ÁÁÁ

128ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

24.68 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

30.32 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

30.70

ÁÁÁ
ÁÁÁ

160ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

30.42 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

37.45 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

41.01

ÁÁÁ
ÁÁÁ

192ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

32.21 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

37.98 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

40.35

ÁÁÁ224ÁÁÁÁÁÁÁÁ32.52 ÁÁÁÁÁÁÁ37.27 ÁÁÁÁÁÁÁ39.18ÁÁÁ
ÁÁÁ256

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ34.38

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ38.42

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ40.14ÁÁÁ

ÁÁÁ
288
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

34.38
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

38.01
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

37.86
ÁÁÁ
ÁÁÁ

320
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

37.95
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

40.68
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

40.66
ÁÁÁ
ÁÁÁ

352ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

38.35 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

39.25 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

37.94

ÁÁÁ
ÁÁÁ

384ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

36.96 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

38.27 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

37.27

ÁÁÁ
ÁÁÁ

416ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

37.26 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

38.62 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

37.23

ÁÁÁ
ÁÁÁ

448ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

39.08 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

38.64 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

37.58

ÁÁÁ480ÁÁÁÁÁÁÁÁ33.85 ÁÁÁÁÁÁÁ33.07 ÁÁÁÁÁÁÁ--ÁÁÁ
ÁÁÁ512

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ34.93

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ34.15

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ33.15

The values of µ represent a filter step size for a 16-bit processor. The data in Table 2 is represented
graphically in Figure 32.

62

As the value of µ increased from the low value of 64, the performance of the system increased at first, then
leveled off somewhat at higher µ values. As µ increased further, the performance of the system tended to
decline. One thing that can be seen from Table 2 is that the system did not have a linear dependence on the
step size of the adaptive filter.

Value of µ

Attenuation @ –22 dBAttenuation @ –26 dBAttenuation @ –30 dB

5124804484163843523202882562241921601289664

20

25

30

35

40

A
tte

nu
at

io
n

(d
B

)

Legend:

Figure 32. Level of Attenuation of the Noise Source Versus µ

The peak performance level at each sound level (settings –22 dB, –26 dB, and –30 dB on the preamplifier)
is different. At the lowest tested sound level (–30 dB), a µ of 448 drew the best performance, and high levels
of attenuation were obtained at µ values of 352 and 320, as well. When the sound was increased from
–30 dB to –26 dB, it was the µ value of 320 that yielded the best system performance. At the highest sound
level tested, the µ value of 160 reduced the original signal by the largest amount, with a µ value of 320
performing nearly as well.

Therefore, depending on which noise level is most relevant in the application, a different value of µ is
chosen to optimize the system. If the system is to be optimized at all sound levels, the µ value that performs
highly in all three sound levels is considered the best for the system. Because the µ value of 320 is the only
value in the top three performances at each level, it seems to be the logical choice. But is there a way to
better determine how the performances compare?

The most important column to look at in the data table is the reduction of the original signal that is given
for a power amplifier setting of –22 dB. This column shows how well the system cancels loud noise, which
is the noise generally chosen for canceling. Note that the performance of the system is greatest at this noise
range for a µ value of 320 and less, but at higher µ values the system actually performs better at lower noise
levels. This indicates that to attenuate loud noise, the system must have a µ value of 320 or less.

63

However, the system should not be characterized by how well it eliminates loud noises alone; the ability
to eliminate loud noises should be weighted more heavily to emphasize that these are the noises most in
need of attenuation, but other factors are also important. A crude way to evaluate the overall system
performance is to apply the following formula to the data obtained.

reduction @ –30 dB + 1.5(reduction @ –26 dB) + 2(reduction @ –22 dB) � overall performance (95)

This formula takes into account performance over all ranges, but it places more emphasis on the ability to
eliminate the louder noise sources. The results of this calculation are shown in graphical form in Figure 33,
which shows that a µ value of 320 is verified as the best choice.

Value of µ

5124484163843523202882562241921601289664

125

135

145

155

165

175

185

P
er

fo
rm

an
ce

 R
at

in
g

Figure 33. Overall Performance as a Function of Equation (95)

Determining the Value of LEAKY

The LEAKY parameter is used as part of a small forcing function that tends to bias each filter weight
towards zero. This report previously described how this variable is used. The value of LEAKY can be
chosen as 0, 1, or 2, which is the value of c for wi(n) � (1 – c)wi(n – 1) + µ e(n)x(n).

There is no reason to test the effect of the LEAKY parameter for all of the values of µ. It was determined
that 320 was the best value of µ. However, the best value of LEAKY cannot be determined merely by
selecting the value that yields the best results at a particular µ value. A µ value of 320 yielded the best results
with a LEAKY value of 2, but that does not necessarily mean that it will also yield the best results with a
LEAKY value of 1. Care must be taken to ensure that the best results of each LEAKY value are compared
against each other.

For this reason, the following values of µ were chosen to be tested: 160, 256, 320, and 352. The top three
values according to the performance rankings were all tested, as well as the value with the highest reduction
at the loudest setting (µ � 160). These four values of µ form a basic starting point that can be expanded
if the data gathered indicates that the optimum system performance is achieved outside of these values.

64

As the value of LEAKY was varied for the four different µ values selected, it became apparent that a value
of LEAKY � 2 yielded the superior performance. This can be seen from a graphic of a sample of the data
gathered, shown in Figure 34. At every µ value tested, the system using LEAKY � 2 outperformed the
same system using a lower LEAKY value.

LEAKY = 2LEAKY = 1LEAKY = 0

20

25

30

35

40

A
tte

nu
at

io
n

(d
B

)

Legend:

µ = 352

µ = 320

µ = 256

µ = 160
(Power amplifier @ –22 dB)

Figure 34. Noise Reduction of System as a Function of LEAKY

Determining the Gain of the Preamplifier

The last of the parameters that needs to be adjusted for this simple ANC system is the gain of the
preamplifier. As in the previous section, the data was recorded for four different µ values: 160, 256, 320,
and 352. The LEAKY value used was 2, because it was clearly the best choice for this system.

The best value for the microphone preamplifier was found to be a setting of 36 dB, as shown from the data
graphed in Figure 35. This setting on the preamplifier proved to be the best setting on three of the four µ
values tested. As µ decreased, the gain on the preamplifier was increased in order to achieve a high
performance level. At higher µ values, however, too high a setting on the preamplifier saturated the system
and caused the filter to diverge. Preamplifier settings of 48 and 52 dB could not be measured for µ greater
than 320 because of this, although these settings produced good performance when using a smaller step
size.

65

Gain of the Preamplifier

44

15

45

50

403632

20

25

30

35

40

A
tte

nu
at

io
n

(d
B

)

µ = 352

µ = 320

µ = 256

µ = 160Legend:

Figure 35. Noise Reduction of the System as a Function of Preamplifier Gain

66

Single-Tone Sinusoidal Noise Source Case

When the noise source is a 200-Hz single-tone sinusoid, the order of both W(z) and C(z) is 64, the
adaptation step size of W(z) is 0.01 (µ/32768 for a 16-bit processor), and the LEAKY value is 2 [5].
Figure 36 shows the error spectra received at the error microphone while the ANC system is both turned
on (dashed line) and turned off (solid line), using on the FXLMS algorithm.

RMS: 10
Status: Paused

Stop: 500 HzBW: 4.7743 Hz
X: 200 Hz Y: –2.04 dBV
Start: 0 Hz

–70

/DIV
dB
10

dBV
10

Legend: ANC on
ANC off

200 Hz

Figure 36. Error Spectra for FXLMS Algorithm, Noise Source Is a 200-Hz
Single-Tone Sinusoid

Figure 36 shows that a 41.65-dB noise attenuation can be achieved when the ANC system is turned on. To
evaluate the ability of the system setup, the noise frequency was varied from 100 Hz to 500 Hz in 50-Hz
steps and the three different algorithms were tested. The noise attenuation data obtained are listed in
Table 3.

67

Table 3. Noise Attenuation for a Single-Tone Sinusoidal Noise Source

NOISE SOURCE ATTENUATION PER ALGORITHM (dB)
FREQUENCY (Hz) FXLMS FBFXLMS FURLMS

100 36.73 45.38 38.71

150 35.88 43.07 38.40

200 41.65 46.88 48.29

250 25.78 43.67 28.04

300 3.93 4.14 3.29

350 50.06 51.92 53.58

400 53.33 52.91 53.81

450 56.86 57.70 63.82

500 33.51 34.71 35.73

Order of Filters
W(z):64
C(z):64

W(z):64
C(z):64
D(z):64

A(z):63
B(z):63
C(z):63

As shown in Table 3, the attenuation achieved by the ANC system varied at different frequencies. The
reason for this phenomenon is that every signal path has a different gain contribution at different
frequencies of the signal; therefore, it is necessary to observe the transfer function of all the signal paths.
White noise was used as the excitation signal to drive the target loudspeaker, and the signal from the target
microphone was connected to the signal analyzer. A hard copy of the frequency response on the screen was
obtained using the plotter. The frequency response of the transfer functions of primary path P(z), secondary
path H(z), and feedback path F(z) are shown in Figure 37, Figure 38, and Figure 39, respectively. P(z) is
the transfer function between the noise loudspeaker and the error microphone; H(z) is the transfer function
between the canceling loudspeaker and the error microphone; and F(z) is the transfer function between the
canceling loudspeaker and the input microphone.

As shown in the figures, the frequency response of H(z) was attenuated at approximately 300 Hz, but P(z)
was amplified. Hence, if the primary noise to be canceled contains a frequency component in this range,
the performance of the ANC system degrades, because the antinoise signal magnitude is constrained.

68

RMS: 10Status: Paused

Stop: 500 HzBW: 4.7743 HzStart: 0 Hz

–70

/DIV
dB
10

dBV
10

300 Hz

Figure 37. Frequency Response of Primary Path P(z)

RMS: 10Status: Paused

Stop: 500 HzBW: 4.7743 HzStart: 0 Hz

–70

/DIV
dB
10

dBV
10

300 Hz

Figure 38. Frequency Response of Secondary Path H(z)

69

RMS: 10Status: Paused

Stop: 500 HzBW: 4.7743 HzStart: 0 Hz

–70

/DIV
dB
10

dBV
10

300 Hz

Figure 39. Frequency Response of Feedback Path F(z)

As shown in Figure 39, the frequency response of feedback path F(z) of the experimental setup is stronger
in the range of 100 Hz–250 Hz than in the range of 250 Hz–500 Hz. This means that the contamination of
the reference signal due to the feedback signal is stronger in the lower frequency range. As shown in
Table 3, the FBFXLMS algorithm provides better noise attenuation (about 10 dB on average) than the
FXLMS algorithm in the 100 Hz–250 Hz range. This shows the contribution of the feedback compensation
filter D(z) in the ANC system when a strong feedback signal is present. Table 3 also shows that the use of
the FURLMS algorithm resulted in only a few dB improvement over the FXLMS algorithm in our ANC
system.

Multiple-Tone Sinusoidal Noise Source Case

For the case in which the primary noise is a 3-tone sinusoidal signal, Figure 40, Figure 41, Figure 42, and
Figure 43 show the spectra of the error signal at the error microphone with the ANC system turned on
(dashed line) and turned off (solid line). The frequencies of the primary noise are 200 Hz, 350 Hz, and 450
Hz. The step size and the value of LEAKY are the same as for the single-tone case, but the order of the filters
varies as shown in Table 4.

Table 4. Filter Orders for 3-Tone Sinusoidal Noise Source

ALGORITHM
FIGURE 40 FIGURE 41 FIGURE 42 FIGURE 43

ALGORITHM
FXLMS FXLMS FBFXLMS FURLMS

Order of Filters
W(z):64
C(z):64

W(z):127
C(z):127

W(z):64
C(z):64
D(z):64

A(z):63
B(z):63
C(z):63

70

The results shown in these figures indicate that the FXLMS, the FBFXLMS, and the FURLMS algorithms
are all effective for real-time ANC applications. Each of them shows that at least 40 dB of noise attenuation
can be achieved for every frequency component. From Figure 40, Figure 42, and Figure 43, the same
conclusions can be obtained as in the experiments using a single-tone noise source; that is, the ANC system
shows better performance (200-Hz component) in the range that has a strong frequency response of the
feedback path if the FBFXLMS algorithm is used instead of the FXLMS algorithm, and the FURLMS
algorithm can help the ANC system to achieve higher noise attenuation than the FXLMS algorithm.
Figure 40 and Figure 41 show that very slight improvement is achieved when the order of both filters W(z)
and C(z) was increased from 64 to 127 in the FXLMS algorithm.

RMS: 10Status: Paused

Stop: 625 HzBW: 5.9678 Hz
X: 350 Hz Y: –8.79 dBV
Start: 0 Hz

–70

/DIV
dB
10

dBV
10

Legend: ANC on ANC off

Figure 40. Error Spectra for FXLMS Algorithm, Noise Source Is a 3-Tone Sinusoid,
Order of W(z) = 64, Order of C(z) = 64

71

RMS: 10Status: Paused

Stop: 625 HzBW: 5.9678 Hz
X: 350 Hz Y: –8.68 dBV
Start: 0 Hz

–70

/DIV
dB
10

dBV
10

Legend: ANC on ANC off

Figure 41. Error Spectra for FXLMS Algorithm, Noise Source Is a 3-Tone Sinusoid,
Order of W(z) = 127, Order of C(z) = 127

72

RMS: 10Status: Paused

Stop: 625 HzBW: 5.9678 Hz
X: 350 Hz Y: –8.68 dBV
Start: 0 Hz

–70

/DIV
dB
10

dBV
10

Legend: ANC on ANC off

Figure 42. Error Spectra for FBFXLMS Algorithm, Noise Source Is a 3-Tone Sinusoid,
Order of W(z) = 64, Order of C(z) = 64, Order of D(z) = 64

73

RMS: 10Status: Paused

Stop: 625 HzBW: 5.9678 Hz
X: 350 Hz Y: –8.68 dBV
Start: 0 Hz

–70

/DIV
dB
10

dBV
10

Legend: ANC on ANC off

Figure 43. Error Spectra for FURLMS Algorithm, Noise Source Is a 3-Tone Sinusoid,
Order of A(z) = 63, Order of B(z) = 63, Order of C(z) = 63

74

75

CONCLUSION

Each of the three algorithms can help an ANC system a high level of noise attenuation regardless of the
type of sinusoidal noise source (single-tone or multiple-tone). The feedback compensation filter D(z) of
the FBFXLMS algorithm can be used to get a feedback-free reference signal, which results in better
performance than using the FXLMS algorithm in the frequency range that is affected by the feedback
signal. The FURLMS algorithm can achieve an average of 3 dB more attenuation in the ANC system than
the FXLMS algorithm.

The optimum parameter settings for this simple ANC system are µ � 320, LEAKY � 2, and preamplifier
gain � 36. The methods used in optimizing this system are similar to those needed for other ANC systems.
Each parameter was looked at individually, and then its interrelation with the other parameters was
considered to determine the best values. In this way, optimizing a complex and interrelated set of
parameters can be greatly simplified into a well organized and structured procedure.

76

77

REFERENCES
1. Nelson, P. A., and S. J. Elliott, Active Control of Sound, Academic Press, San Diego, CA, 1992.
2. Lueg, P., “Process of Silencing Sound Oscillations,” U.S. Patent No. 2,043,416, June, 1936.
3. Burgess, J. C., “Active Adaptive Sound Control in a Duct: A Computer Simulation,” J. Acoust.

Soc. Am., Vol. 70, No. 3, Sept. 1981, pp. 715–726.
4. Widrow, B., and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs,

NJ, 1985.
5. Kuo, S. M., and C. Chen, “Implementation of Adaptive Filters with the TMS320C25 or the

TMS320C30,” Digital Signal Processing Applications with the TMS320 Family, Volume 3,
edited by P. Papamichalis, Prentice-Hall, Englewood Cliffs, NJ, 1990, pp. 191–271.

6. Olson, H. F., and E. G. May, “Electronic Sound Absorber,” J. Acoust. Soc. Am., Vol. 25, No. 6,
Nov. 1953, pp. 1130–1136.

7. Olson, H. F., “Electronic Control of Noise, Vibration, and Reverberation,” J. Acoust. Soc. Am.,
Vol. 28, No. 5, 1956. pp. 966–972.

8. Morgon, D. R., “A Hierarchy of Performance Analysis Techniques for Adaptive Active Control
of Sound and Vibration,” J. Acoust. Soc. Am., Vol. 89, No. 5, May, 1991, pp. 2362–2369.

9. Nishimura, M., “Some Problems of Active Noise Control for Practical Use,” Proc. Int. Symp.
Active Control of Sound and Vibration, Tokyo, 1991, pp. 157–164.

10. Roure, A., “Self-Adaptive Broadband Active Sound Control System,” J. of Sound and
Vibration, Vol. 101, No. 3, 1985, pp. 429–441.

11. Morgan, D. R., “Analysis of Multiple Correlation Cancellation Loop With a Filter in the
Auxiliary Path,” IEEE Trans. on ASSP, Vol. ASSP-28, No. 4, August, 1980, pp. 454–467.

12. Eriksson, L. J., “Development of the Filtered-U Algorithm for Active Noise Control,” J. Acoust.
Soc. Am., Vol. 89, No. 1, January, 1991, pp. 257–265.

13. Elliott, S. J., I. M. Stothers, and P. A. Nelson, “A Multiple Error LMS Algorithm and Its
Application to the Active Control of Sound and Vibration”, IEEE Trans. on ASSP, Vol. ASSP-35,
No. 10, Oct., 1987, pp. 1423–1434.

14. Tichy, J., and G. E. Warnaka, “Effect of Evanescent Waves on the Active Attenuation of Sound
in Ducts”, Proc. of Inter-Noise, 1983. pp. 435–438.

15. Poole, L. A., G. E. Warnaka, and R. C. Cutter, “The Implementation of Digital Filter Using a
Modified Widrow-Hoff Algorithm for the Adaptive Cancellation of Acoustic Noise,” Proc.
ICASSP, San Diego, CA, 1984. pp. 21.7.1–21.7.4.

16. Kuo, S. M., and J. Chen, “Multiple-Microphone Acoustic Echo Cancellation System with the
Partial Adaptive Process,” Digital Signal Processing, Vol. 3, No. 1, January 1993. pp. 1–10.

17. Eriksson, L. J., M. C. Allie, and R. A. Greiner, “The Selection and Application of an IIR
Adaptive Filter for Use in Active Sound Attenuation,” IEEE Trans. on ASSP, Vol. ASSP-35, No.
4. April 1987. pp. 433–437.

18. Feintuch, P. F., “An Adaptive Recursive LMS Filter,” Proc. of IEEE, Vol. 64, No. 11, November
1976. pp. 1622–1624.

19. Chaplin, G. G. B., and R. A. Smith, “Waveform Synthesis - The Essex Solution to Repetitive
Noise and Vibration,” Proc. Inter-noise 83, pp. 399–402.

20. Elliott, S. J., and P. Darlington, “Adaptive Cancellation of Periodic, Synchronously Sampled
Interference,” IEEE Trans. on ASSP, Vol. ASSP-33, No. 3, June 1985. pp. 715–717.

78

21. Widrow, B., et al, “Adaptive Noise Canceling: Principles and Applications”, Proc. of IEEE, Vol.
63, No. 12, Dec. 1975. pp. 1692–1716.

22. Ziegler, E. W., “Selective Active Cancellation System for Repetitive Phenomena,” U.S. Patent,
No. 4,878,188. Oct. 1989.

23. Morgan, D. R., and J. Thi, “A Multitone Pseudocascade Filtered-X LMS Adaptive Notch Filter,”
IEEE Trans. ASSP, Vol. 41, No. 2, Feb. 1993. pp. 946–956.

24. Jackson, L. B., Digital Filters and Signal Processing, 2nd Edition, Charter 13, Kluwer
Academic Publishers, Norwell, MA. 1989.

25. Glover, J. R., Jr., “Adaptive Noise Canceling Applied to Sinusoidal Interferences,” IEEE Trans.
on ASSP, Vol. ASSP-25, No. 6, Dec. 1977. pp. 484–491.

26. Pfaff, D. D., N. S. Kapsokavathis, and N. A. Parks, “Methods for Actively Attenuating Engine
Generated Noise,” US Patent 5,146,505. Sept. 1992.

27. Wheeler, P. D., and D. Smeatham, “On Spatial Variability in the Attenuation Performance of
Active Hearing Protectors,” Applied Acoustics, Vol. 36, 1992. pp. 159–162.

28. Kuo, S. M., and D. Vijayan, “Feedback Active Noise Control Systems,” Proc. Int. Conf. Signal
Processing Applications and Technology, 1993. pp. 132–141.

29. Allie, M. C., C. D. Bremigan, and L. J. Eriksson, “Hardware and Software Considerations for
Active Noise Control,” Proc. ICASSP-88, New York, April 1988. pp. 2598–2601.

30. Goodman, S. D., “Electronic Design Considerations for Active Noise and Vibration Control
Systems,” Proc. Recent Advances in Active Control of Sound and Vibration, Blacksburg, VA,
1993. pp. 519–526.

31. Goodman, S. D., and S. S. Wise, “A Discussion of Commercial Experience with Active Noise
Control on Industrial Fans and Air Handlers Used for Heating, Ventilating and Air
Conditioning,” Proc. Inter-noise, 1990. pp. 797–800.

32. Olson, D. A., A. D. Hallstrom, and S. S. Wise, “Active Noise Control Systems and Air Moving
Devices,” Proc. Inter-noise 1989. pp. 475–478.

33. Nishimura, M., “Some Problems of Active Noise Control for Practical Use,” Proc. Int. Symp.
Active Control of Sound and Vibration, Tokyo, 1991. pp. 157–164.

34. Burlage, K., et al., “An Update of Commercial Experience in Silencing Air Moving Devices
with Active Noise Control,” Proc. Noise-Con., 1991. pp. 253–258.

35. Suzuki, S., et. al., “A Basic Study on an Active Noise Control System for Compressor Noise in
a Refrigerator,” Proc. Int. Symp. Active Control of Sound and Vibration, Tokyo, 1991. pp.
255–260.

36. Elliott, S. J., I. M. Stothers, P. A. Nelson, A. M. McDonald, D. C. Quinn, and T. Saunders, “The
Active Control of Engine Noise Inside Cars,” Proc. Inter-Noise, 1988. pp. 987–996.

37. Kuo, S. M., and B. M. Finn, “A General Multi-Channel Filtered LMS Algorithm for 3-D Active
Noise Control Systems,” Second Int. Con. on Recent Developments in Air- And
Structure-Borne Sound and Vibration, 1992. pp. 345–352.

38. Gitlin, R. D., H. Meadors, and S. B. Weinstein, “The Tap-Leakage Algorithm: An Algorithm for
the Stable Operation of a Digital Implemented, Fractionally Adaptive Spaced Equalizer,” Bell
System Tech. J., Oct. 1982. pp.

39. Gitlin, R. D., J. E. Mazo, and M. G. Taylor, “On the Design of Gradient Algorithms for Digitally
Implemented Adaptive Filters,” IEEE Trans. Circuit Theory, Vol. CT-20, March 1983. pp.
125–136.

