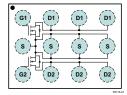


Dual N-Channel NexFET™ Power MOSFET

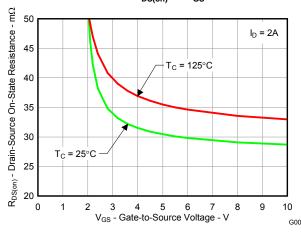
Check for Samples: CSD86311W1723

FEATURES

- Dual N-Ch MOSFETs
- Common Source Configuration
- Small Footprint 1.7 mm x 2.3 mm
- Ultra Low Q_q and Q_{qd}
- Pb Free
- RoHS Compliant
- Halogen Free


APPLICATIONS

- Battery Management
- Battery Protection
- DC-DC Converters


DESCRIPTION

The device has been designed to deliver the lowest on resistance and gate charge in the smallest outline possible with thermal characteristics in an ultra low profile. Low on resistance and gate charge coupled with the small footprint and low profile make the device ideal for battery operated space constrained application in load management as well as DC-DC converter applications

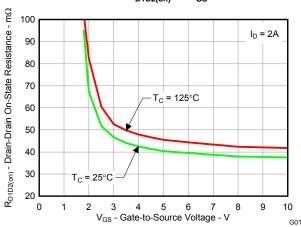
Top View

R_{DS(on)} vs V_{GS}

PRODUCT SUMMARY

V_{DS}	Drain to Source Voltage	25	V	
Q_g	Gate Charge Total (4.5V)	3.1	3.1	
Q_{gd}	Gate Charge Gate to Drain	0.33		nC
		$V_{GS} = 2.5V$	37	mΩ
R _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 4.5V$	31	mΩ
		V _{GS} = 8V	29	mΩ
$V_{GS(th)}$	Threshold Voltage	1		V

ORDERING INFORMATION


Device	Package	Media	Qty	Ship
CSD86311W1723	1.7-mm × 2.3-mm Wafer Level Package	7-inch reel	3000	Tape and Reel

ABSOLUTE MAXIMUM RATINGS

T _A = 2	5°C unless otherwise stated	VALUE	UNIT	
V _{DS}	Drain to Source Voltage	25	V	
V_{GS}	Gate to Source Voltage	+10 / -8	V	
	Continuous Drain Current (1) (2)(3)	4.5	^	
I _D	Pulsed Drain Current (1) (2)(3)	4.5	Α	
	Continuous Gate Clamp Current (4)		^	
I _G	Pulsed Gate Clamp Current (4)	6	Α	
P _D	Power Dissipation (1)	1.5	W	
T _J , T _{STG}	Operating Junction and Storage Temperature Range	-55 to 150	°C	

- (1) May be limited by Max source current
- (2) Based on Min Cu footprint
- (3) Per MOSFET
- (4) Total for device

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

<u>SLPS251 – MAY 2010</u> www.ti.com

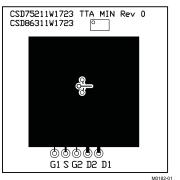
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ELECTRICAL CHARACTERISTICS