40. Caraiscos, C., and B. Liu, “A Roundoff Error Analysis of the LMS Adaptive Algorithm,” IEEE
Trans. on ASSP, Vol. ASSP-32, No. 1, Feb. 1984. pp. 34–41.

79

41. Oppenheim, A. V., and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ. 1989.

42. Texas Instruments, TMS320C2x User’s Guide, 1993.
43. Crochier, R., R. Cox, and J. Johnson, “Real-Time Speech Coding,” IEEE Trans.

Communications, April 1982. pp.
44. Elliott, S. J., P. A. Nelson, I. M. Stothers and C. C. Boucher, In-Flight Experiments on the Active

Control of Propeller-Induced Cabin Noise, Journal of Sound and Vibration, Vol. 140, No. 2,
1990. pp. 219–238.

45. Melton, D. E., and R. A. Greiner, Adaptive Feedforward Multiple-Input, Multiple-Output Active
Noise Control, Proc. ICASSP, 1992. pp. II–229–232.

46. Guicking, D., and M. Bronzel, Multi-Channel Broadband Active Noise Control in Small
Enclosures, Proc. Inter-Noise, 1990. pp. 1255–1258.

47. Garcia, D., Precision Digital Sine-Wave Generation with the TMS32010, Chap. 8 in Digital
Signal Processing Applications with the TMS320 Family, vol. 1, edited by K. S. Lin, Texas
Instruments, 1989.

48. Texas Instruments, TMS320C2x DSP Starter Kit User’s Guide, 1993.

80

81

APPENDIX A: PSEUDO RANDOM NUMBER GENERATOR

Two basic techniques can be used for pseudo random number (white noise) generation. The first technique
is the table look-up method using a random set of stored samples, and the second technique is based on a
shift register with feedback. Both techniques generate a pseudo random number sequence: a sequence that
repeats itself after a finite period and is, therefore, not truly random for all time. The length of the sequence
for the table look-up method is determined by the number of stored data samples, while the shift register
technique’s length is determined by the length of the register.

A shift register with feedback from specific elements can generate a continuous, repetitive random
sequence. The algorithm of the 16-bit generator is shown in Figure 44, where XOR denotes the
exclusive-OR logic operation. The maximum sequence length L before repetition is:

L� 2M–1

where M is the number of bits in the shift register. An output from the sequence generator is the entire M-bit
word of the register.

Shift Left

XOR
XOR

XOR

b0b1b2b3b11b12b13b14b15

Figure 44. Pseudo Random Number Generator, 16-Bit Case

The assembly program implementation of this white noise generator on the TMS320C25 is given in
Appendix C, TMS320C25 Ariel Board Implementation of ANC Algorithms.

82

83

APPENDIX B: DIGITAL SINE-WAVE GENERATOR

Similar to the pseudo random number generation, there are two commonly used techniques for sine-wave
generation. The first technique is the table look-up method using a set of stored sine-wave samples, and
the second technique is based on a digital filter.

Table Look-Up Method

The sine-wave generation using the table look-up technique is a more conceptually simple method of
generating a given periodic waveform. The technique involves the reading of a series of stored data values
representing discrete samples of the waveform to be generated. The data values can be obtained either by
sampling the appropriate analog waveform or, more commonly, by computing the desired values. Provided
that enough samples are stored to represent one complete period of the waveform accurately, continuous
signals are generated by repeatedly cycling through the data memory locations.

The sine-wave table contains N sample values equally spaced in time over one period of the waveform.
The values are easily computed by evaluating the function:

x(n)� sin �n� 360�
N
�, n � 0, 1, . . . , N – 1

A sine wave is generated by stepping through the table at a constant rate, wrapping around at the end of
the table whenever 360° is exceeded. The frequency f of the sine wave depends on the sampling period T
and the step size ∆. That is:

f (in Hz) � �

T � N

There are two sources of error that cause harmonic distortion in the table look-up algorithm:
• Quantization error is introduced by representing the sine wave table values by M-bit binary

numbers.
• Larger errors are introduced when points between table entries are sampled.

This harmonic distortion occurs when ∆ is not an integer. The longer the table is, the less significant the
second error source is. To decrease the harmonic distortion for a give table size N, an interpolation scheme
can be used to compute the sine-wave values between table entries more accurately. Linear interpolation
is the simplest method to implement. The implementation of a sine-wave generator using the table look-up
method on the TMS320 was developed by Garcia [47].

84

Digital Oscillator

A very useful method of generating sine waves for a given frequency is to use a marginally stable two-pole
resonator for which the complex-conjugate poles lie on the unit circle. This recursive oscillator is the most
accurate and efficient method of generating sinusoidal waveforms, particularly if quadrature signals (sine
and cosine waves) are required. In this appendix, only the sine-wave generator is considered.

Consider an impulse response of the form:

hs(n)� A sin(�on)� u(n)

where u(n) is the unit step function, A is the amplitude of the generated sine wave, and �o is the angular
frequency. The system transfer function (without the gain A) is:

Hs(z) �
Y(z)
X(z)

�
sin(�0)z–1

1 – 2 cos(�0)z–1 � z–2

This equation can be expressed as:

Y(z)�1 – e cos(�0)z
–1 � z–2� � X(z)�sin(�0)z

–1�

Taking the inverse z-transform of both sides and rearranging both sides gives:

y(n) � 2 cos(�0)y(n – 1) – y(n – 2)� sin(�0)x(n – 1)

Applying the unit impulse as x(n) for values of n > 2, y(n) can be calculated as:

y(n) � 2 cos(�0)y(n – 1) – y(n – 2)

with initial conditions:

y(1) � sin(�0) and y(0) � 0

The TMS320C25 implementation of this sine-wave generator is given in Appendix C, TMS320C25 Ariel
Board Implementation of ANC Algorithms, and a more general implementation is given in Appendix D,
General Configurable Software for ANC Evaluation.

85

APPENDIX C: TMS320C25 ARIEL BOARD IMPLEMENTATION OF
ANC ALGORITHMS

The algorithms discussed in this application report can be implemented on the DSP-16 Plus Algorithm
Development Board (from Ariel Corporation, 908–249–2900) with the code included in this appendix. The
code is well commented to aid understanding. As mentioned in the report, the code is written in modular
form, breaking the algorithms down into small, easily understood parts. Code written in this manner
decreases the amount of time and effort necessary to understand DSP noise control solutions.

Reading through the code is an excellent method for becoming familiar with the software aspects of an
ANC system.

The Filtered-X LMS Algorithm

;*
;* FILE NAME : FXLMS.ASM
;**
;*
;* This program has been modified to run on the Ariel’s DSP-16
;* Plus TMS320C25 DSP Board.
;*
;* Kai-Ming Chung
;* Oct. 1994
;*
;**
;*
;* File: ANCFXLMS.ASM
;*
;* One-dimensional Adaptive Active Noise Control System Using
;* Filtered-X LMS (FXLMS) Algorithm on TMS320C25
;*
;* Sen M. Kuo , Fall 1993
;*
;**
;*
;* SYSTEM CONFIGURATION:
;*
;* x(n)
;* M1 *|–––> | |
;* | |
;* | Adaptive FXLMS ANC | y(n)
;* e(n) | System |––––––> antinoise output
;* M2 *|–––> | |
;* | |
;*
;* where:
;* x(n) – signal from the input microphone
;* e(n) – signal from the error microphone
;* y(n) – antinoise to drive the canceling loudspeaker (noise
;* cancellation mode), or
;* the training signal (off-line modeling mode)
;*

86

;* Ports: x(n) from input port B
;* e(n) from input port A
;* y(n) to output port A
;*
;* The flow of program is:
;*
;* C25 initialization ––> off-line secondary-path modeling ––>
;* on-line active noise control
;*
;* A. Off-line modeling:
;*
;* |–––> Speaker error MIC –––> |.
;* y(n) | |
;* | ––––––––––z(n) – + |
;* |–––>| C(z) |–––––>(sum)<–––––– |e(n)
;* –––––––––– |
;* : < e’(n).
;* where:
;* y(n) is an internally generated white noise
;* C(z) is an adaptive modeling filter, updated by LMS algorithm
;*
;*
;* B. On-line noise control:
;*
;* –––––––––– y(n) e(n) from error MIC
;* x(n) –––––––––>| W(z) |–––––> |
;* | –––––––––– to speaker |
;* ––––––– : |
;* | C(z)| : |
;* ––––––– ––––:–––– |
;* |–––––>| FXLMS |<–––––––––––––––––––
;* x’(n) –––––––––
;*
;* where: C(z) is a fixed FIR filter from previous training mode
;* W(z) is an adaptive noise control filter, updated by FXLMS
;*
;**
;*
;* define constants (can be modified for different applications)
;*
;*–––
;*
FS: EQU 2000 ; assume sampling rate is 2 kHz.
TRNTIM: EQU 30000 ; training time = 15 seconds
NCZ: EQU 64 ; order of C(z), max = 127
NWZ: EQU 64 ; order of W(z), max = 127
MU: EQU 4096 ; coef. update stepsize, off-line modeling
MU1: EQU 328 ; coef. update stepsize, on-line active noise

; control
MASK: EQU 8805h ; to mask off bits 0,2,11,15
SEED: EQU 12357 ; seed for white noise generator
LEAKY: EQU 2 ; leaky factor
;*
;**
;*
;* Memory map:
;* B2: page 0 – data I/O buffer
;*
;* B0: page 4 – coefs of AF C(z) : ci(n), i=0,1,..,(NCZ–1)
;* (modeling filter) NCZ <= 127
;*
;* B0: page 5 – coefs of AF W(z) : wi(n), i=0,1,..,(NWZ–1)
;* (noise control filter) NWZ <= 127

87

;*
;* B1: page 6 – data buffer for C(z) : y(n–i), i=0,1,..,(NCZ–1)
;*
;* During off-line modeling, buffer contains training
;* signal y(n–i), i=0,1,..,(NCZ–1)
;* During on-line canceling, buffer contains filtered
;* version of x(n) by C(z), x’(n), n=0,1,..(NWZ–1)
;*
;* B1: page 7 – data buffer for W(z) : x(n–i), i=0,1,..,(NWZ–1)
;*
;**
;*
;* PAGE 0 (memory-mapped regs and B2) DATA MEMORY ALLOCATION
;*
;*–––
;*
P0DM: EQU 0 ; page 0 data RAM address
DAC: EQU 13 ; DAC I/O port
ADC: EQU 0 ; Serial receive address
IMR: EQU 4 ; Interrupt mask register
BUF1: EQU 96 ; Buffer for channel A input data
BUF2: EQU 97 ; Buffer for channel B input data
BUF3: EQU 98 ; Buffer for channel A output data
BUF4: EQU 99 ; Buffer for channel B output data
WN0: EQU 100 ; storage for white noise generator
WN1: EQU 101 ; ”
TRNCTR: EQU 102 ; training mode (off-line modeling) counter
STSFLG: EQU 103 ; program status flag, 1 = training mode
ONE: EQU 104 ; ONE = 1
VMU: EQU 105 ; value of mu
VMU1: EQU 106 ; value of mu1
ADCE: EQU 107 ; address of cN–1(n)
ADWE: EQU 108 ; address of wN–1(n)
AY0: EQU 109 ; address for y(n)
AYE: EQU 110 ; address for y(n–N+1)
AXPE: EQU 111 ; address for x’(n–N+1)
AX0: EQU 112 ; address for x(n)
AXE: EQU 113 ; end address for x(n–N+1)
AXCE: EQU 114 ; end address for x(n–NCZ+1)
;* data buffer for signals

TEMP: EQU 120 ; Temporary storage location
TST0: EQU 121 ; Storage for ST0
;*
;*–––
;*
;* PAGE 4 (B0) DATA MEMORY ALLOCATION
;* AF C(z): ci(n), i=0,1,2,..,NCZ–1
;*
P4DM: EQU 512 ; PAGE 4 DATA MEM ADRS
P4PM: EQU 65280 ; PAGE 4 PROG MEM ADRS
CE: EQU 0 ; ci(n), end of C(z) buffer
DA_CE: EQU P4DM+CE ; address of ci(n), i=NCZ–1 at CNFD
PA_CE: EQU P4PM+CE ; address of ci(n), ” at CNFP
;*
;*–––
;*
;* Memory map: cN–1(n) low address <–– PA_CE, AR2, ADCE
;* cN–2(n)
;* ...
;* c1(n)
;* c0(n) high address
;*
;*–––

88

;*
;* PAGE 5 (B0) DATA MEMORY ALLOCATION
;* AF W(z): wi(n), i=0,1,2,..,NWZ–1
;*
P5DM: EQU 640 ; PAGE 5 DATA MEM ADRS
P5PM: EQU 65408 ; PAGE 5 PROG MEM ADRS
WE: EQU 0 ; wi(n), end of W(z) buffer
DA_WE: EQU P5DM+WE ; address of WE at CNFD
PA_WE: EQU P5PM+WE ; address of WE at CNFP
;*
;*–––
;*
;* Memory map: wN–1(n) low address, ADWE
;* wN–2(n)
;* ...
;* w1(n)
;* w0(n) high address
;*
;*–––
;*
;* PAGE 6 (B1) DATA MEMORY ALLOCATION for C(z)
;* in off-line modeling, y(n–i), i=0,1,...,NCZ–1
;* in on-line canceling, x’(n–i), i=0,1,...,NWZ–1
;*
P6DM: EQU 768 ; PAGE 6 DATA MEM ADRS
Y0: EQU 0 ; y(n)
YE: EQU NCZ–1 ; y(n–NCZ+1)
XPE: EQU NWZ–1 ; x’(n–NWZ+1)
A_Y0: EQU P6DM+Y0 ; address of y(n)
A_YE: EQU P6DM+YE ; address of y(n–NCZ+1)
A_XPE: EQU P6DM+XPE ; address of y(n–NWZ+1) for x’(n)
;*
;*–––
;*
;* Memory map: y(n) low address <–– AY0
;* y(n–1)
;* ...
;* y(n–N+1) high address <–– AYE
;* <–– AR1
;*
;*–––
;*
;* PAGE 7 (B1) DATA MEMORY ALLOCATION for W(z)
;* x(n–i), i=0,1,...,NWZ–1
;*
P7DM: EQU 896 ; PAGE 7 DATA MEMORY ADDRESS
X0: EQU 0 ; x(n)
XE: EQU NWZ–1 ; x(n–NWZ+1)
XCE: EQU NCZ–1 ; X(n–NCZ+1)
A_X0: EQU P7DM+X0 ; address of x(n)
A_XE: EQU P7DM+XE ; address of x(n–NWZ+1)
A_XCE: EQU P7DM+XCE ; address of x(n–NCZ+1)
;*
;*–––
;*
;* Memory map: x(n) ; <–– AX0
;* x(n–1)
;* ...
;* x(n–N+1) ; <–– AXE
;*
;**

89

;*
;* INTERRUPT BRANCHES
;*
;**
;*
RESET: B 32 ; On hardware reset go to INIT

ORG 4
INT1: B 1000 ; On INT1 go to interrupt 1 service routine

ORG 6
INT2: B 2000 ; On INT2 go to interrupt 2 service routine

ORG 26
RCV: B 3000 ; On RINT go to ADC service routine
;*
;**
;*
;* PROCESSOR INITIALIZATION ROUTINE
;*
;**
;*
INIT: ORG 32

LDPK 0 ; Load page 0
LALK 2E00H ; 0010 1110 0000 0000 in binary
SACL TEMP ; Initialize ST0
LST TEMP ; 0 –> DP

 ; 1 –> INTM, interrupts disabled
 ; 1 –> OVM
 ; 0 –> OV
 ; 1 –> ARP

SPM 1 ; P reg. output shift left 1 bit

;*
;* INITIALIZE PAGE 0
;*

LARP AR1 ; AR1 as address pointer
LARK AR1,96 ; LOWEST PAGE 0 LOCATION –> AR1
ZAC ; 0 –> ACC
RPTK 31 ; REPEAT NEXT INSTRUCTION 32 TIMES
SACL *+ ; ZERO PAGE 0

LACK 1 ; ACC <– 1
SACL ONE ; ONE <– 1
SACL STSFLG ; STSFLG=1, training mode first

LALK TRNTIM ; ACC <– # of training samples
SACL TRNCTR ; training time = 3 seconds = 4500 samples

LALK MU ; ACC <– mu
SACL VMU ; value of mu

LALK MU1 ; ACC <– mu1
SACL VMU1 ; value of mu1

LALK 22 ; ACC <– 22
SACL IMR ; Enable INT1 , INT2 & RINT

LALK SEED ; ACC <– SEED
SACL WN0 ; initial white noise = seed

;* INITIALIZE ADDRESS POINTERS

LALK DA_CE
SACL ADCE ; address of CN–1(n) in ADCE

LALK DA_WE
SACL ADWE ; address of wN–1(n) in ADWE
LALK A_Y0
SACL AY0 ; address of y(n)

90

LALK A_YE
SACL AYE ; address of y(n–N+1)
LALK A_XPE
SACL AXPE ; address of x’(n–N+1)
LALK A_X0
SACL AX0 ; address of x(n)
LALK A_XE
SACL AXE ; address of x(n–N+1)
LALK A_XCE
SACL AXCE ; address of x(n–NCZ+1)

;* CLEAR PAGES 4, 5, 6, and 7

LARP AR1 ; 1 –> ARP
LRLK AR1,512 ; LOWEST PAGE 4 ADDRESS –> AR1
ZAC ; 0 –> ACC
RPTK 255
SACL *+ ; zero pages 4 & 5
RPTK 255
SACL *+ ; zero pages 6 & 7

EINT ; ENABLE INTERRUPTS
B LOOP ; Branch to LOOP,wait for interrupts

;*
;**
;*
;* CYCLE START ROUTINE
;*
;**
;*
START LARP AR3 ; 3 –> ARP

LAC BUF1 ; ACC <– from input port A
SACL EN ; value of error signal from error microphone
LAC BUF2 ; ACC <– from input port B
SACL XN ; value of reference signal from input microphone
LAC YN ; ACC <– YN
SACL BUF3 ; value of antinoise signal to output port A
LAC TN ; ACC <– TN
SACL BUF4 ; value of concerned signal to output port B
LAC STSFLG ; If STSFLG = 0, branch to CANCEL
BZ CANCEL ; for next sample, loop forever

;*
;**
;*
;* Training mode (off-line modeling of secondary path)
;*
;*–––
;*
;* White noise generator:
;* Algorithm:
;*
;* rotate left 1-bit
;* b15 . b11 <–––– b2 . b0 <––––––––––––––––––|
;* | | | |–> |
;* | | |––––––> XOR –>| |
;* | | | |
;* | |–––––––––––> |–> |
;* |–––––––––––––––––> XOR –––––––––––––––––––––––> XOR ––>|
;*
;* where the initial value of WN0 (b15..b0) = seed
;*
;*–––
;*

91

TRAIN LAC WN0 ; Load noise sequence
ANDK MASK ; Mask off feedback bits
SACL WN1 ; Save temporary
ADD WN1,4 ; combine bits 11 and 15
ADD WN1,13 ; combine bit 2 with result
ADD WN1,15 ; combine bit 0 with result
ANDK MASK ; reuse mask to mask off MSB
ADDH WN0 ; combine MSB with sequence
SACH WN0,1 ; save result (and shift out MSB)
LAC WN0,11 ; scale WN0
SACH YN ; output white noise to excite secondary path

;*
;**
;*
;* Adaptive Off-line Secondary-Path Modeling
;*
;* |–––> Speaker ... error MIC –––>|
;* y(n) –––>| |
;* | ––––––––––z(n)– + |
;* |–––>| C(z) |––––>(sum)<––––––––|e(n)
;* –––––––––– |
;* : |
;* :..<......... e’(n)
;*
;* where
;* y(n) is internally generate white noise
;*
;**
;*
;* NCZ–1
;* A. Computes z(n) = sum ci(n) * y(n–i)
;* i=0
;*
;*–––
;*

LARP AR1 ; AR1 as current address reg
FIR_C MPYK 0 ; P=0

LAR AR1,AY0 ; AR1 pointing to y(n)
SACH *,AR1 ; inject white noise to buffer of C(z)
LAR AR1,AYE ; AR1 pointing to y(n–NCZ+1)
LAC ONE,15 ; round-off offset to ACC
CNFP
RPTK NCZ–1 ; for i = NCZ–1,NCZ–2,...,0
MACD PA_CE,*– ; ci(n) * y(n–i) + ACC –> ACC
CNFD ; also move data y(n–i)
APAC ; P + ACC –> ACC = z(n)

;*
;*–––
;*
;* B. computes error signals e’(n):
;*
;* e’(n) = e(n) – z(n)
;*
;*–––
;*

NEG ; ACC = – z(n)
ADDH EN ; ACC (e’(n) = e(n) – z(n)
SACH ZN ; z(n) = e’(n)

;*
;*–––
;*
;* C. update coefficients of C(z) using LMS Algorithm:
;*

92

;* ci(n+1) = ci(n) + u*e’(n)*y(n–i)
;*
;* AR1 – point to data buffer, y(n–i)
;* AR2 – point to AF coefs, ci(n)
;*
;*–––
;*

LT ZN ; T = e’(n)
MPY VMU ; P = mu*e’(n)
PAC ; ACC <– P
ADD ONE,15 ; rounding
SACH ZN ; ZN = mu*e’(n)

;*
LARK AR3,NCZ–1 ; initialize AR3 as loop counter
LAR AR1,AYE
MAR *+ ; AR1 pointing to y(n–N+1) due to

; MACD data move effect
LAR AR2,ADCE ; AR2 pointing to cN–1(n)
LT ZN ; T = mu*e’(n)
MPY *–,AR2 ; P = mu*e’(n)*y(n–i)

;*
ADAP_C ZALR *,AR1 ; load ACC with ci(n) and round

MPYA *–,AR2 ; ci(n+1) = ci(n) + P
; P = mu*e’(n)*y(n–i) for next i

SACH *+,0,AR3 ; store ci(n+1)
BANZ ADAP_C,*–,AR2; go back to loop if counter (AR3) > 0

;*
;*–––
;*
;* check if end of training mode
;*
;*–––
;*

LAC TRNCTR ; ACC <– training counter
SUBK 1 ; decrement training counter
SACL TRNCTR ; save counter
BGZ LOOP

;*
ZAC ; end of training mode, ACC=0
SACL STSFLG ; STSFLG <– 0, now in noise control mode
LARP AR1 ; make sure AR1 is address pointer
LAR AR1,AY0 ; AR1 pointing to y(n)
RPTK NCZ ; repeat NCZ+1 time
SACL *+ ; clear C(z) buffer for x’(n) in noise

; control mode
B START ; end training, go to noise control mode

;*
;**
;*
;* Noise control mode:
;*
;* to speaker from error MIC
;* from input MIC –––––––––– y(n) e(n)
;* x(n) –––––––––>| W(z) |–––––> |
;* | –––––––––– |
;* ––––––– : |
;* | C(z)| : |
;* ––––––– ––––:–––– |
;* |–––––>| FXLMS |<–––––––––––––––––––
;* x’(n) –––––––––
;*
;**
;*

93

CANCEL LAC XN ; inject reference input x(n) from port B
; (input MIC) into x(n)

LARP AR1 ; ARP <– 1
LAR AR1,AX0 ; AR1 point to x(n)
SACL *
LARP AR1

;*
;*–––
;*
;* 1. Filtered-X, filtering x(n) by C(z) to get x’(n)
;*
;* N–1
;* x’(n) = sum ci * x(n–i)
;* i=0
;*
;* where ci, i=0,1,..,N–1 are from training mode filter C(z)
;*
;*–––
;*
FX C MPYK 0 ; P <– 0

LAR AR1,AXCE ; AR1 point to x(n–NCZ+1)
LAC ONE,15 ; rounding
CNFP
RPTK NCZ–1 ; for i=N–1, .., 1, 0
MAC PA_CE,*– ; ACC <– ACC+ci(n)*x(n–i)
CNFD
APAC ; ACC <– ACC+P = x’(n)
LAR AR1,AY0 ; AR1 point to x’(n)
SACH * ; inject x’(n) into buffer

;*
;*–––
;*
;* 2. Filter x(n) by W(z) to get y(n), the antinoise
;*
;* N–1
;* y(n) = sum wi(n) * x(n–i)
;* i=0
;*
;*–––
;*
FIR_W MPYK 0 ; P <– 0

LAR AR1,AXE ; AR1 point to x(n–N+1)
LAC ONE,15 ; rounding
CNFP
RPTK NWZ–1 ; for i=N–1, .., 1, 0
MACD PA_WE,*– ; ACC = ACC + wi(n)*x(n–i)
CNFD
APAC ; ACC = y(n)

;*
SACH YN ; YN <– y(n), antinoise to output port A

;*
;*–––
;*
;* 3. FXLMS Algorithm to update coefficients of W(z)
;*
;* wi(n+1) = wi(n) – u e(n) x’(n–i), for i=0,1,..,N–1
;*
;* Note: using ”–” when updating W(z) in noise control mode
;* instead of ”+” when updating C(z) in training mode
;*
;* AR1 pointing to x’(n–i) data buffer
;* AR2 pointing to wi(n) coefs buffer
;*

94

;*–––
;*

LT EN ; T = e(n)
MPY VMU1 ; P = mu * e(n)
PAC ; ACC <– P
ADD ONE,15 ; rounding
SACH EN ; EN = mu * e(n)

;*
LARK AR3,NWZ–1 ; initialize AR3 as loop counter
LAR AR1,AXPE ; AR1 point to x’(n–N+1)
LAR AR2,ADWE ; AR2 point to wN–1(n)

;*
LT EN ; T = mu * e(n)
LARP AR1
MPY *–,AR2 ; P = mu * e(n) * x’(n–N+1)

ADAP_W ZALR *,AR1 ; ACC <– wi(n) and rounding
MPYS *,AR1 ; wi(n+1) = wi(n) – P

; P = mu * e(n) * x’(n–i) for next i
DMOV *–,AR2 ; update x’(n) buffer
SUB *,LEAKY ; wi(n+1)=wi(n+1)–(2exp(LEAKY–16))*wi(n+1)
SACH *+,0,AR3 ; wi(n+1) <– ACC
BANZ ADAP_W,*–,AR2 ; go back to loop if (AR3) > 0

;*
B LOOP

LOOP: IDLE
IDLE
B LOOP

;*
;**
;*
;* INT1 Interrupt Service Routine
;*
;**
;*

ORG 1000 ; Channel A interrupt
SST TST0 ; Save ST0
LDPK 0
OUT BUF3,DAC ; Output buffer to DAC
LST TST0 ; Restore ST0
NOP
SXF ; Set external flag bit
EINT
RET

;*
;**
;*
;* INT2 Interrupt Service Routine
;*
;**
;*

ORG 2000 ; Channel B interrupt
SST TST0 ; Save ST 0
LDPK 0
OUT BUF4,DAC ; Output buffer to DAC
LST TST0 ; Restore ST0
NOP
RXF ; Reset external flag bit
EINT
B START

;*
;**
;*

95

;* RINT Interrupt Service Routine
;*
;**
;*

ORG 3000 ; ADC interrupt
LDPK 0
SST TST0 ; Save ST0
LAC ADC ; Read from serial port
BIOZ IN2 ; Skip if channel B
SACL BUF1 ; Move data to channel A buffer
LST TST0 ; Restore ST0
EINT
RET

IN2: SACL BUF2 ; For channel B, save data in channel B buffer
LST TST0 ; Restore ST0
EINT
RET

Filtered-U RLMS Algorithm

;*
;* FILE NAME : FURLMS.ASM
;**
;*
;* This program has been modified to run on the Ariel’s DSP-16
;* Plus TMS320C25 DSP Board
;* Kai-Ming Chung
;* Oct. 1994
;*
;**
;*
;* File: FURLMS.ASM
;*
;* One-dimensional Adaptive Active Noise Control System Using
;* Filtered-U RLMS (FURLMS) Algorithm on TMS320C25
;*
;* Sen M. Kuo , Fall 1993
;*
;**
;*
;* SYSTEM CONFIGURATION:
;*
;* x(n)
;* M1 *|––––>|–––––––––––––––––––––––|
;* | |
;* | Adaptive FURLMS ANC | y(n)
;* e(n) | System |––––––> antinoise output
;* M2 *|––––>| |
;* |–––––––––––––––––––––––|
;*
;* where
;* x(n) – signal from the input microphone
;* e(n) – signal from the error microphone
;* y(n) – antinoise to drive the canceling loudspeaker, or
;* the training signal in the off-line modeling mode
;*
;* Ports:
;* x(n) from input port B
;* e(n) from input port A
;* y(n) to output port A
;*
;* The flow of program is:

96

;*
;* C25 initialization ––> off-line Secondary-Path modeling ––>
;* on-line active noise control
;*
;* A. Off-line modeling:
;*
;* |–––> Speaker error MIC –––>|
;* y(n) ––––| |
;* | ––––––––––z(n) – + |
;* |–––>| C(z) |–––––>(sum)<––––––––|e(n)
;* –––––––––– |
;* :..<.......... e’(n)
;* where
;* y(n) is an internally generated white noise
;* C(z) is an adaptive modeling filter, updated by LMS
;*
;*
;* B. On-line noise control:
;*
;* to speaker from error MIC
;* from input MIC –––––––– y(n) | |e(n)
;* x(n) –––––––––>| A(z) |––––>(+)––––––––––––––| |
;* | –––––––– | | |
;* ––––––– : | –––––––– | |
;* | C(z)| : |<––| B(z) |<–––| |
;* ––––––– : –––––––– –––––––– |
;* | : : | C(z) | |
;* | ––––––– : –––––––– |
;* |–––––>| LMS | ––––––– | |
;* x’(n) ––––––– | LMS |<––––| |
;* | ––––––– |
;* | | |
;* –––
;*
;* where C(z) is a fixed FIR filter from previous modeling mode
;* A(z) and B(z) are adaptive noise control filters,
;* updated by FURLMS
;*
;**
;*
;* define constants (can be modified for different applications)
;*
;*–––
;*
FS: EQU 2000 ; assume sampling rate is 2 kHz.
TRNTIM: EQU 30000 ; training time = 15 seconds
NCZ: EQU 63 ; order of C(z), max = 63
NAZ: EQU 63 ; order of A(z), max = 63
NBZ: EQU 63 ; order of B(z), max = 63
MU: EQU 4096 ; coef. update stepsize for off-line modeling
MU1: EQU 328 ; coef. update stepsize for W(z)
MASK: EQU 8805h ; to mask off bits 0,2,11,15
SEED: EQU 12357 ; seed for white noise generator
LEAKY: EQU 2 ; leaky factor
;*
;**
;*
;* Memory map:
;* B2: page 0 – data I/O buffer
;*
;* B0: page 4 – coefs of AF C(z) : ci(n), i=0,1,..,(NCZ–1)
;* (modeling filter) NCZ <= 63
;*

97

;* – coefs of AF A(z) : ai(n), i=0,1,..,(NAZ–1)
;* (direct filter) NAZ <= 63
;*
;* B0: page 5 – coefs of AF B(z) : bi(n), i=0,1,..,(NBZ–1)
;* (feedback filter) NBZ <= 63
;*
;* B1: page 6 – data buffer for C(z)
;*
;* During off-line modeling, buffer contains training
;* signal y(n–i), i=0,1,..,(NCZ–1)
;*
;* During on-line canceling, buffer contains:
;* 1. filtered version of x(n) by C(z), i.e., x’(n)
;* 2. filtered version of y(n) by C(z), i.e., y’(n)
;*
;* B1: page 7 – data buffer for A(z) : x(n–i), i=0,1,..,(NAZ–1)
;* data buffer for B(z) : y(n–i), i=1,2,..,NBZ
;*
;**
;*
;* PAGE 0 (memory-mapped regs and B2) DATA MEMORY ALLOCATION
;*
;*–––
;*
P0DM: EQU 0 ; page 0 data RAM address
DAC: EQU 13 ; DAC I/O port
ADC: EQU 0 ; Serial receive address
IMR: EQU 4 ; Interrupt mask register
BUF1: EQU 96 ; Buffer for channel A input data
BUF2: EQU 97 ; Buffer for channel B input data
BUF3: EQU 98 ; Buffer for channel A output data
BUF4: EQU 99 ; Buffer for channel B output data
WN0: EQU 100 ; storage for white noise generator
WN1: EQU 101 ; ”
TRNCTR: EQU 102 ; training mode (0ff-line modeling) counter
STSFLG: EQU 103 ; program status flag, 1 = training mode
ONE: EQU 104 ; HOLDS 1
VMU: EQU 105 ; value of mu
VMU1: EQU 106 ; value of mu1
ADCE: EQU 107 ; address of cN–1(n)
ADAE: EQU 108 ; address of aN–1(n)
ADBE: EQU 109 ; address of bN–1(n)
AXP0: EQU 110 ; address of x’(n)
AXPE: EQU 111 ; address of x’(n–N+1)
AYP0: EQU 112 ; address for y’(n)
AYPE: EQU 113 ; address for y’(n–N+1)
AX0: EQU 114 ; address for x(n)
AXE: EQU 115 ; address for x(n–N+1)
AXCE: EQU 116 ; address for x(n–NCZ+1)
AY0: EQU 117 ; address for y(n)
AYE: EQU 118 ; address for y(n–N+1)
AYCE: EQU 119 ; address for y(n–NCZ+1)

;* data buffer for signals
XN: EQU 120 ; x(n), from input MIC
EN: EQU 121 ; e(n), from error MIC
ZN: EQU 122 ; z(n) in training mode
YN: EQU 123 ; buffer for y(n)
TN: EQU 124 ; to output port B
TEMP: EQU 125 ; Temporary storage for channel A
TST0: EQU 126 ; Storage for ST0

;*
;*–––

98

;*
;* PAGE 4 (B0) DATA MEMORY ALLOCATION
;* AF C(z): ci(n), i=0,1,2,..,NCZ–1
;*
P4DM: EQU 512 ; PAGE 4 DATA MEM ADRS
P4PM: EQU 65280 ; PAGE 4 PROG MEM ADRS
CE: EQU 0 ; ci(n), end of C(z) buffer
DA_CE: EQU P4DM+CE ; address of ci(n), i=NCZ–1 at CNFD
PA_CE: EQU P4PM+CE ; address of ci(n), ” at CNFP
;*
;*–––
;*
;* Memory map: cN–1(n) low address <–– PA_CE, AR2, ADCE
;* cN–2(n)
;* ...
;* c1(n)
;* c0(n) high address
;*
;*–––
;*
;* AF A(z): ai(n), i=0,1,2,..,NAZ–1
;*
AE: EQU 64 ; ai(n), end of A(z) buffer
DA_AE: EQU P4DM+AE ; address of ai(n), i=NAZ–1 at CNFD
PA_AE: EQU P4PM+AE ; address of ai(n), ” at CNFP
;*
;*–––
;*
;* Memory map: aN–1(n) low address <–– PA_AE, ADAE
;* aN–2(n)
;* ...
;* a1(n)
;* a0(n) high address
;*
;*–––
;*
;* PAGE 5 (B0) DATA MEMORY ALLOCATION
;* AF B(z): bi(n), i=0,1,2,..,NBZ–1
;*
P5DM: EQU 640 ; PAGE 5 DATA MEM ADRS
P5PM: EQU 65408 ; PAGE 5 PROG MEM ADRS
BE: EQU 0 ; bi(n), end of B(z) buffer
DA_BE: EQU P5DM+BE ; address of BE at CNFD
PA_BE: EQU P5PM+BE ; address of BE at CNFP
;*
;*–––
;*
;* Memory map: bN–1(n) low address, ADBE
;* bN–2(n)
;* ...
;* b1(n)
;* b0(n) high address
;*
;*–––
;*
;* PAGE 6 (B1) DATA MEMORY ALLOCATION for C(z)
;* x’(n–i), i=0,1,...,NCZ–1
;* y’(n–i), i=0,1,...,NCZ–1
;*
P6DM: EQU 768 ; PAGE 6 DATA MEM ADRS
XP0: EQU 0 ; x’(n)
XPE: EQU NCZ–1 ; y(n–NCZ+1)
A_XP0: EQU P6DM+XP0 ; address of x’(n)

99

A_XPE: EQU P6DM+XPE ; address of x’(n–NCZ+1)
;*
;*–––
;*
;* Memory map: x’(n) low address <–– AXP0
;* x’(n–1)
;* ...
;* x’(n–N+1) high address <–– AXPE
;*
;*–––
;*
YP0: EQU 64 ; y’(n)
YPE: EQU YP0+NCZ–1 ; y’(n–NCZ+1)
A_YP0: EQU P6DM+YP0 ; address of y’(n)
A_YPE: EQU P6DM+YPE ; address of y’(n–NCZ+1)
;*
;*–––
;*
;* Memory map: y’(n) low address <–– AYP0
;* y’(n–1)
;* ...
;* y’(n–N+1) high address <–– AYPE
;*
;*–––
;*
;* PAGE 7 (B1) DATA MEMORY ALLOCATION for A(z) and B(z)
;* x(n–i), i=0,1,...,NAZ–1
;* y(n–i), i=0,1,...,NBZ–1
;*
P7DM: EQU 896 ; PAGE 7 DATA MEMORY ADDRESS
X0: EQU 0 ; address of x(n)
XE: EQU X0+NAZ–1 ; x(n–NAZ+1)
XCE: EQU X0+NCZ–1 ; x(n–NCZ+1)
A_X0: EQU P7DM+X0 ; address of x(n)
A_XE: EQU P7DM+XE ; address of x(n–NAZ+1)
A_XCE: EQU P7DM+XCE ; address of x(n–NCZ+1)
;*
;*–––
;*
;* Memory map: x(n) ; <–– AX0
;* x(n–1)
;* ...
;* x(n–N+1) ; <–– AXE
;*
;*–––
;*
Y0: EQU 64 ; address of y(n)
YE: EQU Y0+NBZ–1 ; y(n–NBZ+1)
YCE: EQU Y0+NCZ–1 ; y(n–NCZ+1)
A_Y0: EQU P7DM+Y0 ; address of y(n)
A_YE: EQU P7DM+YE ; address of y(n–NBZ+1)
A_YCE: EQU P7DM+YCE ; address of y(n–NCZ+1)
;*
;*–––
;*
;* Memory map: y(n) ; <–– AY0
;* y(n–1)
;* ...
;* y(n–N+1) ; <–– AYE
;*
;**
;*
;* INTERRUPT BRANCHES

100

;*
;**
;*
RESET: B 32 ; On hardware reset go to INIT

ORG 4
INT1: B 1000 ; On INT1 go to interrupt 1 service routine

ORG 6
INT2: B 2000 ; On INT2 go to interrupt 2 service routine

ORG 26
RCV: B 3000 ; On RINT go to ADC service routine
;*
;**
;*
;* PROCESSOR INITIALIZATION ROUTINE
;*
;**
;*
INIT: ORG 32

LDPK 0 ; Load page 0
LALK 2E00H ; 0010 1110 0000 0000 in binary
SACL TEMP ; Initialize ST0
LST TEMP ; 0 –> DP

; 1 –> INTM, interrupts disable
; 1 –> OVM
; 0 –> OV
; 1 –> ARP

SPM 1 ; P reg. output shift left 1 bit
;*
;* INITIALIZE PAGE 0
;*

LARP AR1 ; AR1 as address pointer
LARK AR1,96 ; LOWEST PAGE 0 LOCATION –> AR1
ZAC ; 0 –> ACC
RPTK 31 ; REPEAT NEXT INSTRUCTION 32 TIMES
SACL *+ ; ZERO PAGE 0
LACK 1 ; ACC <– 1
SACL ONE ; ONE <–– 1
SACL STSFLG ; STSFLG=1, training mode first
LALK TRNTIM ; ACC <– # of training samples
SACL TRNCTR ; training time = 3 sec = 4500 samples
LALK MU ; ACC <– mu
SACL VMU ; value of mu
LALK MU1 ; ACC <– mu1
SACL VMU1 ; value of mu1
LALK SEED ; ACC <– SEED
SACL WN0 ; initial white noise = seed
LALK 22 ; ACC <– 22
SACL IMR ; Enable INT1, INT2, & RINT

;* initialize address pointers

LALK DA_CE
SACL ADCE ; address of cN–1(n) in ADCE
LALK DA_AE
SACL ADAE ; address of aN–1(n) in ADAE
LALK DA_BE
SACL ADBE ; address of bN–1(n) in ADBE
LALK A_XP0
SACL AXP0 ; address of x’(n)
LALK A_XPE
SACL AXPE ; address of x’(n–N+1)
LALK A_YP0
SACL AYP0 ; address of y’(n)

101

LALK A_YPE
SACL AYPE ; address of y’(n–N+1) LALK A_Y0
SACL AY0 ; address of y(n)
LALK A_YE
SACL AYE ; address of y(n–N+1)
LALK A_YCE
SACL AYCE ; address of y(n–NCZ+1)
LALK A_X0
SACL AX0 ; address of x(n)
LALK A_XE
SACL AXE ; address of x(n–N+1)
LALK A_XCE
SACL AXCE ; address of x(n–NCZ+1)

;* CLEAR PAGES 4, 5, 6, and 7

LARP AR1
LRLK AR1,512 ; LOWEST PAGE 4 ADDRESS –> AR1
ZAC ; 0 –> ACC
RPTK 255
SACL *+ ; zero page 4 & 5
RPTK 255
SACL *+ ; zero page 6 & 7

EINT ; ENABLE INTERRUPTS
B LOOP

;*
;**
;*
;* CYCLE START ROUTINE
;*
;**
;*
START LARP AR3 ; 3 –> ARP

LAC BUF1 ; ACC <– from input port A
SACL EN ; value of error signal from error microphone
LAC BUF2 ; ACC <– from inpit port B
SACL XN ; value of reference signal from input microphone
LAC YN ; ACC <–YN
SACL BUF3 ; value of anti-noise signal to output port A
LAC TN ; ACC <– TN
SACL BUF4 ; value of concerned signal to output port B

LAC STSFLG ; If STSFLG = 0, branch CANCEL
BZ CANCEL ; for next sample, loop forever

;*
;**
;*
;* Training mode (off-line modeling of error path)
;*
;*–––
;*
;* White noise generator:
;* Algorithm:
;*
;* rotate left 1–bit
;* b15 . b11 <–––– b2 . b0 <––––––––––––––––––|
;* | | | |–> |
;* | | |––––––> XOR –>| |
;* | | | |
;* | |–––––––––––> |–> |
;* |–––––––––––––––––> XOR –––––––––––––––––––––––> XOR ––>|
;*
;* where the initial value of WN0 (b15..b0) = seed
;*

102

;*–––
;*
TRAIN LAC WN0 ; Load noise sequence

ANDK MASK ; Mask off feedback bits
SACL WN1 ; Save temporary
ADD WN1,4 ; combine bits 11 and 15
ADD WN1,13 ; combine bit 2 with result
ADD WN1,15 ; combine bit 0 with result
ANDK MASK ; re-use mask to mask off MSB
ADDH WN0 ; combine MSB with sequence
SACH WN0,1 ; save result (and shift out MSB)
LAC WN0,11 ; scale WN0
SACH YN ; output white noise to excite secondary path

;*
;**
;*
;* Adaptive Off-line Secondary-Path Modeling
;*
;* |–––> Speaker ... error MIC –––>|
;* y(n) –––>| |
;* | ––––––––––z(n)– + |
;* |–––>| C(z) |––––>(sum)<––––––––|e(n)
;* –––––––––– |
;* : |
;* :..<......... e’(n)
;*
;* where
;* y(n) is internally generate white noise
;*
;**
;*
;* NCZ–1
;* A. Computes z(n) = sum ci(n) * y(n–i)
;* i=0
;*
;*–––
;*

LARP AR1 ; AR1 as current address reg
FIR_C MPYK 0 ; P=0

LAR AR1,AY0 ; AR1 pointing to y(n)
SACH *,AR1 ; inject white noise to buffer of C(z)
LAR AR1,AYCE ; AR1 pointing to y(n–NCZ+1)
LAC ONE,15 ; round-off offset to ACC
CNFP
RPTK NCZ–1 ; for i = NCZ–1,NCZ–2,...,0
MACD PA_CE,*– ; ci(n) * y(n–i) + ACC –> ACC
CNFD ; also move data y(n–i)
APAC ; P + ACC –> ACC = z(n)

;*
;*–––
;*
;* B. computes error signals e’(n):
;*
;* e’(n) = e(n) – z(n)
;*
;*–––
;*

NEG ; ACC = – z(n)
ADDH EN ; ACC (e’(n)) = e(n)–z(n)
SACH ZN ; z(n) = e’(n)

;*
;*–––
;*

103

;* C. update coefficients of C(z) using LMS Algorithm:
;* ci(n+1) = ci(n) + u*e’(n)*y(n–i)
;* AR1 – point to data buffer, y(n–i)
;* AR2 – point to AF coefs, ci(n)
;*
;*–––
;*

LT ZN ; T = e’(n)
MPY VMU ; P = mu*e’(n)
PAC ; ACC <– P
ADD ONE,15 ; rounding
SACH ZN ; ZN = mu*e’(n)

;*
LARK AR3,NCZ–1 ; initialize AR3 as loop counter
LAR AR1,AYCE
MAR *+ ; AR1 pointing to y(n–N+1) due to

; MACD data move effect
LAR AR2,ADCE ; AR2 pointing to cN–1(n)
LT ZN ; T = mu*e’(n)
MPY *–,AR2 ; P = mu*e’(n)*y(n–i)

;*
ADAP_C ZALR *,AR1 ; load ACC with ci(n) and round

MPYA *–,AR2 ; ci(n+1) = ci(n) + P
; P = mu*e’(n)*y(n–i) for next i

SACH *+,0,AR3 ; store ci(n+1)
BANZ ADAP_C,*–,AR2; go back to loop if counter (AR3) > 0