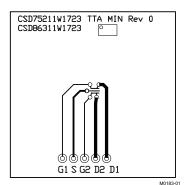
 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Static Cl	haracteristics			-	
BV _{DSS}	Drain to Source Voltage	$V_{GS} = 0V, I_D = 250\mu A$	25		V
I _{DSS}	Drain to Source Leakage Current	V _{GS} = 0V, V _{DS} = 20V		1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{DS} = 0V, V_{GS} = +10 / -8V$		±100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.85 1	1.4	٧
		V _{GS} = 2.5V, I _{DS} = 2A	37	51	mΩ
R _{DS(on)}	Drain to Source On Resistance	V _{GS} = 4.5V, I _{DS} = 2A	31	42	mΩ
		V _{GS} = 8V, I _{DS} = 2A	29	39	mΩ
		$V_{GS} = 2.5V, I_D = 2A$	52	75	mΩ
R _{DD(on)}	Drain to Drain On Resistance	V _{GS} = 4.5V, I _{DS} = 2A	41	55	mΩ
		V _{GS} = 8V, I _{DS} = 2A	38	50	mΩ
9 _{fs}	Transconductance	V _{DS} = 10V, I _D = 2A	6.4		S
Dynamic	Characteristics	,		•	
C _{ISS}	Input Capacitance	V _{GS} = 0V,	450	585	pF
Coss	Output Capacitance	$V_{DS} = 12.5V$,	250	325	pF
C _{RSS}	Reverse Transfer Capacitance	f = 1MHz	10	13	pF
R _G	Seried Gate Resistance		1.4	2.8	Ω
Qg	Gate Charge Total (4.5V)		3.1	4	nC
Q _{gd}	Gate Charge Gate to Drain	V _{DS} = 12.5V,	0.33		nC
Q _{gs}	Gate Charge Gate to Source	$I_D = 2A$	0.85		nC
Q _{g(th)}	Gate Charge at Vth		0.48		nC
Q _{OSS}	Output Charge	$V_{DS} = 12.2V, V_{GS} = 0V$	4.5		nC
t _{d(on)}	Turn On Delay Time		5.4		ns
t _r	Rise Time	V _{DS} = 12.5V, V _{GS} = 4.5V,	4.3		ns
t _{d(off)}	Turn Off Delay Time	$I_D = 2A, R_G = 2\Omega$	13.2		ns
t _f	Fall Time		2.9		ns
Diode CI	haracteristics				
V _{SD}	Diode Forward Voltage	I _S = 2A, V _{GS} = 0V	0.78	1	V
Q _{rr}	Reverse Recovery Charge	V _{dd} = 12.2V, I _F = 2A,	4.2		nC
t _{rr}	Reverse Recovery Time	di/dt = 300A/μs	13.4		ns

THERMAL CHARACTERISTICS


(T_A = 25°C unless otherwise stated)

	PARAMETER	MIN	TYP	MAX	UNIT
Rθ	Thermal Resistance Junction to Ambient (Minimum Cu area) (1) (2)			165	°C/W
R _θ	Thermal Resistance Junction to Ambient (1 in ² Cu area) (2) (3)			68	°C/W


- (1) Device mounted on FR4 material with minimum Cu mounting area.
- (2) Measured with both devices biased in a parallel condition.
- (3) Device mounted on FR4 material with 1 in² of 2oz. Cu.

Submit Documentation Feedback

Max $R_{\theta JA} = 68^{\circ}\text{C/W}$ when mounted on 1inch² of 2 oz. Cu.

Max $R_{\theta JA} = 165^{\circ}\text{C/W}$ when mounted on minimum pad area of 2 oz. Cu.

TYPICAL MOSFET CHARACTERISTICS

(T_A = 25°C unless otherwise stated)

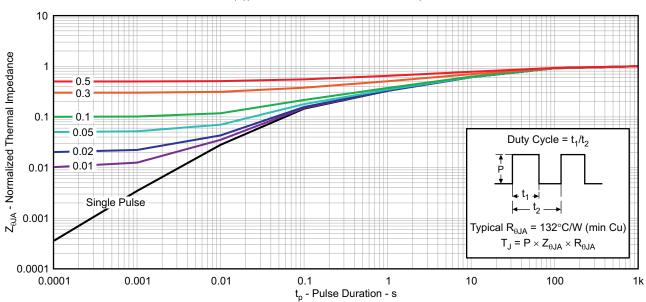


Figure 1. Transient Thermal Impedance

G012

SLPS251 – MAY 2010 www.ti.com

TYPICAL MOSFET CHARACTERISTICS (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