;*
;*–––
;*
;* check if end of training mode
;*
;*–––
;*

LAC TRNCTR ; ACC <– training counter
SUBK 1 ; decrement training counter
SACL TRNCTR ; save counter
BGZ LOOP

;*
ZAC ; end of training mode, ACC=0
SACL STSFLG ; STSFLG <– 0, now in noise control mode
LARP AR1 ; make sure AR1 is address pointer
LAR AR1,AY0 ; AR1 pointing to y(n)
RPTK NCZ ; repeat NCZ+1 time
SACL *+ ; clear C(z) buffer for x’(n) in noise

; control mode
B START ; end training, go to noise control mode

104

;**
;*
;* Noise control mode:
;*
;* to speaker from error MIC
;* from input MIC –––––––– z(n) y(n) | |e(n)
;* x(n) –––––––––>| A(z) |––––>(+)––––––––––––––| |
;* | –––––––– | | |
;* ––––––– : z’(n)| –––––––– | |
;* | C(z)| : |<––| B(z) |<–––| |
;* ––––––– : –––––––– –––––––– |
;* | : : | C(z) | |
;* | ––––––– : –––––––– |
;* |–––––>| LMS | ––––––– | |
;* x’(n) ––––––– | LMS |<––––| |
;* | ––––––– |
;* | | |
;* –––
;*
;**
;*
CANCEL LAC XN

LARP AR1 ; ARP <– 1
LAR AR1,AX0 ; AR1 point to x(n)
SACL *

;*
;*–––
;*
;* 1. Filtered–U:
;*
;* filtering x(n) by C(z) to get x’(n)
;*
;* N–1
;* x’(n) = sum ci * x(n–i)
;* i=0
;*
;* where ci, i=0,1,...,N–1 are from training mode filter C(z)
;*
;*–––
;*
FX_C MPYK 0 ; P <– 0

LAR AR1,AXCE ; AR1 point to x(n–N+1)
LAC ONE,15 ; rounding
CNFP
RPTK NCZ–1 ; for i=N–1, .., 1, 0
MAC PA_CE,*– ; ACC <– ACC+ci(n)*x(n–i)
CNFD
APAC ; ACC <– ACC+P = x’(n)
LAR AR1,AXP0 ; AR1 point to x’(n)
SACH * ; inject x’(n) into buffer

;*
;*–––
;*
;* 2. Filter x(n) by A(z) to get z(n)
;*
;* N–1
;* z(n) = sum ai(n) * x(n–i)
;* i=0
;*
;*–––
;*
FIR_A MPYK 0 ; P <– 0

LAR AR1,AXE ; AR1 point to x(n–N+1)

105

LAC ONE,15 ; rounding
CNFP
RPTK NAZ–1 ; for i=N–1, .., 1, 0
MACD PA_AE,*– ; ACC = ACC + ai(n)*x(n–i)
CNFD
APAC
SACH ZN

;*
;*–––
;*
;* 3. LMS Algorithm to update coefficients of A(z)
;*
;* ai(n+1) = ai(n) – u e(n) x’(n–i), for i=0,1,..,N–1
;*
;* Note: using ”–” when updating A(z) and B(z) in noise control mode
;* instead of ”+” when updating C(z) in training mode
;*
;*–––
;

LT EN ; T = e(n)
MPY VMU1 ; P = mu * e(n)
PAC ; ACC <– P
ADD ONE,15 ; rounding
SACH EN ; EN = mu * e(n)

;*
LARK AR3,NAZ–1 ; initialize AR3 as loop counter
LAR AR1,AXPE ; AR1 point to x’(n–N+1)
LAR AR2,ADAE ; AR2 point to aN–1(n)

;*
LT EN ; T = mu * e(n)
MPY *–,AR2 ; P = mu * e(n) * x’(n–N+1)

ADAP_A ZALR *,AR1 ; ACC <– ai(n) and rounding
MPYS *,AR1 ; ai(n+1) = ai(n) – P

 ; P = mu * e(n) * x’(n–i) for next i
DMOV *–,AR2 ; update x’(n) buffer
SUB *,LEAKY ; ai(n+1) = ai(n+1) – (2exp(LEAKY–16)) * ai(n+1)
SACH *+,0,AR3 ; ai(n+1) <– ACC
BANZ ADAP_A,*–,AR2; go back to loop if (AR3) > 0

;*
;*–––
;*
;* 4. Filtered–U:
;*
;* filtering y(n–1) by C(z) to get y’(n–1)
;*
;* N–1
;* y’(n–1) = sum ci * y(n–j–1)
;* j=0
;*
;* where ci, i=0,1,...,N–1 are from training mode filter C(z)
;*
;*–––
;*
FY_C MPYK 0 ; P <– 0

LAR AR1,AYCE ; AR1 point to y(n–N+1)
LAC ONE,15 ; rounding
CNFP
RPTK NCZ–1 ; for i=N–1, .., 1, 0
MACD PA_CE,*– ; ACC <– ACC+ci(n)*y(n–i)
CNFD
APAC ; ACC <– ACC+P = y’(n)
LAR AR1,AYP0 ; AR1 point to y’(n)
SACH * ; inject y’(n) into buffer

106

;*
;*–––
;*
;* 5. Filter y(n) by B(z) to get z’(n)
;*
;* M
;* z’(n) = sum bj(n) * y(n–j–1)
;* j=1
;*
;*–––
;*
FIR_B LAR AR1,AYE ; AR1 point to y(n–N+1)

LAC ONE,15 ; rounding
CNFP
RPTK NBZ–1 ; for i=N–1, .., 1, 0
MAC PA_BE,*– ; ACC = ACC + bi(n)*y(n–i)
CNFD
APAC ; ACC = y(n)
ADDH ZN ; z(n) + z’(n)
SACH YN ; y(n) = z(n) + z’(n)

;*
;*–––
;*
;* 6. LMS Algorithm to update coefficients of B(z)
;*
;* bj(n+1)=bj(n)–ue(n)y’(n–j), for j=1,2,...,M
;*
;*–––
;*

LARP AR1 ; AR1 as address pointer
LARK AR3,NBZ–1 ; initialize AR3 as loop counter
LAR AR1,AYPE ; AR1 point to y’(n–N+1)
LAR AR2,ADBE ; AR2 point to bN–1(n)

;*
LT EN ; T = mu * e(n)
MPY *–,AR2 ; P = mu * e(n) * y’(n–N+1)

ADAP_B ZALR *,AR1 ; ACC <– bi(n) and rounding
MPYS *,AR1 ; bi(n+1) = ai(n) – P

; P = mu * e(n) * y’(n–i) for next i
DOV *–,AR2 ; update y’(n) buffer
SUB *,LEAKY ; bi(n+1) = bi(n+1) – (2exp(leaky–16)) * bi(n+1)
SACH *+,0,AR3 ; bi(n+1) <– ACC
BANZ ADAP_B,*–,AR2; go back to loop if (AR3) > 0

;*
LAC YN ; ACC <– y(n)
LAR AR2,AY0 ; AR2 point to y(n)
SACL *,AR1 ; inject y(n) into y(n) buffer, it

; is delayed by 1 now
B LOOP

LOOP: IDLE
IDLE
B LOOP

;**
;*
;* INT1 Interrupt Service Routine
;*
;**

ORG 1000 ; Channel A interrupt
SST TST0 ; Save ST0
LDPK 0
OUT BUF3,DAC ; Output buffer to DAC
LST TST0 ; Restore ST0

107

NOP
SXF ; Reset external flag bit
EINT
RET

;**
;*
;* INT2 Interrupt Service Routine
;*
;**

ORG 2000 ; Channel B interrupt
SST TST0 ; Save ST0
LDPK 0
OUT BUF4,DAC ; Output buffer to DAC
LST TST0 ; Restore ST0
NOP
RXF ; Reset external flag bit
EINT
B START

;**
;*
;* RINT Interrupt Service Routine
;*
;**

ORG 3000 ; ADC interrupt
LDPK 0
SST TST0 ; Save ST0
LAC ADC ; Read from serial port
BIOZ IN2 ; Skip if channel B
SACL BUF1 ; Move data to channel A buffer
LST TST0 ; Restore ST0
EINT
RET

IN2: SACL BUF2 ; For channel B, save data in channel B buffer
LST TST0 ; Restore ST0
EINT
RET

Filtered-X LMS Algorithm With Feedback Cancellation

;*
;* FILE NAME : FBFXLMS.ASM
;**
;*
;* This program has been modified to run on the Ariel’s DSP-16
;* plus TMS320C25 DSP Board.
;* Kai-Ming Chung
;* Oct. 1994
;**
;*
;* File: FXLMSFC.ASM
;*
;* One-dimensional Adaptive Active Noise Control System Using
;* FXLMS Algorithm with Feedback Cancellation on TMS320C25
;*
;* Sen M. Kuo , Fall 1993
;*
;**
;*
;* SYSTEM CONFIGURATION:

108

;*
;* x(n)
;* M1 *|––––>|–––––––––––––––––––––––|
;* | |
;* | Adaptive FXLMS ANC | y(n)
;* e(n) | System |––––––> antinoise output
;* M2 *|––––>| |
;* |–––––––––––––––––––––––|
;*
;* where
;* x(n) – signal from the input microphone
;* e(n) – signal from the error microphone
;* y(n) – antinoise to drive the canceling loudspeaker
;* (noise cancellation mode), or
;* the training signal (off-line modeling mode)
;*
;* Ports: x(n) from input port B
;* e(n) from input port A
;* y(n) to output port B
;*
;* The flow of program is:
;*
;* C25 initialization ––> off-line secondary path and feedback
;* path modeling ––> on-line active noise control
;*
;* A. Off-line modeling:
;*
;* input MIC to Speaker error MIC
;* |x(n) | |
;* | | |
;* | + – f(n) –––––––– | ––––––––z(n) – + |
;* |––>(S)<––––––| D(z) |<–––|–––>| C(z) |–––––>(s)<–––––|e(n)
;* | –––––––– | –––––––– |
;* e1(n).........>...: y(n) :..<........ e2(n)
;*
;* where
;* y(n) is an internally generate white noise
;* C(z) and D(z) are an adaptive modeling filter,
;* both are updated by LMS algorithm
;*
;*
;* B. On-line noise control:
;*
;* from input MIC
;* |
;* +| – f(n) –––––––––
;* (S)<–––––––| D(z) |<–––––|
;* | ––––––––– |
;* | –––––––––– |y(n) e(n) from error MIC
;* |––––>| W(z) |––––––––––––> |
;* | –––––––––– to speaker |
;* ––––––– : |
;* | C(z)| : |
;* ––––––– ––––:–––– |
;* |–––––>| FXLMS |<–––––––––––––––––––––––
;* x’(n) –––––––––
;*
;* where C(z) is a fixed error path modeling filter from training mode
;* D(z) is a fixed feedback canceling filter from training mode
;* W(z) is an adaptive noise control filter, updated by FXLMS
;*
;**
;*

109

;* define constants (be modified for different applications)
;*
;*–––
;*
FS: EQU 2000 ; assume sampling rate is 2 kHz.
TRNTIM: EQU 30000 ; training time = 15 seconds
NCZ: EQU 64 ; order of C(z), max = 64
NDZ: EQU 64 ; order of D(z), max = 64
NWZ: EQU 64 ; order of W(z), max = 94
MU: EQU 4096 ; coef. update stepsize for off-line modeling
MU1: EQU 328 ; coef. update stepsize for W(z)
MASK: EQU 8805h ; to mask off bits 0,2,11,15
SEED: EQU 12357 ; seed for white noise generator
LEAKY: EQU 2 ; leaky factor
;*
;**
;*
;* Memory map:
;* B2: page 0 – data I/O buffer
;*
;* B0: page 4 – coefs of AF C(z) : ci(n), i=0,1,..,(NCZ–1)
;* (error path modeling filter), NCZ <= 64
;* – coefs of AF D(z) : di(n), i=0,1,..,(NDZ–1)
;* (feedback path modeling filter), NDZ <=64
;*
;* B0: page 5 – coefs of AF W(z) : wi(n), i=0,1,..,(NWZ–1)
;* (noise control filter) NWZ <= 94
;*
;* B1: page 6 – data buffer for C(z) and D(z):
;*
;* During off-line modeling, buffer contains training
;* signal y(n–i), i=0,1,..,(NCZ–1)
;*
;* During on-line canceling, buffer is for D(z),
;* y(n–i), i=0,1,...(NDZ–1)
;*
;* 833–895 data buffer for x’(n)
;*
;* B1: page 7 – 896–927 data buffer for x’(n)
;* 928–1023 data buffer for W(z) : x(n–i), i=0,1,...,(NWZ–1)
;*
;**
;*
;* PAGE 0 (memory-mapped regs and B2) DATA MEMORY ALLOCATION
;*
;*–––
;*
P0DM: EQU 0 ; page 0 data RAM address
DAC: EQU 13 ; DAC I/O port
ADC: EQU 0 ; Serial receive address
IMR: EQU 4 ; Interrupt mask register
BUF1: EQU 96 ; Buffer for channel A input data
BUF2: EQU 97 ; Buffer for channel B input data
BUF3: EQU 98 ; Buffer for channel A output data
BUF4: EQU 99 ; Buffer for channel B output data
WN0: EQU 100 ; storage for white noise generator
WN1: EQU 101 ; ”
TRNCTR: EQU 102 ; training mode (0ff-line modeling) counter
STSFLG: EQU 103 ; program status flag, 1 = training mode
ONE: EQU 104 ; ONE = 1
VMU: EQU 105 ; value of mu
VMU1: EQU 106 ; value of mu1

110

ADCE: EQU 107 ; address of cN–1(n)
ADDE: EQU 108 ; address of dN–1(n)
ADWE: EQU 109 ; address of wN–1(n)
AY0: EQU 110 ; address for y(n)
AYE: EQU 111 ; end address for y(n–N+1)
AX0: EQU 112 ; address for x(n)
AXE: EQU 113 ; end address for x(n–N+1)
AXCE: EQU 114 ; end address for x(n–NCZ+1)
AXP0: EQU 115 ; address for x’(n)
AXPE: EQU 116 ; end address for x’(n–N+1)

;* data buffer for signals

YN: EQU 117 ; y(n), to loudspeaker
XN: EQU 118 ; x(n), from input MIC
EN: EQU 119 ; e(n), from error MIC
ZN: EQU 120 ; z(n), output from W(z)
FN: EQU 121 ; f(n), output from D(z)
TN: EQU 122 ; to output port B

TEMP: EQU 123 ; Temporary storage location
TST0: EQU 124 ; Storage for ST0
;*
;*–––
;*
;* PAGE 4 (B0) DATA MEMORY ALLOCATION
;* AF C(z): ci(n), i=0,1,2,..,NCZ–1
;*
P4DM: EQU 512 ; PAGE 4 DATA MEM ADRS
P4PM: EQU 65280 ; PAGE 4 PROG MEM ADRS
CE: EQU 0 ; ci(n), end of C(z) buffer
DA_CE: EQU P4DM+CE ; address of ci(n), i=NCZ–1 at CNFD
PA_CE: EQU P4PM+CE ; address of ci(n), ” at CNFP
;*
;*–––
;*
;* Memory map: cN–1(n) low address <–– PA_CE, ADCE
;*
;* cN–2(n)
;* ...
;* c1(n)
;* c0(n) high address
;*
;*–––
;*
;* AF D(z): di(n), i=0,1,2,..,NDZ–1
;*
DE: EQU 64 ; di(n), end of D(z) buffer
DA_DE: EQU P4DM+DE ; address of di(n), i=NDZ–1 at CNFD
PA_DE: EQU P4PM+DE ; address of di(n), ” at CNFP
;*
;*–––
–
;*
;* Memory map: dN–1(n) low address <–– PA_DE, ADCE
;* dN–2(n)
;* ...
;* d1(n)
;* d0(n) high address
;*
;*–––
;*
;* PAGE 5 (B0) DATA MEMORY ALLOCATION
;* AF W(z): wi(n), i=0,1,2,..,NWZ–1
;*

111

P5DM: EQU 640 ; PAGE 5 DATA MEM ADRS
P5PM: EQU 65408 ; PAGE 5 PROG MEM ADRS
WE: EQU 0 ; wi(n), end of W(z) buffer
DA_WE: EQU P5DM+WE ; address of WE at CNFD
PA_WE: EQU P5PM+WE ; address of WE at CNFP
;*
;*–––
;*
;* Memory map: wN–1(n) low address, ADWE
;* wN–2(n)
;* ...
;* w1(n)
;* w0(n) high address
;*
;*–––
;*
;* PAGE 6 (B1) DATA MEMORY ALLOCATION for C(z)
;* x’(n–i), i=0,1,...,NCZ–1
;*
P6DM: EQU 768 ; PAGE 6 DATA MEM ADRS
Y0: EQU 0
YE: EQU Y0+NDZ–1 ; y(n–NDZ+1)
A_Y0: EQU P6DM+Y0 ; address of y(n)
A_YE: EQU P6DM+YE ; address of y(n–NDZ+1)
;*
;*–––
;*
;* Memory map: y(n) low address <–– AY0
;* y(n–1)
;* ...
;* y(n–N+1) high address <–– AYE
;*
;*–––
;*
XP0: EQU 65 ; x’(n), (64+1), leave one space for y(n)
XPE: EQU XP0+NWZ–1 ; x’(n–NWZ+1)
A_XP0: EQU P6DM+XP0 ; address of x’(n)
A_XPE: EQU P6DM+XPE ; address of x’(n–NWZ+1)
;*
;*–––
;*
;* Memory map: x’(n) low address <–– AXP0
;* x’(n–1)
;* ...
;* x’(n–N+1) high address <–– AXPE
;*
;*–––
;*
;* PAGE 7 (B1) DATA MEMORY ALLOCATION for W(z)
;* x(n–i), i=0,1,...,NWZ–1,
;* part of this page is for x’(n) (896–927).
;*
P7DM: EQU 896 ; PAGE 7 DATA MEMORY ADDRESS
X0: EQU 32 ; x(n)
XE: EQU X0+NWZ–1 ; x(n–NWZ+1)
XCE: EQU X0+NCZ–1 ; x(n–NCZ+1)
A_X0: EQU P7DM+X0 ; address of x(n)
A_XE: EQU P7DM+XE ; address of x(n–NWZ+1)
A_XCE: EQU P7DM+XCE ; address of x(n–NCZ+1)
;*
;*–––
;*
;* Memory map: x(n) ; <–– AX0

112

;* x(n–1)
;* ...
;* x(n–N+1) ; <–– AXE
;*
;**
;*
;* INTERRUPT BRANCHES
;*
;**
;*
RESET: B 32 ; On hardware reset go to INIT

ORG 4
INT1: B 1000 ; On INT1 go to interrupt 1 service routine

ORG 6
INT2: B 2000 ; On INT2 go to interrupt 2 service routine

ORG 26
RCV: B 3000 ; On RINT go to ADC service routine
;*
;**
;*
;* PROCESSOR INITIALIZATION ROUTINE
;*
;**
;*
INIT: ORG 32

LDPK 0 ; Load page 0
LALK 2E00H ; 0010 1110 0000 0000 in binary
SACL TEMP ; Initialize ST0
LST TEMP ; 0 –> DP

; 1 –> INTM, interrupts disabled
; 1 –> OVM
; 0 –> OV
; 1 –> ARP

SPM 1 ; P reg. output shift left 1 bit

;*
;* INITIALIZE PAGE 0
;*

LARP AR1 ; AR1 as address pointer
LARK AR1,96 ; LOWEST PAGE 0 LOCATION –> AR1
ZAC ; 0 –> ACC
RPTK 31 ; REPEAT NEXT INSTRUCTION 32 TIMES
SACL *+ ; ZERO PAGE 0
LACK 1 ; ACC <– 1
SACL ONE ; ONE <–– 1
SACL STSFLG ; STSFLG=1, training mode first
LALK TRNTIM ; ACC <– # of training samples
SACL TRNCTR ; training time = 3 seconds = 4500 samples
LALK MU ; ACC <– mu
SACL VMU ; value of mu
LALK MU1 ; ACC <– mu1
SACL VMU1 ; value of mu1
LACK 22 ; ACC <– 22
SACL IMR ; Enable INT1, INT2 & RINT
LALK SEED ; ACC <– SEED
SACL WN0 ; initial white noise = seed

;* initialize address pointers

LALK DA_CE
SACL ADCE ; address of cN–1(n) in ADCE
LALK DA_DE
SACL ADDE ; address of dN–1(n) in ADDE

113

LALK DA_WE
SACL ADWE ; address of wN–1(n) in ADWE
LALK A_Y0
SACL AY0 ; address of y(n)
LALK A_YE
SACL AYE ; address of y(n–N+1)
LALK A_X0
SACL AX0 ; address of x(n)
LALK A_XE
SACL AXE ; address of x(n–N+1)
LALK A_XP0
SACL AXP0 ; address of x’(n)
LALK A_XPE
SACL AXPE ; address of x’(n–N+1)
LALK A_XCE
SACL AXCE ; address of x(n–NCZ+1)

;* CLEAR PAGES 4, 5, 6, and 7
LARP AR1
LRLK AR1,512 ; LOWEST PAGE 4 ADDRESS –> AR1
ZAC ; 0 –> ACC
RPTK 255
SACL *+ ; zero page 4 & 5
RPTK 255
SACL *+ ; zero page 6 & 7

EINT ; ENABLE INTERRUPTS
B LOOP

;*
;**
;*
;* CYCLE START ROUTINE
;*
;**
;*
START LARP AR3 ; 3 –> ARP

LAC BUF1 ; ACC <– from input port A
SACL EN ; value of error signal from error microphone
LAC BUF2 ; ACC <– from input port B
SACL XN ; value of reference signal from input microphone
LAC YN ; ACC <– YN
SACL BUF3 ; value of anti-noise signal to output port A
LAC TN ; ACC <– TN
SACL BUF4 ; value of concerned signal to output port B

LAC STSFLG ; if STSFLG = 1, goto CANCEL
BZ CANCEL ; for next sample, loop forever

;*
;**
;*
;* Training mode (off-line modeling of secondary path and feedback path)
;*
;*–––
;*
;* White noise generator:
;* Algorithm:
;*
;* rotate left 1-bit
;* b15 . b11 <–––– b2 . b0 <––––––––––––––––––|
;* | | | |–> |
;* | | |––––––> XOR –>| |
;* | | | |
;* | |–––––––––––> |–> |
;* |–––––––––––––––––> XOR –––––––––––––––––––––––> XOR ––>|
;*

114

;* where the initial value of WN0 (b15..b0) = seed
;*
;*–––
;*
TRAIN LAC WN0 ; Load noise sequence

ANDK MASK ; Mask off feedback bits
SACL WN1 ; Save temporary
ADD WN1,4 ; combine bits 11 and 15
ADD WN1,13 ; combine bit 2 with result
ADD WN1,15 ; combine bit 0 with result
ANDK MASK ; re-use mask to mask off MSB
ADDH WN0 ; combine MSB with sequence
SACH WN0,1 ; save result (and shift out MSB)