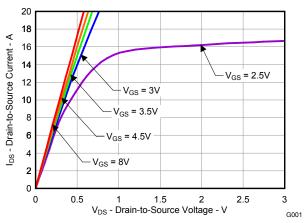
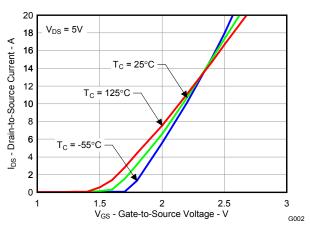



Figure 2. Saturation Characteristics

ISTRUMENTS

Figure 3. Transfer Characteristics

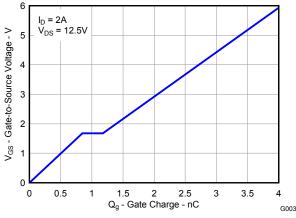


Figure 4. Gate Charge

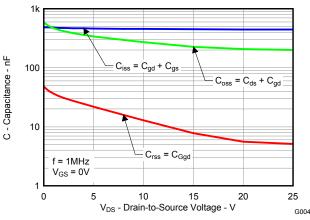


Figure 5. Capacitance

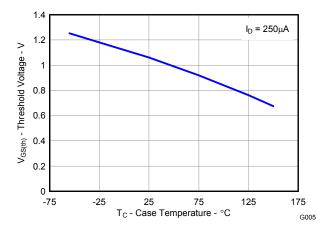


Figure 6. Threshold Voltage vs. Temperature

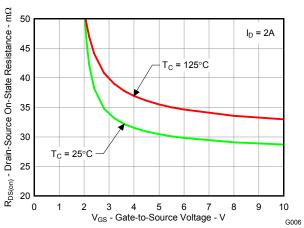


Figure 7. $R_{DS(on)}$ vs. Gate-to-Source Voltage

TYPICAL MOSFET CHARACTERISTICS (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

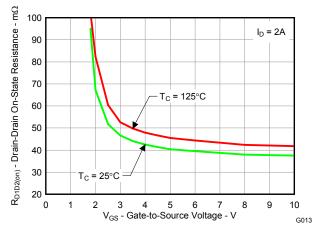


Figure 8. R_{D1D2(on)} vs. Gate-to-Source Voltage

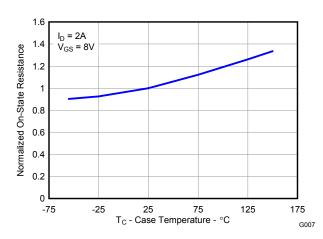


Figure 9. On Resistance vs. Temperature

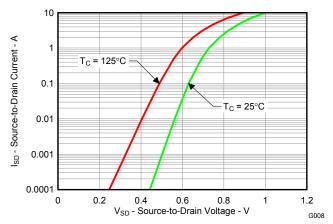


Figure 10. Typical Diode Forward Voltage

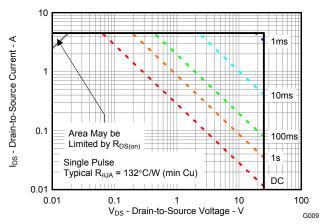
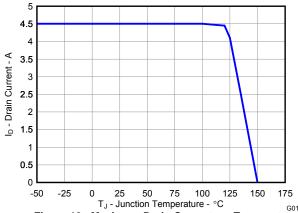
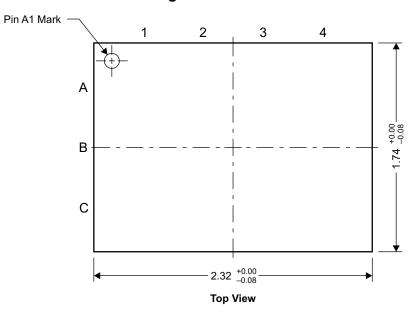
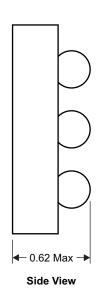
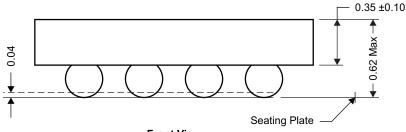