LAC WN0,11 ; scale WN0
SACH YN ; output white noise

;*
;**
;*
;* Adaptive Off-line Secondary-Path and Feedback Path Modeling
;*
;* input MIC to Speaker error MIC
;* |x(n) | |
;* | | |
;* | + – f(n) –––––––– | ––––––––z(n) – + |
;* |––>(S)<––––––| D(z) |<–––|–––>| C(z) |–––––>(s)<–––––|e(n)
;* | –––––––– | –––––––– |
;* e1(n).........>...: y(n) :..<........ e2(n)
;*
;* where
;* y(n) is an internally generate white noise
;* C(z) and D(z) are an adaptive modeling filter,
;* both are updated by LMS algorithm
;*
;**
;*
;* NCZ–1
;* A. Computes z(n) = sum ci(n) * y(n–i)
;* i=0
;*–––
;*

LARP AR1 ; AR1 as current address reg
FIR_C MPYK 0 ; P=0

LAR AR1,AY0 ; AR1 pointing to y(n)
SACH *,AR1 ; inject white noise to buffer y(n)
LAR AR1,AYE ; AR1 pointing to y(n–NCZ+1)
LAC ONE,15 ; round-off offset to ACC
CNFP
RPTK NCZ–1 ; for i = NCZ–1,NCZ–2,...,0
MAC PA_CE,*– ; ci(n) * y(n–i) + ACC –> ACC
CNFD ;
APAC ; P + ACC –> ACC = z(n)

;*
;*–––
;*
;* B. computes error signals e1(n):
;*
;* e1(n) = e(n) – z(n)
;*
;*–––
;*

NEG ; ACC = – z(n)
ADDH EN ; e1(n) = e(n) – z(n)
SACH ZN ; z(n) = e1(n)

115

;*
;*–––
;*
;* C. update coefficients of C(z) using LMS Algorithm:
;*
;* ci(n+1) = ci(n) + u*e1(n)*y(n–i)
;*
;* AR1 – point to data buffer, y(n–i)
;* AR2 – point to AF coefs, ci(n)
;*
;*–––
;*

LT ZN ; T = e1(n)
MPY VMU ; P = mu*e1(n)
PAC ; ACC <– P
ADD ONE,15 ; rounding
SACH ZN ; ZN = mu*e1(n)

;*
LARK AR3,NCZ–1 ; initialize AR3 as loop counter
LAR AR1,AYE ; AR1 pointing to y(n–N+1)
LAR AR2,ADCE ; AR2 pointing to cN–1(n)
LT ZN ; T = mu*e1(n)
LARP AR1
MPY *–,AR2 ; P = mu*e1(n)*y(n–i)

;*
ADAP_C ZALR *,AR1 ; load ACC with ci(n) and round

MPYA *–,AR2 ; ci(n+1) = ci(n) + P
; P = mu*e1(n)*y(n–i) for next i

SACH *+,0,AR3 ; store ci(n+1)
BANZ ADAP_C,*–,AR2 ; go back to loop if counter (AR3) > 0

;*
;*–––
;* NDZ–1
;* D. Computes f(n) = sum di(n) * y(n–i)
;* i=0
;*–––
;*

LARP AR1 ; AR1 as current address reg
FIR_D MPYK 0 ; P=0

LAR AR1,AYE ; AR1 pointing to y(n–NDZ+1)
LAC ONE,15 ; round–off offset to ACC
CNFP
RPTK NDZ–1 ; for i = NDZ–1,NDZ–2,...,0
MACD PA_DE,*– ; di(n) * y(n–i) + ACC –> ACC
CNFD ; also move data y(n–i)
APAC ; P + ACC –> ACC = f(n)

;*
;*–––
;*
;* E. computes error signals e2(n):
;*
;* e2(n) = x(n) – f(n)
;*
;*–––
;*

NEG ; ACC = – f(n)
ADDH XN ; e2(n) = x(n) – f(n)
SACH ZN ; ZN = e2(n)

;*
;*–––
;*
;* F. update coefficients of D(z) using LMS Algorithm:
;*

116

;* di(n+1) = di(n) + u*e2(n)*y(n–i)
;*
;* AR1 – point to data buffer, y(n–i)
;* AR2 – point to AF coefs, di(n)
;*
;*–––
;*

LT ZN ; T = e2(n)
MPY VMU ; P = mu*e2(n)
PAC ; ACC <– P
ADD ONE,15 ; rounding
SACH ZN ; ZN = mu*e2(n)

;*
LARK AR3,NDZ–1 ; initialize AR3 as loop counter
LAR AR1,AYE
MAR *+ ; AR1 pointing to y(n–N+1) due to

; MACD data move effect
LAR AR2,ADDE ; AR2 pointing to dN–1(n)
LT ZN ; T = mu*e2(n)
MPY *–,AR2 ; P = mu*e2(n)*y(n–i)

;*
ADAP_D ZALR *,AR1 ; load ACC with di(n) and round

MPYA *–,AR2 ; di(n+1) = di(n) + P
; P = mu*e2(n)*y(n–i) for next i

SACH *+,0,AR3 ; store di(n+1)
BANZ ADAP_D,*–,AR2 ; go back to loop if counter (AR3) > 0

;*
;*–––
;*
;* check if end of training mode
;*
;*–––
;*

LAC TRNCTR ; ACC <– training counter
SUBK 1 ; decrement training counter
SACL TRNCTR ; save counter
BGZ LOOP

;*
ZAC ; end of training mode, ACC=0
SACL STSFLG ; STSFLG <– 0, now in noise control mode
LARP AR1 ; make sure AR1 is address pointer
LAR AR1,AY0 ; AR1 pointing to y(n)
RPTK NCZ ; repeat NCZ+1 time
SACL *+ ; clear C(z) buffer for x’(n) in noise

; control mode
B START ; end training, go to noise control mode

;*
;**
;*
;* Noise control mode:
;*
;* from input MIC
;* |
;* +| – f(n) –––––––––
;* (S)<–––––––| D(z) |<–––––|
;* | ––––––––– |
;* | –––––––––– |y(n) e(n) from error MIC
;* |––––>| W(z) |––––––––––––> |
;* | –––––––––– to speaker |
;* ––––––– : |
;* | C(z)| : |
;* ––––––– ––––:–––– |
;* |–––––>| FXLMS |<–––––––––––––––––––––––

117

;* x’(n) –––––––––
;*
;* where C(z) is a fixed error path modeling filter from training mode
;* D(z) is a fixed feedback canceling filter from training mode
;* W(z) is an adaptive noise control filter, updated by FXLMS
;*
;**
;*
;* In real–time x(n) is from input microphone
;*–––
;*
CANCEL LAC XN

LARP AR1 ; ARP = 1
LAR AR1,AX0
SACL *

;*
;*–––
;*
;* 1. compute feedback free input for adaptive filter W(z)
;*
;* x(n) = x(n) – f(n)
;*
;*–––
;*

LAC XN ; x(n) –> ACC
SUB FN ; x(n) – f(n)
LAR AR1,AX0 ; x(n) = x(n) – f(n)
SACL *

;*
;*–––
;*
;* 2. Filtered–X, filtering x(n) by C(z) to get x’(n)
;*
;* N–1
;* x’(n) = sum ci * x(n–i)
;* i=0
;*
;* where ci, i=0,1,..,N–1 are from training mode filter C(z)
;*
;*–––
;*
FX_C MPYK 0 ; P <– 0

LAR AR1,AXCE ; AR1 point to x(n–NCZ+1)
LAC ONE,15 ; rounding
CNFP
RPTK NCZ–1 ; for i=N–1, .., 1, 0
MAC PA_CE,*– ; ACC <– ACC+ci(n)*x(n–i)
CNFD
APAC ; ACC <– ACC+P = x’(n)
LAR AR1,AXP0 ; AR1 point to x’(n)
SACH * ; inject x’(n) into buffer

;*
;*–––
;*
;* 3. Filter x(n) by W(z) to get y(n), the anti–noise
;*
;* N–1
;* y(n) = sum wi(n) * x(n–i)
;* i=0
;*
;*–––
;*
FIR_W MPYK 0 ; P <– 0

118

LAR AR1,AXE ; AR1 point to x(n–N+1)
LAC ONE,15 ; rounding
CNFP
RPTK NWZ–1 ; for i=N–1, .., 1, 0
MACD PA_WE,*– ; ACC = ACC + wi(n)*x(n–i)
CNFD
APAC ; ACC = y(n)
LAR AR1,AY0 ;
SACH * ; inject y(n) into y(n–i) buffer
SACH YN

;*
;*–––
;*
;* 4. FXLMS Algorithm to update coefficients of W(z)
;*
;* wi(n+1) = wi(n) – u e(n) x’(n–i), for i=0,1,..,N–1
;*
;* Note: using ”–” when updating W(z) in noise control mode
;* instead of ”+” when updating C(z) in training mode
;*
;* AR1 pointing to x’(n–i) data buffer
;* AR2 pointing to wi(n) coefs buffer
;*
;*–––
;*

LT EN ; T = e(n)
MPY VMU1 ; P = mu * e(n)
PAC ; ACC <– P
ADD ONE,15 ; rounding
SACH EN ; EN = mu * e(n)

;*
LARK AR3,NWZ–1 ; initialize AR3 as loop counter
LAR AR1,AXPE ; AR1 point to x’(n–N+1)
LAR AR2,ADWE ; AR2 point to wN–1(n)

;*
LT EN ; T = mu * e(n)
LARP AR1
MPY *–,AR2 ; P = mu * e(n) * x’(n–N+1)

ADAP_W ZALR *,AR1 ; ACC <– wi(n) and rounding
MPYS *,AR1 ; wi(n+1) = wi(n) – P

 ; P = mu * e(n) * x’(n–i) for next i
DMOV *–,AR2 ; update x’(n) buffer
SUB *,LEAKY ; wi(n+1) = wi(n+1) – (2exp(LEAKY–16)) * wi(n+1)
SACH *+,0,AR3 ; wi(n+1) <– ACC
BANZ ADAP_W,*–,AR2; go back to loop if (AR3) > 0

;*
;**
;*
;* 5. Filter y(n) by D(z) to get f(n), the feedback from anti-noise
;* speaker to input microphone.
;*
;* NDZ–1
;* f(n) = sum di * y(n–i)
;* i=0
;*
;*–––
;*
FD MPYK 0 ; P <– 0

LAR AR1,AYE ; AR1 point to y(n–N+1)
LAC ONE,15 ; rounding
CNFP
RPTK NDZ–1 ; for i=N–1, .., 1, 0
MACD PA_DE,*– ; ACC = ACC + di(n)*y(n–i)

119

CNFD
APAC ; ACC = f(n)
SACH FN ; f(n) –> FN

B LOOP

LOOP IDLE
IDLE
B LOOP

;**
;*
;* INT1 Interrupt Service Routine
;*
;**

ORG 1000 ; Channel A interrupt
SST TST0 ; Save ST0
LDPK 0
OUT BUF3,DAC ; Output buffer to DAC
LST TST0 ; Restore ST0
NOP
SXF ; Set external flag bit
EINT
RET

;**
;*
;* INT2 Interrupt Service Routine
;*
;**

ORG 2000 ; Channel B interrupt
SST TST0 ; Save ST0
LDPK 0
OUT BUF4,DAC ; Output buffer to DAC
LST TST0 ; Restore ST0
NOP
RXF ; Set external flag bit
EINT
B START

;**
;*
;* RINT Interrupt Service Routine
;*
;**

ORG 3000 ; ADC interrupt
LDPK 0
SST TST0 ; Save ST0
LAC ADC ; Read from serial port
BIOZ IN2 ; Skip if channel B
SACL BUF1 ; Move data to channel A buffer
LST TST0 ; Restore ST0
EINT
RET

IN2: SACL BUF2 ; For channel B, save data in channel B buffer
LST TST0 ; Restore ST0
EINT
RET

120

121

APPENDIX D: GENERAL CONFIGURABLE SOFTWARE FOR ANC EVALUATION

These software modules together provide an easy way to evaluate a number of one-dimensional ANC
algorithms using any of several tools. A configuration module is included that allows the user to specify
different algorithms, adaptive filter characteristics, and simulation model characteristics. The conditional
assembly capability of TI’s fixed-point macro assembler and linker is used to construct a custom executable
file that can be run on a simulator, an evaluation module (EVM), or a target system. The software modules
described in this section run on any TMS320C2x DSP.

Each major function performed by the software is coded in a separate module. A list of the modules is given
here with a brief functional description of each. The configuration file (config.asm) is described in more
detail, and assembly-language program code listings for all of the modules follow.

ANC.ASM Contains training and cancellation routines. This is where the body of the ANC
algorithm resides.

CONFIG.ASM Contains software configuration settings. This is the only module that must be
modified to change the characteristics of the executable file.

GLOBALS.ASM Contains global constant and variable definitions.

INIT.ASM Contains processor and algorithm initialization routines.

MACROS.ASM Contains special macro routines.

MAIN.ASM Contains code to control program flow through the different software modules.

MEMORY.ASM Contains memory configuration directives that allocate data and program memory.

MODEL.ASM Contains simulation transfer-function models and waveform generator code.

VECTOR.ASM Contains interrupt vectors and unused interrupt traps.

ANC26.CMD Linker command file for ’C26-based simulator or EVM. Modifications to the
memory map must be made if a different target system is used to run the algorithms or
if a change to the default data and program space definitions is desired. The default
memory map assigns the memory locations 8000h through 0f9ffh to external data,
which is used for the trace buffer function if it is enabled.

MAKE.BAT Batch file that assembles and links software modules into an executable file after
changes have been made in the configuration file CONFIG.ASM.

EVMINIT.CMD Control file that contains the memory configuration to be used by the HLL debugger
when running the ANC code on the ’C2x EVM. The memory configuration must
match the memory map defined in the linker command file. A similar configuration
file called SIMINIT.CMD is required if the software simulator is used to run the
executable code.

122

Configuration File (config.asm) Description

Section 1 of the configuration file is used to configure the software for different I/O, adaptive filter forms,
and adaptation methods. It also allows acoustic channel simulation and trace buffers to be enabled. Some
of the switch settings in Section 1 determine which constants are active in Section 2. Explanations of the
settings are summarized in Table 5 and more detail follows the table.

Table 5. Section 1 of the Configuration File

SWITCH
NAME SETTINGS MEANING OF EACH SETTING

PROCESSOR C26 Target processor is TMS320C26

C25 Target processor is TMS320C25

TIMEBASE timer Onboard timer controls sample rate

external External interrupt #0 controls sample rate

freerun Run as fast as possible (simulator)

SIMULATION yes Simulation mode enabled

no Simulation mode disabled

TRACE in_out Trace algorithm input and output

out Trace algorithm output only

none No trace

GENERATOR white_noise White noise generator enabled

sinewave Sine-wave generator enabled

ALGORITHM fxlms Filtered-X LMS enabled (FXLMS)

fbfxlms FXLMS with acoustic feedback enabled (FBFXLMS)

furlms Filtered-U recursive LMS enabled (FURLMS)

fanc Feedback ANC enabled

ADAPTATION lms Standard LMS coefficient adaptation enabled

leaky_lms Leaky LMS coefficient adaptation enabled

The PROCESSOR switch selects the target processor on which the software is to run.

The TIMEBASE switch selects the method of controlling the effective sample rate of the algorithm. The
freerun selection speeds up execution in the simulator.

The SIMULATION switch enables the modeling of the acoustic channel response. This allows the
algorithm to be tested in an ideal acoustic environment prior to testing in the real world. Combined with
the TRACE switch, SIMULATION can provide performance information about the algorithm.

The TRACE switch enables a trace buffer for the error signal for both training and cancellation modes. If
in_out is selected, the input signal for the cancellation mode is also traced. It is intended that the trace buffer
be implemented in external data RAM like that used on the ’C2x EVM. A total of approximately 30K words
of memory are available with the default memory map defined in the module anc26.cmd. This function is
intended to be used with the SIMULATION option.

The GENERATOR switch selects either the white noise or the sine-wave generator. The training mode and
most verification tests use the white noise generator to produce a broadband input signal to the system. The
sine-wave generator produces a signal that is a summation of a 150-Hz and a 250-Hz signal (assuming a
1500-Hz sample rate).

123

The ALGORITHM switch selects one of the one-dimensional ANC algorithms described in this report.

The ADAPTATION switch selects either the standard LMS algorithm or the leaky LMS algorithm for the
coefficient adaptation routine. The leaky LMS algorithm is typically used with fixed-point processors to
prevent coefficient overflow.

Section 2 of the configuration file contains constants that define the characteristics of the algorithm and
simulation (if it is enabled). The constants and their values are summarized in Table 6 and more detail
follows the table.

Table 6. Section 2 of the Configuration File

CONSTANT VALUE DESCRIPTION

CLKOUT 10000000 DSP instruction-cycle rate (in Hz)

FS 1500 Sample rate (samples/second)

TIME 3 Number of seconds to run training mode

NSAMPLES TIME*FS Number of samples processed in training mode

NTICKS (CLKOUT/FS)-1 TIMER period

µ 1024 Coefficient update step size

LEAKAGE 1 Shift value to control leak off

NAz 64 IIR feedforward filter order A(z)

NBz 64 IIR feedback filter order B(z)

NCz 64 Error path model order C(z)

NDz 64 Acoustic feedback model order D(z)

NWz 64 FIR filter order W(z)

SIMLENGTH 4500 Cancellation routine simulation run time

Gs 2458 Noise source path gain: Gs = 0.6

Ts 10 Noise source path sample delay period

Ge 3277 Error path gain: Ge = 0.8

Te 2 Error path sample delay period

Gf 2867 Acoustic feedback path gain: Gf = 0.7

Tf Ts–Te Acoustic feedback path sample delay period

CLKOUT defines the instruction cycle rate of the DSP. It and the sample rate are used together to define
the onboard timer period if the TIMEBASE switch in Section 1 is set to timer. The value of 10 MHz shown
above is the instruction cycle rate for a 40-MHz input clock; faster and slower system clocks exist and
depend on the particular DSP. The value for CLKOUT is obtained by dividing the system clock by 4.

FS defines the sample rate of the ANC system. It and the constant TIME are used to determine how long
the training mode runs. Also, if the TIMEBASE switch is set to timer, FS is used with CLKOUT to
determine the value to enter into the onboard timer’s period register. If the value of FS is changed and the
GENERATOR switch is set to sinewave, the two sine-wave frequencies generated are not 150 and 250 Hz.
Equations showing the relationship between FS and the sine-wave frequencies are given at the end of this
section.

TIME defines sets the number of seconds the training mode runs. The default value of 3 seconds allows
adequate time for the adaptation routine to converge on the filter coefficient values that model the acoustic
channel error path (and the feedback path for the feedback FXLMS algorithm). If the error term has not
approached zero by the end of the period TIME, a problem is likely to exist.

124

NSAMPLES is the product of training-mode run time (TIME) and the sample rate (FS). NSAMPLES is
used as a loop counter to control how many samples the training routine processes.

NTICKS is the value placed in the onboard timer’s period register. It is computed using the DSP instruction
cycle rate CLKOUT) and the desired sample rate (FS). The value of NTICKS is the number of instruction
cycles (clock ticks) to elapse between timer interrupts, which is used to control the sample rate. This
constant is valid only when the TIMEBASE switch is set to timer.

The constant µ defines the step size of the adaptive filter coefficient adaptation. It controls how fast the error
term causes the coefficients to change and the minimum magnitude of the error term. The larger the value
of µ, the faster the coefficients adapt and the larger the minimum error signal. If too large a value of µ is
used, the adaptation routing can become unstable. A value for µ of less than 1/N, where N is the adaptive
filter order, should be used.

LEAKAGE is used when the ADAPTATION switch is set to leaky_lms. It controls how much of the
previous value of the adaptive filter coefficient is used in the adaptation routine. LEAKAGE is used as a
shift value as shown in the equation:

wi(n� 1) � �1 – 1
2LEAKAGE

�wi(n) – �e(n)x(n) (96)

NAz through NWz define the order of each filter used in the ANC algorithm, where the filters are A(z),
B(z), C(z), D(z), and W(z). The setting of the ALGORITHM switch determines which of these constants
are valid. These constants are also used in the module memory.asm to define array sizes for the coefficients
placed in block B0 of the ’C2x DSP’s on-chip RAM. Note that all of the coefficient arrays must fit within
block B0, which is 256 words long in the ’C25, while in the ’C26 it is 512 words long. In the memory map,
all of the filter coefficients, input signals, and output signals were allocated in the on-chip memory blocks
B0, Bl, and B2 of the ’C25. Table 7 shows the coefficient arrays used with each algorithm and how to
compute the total amount of memory used. Typically, the order of the adaptive filter defined by NAz, NBz,
and NWz is greater than or equal to the fixed correction filters defined by NCz and NDz.

The ’C2x chip used was a 100-ns (single-cycle instruction time) ’C25 device. Therefore, the required DSP
time for the ’C25 to perform an algorithm in real time is equal to the number of instruction cycles needed
times 100 ns. The sampling period between two sampling points is determined by the sampling frequency.
The higher the sampling frequency, the shorter the sampling period. The DSP overhead is the percentage
of the sampling period in which the algorithm is executed by the DSP. Hence, the calculation of DSP
overhead for each algorithm can be expressed as:

(97)DSP overhead � DSP execution time
Sampling period

� 100%

Based on equation (97) and NWz � NAz � NBz � NCz � NDz � 64 from Table 6, the number of
instruction cycles, DSP execution time, and DSP overhead for the ANC setup using FXLMS, FBFXLMS,
and FURLMS algorithms at a 2000-Hz sampling frequency are calculated as shown in Table 7.

125

Table 7. Number of Instruction Cycles, DSP Execution Time, and TMS320C25 DSP
Overhead per Algorithm

ALGORITHM
CALCULATION FOR NUMBER OF

INSTRUCTION CYCLES

NUMBER OF
INSTRUCTION

CYCLES

DSP
EXECUTION

TIME (µs)

TMS320C25
DSP

OVERHEAD (%)

FXLMS 77 + NWz* 9 + NCz * 2 781 78.1 15.62

FBFXLMS 102 + NWz * 9 + NCz * 2 + NDz * 2 934 93.4 18.68

FURLMS 107 + NAz * 9 + NBz * 9 + NCz * 4 1515 151.5 30.3

For the detailed calculations of the instruction cycles needed, refer to the application book Digital Signal
Processing Applications with the TMS320 Family, Volume 3 [5], published by TI.

SIMLENGTH defines the cancellation routine run time if the SIMULATION switch is set to yes.
SIMLENGTH is used as a loop counter to control the number of samples processed by the cancellation
routine. The default value of 4500 allows adequate time for the error signal to reach a minimum. If the error
signal has not converged to almost zero by the end of this time period, the other switch and constant settings
must be checked.

Gs through Tf define the characteristics of the acoustic channel model used to compute the
error-microphone input signal. These constants are valid only if the SIMULATION switch is set to yes. The
basic form of the model is:

e(n)� Gx� s(n – Tx) (98)

where x � s, e, or f, and the specific constant is from Table 6.

As shown in Figure 45, the constants Gs and Ts are used to model the transfer function between the noise
source and the error microphone. The constants Ge and Te are used to model the transfer function between
the output speaker and the error microphone. The constants Gf and Tf are used to model the transfer
function between the output speaker and the input microphone. Gf and Tf are valid only when the
ALGORITHM switch is set to fbfxlms. It is assumed that the feedback and error path delays must equal
the noise source delay (Ts – Te � Tf) and that Tf > Te. Also, the value of unity gain for Gs, Ge, and Gf
is 4095 and not 32767, as might be expected. This is because the calculation of the acoustic channel models
makes use of a feature on the ’C2x DSP that allows one of the inputs to the multiplier to be a 13-bit signed
constant that is embedded in the instruction word. Using a 13-bit signed number makes the maximum
positive number equal to 212 – 1, or 4095.

126

Gs × s(n – Ts)

Ge × s(n – Te)Gf × s(n – Tf)

Noise Source

Input Microphone Speaker Error Microphone

Acoustic Models

Figure 45. How Constants Are Used in Modeling Acoustic-Channel
Transfer Functions

The adaptive filter order defined by the constants NAz through NWz and sample delay periods Ts through
Tf (if simulation of an acoustic channel is enabled) determines the size of the input, intermediate, and output
signal arrays. These arrays are defined in the file MEMORY.ASM to allocate memory space in block B1
of the ’C2x DSP’s on-chip RAM. All of the arrays must fit within block B1, which is the same size as block
B0. Table 8 shows which arrays are used with the different algorithms and how to compute the total amount
of memory used. This table assumes that acoustic channel simulation is enabled.

Table 8. How Output Signal Arrays Are Used With Various Algorithms

ÁÁÁÁÁ
ÁÁÁÁÁ

ALGORITHMÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

SIGNALS

ÁÁÁÁÁ
ÁÁÁÁÁ

FXLMS ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

(NCz + 1) + (NWz + 1) + (Ts + 1) +(Te + 1)

ÁÁÁÁÁFBFXLMSÁÁÁÁÁÁÁÁÁÁÁÁ(NCz + 1) + 2(NDz + 1) + (NWz + 1)ÁÁÁÁÁ
ÁÁÁÁÁFURLMS

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ2(NAz + 1) + 2(NBz + 1) + 1 + (Ts + 1)ÁÁÁÁÁ

ÁÁÁÁÁ
FANC

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

(NCz + 1) + 2(NWz + 1) + (Ts + 1)

127

ANC Algorithm Module Listing (anc.asm)

;++
; This code performs both the filter calculations and the coefficient
; adaptation.
;++

;++
; INCLUDE FILES
;++

.include config.asm

.include macros.asm

.if ALGORITHM == fxlms

.title ”FXLMS Active Noise Control Algorithm”

.elseif ALGORITHM == fbfxlms

.title ”FBFXLMS Active Noise Control Algorithm”

.elseif ALGORITHM == furlms

.title ”FURLMS Active Noise Control Algorithm”

.elseif ALGORITHM == fanc

.title ”FANC Active Noise Control Algorithm”

.endif

;++
; PROGRAM
;++

.text

;++
; Off–Line Training Routine

.if TIMEBASE != freerun
Training

idle
.else

Training
.endif

;––
; A1. Generate the white noise signal and output to speaker
;––

call Noisegen

.if SIMULATION == no
; Output white noise y(n) to speaker thru I/O port.

out wng,OUTPORT
.if ALGORITHM == fbfxlms

ldpk wnn ;Set DP to speaker output array
sach wnn, 1 ;Store wng to wn(n) array
.else
ldpk xn ;Set DP to speaker output array
sach xn, 1 ;Store wng to x(n) array

.endif
; Read sample from error microphone: e(n) thru I/O port.

ldpk en ;Set DP to speaker output array
in en,INPORT ;Save latest value to memory

.elseif SIMULATION == yes
; Use this for simulation of error path mike input

ldpk yn ;Set DP to speaker output array
sach yn, 1 ;Save WNG output to y(n)

.if ALGORITHM == fbfxlms
ldpk wnn ;Set DP to speaker output array
sach wnn, 1 ;Store wng to wn(n) array

.else
ldpk xn ;Set DP to speaker output array

128

sach xn, 1 ;Store wng to x(n) array
.endif

;––
; S1. Call error path response simulation for error microphone
;
; e(n) = Ge * y(n–Te)
;
;––

call Error
.endif

;––
;
; A2. Model the error path response
;
; NCZ–1
; z(n) = sum ci(n) * x(n–i)
; i=0
;
; NOTE: Use wn(n–i) in place of x(n–i) for FXLMS algorithm using
; Acoustic Feedback (ALGORITHM == fbfxlms)
;
;––

.if ALGORITHM == fbfxlms
lrlk AR2,wnn+NCz–1;Initialize AR2 to end of wn(n) array
.else
lrlk AR2,xn+NCz–1 ;Initialize AR2 to end of x(n) array
.endif
larp AR2
zac ;Zero math channel
mpyk 0

rptk NCz–1 ;Compute filter output
macd PCi,*– ;DMOV here. Use shifted array in Adapt
apac
ldpk zn
sach zn

;––
;
; A3. Compute the error path model error
;
; e1(n) = e(n) – z(n)
;
;––

lac en ;Compute difference
sub zn ;ACC = e(n)–z(n)
sacl e1n ;Save difference

.if ((SIMULATION == yes) & (TRACE != no))
larp AR7 ;Store error in ttrace[] array in XDATA
sacl *+
.endif

;––
;
; A4. Update coefficients of C(z) with LMS (or Leaky LMS) Algorithm
;
; ci(n+1) = v*ci(n) + u*e1(n)*x(n–i), for i=0,1,..,N–1
;
; Note: (1) use wn(n–i) in place of x(n–i) for FXLMS algorithm
; using Acoustic Feedback (ALGORITHM == fbfxlms)
; (2) use v*ci(n) for Leaky LMS, or use ci(n) for LMS
; (3) use ”+” when updating C(z) in training mode
;
;––

129

lt e1n ;Compute mu*e1(n) and store
mpyk MU ; w/ Q31 scaling
sph adaptemp

.if ALGORITHM == fbfxlms
lrlk AR2, wnn+1 ;AR2 = top of DMOV’d white noise array
.else
lrlk AR2, xn+1 ;AR2 = top of DMOV’d white noise array
.endif
lrlk AR3, Ci+NCz–1 ;AR3 = bottom (rev order) of C(i) array
lark AR4, NCz–1 ;AR4 = loop counter
larp AR2
.if PROCESSOR == C26
conf 0 ;Put B0 into DATA space
.elseif PROCESSOR == C25
cnfd ;Put B0 into DATA space
.endif

lt adaptemp ;T=mu*e1(n)
Trn1

mpy *+, AR3 ;P=mu*e1(n)*y(n–i)
zalr * ;ACC=Ci(n) w/ rounding
.if ADAPTATION == leaky_lms
sub *, LEAKAGE ;ACC=(1–1/2^15)*Ci(n)
.endif
apac ;ACC=Ci(n)+mu*e1(n)*y(n–i)
sach *–, AR4 ;Update Ci with new value
banz Trn1, AR2 ;Check if coefficient update done
.if PROCESSOR == C26
conf 1 ;Put B0 into PROGRAM space
.elseif PROCESSOR == C25
cnfp ;Put B0 into PROGRAM space
.endif

.if ALGORITHM == fbfxlms
;––
;
; S2. Call acoustic feedback path response simulation for input
; microphone
;
; x(n) = Gf * y(n–Tf)
;
;––

call Feedback

;––
;
; A5. Model the acoustic feedback path response
;
; NDZ–1
; f(n) = sum di(n) * wn(n–i)
; i=0
;
; NOTE: wn(n) array DMOV’d during z(n) calculation
;
;––

lrlk AR2,wnn+NDz ;Initialize AR2 to end of DMOV’d wn(n) array
larp AR2
zac ;Zero math channel
mpyk 0

rptk NDz–1 ;Compute filter output
mac PDi,*– ;No DMOV here. Done in z(n) calculation.
apac
ldpk fn
sach fn

130

;––
;
; A6. Compute the acoustic feedback path model error
;
; e2(n) = x(n) – f(n)
;
;––

lac xn ;Compute difference
sub fn ;ACC = x(n)–f(n)
sacl e2n ;Save difference

.if ((SIMULATION == yes) & (TRACE != no))
larp AR6 ;Store error in fbtrace[] array in XDATA
sacl *+

.endif

;––
;
; A7. Update coefficients of D(z) with LMS (or Leaky LMS) Algorithm
;
; di(n+1) = v*di(n) + u*e2(n)*wn(n–i), for i=0,1,..,N–1
;
; Note: (1) use v*ci(n) for Leaky LMS, or use ci(n) for LMS
; (2) use ”+” when updating C(z) in training mode
;
;––

lt e2n ;Compute mu*e2(n) and store
mpyk MU ; w/ Q31 scaling
sph adaptemp

lrlk AR2, wnn+1 ;AR2 = top of DMOV’d white noise array
lrlk AR3, Di+NDz–1 ;AR3 = bottom (rev order) of D(i) array
lark AR4, NDz–1 ;AR4 = loop counter
larp AR2

.if PROCESSOR == C26
conf 0 ;Put B0 into DATA space

.elseif PROCESSOR == C25
cnfd ;Put B0 into DATA space

.endif

lt adaptemp ;T=mu*e2(n)
Trn2

mpy *+, AR3 ;P=mu*e2(n)*wn(n–i)
zalr * ;ACC=Di(n) w/ rounding

.if ADAPTATION == leaky_lms
sub *, LEAKAGE ;ACC=(1–1/2^15)*Di(n)

.endif
apac ;ACC=Di(n)+mu*e2(n)*wn(n–i)
sach *–, AR4 ;Update Di with new value
banz Trn2, AR2 ;Check if coefficient update done

.if PROCESSOR == C26
conf 1 ;Put B0 into PROGRAM space

.elseif PROCESSOR == C25
cnfp ;Put B0 into PROGRAM space

.endif
.endif

; Check if TRAINING complete
larp AR1 ;Activate counter ARP
banz Training

.if TIMEBASE == timer
dint ;Disable GLOBAL interrupt
.endif
ret ;Return to main when complete

;++
; On–Line Noise Control Routine

131

Control
.if SIMULATION == no

.if ALGORITHM != fanc
;Read sample from noise source microphone x(n) thru I/O port

ldpk xn
in xn,INPORT1 ;Save latest value to beginning of array.

.endif
;Read sample from error microphone e(n) thru I/O port

ldpk en
in en,INPORT2 ;Save latest value to memory

.elseif SIMULATION == yes
;––
;
; S1. Simulate noise source signal
;
;––

.if GENERATOR == sinewave
call Sinewave ;Sinewave generator
ldpk wnn ;Save generator output to wn(n) array
sach wnn

.if ((ALGORITHM == fxlms) | (ALGORITHM == furlms))
ldpk xn ;Save generator output to x(n) array
sach xn

.endif
.elseif GENERATOR == white_noise

call Noisegen ;Random number generator
ldpk wnn ;Save generator output to wn(n) array
sach wnn,1

.if ((ALGORITHM == fxlms) | (ALGORITHM == furlms))
ldpk xn ;Save generator output to x(n) array
sach xn, 1

.endif
.endif
.if TRACE == in_out

larp AR7 ;Store input in gtrace[] array in XDATA
sach *+, 1

.endif
.endif

.if ALGORITHM == fbfxlms
;––
;
; S2. Simulate input microphone signal including acoustic feedback
;
; x(n) = wn(n) + Gf * y(n–Tf)
;
;––

call Feedback1

;––
;
; A1. Correct input signal for acoustic feedback
;
; NDZ–1
; x1(n) = x(n) – sum di * y(n–i)
; i=0
;
;––

lrlk AR2,yn+NDz–1 ;Initialize AR2 to end of yn array
larp AR2
zac ;Zero math channel
mpyk 0
rptk NDz–1 ;Model acoustic feedback effect
macd PDi,*–

132

apac ;ACC = f(n)
neg ;ACC = –f(n)
addh xn ;ACC = x(n)–f(n)
ldpk x1n ;Set DP to x1(n) array
sach x1n ; and store result
.endif

.if ALGORITHM == fanc
;––
;
; S2. Simulate the acoustic channel response at the error microphone
;
; e(n) = Gs * wn(n–Ts) + Ge * y(n–Te)
;
;––

call Source ;Call source+error path simulation
.if TRACE != none

larp AR6 ;Store output in ctrace[] array in XDATA
sach *+,3 ; w/ Q28 shift

.endif

;––
;
; A1. Regenerate (extract) primary noise signal
;
; NCZ–1
; x(n) = e(n) – sum ci * y(n–i)
; i=0
;
;––

lrlk AR2,yn+NCz–1 ;Initialize AR2 to end of yn array
larp AR2
mpyk 0 ;Zero P register
lalk 1,15 ;Set up rounding on x(n) calculation

rptk NCz–1 ;Model antinoise output at error mike
macd PCi,*– ;DMOV yn here
apac
neg ;Extract xn from en=xn+yn
addh en ; xn=en–yn

ldpk xn ;Set DP to extracted noise source
sach xn ; and store
.endif

.if ALGORITHM == furlms
;––
;
; A1. Generate the anti–noise signal and output to speaker
;
; NAZ–1 NBZ–1
; y(n) = sum ai(n) * x(n–i) + sum bj(n) * y(n–j)
; i=0 j=1
;
; Note: there is delay=1 in B(z)
;
;––

lrlk AR2,xn+NAz–1 ;Initialize AR2 to end of xn array
larp AR2
zac ;Zero math channel
mpyk 0
rptk NAz–1 ;Compute antinoise output
mac PAi,*– ;Don’t DMOV xn here

lrlk AR2,yn+NBz–1 ;Initialize AR2 to end of y(n–1) array
rptk NBz–1 ;Compute antinoise output

133

macd PBi,*– ;DMOV y(n–1) array here
apac
.elseif ALGORITHM == fbfxlms

;––
;
; A2. Generate the antinoise signal and output to speaker
;
; NWZ–1
; y(n) = sum wi(n) * x1(n–i)
; i=0
;
;––

lrlk AR2,x1n+NWz–1 ;Initialize AR2 to end of x1n array
.elseif ALGORITHM == fxlms

;––
;
; A1. Generate the antinoise signal and output to speaker
;
; NWZ–1
; y(n) = sum wi(n) * x(n–i)
; i=0
;
;––

lrlk AR2,xn+NWz–1 ;Initialize AR2 to end of xn array
.elseif ALGORITHM == fanc

;––
;
; A2. Generate the antinoise signal and output to speaker
;
; NWZ–1
; y(n) = sum wi(n) * x(n–i)
; i=0
;
;––

lrlk AR2,xn+NWz–1 ;Initialize AR2 to end of xn array
.endif

.if ALGORITHM != furlms
larp AR2
mpyk 0 ;Zero P register

.if ALGORITHM == fanc
lalk 1,15 ;Used for rounding

.endif
rptk NWz–1 ;Compute antinoise output
mac PWi,*– ;Don’t DMOV xn here
apac
.endif

ldpk yn ;Set DP to adaptive filter output
sach yn ; and store

.if SIMULATION == no
;Output yn source to speaker

out yn,OUTPORT

.elseif ((SIMULATION == yes) & (ALGORITHM != fanc))
.if ALGORITHM == fbfxlms

;––
;
; S3. Simulate the acoustic channel response at the error microphone
;
; e(n) = Gs * wn(n–Ts) + Ge * y(n–Te)
;
;––

.else

134

;––
;
; S2. Simulate the acoustic channel response at the error microphone
;
; e(n) = Gs * wn(n–Ts) + Ge * y(n–Te)
;
;––

.endif
call Source ;Call source+error path simulation

.if TRACE != none
larp AR6 ;Store output in ctrace[] array in XDATA
sach *+,3 ; w/ Q28 shift

.endif
.endif

.if ALGORITHM == fbfxlms
;––
;
; A3. Correct the input signal for error path delay
;
; NCZ–1
; x2(n) = sum ci * x1(n–i)
; i=0
;
;––

lrlk AR2,x1n+NCz–1 ;Initialize AR2 to end of x1n array
.elseif ALGORITHM == furlms

;––
;
; A2a. Correct the input signal for error path delay
;
; NCZ–1
; x1(n) = sum ci * x(n–i)
; i=0
;
;––

lrlk AR2,xn+NCz–1 ;Initialize AR2 to end of xn array
.elseif ALGORITHM == fxlms

;––
;
; A2. Correct the input signal for error path delay
;
; NCZ–1
; x1(n) = sum ci * x(n–i)
; i=0
;
;––

lrlk AR2,xn+NCz–1 ;Initialize AR2 to end of xn array
.elseif ALGORITHM == fanc

;––
;
; A3. Correct the input signal for error path delay
;
; NCZ–1
; x1(n) = sum ci * x(n–i)
; i=0
;
;––

lrlk AR2,xn+NCz–1 ;Initialize AR2 to end of xn array
.endif

larp AR2
mpyk 0 ;Zero P register
lalk 1,15 ;Set up rounding for x1(n) calculation

135

rptk NCz–1 ;Compute filter output
macd PCi,*– ;DMOV input array here
apac
.if ALGORITHM == fbfxlms
ldpk x2n
sach x2n ;Store x2(n) to top of array
.else
ldpk x1n
sach x1n ;Store x1(n) to top of array
.endif

.if ALGORITHM == furlms
;––
;
; A2b. Correct the delayed output signal for error path delay
;
; NCZ–1
; y1(n–1) = sum cj * y(n–j)
; j=1
;
;––

lrlk AR2,yn+NCz ;Initialize AR2 to end of DMOV’d yn array
larp AR2
zac ;Zero math channel
mpyk 0

rptk NCz–1 ;Compute filter output
mac PCi,*– ;Don’t DMOV yn array here
apac
ldpk y1n
sach y1n ;Store y1(n) to top of array
.endif

.if ALGORITHM == furlms
;––
;
; A3a. Update coefficients of A(z) with LMS (or Leaky LMS) Algorithm
;
; ai(n+1) = v*ai(n) – u*e(n)*x1(n–i), for i=0,1,..,N–1
;
; Note: (1) use v*ai(n) for Leaky LMS, or use ai(n) for LMS
; (2) use ”–” when updating A(z) in noise control mode
; instead of ”+” used to update C(z) in training mode
;––

ldpk en
lt en ;Compute mu*e(n) and store
mpyk MU ; w/Q31 scaling
sph adaptemp
larp AR2
lrlk AR2,x1n+NAz–1;AR2 = bottom of x1(n) array
lrlk AR3,Ai ;AR3 = top/end (rev order) of Ai array
lark AR4,NAz–1 ;AR4 = loop counter

.if PROCESSOR == C26
conf 0 ;Put B0 into DATA space

.elseif PROCESSOR == C25
cnfd ;Put B0 into DATA space

.endif

lt adaptemp ;T=mu*e(n)
Control1

mpy * ;P=mu*e(n)*x1(n–i)
dmov *–, AR3 ;DMOV x1n array
zalr * ;ACC=Ai(n) w/ rounding

.if ADAPTATION == leaky_lms
sub *, LEAKAGE ;ACC=(1–1/2^15)*Ai(n)

136

.endif
spac ;ACC=Ai(n)–mu*e(n)*x1(n–i)
sach *+, AR4 ;Update Ai with new value
banz Control1, AR2 ;Check if coefficient update done

.if PROCESSOR == C26
conf 1 ;Put B0 into PROGRAM space

.elseif PROCESSOR == C25
cnfp ;Put B0 into PROGRAM space

.endif

;––
;
; A3b. Update coefficients of B(z) with LMS (or Leaky LMS) Algorithm
;
; bi(n+1) = v*bi(n) – u*e(n)*y1(n–i), for i=1,2,..,N–1
;
; Note: (1) use v*bi(n) for Leaky LMS, or use bi(n) for LMS
; (2) use ”–” when updating B(z) in noise control mode
; instead of ”+” used to update C(z) in training mode
;––

larp AR2
lrlk AR2,y1n+NBz–1 ;AR2 = bottom of y1n array
lrlk AR3,Bi ;AR3 = top/end (rev order) of Bi array
lark AR4,NBz–1 ;AR4 = loop counter

.if PROCESSOR == C26
conf 0 ;Put B0 into DATA space

.elseif PROCESSOR == C25
cnfd ;Put B0 into DATA space

.endif

lt adaptemp ;T=mu*e(n)
Control2

mpy * ;P=mu*e(n)*y1(n–i)
dmov *–, AR3 ;DMOV xn array
zalr * ;ACC=Bi(n) w/ rounding

.if ADAPTATION == leaky_lms
sub *, LEAKAGE ;ACC=(1–1/2^15)*Bi(n)

.endif
spac ;ACC=Bi(n)–mu*e(n)*y1(n–i)
sach *+, AR4 ;Update Bi with new value
banz Control2, AR2 ;Check if coefficient update done

.if PROCESSOR == C26
conf 1 ;Put B0 into PROGRAM space

.elseif PROCESSOR == C25
cnfp ;Put B0 into PROGRAM space

.endif

.elseif ALGORITHM != furlms
.if ALGORITHM == fbfxlms

;––
;
; A4. Update coefficients of W(z) with LMS (or Leaky LMS) Algorithm
;
; wi(n+1) = v*wi(n) – u*e(n)*x2(n–i), for i=0,1,..,N–1
;
; Note: (1) use v*wi(n) for Leaky LMS, or use wi(n) for LMS
; (2) use ”–” when updating W(z) in noise control mode
; instead of ”+” used to update C(z) in training mode
;––

.elseif ALGORITHM == fxlms
;––
;
; A3. Update coefficients of W(z) with LMS (or Leaky LMS) Algorithm
;
; wi(n+1) = v*wi(n) – u*e(n)*x1(n–i), for i=0,1,..,N–1

137

;
; Note: (1) use v*wi(n) for Leaky LMS, or use wi(n) for LMS
; (2) use ”–” when updating W(z) in noise control mode
; instead of ”+” used to update C(z) in training mode
;––

.elseif ALGORITHM == fanc
;––
;
; A4. Update coefficients of W(z) with LMS (or Leaky LMS) Algorithm
;
; wi(n+1) = v*wi(n) – u*e(n)*x1(n–i), for i=0,1,..,N–1
;
; Note: (1) use v*wi(n) for Leaky LMS, or use wi(n) for LMS
; (2) use ”–” when updating W(z) in noise control mode
; instead of ”+” used to update C(z) in training mode
;––

.endif
ldpk en
lt en ;Compute mu*e(n) and store
mpyk MU ; w/Q31 scaling
sph adaptemp
larp AR2

.if ALGORITHM == fbfxlms
lrlk AR2, x2n+NWz–1 ;AR2 = bottom of x2n array

.else
lrlk AR2, x1n+NWz–1 ;AR2 = bottom of x1n array

.endif
lrlk AR3, Wi ;AR3 = top/end (rev order) of Wi array
lark AR4, NWz–1 ;AR4 = loop counter

.if PROCESSOR == C26
conf 0 ;Put B0 into DATA space

.elseif PROCESSOR == C25
cnfd ;Put B0 into DATA space

.endif

lt adaptemp ;T=mu*e(n)
Control1

.if ALGORITHM == fbfxlms
mpy * ;P=mu*e(n)*x2(n–i)

.else
mpy * ;P=mu*e(n)*x1(n–i)

.endif
dmov *–, AR3 ;DMOV x1n array
zalr * ;ACC=Wi(n) w/ rounding

.if ADAPTATION == leaky_lms
sub *, LEAKAGE ;ACC=(1–1/2^15)*Wi(n)

.endif

.if ALGORITHM == fbfxlms
spac ;ACC=Wi(n)–mu*e(n)*x2(n–i)

.else
spac ;ACC=Wi(n)–mu*e(n)*x1(n–i)

.endif
sach *+, AR4 ;Update Wi with new value
banz Control1, AR2 ;Check if coefficient update done

.if PROCESSOR == C26
conf 1 ;Put B0 into PROGRAM space

.elseif PROCESSOR == C25
cnfp ;Put B0 into PROGRAM space

.endif
.endif

ret ;Return to main when complete

138

ANC Linker Command File (anc.cmd)

/*+++*/
/* ANC Linker Command File */
/* ––––––––––––––––––––––– */
/* */
/* File: ANC.CMD Rev: 1.0 */
/* Last Change: 8/26/93 Start Date: 8/3/93 */
/* */
/* Processor: TMS320C25 */
/* Assembler Rev: 6.40 */
/* */
/* Programmer: Thomas G. Horner */
/* TI – Dallas RTC */
/* (214) 917–5051 */
/*+++*/
/* Linker command file for Active Noise Cancellation for TMS320C25 */
/*+++*/

/* INPUT/OUTPUT */
vectors.obj
main.obj
init.obj
anc.obj
memory.obj
model.obj /* This module for simulation only. */

–m anc.map
–o anc.out

/* PHYSICAL MEMORY DEFINITION */
MEMORY
{
 PAGE 0 : XVECS: origin = 00000h, length = 00008h
 PVECS: origin = 00018h, length = 00008h

 PROG: origin = 00020h, length = 07fd0h
 PRAMB0: origin = 0fa00h, length = 00200h

 PRAMB1: origin = 0fc00h, length = 00200h
 PRAMB3: origin = 0fe00h, length = 00200h

 PAGE 1 : REGS: origin = 00000h, length = 00006h
 RAMB0: origin = 00200h, length = 00200h
 RAMB1: origin = 00400h, length = 00200h
 RAMB2: origin = 00060h, length = 00020h
 RAMB3: origin = 00600h, length = 00200h
 XDATA: origin = 08000h, length = 07400h

}

/* S/W MODULE ALLOCATION TO MEMORY */
SECTIONS
{

x_vecs : { } > XVECS PAGE 0 /* External interrupt vecs */
p_vecs : { } > PVECS PAGE 0 /* Internal interrupt vecs */
.text : { } > PROG PAGE 0 /* Code */
.data : { } > PROG PAGE 0 /* Data table */
traps : { } > PROG PAGE 0 /* Unused interrupt traps */
anc_pma: { } > PRAMB0 PAGE 0 /* Coeffcient arrays (PROG) */
anc_coef: { } > RAMB0 PAGE 1 /* Coeffcient arrays (DATA) */
anc_vars: { } > RAMB1 PAGE 1 /* Input/Output arrays */
.bss : { } > RAMB2 PAGE 1 /* General purpose variables */
verify : { } > XDATA PAGE 1 /* Simulation output */

}

139

ANC System Configuration File (config.asm)

.title ”ANC System Configuration”

;++
; ANC System Supervisor
; –––––––––––––––––––––
;
; File: CONFIG.ASM Rev: 1.0
; Last Change: 10/13/93 Start Date: 10/13/93
;
; Processor: TMS320C25
; Language: Assembly
; Assembler Rev: 6.40
;
; Programmer: Thomas G. Horner
; TI – Dallas RTC
; (214) 917–5051
;++
; Active Noise Cancellation system configuration module. The settings
; defined in this module determine how the code is generated.
; Conditional assembly allows easy configuration for different
; processors, I/O, adaptive filter forms, and adaptation methods.
;++

;++
; INCLUDE FILES
;++

.include globals.asm

;++
; CONFIGURATION SETTINGS
;++
; This section is used to configure the S/W for different I/O, adaptive
; filter forms, and adaptation methods. Set the following constants to
; the desired value to control the configuration. Explanations of the
; constants and settings are given at the end of this module.
;
PROCESSOR .set C26
TIMEBASE .set freerun
SIMULATION .set yes
TRACE .set in_out
GENERATOR .set white_noise
ALGORITHM .set fxlms
ADAPTATION .set leaky_lms

;++
; This section contains constants which define the characteristics of the
; algorithm and simulation (if enabled).
;
CLKOUT .set 10000000 ;DSP instruction clock rate
FS .set 1500 ;Sample rate (samples/sec)
TIME .set 2 ;Number of seconds for error path coef training
NSAMPLES .set TIME*FS ;Number of samples for error path coef training
NTICKS .set (CLKOUT/FS)–1 ;TIMER period
MU .set 1024 ;Coefficient update stepsize (Q31): MU<1/NWz
LEAKAGE .set 1 ;Shift value to leak off 2^–15 of coefficient

NAz .set 64 ;IIR feedforward filter order A(z)
NBz .set 64 ;IIR feedback filter order B(z)
NCz .set 64 ;Error path model order C(z)
NDz .set 64 ;Acoustic feedback model order D(z)
NWz .set 64 ;FIR filter order W(z)

SIMLENGTH .set 3000 ;Cancellation routine simulation run time
 ; (number of loops through the routine)

140

;!!!!!!!! ASSUMPTION: Te<Tf and Ts=Te+Tf !!!!!!!!!
Gs .set 2458 ;Noise source path gain (Q27): 0.6*2^12
Ge .set 3277 ;Error path gain (Q27): 0.8*2^12
Gf .set 2867 ;Acoustic feedback path gain (Q27): 0.7*2^12
Ts .set 10 ;Noise source path sample delay period
Te .set 2 ;Error path sample delay period
Tf .set Ts–Te ;Acoustic feedback path sample delay period

; I/O Port Definitions
INPORT1 .set PA0 ;Input port for input mike defined
INPORT2 .set PA1 ;Input port for error mike defined
OUTPORT .set PA1 ;Output port for speaker defined

;++
; SWITCH SETTING EXPLANATIONS
;++
;
; CONSTANT SETTINGS MEANING
;–––––––––––– ––––––––––––––– ––––––––––––––––––––––––––––––––
; PROCESSOR C26 Target processor is TMS320C26
; C25 Target processor is TMS320C25
;
; TIMEBASE timer Onboard timer controls sample rate
; external Ext interrupt controls sample rate
; freerun Run as fast as possible
;
; SIMULATION yes Simulation mode enabled
; no Simulation mode disabled
;
;
; TRACE in_out Trace algorithm input and output
; out Trace algorithm output only
; none No trace
;
; GENERATOR white_noise White noise generator enabled
; sinewave Sinewave generator enabled
;
; ALGORITHM fxlms Filtered–X LMS enabled
; fbfxlms FXLMS w/ acoustic feedback enabled
; furlms Filtered–U recursive LMS enabled
; fanc Feedback ANC enabled
;
; ADAPTATION lms Std LMS coef adaptation enabled
; leaky_lms Leaky LMS coef adaptation enabled
;
;++

141

TMS320C2x EVM Initialization Command File (evminit.cmd)

;Map File for EVM2X: PROG space 0–8K, DATA space 8K–16K
ma 0x0000,0,0x8000,ram ;external program memory
ma 0xfa00,0,0x0600,ram ;program memory block B0, B1, and B3
ma 0x0000,1,0x0006,ram ;memory mapped registers
ma 0x0060,1,0x20,ram ;data memory block B2
ma 0x0200,1,0x0600,ram ;data memory block B0, B1, and B3
ma 0x8000,1,0x7400,ram ;external data memory
ma 0xfa00,1,0x600,ram ;program memory block B0, B1, and B3
ma 0x0000,2,16,ioport ;io ports
map on

DASM PC
load anc
sconfig ancsim.cfg
mem1 0x200
mem2 0x400
mem3 0x600
;ba Wait
;run
;take savemem.bat

Global Constants and Variables (globals.asm)

.title ”Global Constants and Variables”

;++
; Global Constants and Variables
; ––––––––––––––––––––––––––––––
;
; File: GLOBALS.ASM Rev: 1.0
; Last Change: 11/9/93 Start Date: 8/3/93
;
; Processor: TMS320C25
; Language: Assembly
; Assembler Rev: 6.40
;
; Programmer: Thomas G. Horner
; TI – Dallas RTC
; (214) 917–5051
;++
; Global constant and variable declarations.
;++

.mmregs

.fcnolist

;++
; CONSTANT DEFINITIONS
;++

; Onchip memory block addresses for TMS320C25/C26
C2X_B0 .set 0200h ;Starting address of block B0 for all
C25_B1 .set 0300h ;Starting address of block B1 for C25
C26_B1 .set 0400h ;Starting address of block B1 for C26
C2X_B2 .set 060h ;Starting address of block B2 for all
C26_B3 .set 0600h ; Starting address of block B3 for C26

; Onchip memory block lengths
C2X_SHORT .set 020h ;B2 length (32) – all
C25_LONG .set 100h ;B0 and B1 length (256) – C25
C26_LONG .set 200h ;B0, B1 and B3 length (512) – C26

; External DATA memory block description
XDATA_START .set 08000h ;Ext DATA RAM origin
XDATA_SIZE .set 07000h ;Ext DATA RAM length

142

; Interrupt Mask Register (IMR) enable/disable masks
ENABLE_int0 .set 01h ;OR value w/ IMR to enable ext interrupt #0
DISABLE_int0 .set 0fffeh ;AND value w/ IMR to disable ext interrupt #0
ENABLE_int1 .set 02h ;OR value w/ IMR to enable ext interrupt #1
DISABLE_int1 .set 0fffdh ;AND value w/ IMR to disable ext interrupt #1
ENABLE_int2 .set 04h ;OR value w/ IMR to enable ext interrupt #2
DISABLE_int2 .set 0fffbh ;AND value w/ IMR to disable ext interrupt #2
ENABLE_tint .set 08h ;OR value w/ IMR to enable timer
DISABLE_tint .set 0fff7h ;AND value w/ IMR to disable timer
ENABLE_rec .set 010h ;OR value w/ IMR to enable serial port rec
DISABLE_rec .set 0ffefh ;AND value w/ IMR to disable serial port rec
ENABLE_xmit .set 020h ;OR value w/ IMR to enable serial port xmit
DISABLE_xmit .set 0ffdfh ;AND value w/ IMR to disable serial port xmit

; System configuration constants
C25 .set 25 ;Processor switch settings
C26 .set 26

timer .set 2 ;Sample rate / time base control settings
external .set 1
freerun .set 0

yes .set 1 ;Simulation enable switch settings
no .set 0

in_out .set 2 ;Trace buffer switch settings
out .set 1
none .set 0

white_noise .set 1 ;Waveform generator switch settings
sinewave .set 0

fxlms .set 3 ;Algorithm switch settings
fbfxlms .set 2
furlms .set 1
fanc .set 0

lms .set 1 ;Adaptation method switch settings
leaky_lms .set 0

; Random Number Generator
SEED .set 12357 ;Random number generator seed value (Train)
SEED2 .set 53210 ;Random number generator seed value (Simulate)
MASK .set 08805h ;Mask to extract bits 0, 2, 11, 15

; Sinewave generator coefficients (for fs=1.5 kHz and fd=0.15 kHz)
A1d2 .set 0678dh ;A/2=cos(2*pi*fd/fs)=0.80902
S10 .set 0 ;s(n–2) IC = 0
S11 .set 04b3ch ;s(n–1) IC =sin(2*pi*fd/fs)=0.58779

; Sinewave generator coefficients (for fs=1.5 kHz and fd=0.25 kHz)
A2d2 .set 04000h ;A/2=cos(2*pi*fd/fs)=0.5
S20 .set 0 ;s(n–2) IC = 0
S21 .set 06ed9h ;s(n–1) IC =sin(2*pi*fd/fs)=0.86603

;++
; VARIABLE DECLARATIONS
;++

; Global constants for use in HLL debugger control
.global SIMLENGTH
.global NAz
.global NBz
.global NCz
.global NDz
.global NWz
.global NSAMPLES

; Global variables/constants for CONFIG.ASM
.global C26

143

.global C25

.global yes

.global no

.global in_out

.global out

.global none

.global white_noise

.global sinewave

.global fir

.global iir

.global fxlms

.global fbfxlms

.global furlms

.global fanc

.global lms

.global leaky_lms

.global PROCESSOR

.global SIMULATION

.global TRACE

.global GENERATOR

.global ALGORITHM

.global FILTER

.global ADAPTATION

.global INPORT

.global OUTPORT

.global Gs

.global Ge

.global Gf

.global Ts

.global Te

.global Tf

; Global variables from VECTORS.ASM
.global Reset ;Reset vector
.global Int0 ;External interrupt #0
.global Int1 ;External interrupt #1
.global Int2 ;External interrupt #2
.global Tint ;Serial port – transmit
.global Rint ;Serial port – receive
.global Xint ;Timer
.global Trap ;Trap

; Global variables from MEM_DEF.ASM
.global Ai
.global Bi
.global Ci
.global Di
.global Wi
.global PAi
.global PBi
.global PCi
.global PDi
.global PWi
.global wnn
.global xn
.global x1n
.global x2n
.global yn
.global y1n
.global en
.global e1n
.global e2n
.global zn
.global fn

144

.global adaptemp

.global wng

.global ctrace

.global gtrace

.global ttrace

.global fbtrace

; Global variables from ANC.ASM
.global Init
.global Training
.global Reinit
.global Control
.global Wait

; Global variables from MODEL.ASM
.global Error
.global Source
.global Feedback
.global Feedback1
.global Noisegen
.global Sineinit
.global Sinewave
.global a1
.global s1n_1
.global s1n_2
.global a2
.global s2n_1
.global s2n_2

System Initialization File (init.asm)

.title ”Intialization”

;++
; Processor Initialization
; ––––––––––––––––––––––––
;
; File: INIT.ASM Rev: 1.0
; Last Change: 12/9/93 Start Date: 8/3/93
;
; Processor: TMS320C25
; Language: Assembly
; Assembler Rev: 6.40
;
; Programmer: Thomas G. Horner
; TI – Dallas RTC
; (214) 917–5051
;++
; Processor, system and algorithm initialization routines
;++

;++
; INCLUDE FILES
;++

.include config.asm

.include macros.asm

;++
; PROGRAM
;++

.text

;––
; PROCESSOR INITIALIZATION

145

;––
Init
; Disable all interrupts

ldpk 0 ;DP = mmregs data page
lack 0 ;Reset IMR bits to disable interrupts
sacl IMR

; Disable OVERFLOW mode (ACC won’t saturate)
rovm

; Setup P register shift mode
spm 1 ;Shift left 1 on PREG ==> ACC

; Enable sign extention mode
ssxm

; Initialize Serial Port
fort 0 ;Set for 16–bit word operation
sfsm ;Set for frame sync control
rtxm ;Set for external Xmit frame sync

; Clear onchip memory to initialize
.if PROCESSOR == C26
memclear C26 ;Macro call to clear C26 RAM blocks
conf 1 ;RAM B0 ==> PROGRAM space
.elseif PROCESSOR == C25
memclear C25 ;Macro call to clear C26 RAM blocks
cnfp ;RAM B0 ==> PROGRAM space
.endif

;––
; SYSTEM INITIALIZATION
;––

.if TRACE != none
; Clear external DATA RAM on C2x EVM

larp AR0
lrlk AR0, XDATA_START ;AR0 = Ext. DATA RAM pointer
lrlk AR1, XDATA_SIZE–1 ;AR1 = Memory block size counter
zac

Again
sacl *+,AR1
banz Again,AR0
.endif

;––
; ALGORITHM INITIALIZATION
;––
; Initialize starting value for white noise generator.

ldpk wng ;Set DP for random number
lalk SEED ;Initialize WNG w/ seed value
sacl wng

; Initialize sample counter to set training period
lrlk AR1,NSAMPLES ;Initialize AR1 for sample count

.if ((SIMULATION == yes) & (TRACE != none))
; Initialize pointer to trace buffer for simulation

lrlk AR7, ttrace ;AR7 = training error trace buffer pntr
.if ALGORITHM == fbfxlms

lrlk AR6, fbtrace ;AR6 = training feedback trace buffer pntr
.endif

.endif

.if TIMEBASE == timer
; Initialize timer period to set sample rate

ldpk 0 ;Set DP for memory mapped regs
lalk NTICKS ;Initialize PERIOD register for Fs setting
sacl PRD

146

; Enable timer interrupt
lac IMR ;Load current Interrupt Mask Register setting
ork ENABLE_tint ;Set TIMER control bit
sacl IMR ;Store back to IMR
.endif

.if TIMEBASE != freerun
; Enable global interrupt

eint
.endif

ret ;Return to main when complete

;++
; SIGNAL ARRAY REINITIALIZATION
;++
Reinit
;Re–initialize input array to zero for cancellation mode

.if ALGORITHM == fbfxlms
lrlk AR1, wnn ;AR1 = top of white noise array
.else
lrlk AR1, xn ;AR1 = top of white noise array
.endif
larp AR1
zac ;ACC = 0
rptk NCz ;Repeat (NCz+1)–1 times where NCz<=255
sacl *+ ;Clear input array

;Re–initialize output array to zero for cancellation mode
lrlk AR1, yn ;AR1 = top of speaker output array
larp AR1
zac ;ACC = 0
rptk Tf ;Repeat Tf+1 times where Tf<=255
sacl *+ ;Clear output array

.if SIMULATION == yes
; Initialize system input generator (White Noise or Sine)

.if GENERATOR == white_noise
ldpk wng ;Set DP for white noise
lalk SEED2 ;Init white noise generator w/ seed value
sacl wng

.elseif GENERATOR == sinewave
call Sineinit ;Initialize sinewave generator

.endif

; Initialize counters and pointers for simulation period and trace buffers
lrlk AR5, SIMLENGTH–1 ;AR5 = simulation run counter

.if TRACE == in_out
lrlk AR6, ctrace ;AR6 = error mike trace buffer pntr
lrlk AR7, gtrace ;AR7 = source mike trace buffer pntr

.elseif TRACE == out
lrlk AR6, ctrace ;AR6 = error mike trace buffer pntr

.endif
.endif

.if TIMEBASE != freerun
eint ;Enable GLOBAL interrupt
.endif
ret ;Return to Main when complete

147

Macro Library File (macros.asm)

.title ”Macro Library”

;++
; Macro Definitions
; –––––––––––––––––
;
; File: MACROS.ASM Rev: 1.0
; Last Change: 10/11/93 Start Date: 10/11/93
;
; Processor: TMS320C25
; Language: Assembly
; Assembler Rev: 6.40
;
; Programmer: Thomas G. Horner
; TI – Dallas RTC
; (214) 917–5051
;++
; Macro definitions
;++

;++
; MACRO: CONF
;++
; Required for C26 using R6.40 of ASSEMBLER. Can’t use the –v26 switch,
; so CONF instruction is illegal. Causes problems w/ LARK, LARP, LRLK.
;
; This command modifies ST1 bits 7 & 12 to configure RAM blocks as DATA
; or PROGRAM. Same result as using CONF instruction w/ –v26 switch.
conf .macro x

.if (x == 0)
.word 0ce3ch

.elseif (x == 1)
.word 0ce3dh

.elseif (x == 2)
.word 0ce3eh

.elseif (x == 3)
.word 0ce3fh

.endif
.endm

;++
; MACRO: MEMCLEAR
;++
; This macro is designed to generate code to clear the onchip RAM blocks
; for either a TMS320C25 or TMS320C26 during initialization.

memclear .macro n
.if (n == 25) ;Zero onchip RAM memory for C25
cnfd ;Make all onchip RAM blocks DATA
zac ;Zero accumulator
larp AR0 ;Point to AR
lark AR0, C2X_B2 ;Point to B2
rptk C2X_SHORT–1 ;Memory block length–1
sacl *+ ;Fill B2 with 0’s
lrlk AR0, C2X_B0 ;Point to B0
rptk C25_LONG–1 ;Memory block length–1
sacl *+ ;Fill B0 with 0’s
rptk C25_LONG–1 ;Memory block length–1
sacl *+ ;Fill B1 with 0’s
.elseif (n == 26) ;Zero onchip RAM memory for C26
conf 0 ;Make all onchip RAM blocks DATA
zac ;Zero accumulator
larp AR0 ;Activate AR0

148

lark AR0, C2X_B2 ;Point to B2 RAM block
rptk C2X_SHORT–1 ;Memory block length–1
sacl *+ ;Fill B2 with 0’s
lrlk AR0, C26_LONG–1 ;AR0 = Memory block length–1
lrlk AR1, C2X_B0 ;AR1 = B0 pointer
lrlk AR2, C26_B1 ;AR2 = B1 pointer
lrlk AR3, C26_B3 ;AR3 = B3 pointer
larp AR1

Zero?
sacl *+, AR2 ;Fill B0,B1,B3 RAM with 0’s
sacl *+, AR3
sacl *+, AR0
banz Zero?, AR1 ;Done??
.else ;Generate error if not C25 or C26
.emsg ”ERROR – ”Incorrect device. Use 25 or 26.”
.endif

.endm

ANC System Supervisor Program (main.asm)

.title ”ANC System Supervisor”

;++
; ANC System Supervisor
; –––––––––––––––––––––
;
; File: MAIN.ASM Rev: 1.0
; Last Change: 10/12/93 Start Date: 8/3/93
;
; Processor: TMS320C25
; Language: Assembly
; Assembler Rev: 6.40
;
; Programmer: Thomas G. Horner
; TI – Dallas RTC
; (214) 917–5051
;++
; Active Noise Cancellation system supervisor. This code controls the
; overall operation of the ANC system.
;++

;++
; INCLUDE FILES
;++

.include config.asm

.include macros.asm

.text
;++
; PROGRAM
;++
Reset

call Init ;Call system initialization routine
call Training ;Call error path coef training routine
call Reinit ;Call cancellation initialization routine

; Main routine
Main

.if TIMEBASE == timer
idle ;Wait for Interrupt

 .endif
call Control ;Call noise cancellation routine

.if SIMULATION == no
b Main ;Endless loop

149

.elseif SIMULATION == yes
larp AR5 ;Activate simulation run counter
banz Main ;Check if simulation is complete
.if TIMEBASE == timer
dint ;Disable Global interrupt
.endif

Wait
b Wait ;Endless loop
.endif

.if TIMEBASE == external
;++
; INTERRUPT SERVICE ROUTINES
;++
;
; The External Interrupt #0 ISR is used to pace the Training and
; Control routines. None of the algorithm is executed in the ISR.
Int0

eint ;Re–enable GLOBAL interrupt
ret ;Return to MAIN
.endif

.if TIMEBASE == timer
;++
; INTERRUPT SERVICE ROUTINES
;++
;
; The Timer ISR is used to pace the Training and Control routines.
; None of the algorithm is executed in the ISR.
Tint

eint ;Re–enable GLOBAL interrupt
ret ;Return to MAIN
.endif

;++
.end

Memory Definitions File (memory.asm)

.title ”Memory Definitions”

;++
; Memory Definitions
; ––––––––––––––––––
;
; File: MEMORY.ASM Rev: 1.0
; Last Change: 10/9/93 Start Date: 8/3/93
;
; Processor: TMS320C25
; Language: Assembly
; Assembler Rev: 6.40
;
; Programmer: Thomas G. Horner
; TI – Dallas RTC
; (214) 917–5051
;++
; Initialized and uninitialized memory definitions
;++

;++
; INCLUDE FILES
;++

.include config.asm

;++
; INITIALIZED MEMORY (PROG)
;++

150

; BLOCK B0
; ––––––––
; Labels to B0 coefficient arrays in PROGRAM space.
PCi .sect ”anc_pma” ;Ci(n) in PROGRAM space

.space 16*NCz
.if ALGORITHM == fbfxlms

PDi .sect ”anc_pma” ;Di(n) in PROGRAMspace
.space 16*NDz

.endif

.if ALGORITHM == furlms
PAi .sect ”anc_pma” ;Ai(n) in PROGRAM space

.space 16*NAz
PBi .sect ”anc_pma” ;Bi(n) in PROGRAM space

.space 16*NBz
.else

PWi .sect ”anc_pma” ;Wi(n) in PROGRAM space
.space 16*NWz

.endif

;++
; UNINITIALIZED MEMORY (DATA)
;++
; BLOCK B0
; ––––––––
;
; These coefficients are used by the ANC algorithm. When the filters are
; computed, the coefficients should be in PROGRAM space to use with MACD.
; The total number of coefficients must all fit in RAM block B0. This
; number varies by device (C25 vs. C26). Due to the DMOV embedded in the
; MACD, the coefficient arrays must be stored in reverse order.
;
; +––––––––––––––––+
; | c (n) |
; | N–1 |
; +––––––––––––––––+
; | c (n) |
; | N–2 |
; +––––––––––––––––+
; | |
; | . |
; | . |
; | . |
; | |
; +––––––––––––––––+
; | c (n) |
; | 0 |
; +––––––––––––––––+
;
; The arrays are defined as follows:
; Ci = error path coefficients
; Di = acoustic feedback path coefficients
; Wi = adaptive FIR filter coefficients
; Ai = adaptive IIR filter feedforward coefficients
; Bi = adaptive IIR filter feedback coefficients
;
;
Ci .usect ”anc_coef”, NCz ;Ci(n) in DATA space

.if ALGORITHM == fbfxlms
Di .usect ”anc_coef”, NDz ;Di(n) in DATA space

.endif

.if ALGORITHM == furlms
Ai .usect ”anc_coef”, NAz ;Ai(n) in DATA space
Bi .usect ”anc_coef”, NBz ;Bi(n) in DATA space

.else

151

Wi .usect ”anc_coef”, NWz ;Wi(n) in DATA space
.endif

;––
; BLOCK B1
; ––––––––
;
; These arrays hold the inputs and outputs used by the adaptation and filter
; routines. Keep these arrays in DATA space.

.if ALGORITHM == fxlms
wnn .usect ”anc_vars”, Ts+1 ;wn(n) in DATA space
xn .usect ”anc_vars”, NWz+1 ;x(n) in DATA space (+1 for DMOV)
yn .usect ”anc_vars”, Te+1 ;y(n) in DATA space
x1n .usect ”anc_vars”, NCz+1 ;x1(n) in DATA space (+1 for DMOV)

.elseif ALGORITHM == fbfxlms
wnn .usect ”anc_vars”, NDz+1 ;wn(n) in DATA space (+1 for DMOV)
yn .usect ”anc_vars”, NDz+1 ;y(n) in DATA space (+1 for DMOV)
x1n .usect ”anc_vars”, NWz+1 ;x1(n) in DATA space (+1 for DMOV)
x2n .usect ”anc_vars”, NCz+1 ;x2(n) in DATA space (+1 for DMOV)

.elseif ALGORITHM == furlms
wnn .usect ”anc_vars”, Ts+1 ;wn(n) in DATA space
xn .usect ”anc_vars”, NAz+1 ;x(n) in DATA space (+1 for DMOV)
x1n .usect ”anc_vars”, NAz+1 ;x1(n) in DATA space (+1 for DMOV)
yn .usect ”anc_vars”, NBz+2 ;y(n) in DATA space (+2 for y(n–1) DMOV)
y1n .usect ”anc_vars”, NBz+1 ;y1(n) in DATA space (+1 for DMOV)

.elseif ALGORITHM == fanc
wnn .usect ”anc_vars”, Ts+1 ;wn(n) in DATA space
xn .usect ”anc_vars”, NWz+1 ;x(n) in DATA space (+1 for DMOV)
x1n .usect ”anc_vars”, NWz+1 ;x1(n) in DATA space (+1 for DMOV)
yn .usect ”anc_vars”, NCz+1 ;y(n) in DATA space (+1 for DMOV)

.endif

;––
; BLOCK B2
; ––––––––
;
; These are general purpose variables used in the program

.bss adaptemp,1 ;Adaptation intermediate value

.bss en, 1 ;Error mike input: e(n)

.bss zn, 1 ;Error path model output: z(n)

.bss e1n, 1 ;Error path model error: e1(n)

.if ALGORITHM == fbfxlms

.bss xn, 1 ;Input mike input: x(n)

.bss fn, 1 ;Acoustic feedback path model output: f(n)

.bss e2n, 1 ;Acoustic feedback path model error: e2(n)

.endif

.if GENERATOR == white_noise

.bss wng, 2 ;White noise generator storage
; current output + intermediate value

.elseif GENERATOR == sinewave

.bss a1, 1 ;Coefficient A1/2

.bss s1n_1,1 ;s1(n–1)

.bss s1n_2,1 ;s1(n–2)

.bss a2, 1 ;Coefficient A2/2

.bss s2n_1,1 ;s2(n–1)

.bss s2n_2,1 ;s2(n–2)

.endif

;––
; BLOCK B3
; ––––––––
;

;––
; EXTERNAL RAM

152

; ––––––––––––
;
; These arrays hold simulation trace data. The error mike reading
; should decay to a very small value if the algorithm works. Use
; broadband input to verify algorithm.
;
; NOTE: TOTAL TRACE BUFFER LENGTH USING EVM IS 30K SAMPLES USING
; SUPPLIED SYSTEM CONFIGURATION.

.if TRACE != none
ttrace .usect ”verify”, NSAMPLES ;Simulated error mike reading (Train)
ctrace .usect ”verify”, SIMLENGTH ;Simulated error mike reading (Cancel)

.if ALGORITHM == fbfxlms
fbtrace .usect ”verify”, NSAMPLES ;Simulated feedback reading at input

.endif

.if TRACE == in_out
gtrace .usect ”verify”, SIMLENGTH ;Simulated input mike reading (Cancel)

.endif
.endif

Simulation Models and Waveform Generators File (models.asm)

.title ”Simulation Models and Waveform Generators”

;++
; Simulation Models and Waveform Generators
; –––
;
; File: MODEL.ASM Rev: 1.0
; Last Change: 11/11/93 Start Date: 8/23/93
;
; Processor: TMS320C25
; Language: Assembly
; Assembler Rev: 6.40
;
; Programmer: Thomas G. Horner
; TI – Dallas RTC
; (214) 917–5051
;++
; Contains models of acoustic channel and waveform generators required
; to simulate complete ANC system for algorithm verification. The
; random number generator is also used for error path coefficient
; modelling in the Training module.
;++

;++
; INCLUDE FILES
;++

.include config.asm

;++
; PROGRAM
;++

.text

.if SIMULATION == yes
; Error path model (speaker to error mike)
; e(n)=Ge*y(n–Te)
Error

spm 2 ;Setup for Q27 result in Preg
ldpk yn
lt yn+Te ;T=y(n–Te)
mpyk Ge ;P=Ge*y(n–Te) NOTE: Coefficient is 13 bits
ldpk en ;Set DP to error mike input

153

sph en ;Save to error mike location
spm 1 ;Return to standard Q30 result

.if ALGORITHM != fbfxlms
larp AR4 ;Time shift adaptive filter outputs
lrlk AR4, yn+Te–1 ; except the oldest entry, yn(n–Te)
lark AR3, Te–1

Err1
dmov *–, AR3
banz Err1, AR4

.endif
ret

.if ALGORITHM == fbfxlms
; Acoustic feedback path model for Training mode (speaker to input mike)
; x(n)=Gf*y(n–Tf)
Feedback

spm 2 ;Setup for Q27 result in Preg
ldpk yn
lt yn+Tf ;T=y(n–Tf)
mpyk Gf ;P=Gf*y(n–Tf) NOTE: Coefficient is 13 bits
ldpk xn ;Set DP to input mike input
sph xn ; and save result
spm 1 ;Return to standard Q30 result
larp AR4 ;Time shift y(n) samples
lrlk AR4, yn+Tf–1 ; except the oldest entry, yn(n–Tf)
lark AR3, Tf–1

Fb1
dmov *–, AR3
banz Fb1, AR4
ret

; Acoustic feedback path model for Cancel mode (speaker to input mike)
; x(n)=wn(n)+Gf*y(n–Tf)
Feedback1

spm 2 ;Setup for Q27 result in Preg
ldpk yn
lt yn+Tf ;T=y(n–Tf)
mpyk Gf ;P=Gf*y(n–Tf) NOTE: Coefficient is 13 bits
pac ;ACC=Gf*y(n–Tf)
ldpk wnn ;Set DP to white noise array
addh wnn ; and save result
ldpk xn ;Set DP to input mike input
sach xn ; and save result
spm 1 ;Return to standard Q30 result
ret

.endif

; Acoustic channel model (noise source + anti–noise to error mike)
; e(n)=Gs*wn(n–Ts) + Ge*y(n–Te)
Source

ldpk wnn ;Set DP to input array
.if ALGORITHM == fanc

lt wnn ;T=wn(n–Ts), where Ts=0 for fanc algorithm
.else

lt wnn+Ts ;T=wn(n–Ts)
.endif

mpyk Gs ;P=Gs*wn(n–Ts) NOTE: Coefficient is 13 bits
pac ;ACC=Gs*wn(n)
ldpk yn ;Set DP to adaptive filter output
lt yn+Te ;T=y(n–Te)
mpyk Ge ;P=Te*y(n–Te) NOTE: Coefficient is 13 bits
apac ;ACC=Gs*wn(n–Ts)+Ge*y(n–Te)
ldpk en
sach en,3 ;Save to error mike location w/ Q28 shift

.if ALGORITHM != fanc

154

larp AR4 ;Time shift wn(n) array
lrlk AR4, wnn+Ts–1 ; except the oldest entry, wn(n–Ts)
lark AR3, Ts–1

Src1
dmov *–, AR3
banz Src1, AR4

.endif

.if ALGORITHM == fxlms
larp AR4 ;Time shift y(n) array
lrlk AR4, yn+Te–1 ; except the oldest entry, y(n–Te)
lark AR3, Te–1

Src2
dmov *–, AR3
banz Src2, AR4

.endif
ret
.endif

.if GENERATOR == white_noise
;++
; White Noise Generator Routine
;++
; This code computes a stream of random numbers. The algorithm was
; is taken from the book Digital Signal Processing Design by Bateman
; and Yates.
;++
Noisegen

ldpk wng
lac wng ;Load current random number
andk MASK ;Extract bits 0, 2, 11, 15
sacl wng+1 ;Save for future use
add wng+1, 4 ;Combine bit 11 with 15
add wng+1, 13 ;Combine bit 2 with result
add wng+1, 15 ;Combine bit 0 with result
andk MASK ;Extract bit 15 (others extraneous)
addh wng ;Combine bit 15 w/ previous number
sach wng, 1 ;Store new random number
ret

.elseif GENERATOR == sinewave
;++
; Sinewave Generator Routine
;++
; Sinewave generator to be used for checkout
; s(n)=(2*cos(2*pi*fd/fs))*s(n–1)–s(n–2)

; Initialize coefficient and ICs for sinewave generator
Sineinit

ldpk a1
lalk A1d2 ;A1/2 = cos(2*pi*fd/fs)
sacl a1
lalk S10 ;s1[n–2] IC
sacl s1n_2
lalk S11 ;s1[n–1] IC
sacl s1n_1

lalk A2d2 ;A2/2 = cos(2*pi*fd/fs)
sacl a2
lalk S20 ;s2[n–2] IC
sacl s2n_2
lalk S21 ;s2[n–1] IC
sacl s2n_1
ret

155

;Sinewave generator algorithm.
Sinewave

ldpk a1 ;Set DP to coefficient a

zac ;Zero math channel
mpyk 0 ;
subh s1n_2 ; y1[n] = 2*(A1/2*y1[n–1]) – y1[n–2]
ltd s1n_1
mpy a1
apac
apac
sach s1n_1 ;Store result back to memory

zac ;Zero math channel
mpyk 0 ;
subh s2n_2 ; y2[n] = 2*(A2/2*y2[n–1]) – y2[n–2]
ltd s2n_1
mpy a2
apac
apac
sach s2n_1 ;Store result back to memory

lac s1n_1,15 ;ACC = y1[n] + y2[n] w/ gain adjust
add s2n_1,15

ret
.endif

Interrupt Vectors and Interrupt Service Routine Traps File (vectors.asm)

.title ”Interrupt Vectors and ISR Traps”

;++
; Interrupt Vector Definitions
; ––––––––––––––––––––––––––––
;
; File: VECTORS.ASM Rev: 1.0
; Last Change: 10/11/92 Start Date: 10/5/92
;
; Processor: TMS320C25
; Language: Assembly
; Assembler Rev: 6.40
;
; Programmer: Thomas G. Horner
; TI – Dallas RTC
; (214) 917–5051
;++
; Interrupt Vectors and Unused Interrupt Traps
;++

;++
; INCLUDE FILES
;++

.include config.asm

;++
; VECTORS
;++
; Define interrupt vectors with addresses of ISRs. Any ISR which is not
; active is trapped to an idle state for debug.
;

.sect ”x_vecs”

b Reset ;Power Up Reset
b Int0 ;External Interrupt #0

156

b Int1 ;External Interrupt #1
b Int2 ;External Interrupt #2

.sect ”p_vecs”
b Tint ;Timer Interrupt
b Rint ;Serial Port Receive Interrupt
b Xint ;Serial Port Transmit Interrupt
b Trap ;S/W Trap

;++
; UNUSED INTERRUPT TRAPS
;++
; These traps can be used for debug purposes or for an extra measure of
; security in production S/W. Alternatively, this code can be altered
; to perform a soft reset by replacing the ”idle” nmemonic with ”b reset”.
;

.sect ”traps”

.if TIMEBASE == external
;Int0 idle ;External Interrupt #0

.else
Int0 idle ;External Interrupt #0

.endif
Int1 idle ;External Interrupt #1
Int2 idle ;External Interrupt #2

.if TIMEBASE == timer
;Tint idle ;Timer Interrupt

.else
Tint idle ;Timer Interrupt

.endif
Rint idle ;Serial Port Receive Interrupt
Xint idle ;Serial Port Transmit Interrupt
Trap idle ;S/W Trap

;++
.end

157

APPENDIX E: SCHEMATIC DIAGRAM OF 8-ORDER BUTTERWORTH
LOW-PASS FILTER

–

+

AB
AC

TL074N
13

2
680 pF

AE

TL074N

330 pF

AG

5 +

6
–

AF

7

AI

TL074N

220 pF

AK

10
+

9
–

AJ

8

AM

TL074N

680 pF

AO

13 +

12
–

AN

14

AF
Filter
Output

–

+

–

+
+

–

–

+

TL074N

10

9

7
5

6

12

13

14
AM

TL074N

TL074N
TL074N

AB
16

15
AC

1

2
AM

3

AG

AE
4

14

13
AF

5

AK

AI
6

12

11
AJ

7

AO

AM
8

10

9
AN

1
3

2

10 kΩ

1 kΩ

1 kΩ
10 kΩ

0.001 �F

10 kΩ

0.001 �F0.001 �F0.001 �F

1 �F

10 kΩ

1 �F

335 kΩ ±5%

428 kΩ ±1%

117 kΩ ±5%

257 kΩ ±5%

367 kΩ ±5%

120 kΩ ±1%

208 kΩ ±1%

693 kΩ ±1%

Filter
Input

158

159

APPENDIX F: ANC UNIT SYSTEM SETUP AND OPERATION PROCEDURE

This is a detailed description of the system setup and the operation procedure for the ANC unit shown in
Figure 31, page 60.

Hardware

The test system was built using PVC pipes of inner diameter 6 inches. The overall length of the duct was
110.7 cm. The distance from noise loudspeaker to error microphone was 69.0 cm. In addition to the PVC
pipes, the system included the components and auxiliary equipment in the following list:

• 2 Realistic 33-1063 tie-pin microphones
• 2 Kicker 6.5” free-air subwoofers
• 1 Symetrix SX202 dual microphone preamplifier
• 1 Carvin FET 450 power amplifier
• 4 8-order Butterworth low-pass filters
• 1 LAMBDA LPD-422A-FM dual regulated power supply
• 1 Ariel DSP-16 Plus TMS320C25 DSP board with a ’C25 device
• 1 personal computer
• 1 HP 3561A dynamic signal analyzer or TMS320C26 DSP starter kit with another personal

computer
• Function generator(s)

With two input and output ports, the Ariel DSP-16 Plus TMS320C25 DSP board can fulfill the
experimental requirements. One input port receives the correction signal from the error microphone, and
the other one receives the reference signal from the input microphone. Meanwhile, one of the output ports
is used to send out the antinoise signal, and the other is used to send out the signal to observe.

Software

The Ariel DSP board has a set of supported software; however, only part of it is necessary in these
experiments. A listing of required files with brief descriptions of their functions follows:

DSPBUG.EXE The basic DSPBUG executable file. When invoked, this program provides a
resident monitor that can be used to load and run the source hex file.

DSPBUG.CFG The configuration file of the DSPBUG resident monitor

DSPBUG.HLP Contains the DSPBUG resident monitor help system

DSP320.CFG The configuration file of the DSP-16 Plus TMS320C25 DSP board. Contains
ASCII information on installed options, board revision, I/O address setting,
memory address, etc.

RESMON.HEX Hex file of the DSPBUG resident monitor. Contains all the code that DSPBUG
needs to control the operation of the source program when debugging.

ASM320.EXE Two-pass assembler that reads a source file from disk and writes a standard
INTEL format hex object file to disk.

160

The algorithms involved in the ANC experiments are FXLMS, FBFXLMS, and FURLMS. The filenames
of the related assembly code and object files in the software package are as follows:

ALGORITHM ASSEMBLY CODE FILE OBJECT FILE FILE

FXLMS FXLMS.ASM FXLMS.HEX

FBFXLMS FBFXLMS.ASM FBFXLMS.HEX

FURLMS FURLMS.ASM FURLMS.HEX

Operation Procedure

The assembly programs and the files required for using the Ariel DSP-16 Plus TMS320C25 DSP board
are in the same directory, and the one-dimensional ANC duct system is set up. The operational procedure
of this ANC system is as follows:

1. Edit the source program: Type edit <filename>.asm at the DOS prompt, where <filename> is
the name of the source file. For each source file, there must be matching .asm file.

2. Assemble the source program: Type asm320/c25 <filename> at the DOS prompt. Upon
successful assembly, one additional hex file (<filename>.hex) is generated.

3. Enter the DSPBUG resident monitor: Type dspbug and press enter at the DOS prompt.
4. Set the sampling rate: Type splrate and press enter on the command line of the DSPBUG resident

monitor, then set the sampling rate of both the input and output ports to 2000 Hz.
5. Run the program:

a. Turn on the error microphone.
b. Set the volume of the canceling loudspeaker.
c. Type dwnld <filename> and press enter on the command line of DSPBUG resident monitor.
d. After the off-line modeling stage, set the volume of the noise loudspeaker.
e. Turn on the input microphone.

6. Turn off both of the microphones and adjust the volume of the two loudspeakers to zero when
the demonstration is complete.

7. Return to DOS: Type quit and press enter on the command line of DSPBUG.

Note that the procedure above is valid only for the FXLMS and FURLMS algorithms. For the FBFXLMS
algorithm, part d of step 5 should be performed at the same time as part a.

There is a memory conflict between this program and Ariel’s DSPBUG resident monitor program
(resmon.hex). To avoid the conflict, rearrange the memory locations in this program from on-chip memory
to external memory. Extra time may be required to access data from the external memory instead of from
on-chip memory. When many calculations are required during continued testing of the system performance
in the higher sampling rates, the use of on-chip memory is suggested. In using on-chip memory, the memory
conflict occurs when this program is loaded. Error messages are shown on the screen, indicating the crash
of the DSPBUG resident monitor. The error messages do not adversely affect the program run, but if the
error messages need to be removed from the screen, just press the space bar or the enter key several times.

To make sure that the compensation filters (C(z) in the FXLMS and FURLMS algorithms, C(z) and D(z)
in the FBFXLMS algorithm) are well estimated, it is necessary to monitor the modeling error during the
off-line modeling stage. Connect the modeling error signal out from output channel B on the Ariel DSP
board. Monitor that signal in real time by using a scope. If the observed signal converges, this modeling
process is successful. Otherwise, changing the adaptation step size for the estimated filter is required.

161

APPENDIX G: TMS320C26 DSP STARTER KIT, AN ALTERNATIVE TO
THE SPECTRUM ANALYZER

Instead of using a spectrum analyzer to observe the signal, the TMS320C26 DSP starter kit (DSK) provides
an alternative approach. The following checklist details items that are necessary to implement this kit [48].

1. Hardware checklist
a. Host: IBM PC/AT or 100%-compatible PC with a hard disk system and a 1.44-megabyte

floppy-disk drive
b. Memory: minimum of 640K bytes
c. Display: EGA/VGA
d. Power supply: 9 V ac at 250 mA with a 2.1-mm power jack connector
e. Board: DSK circuit board
f. Port: asynchronous RS-232 serial communications link
g. Cable: RS-232 with a DB9 interface

2. Software checklist
a. Operating System : MS -DOS or PC -DOS (version 4.01 or later)
b. Files: DSK_SA26.EXE

DSK_COM2.DSK
AV26.ASM
AV26.DSK
EGAVGA.BGI
DSKA.EXE

The DSK_SA26.EXE is an executable real-time FFT file. This file outputs a log magnitude of the FFT
result every 256 sampling points. The vertical axis of the spectrum analysis shown on the screen of the PC
is dB-based, and the horizontal axis is based on the normalized frequency. The minimum sampling
frequency that can be selected on the DSK is 2560 Hz.

After connecting the DSK to the PC and power, plug in the observed signal source. At the DOS prompt,
type dsk_sa26 and press enter. A working spectrum analysis is shown on the screen of the PC.

MS is a registered trademark of Microsoft Corporation.
PC is a trademark of International Business Machines Corp.

162