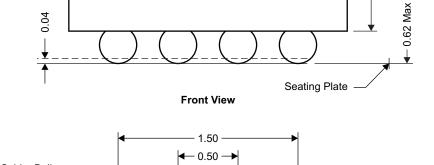
Figure 11. Maximum Safe Operating Area

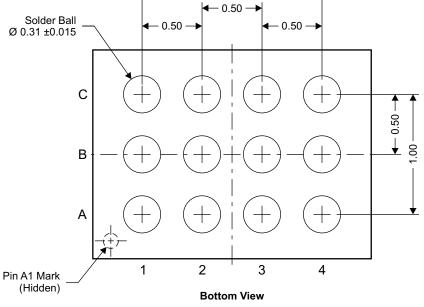




Figure 12. Maximum Drain Current vs. Temperature

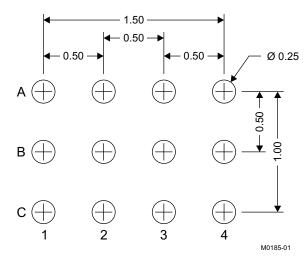
SLPS251 - MAY 2010 www.ti.com


MECHANICAL DATA


CSD86311W1723 Package Dimensions

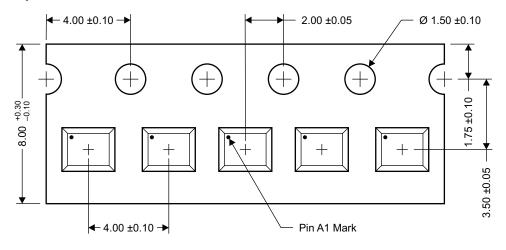


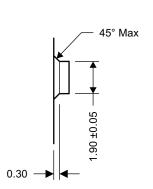
INSTRUMENTS


Pinout						
Position	Designation					
A2, A3, A4	Drain 1					
C2, C3, C4	Drain 2					
A1	Gate 1					
C1	Gate 2					
B1, B2, B3, B4	Source					

M0184-01

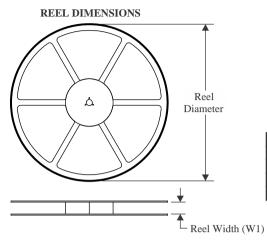
NOTE: All dimensions are in mm (unless otherwise specified)

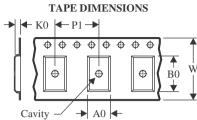



Land Pattern Recommendation

NOTE: All dimensions are in mm (unless otherwise specified)

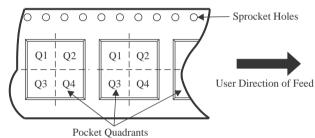
Tape and Reel Information


M0186-01


NOTE: All dimensions are in mm (unless otherwise specified)

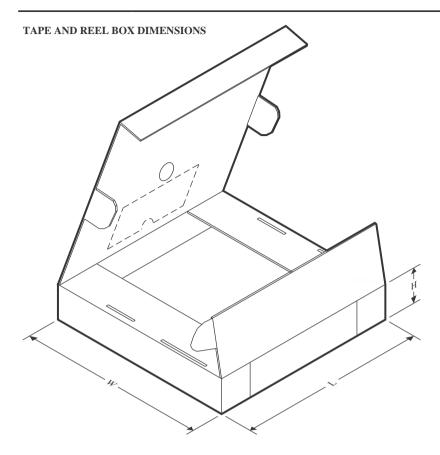
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Aug-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD86311W1723	DSBGA	YZG	12	3000	180.0	8.4	2.38	1.8	0.69	4.0	8.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Aug-2023

*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ı	CSD86311W1723	DSBGA	YZG	12	3000	182.0	182.0	20.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated