

Texas INSTRUMENTS

TS12A12511 SCDS248E - OCTOBER 2009 - REVISED SEPTEMBER 2022

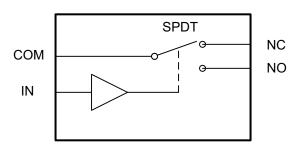
TS12A12511 5-Ω Single-Channel SPDT Analog Switch With Negative Signaling Capability

1 Features

- ±2.7-V to ±6-V dual supply
- 2.7-V to 12-V single supply •
- 5- Ω (typical) ON-state resistance
- 1.6- Ω (typical) ON-state resistance flatness
- 3.3-V, 5-V compatible digital control inputs
- Rail-to-rail analog signal handling ٠
- Fast ton, torF times
- Supports both digital and analog signal ٠ applications
- Tiny 8-lead SOT-23, 8-lead MSOP, and QFN-8 packages
- Latch-up performance exceeds 100 mA per JESD 78. Class II
- ESD performance tested per JESD 22
 - ±2000-V Human Body Model (A114-B, Class II)
 - ±1000-V Charged-Device Model (C101)

2 Applications

- Automatic test equipment •
- Power routing
- Communication systems
- Data acquisition systems
- Sample-and-hold systems
- Relay replacement
- Grid Infrastructure


3 Description

The TS12A12511 is a bidirectional, single-channel, single-pole double-throw (SPDT) analog switch that can pass signals with swings of 0 to 12 V or -6 V to 6 V. This switch conducts equally well in both directions when it is on. The device also offers a low ON-state resistance of 5 Ω (typical), which is matched to within 1 Ω between channels. The maximum current consumption is <1 μ A and -3 dB bandwidth is >93 MHz. The TS12A12511 exhibits break-before-make switching action, preventing momentary shorting when switching channels. This device is available packaged in an 8-lead VSSOP, 8-lead SOT-23, and a 8-pin WSON.

Package Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	DCN (SOT-23, 8)	2.90 mm × 1.63 mm
TS12A12511	DGK (VSSOP, 8)	3.00 mm × 3.00 mm
	DRJ (WSON, 8)	4.00 mm × 4.00 mm

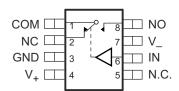
For all available packages, see the orderable addendum at (1)the end of the data sheet.

Simplified Schematic

Table of Contents

1 Features1
2 Applications1
3 Description1
4 Revision History
5 Pin Configuration and Functions
6 Specifications
6.1 Absolute Maximum Ratings4
6.2 ESD Ratings 4
6.3 Recommended Operating Conditions4
6.4 Thermal Information4
6.5 Electrical Characteristics: ±5-V Dual Supply5
6.6 Electrical Characteristics: 12-V Single Supply6
6.7 Electrical Characteristics: 5-V Single Supply7
6.8 Typical Characteristics8
7 Parameter Measurement Information10
7.1 Test Circuits10
8 Detailed Description14
8.1 Overview14

8.2 Functional Block Diagram	.14
8.3 Feature Description.	
8.4 Device Functional Modes	
9 Application and Implementation	
9.1 Application Information	
9.2 Typical Application	
10 Power Supply Recommendations	.17
11 Layout	.17
11.1 Layout Guidelines	17
11.2 Layout Example	
12 Device and Documentation Support	.18
12.1 Receiving Notification of Documentation Updates.	.18
12.2 Support Resources	.18
12.3 Trademarks	
12.4 Electrostatic Discharge Caution	.18
12.5 Glossary	.18
13 Mechanical, Packaging, and Orderable	
Information	18


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	Changes from Revision D (January 2019) to Revision E (September 2022)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document Updated the <i>Applications</i> section	
•	Updated the <i>Applications</i> section Updated the <i>Leakage Current vs I/O Voltage (Switch ON)</i> and <i>Leakage Current vs I/O Voltage (Sw</i> figures	itch OFF)
	Changes from Revision C (January 2015) to Revision D (January 2019)	Page
•	Added Junction temperature to the Absolute Maximum Ratings table	4
С	Changes from Revision B (April 2011) to Revision C (January 2015)	Page
•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, D Functional Modes, Application and Implementation section, Power Supply Recommendations section section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable In section	on, <i>Layout</i> Iformation
С	Changes from Revision A (May 2010) to Revision B (April 2011)	Page
•	Deleted preview status from DGK and DCN packages	3

5 Pin Configuration and Functions

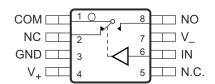
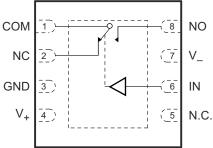



Figure 5-2. DCN Package, 8-Pin SOT-23 (Top View)

Figure 5-1. DGK Package, 8-Pin VSSOP (Top View)

N.C. - Not internally connected NC - Normally closed NO - Normally open

The Exposed Thermal Pad must be electrically connected to V_ or left floating.

Figure 5-3. DRJ Package, 8-Pin WSON (Top View)

Table 5-1. Pin Functions

F	PIN	TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.		DESCRIPTION
СОМ	1	I/O	Common. Can be an input or output.
GND	3	_	Ground (0 V) reference
IN	6	I	Logic control input
NC	2	I/O	Normally closed. Can be an input or output.
N.C.	5	_	No connect. Not internally connected.
NO	8	I/O	Normally open. Can be an input or output.
V _{CC}	4	I	Most positive power supply
-V _{CC}	7	I	Most negative power supply. This pin is only used in dual-supply applications and should be tied to ground in single-supply applications.
Thermal pace	d	_	The Exposed Thermal Pad must be electrically connected to V_ or left floating.

(1) I = input, O = output

6 Specifications

6.1 Absolute Maximum Ratings

 $T_A = 25^{\circ}C$ (unless otherwise noted).⁽¹⁾

			MIN	MAX	UNIT
V _{CC} to -V	сс		0	13	V
V _{CC} to GI	ND		-0.3	13	V
-V _{CC} to G	ND		-6.5	0.3	V
V _{I/O}	Analog inputs	NC, NO, or COM	-V _{CC} - 0.5	V _{CC} + 0.5	V
I _{IN}	Digital inputs			±30	mA
	Peak current	NC, NO, or COM		±100	mA
I _{I/O}	Continuous current	NC, NO, or COM		±50	mA
T _A	Operating temperature		-40	85	°C
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 6.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT	
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V	
V _(ESD)	Electiostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
V _{CC}	0	12	V
-V _{CC}	-6	0	V
V _{I/O}	-V _{CC}	V _{CC}	V
V _{IN}	0	V _{CC}	V

6.4 Thermal Information

			TS12A12511		
	THERMAL METRIC ⁽¹⁾	DCN	DGK	DRJ	UNIT
			8 PINS		
R _{θJA}	Junction-to-ambient thermal resistance	218.4	184.5	47.8	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	89.9	71.0	48.6	
R _{θJB}	Junction-to-board thermal resistance	144.4	104.5	24.2	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	7.8	11.3	1.2	C/W
Ψ _{JB}	Junction-to-board characterization parameter	141.7	103.3	24.4	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	9.0	1

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: ±5-V Dual Supply

$V_{CC} = 5 V + 10\%$	$-V_{CC} = -5 V + 10\%$	$T_{\Lambda} = -40^{\circ}C$ to $85^{\circ}C$	(unless otherwise noted)
$V_{UU} = 0 V \pm 10.00$	$V_{\rm U} = 0.0 \pm 10.0$	$T_{\rm A} = -40000000$	

	PARAMETER	TEST CONDITIONS	1	Г _А = 25°С		$T_A = -4$	0°C to 85	°C	UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
ANALOG S	SWITCH		- I						
	Analog signal range					-V _{CC}		V _{CC}	V
R _{ON}	ON-state resistance	V_{NC} = -4.5 V to +4.5 V or V_{NO} = -4.5 V to 4.5 V, I_{COM} = -10 mA; see Figure 7-1		5			5	8	Ω
ΔR _{ON}	ON-state resistance match between channels			1	1.2		·	1.6	Ω
R _{ON(flat)}	ON-state resistance flatness	$ \begin{array}{l} V_{NC} = -3.3 \; V \; to \; +3.3 \; V \\ or \; V_{NO} = -3.3 \; V \; to \; +3.3 \; V, \\ I_{COM} = -10 \; mA \end{array} $		1.6	2.2			2.2	Ω
LEAKAGE	CURRENTS	•							
I _{NC(OFF)} , I _{NO(OFF)}	OFF leakage current	$ \begin{array}{l} V_{NC} = -4.5 \; V \; to \; +4.5 \; V \\ or \; V_{NO} = -4.5 \; V \; to \; +4.5 \; V \\ V_{COM} = -4.5 \; V \; to \; +4.5 \; V; \; see \; Figure \; 7\text{-}2 \end{array} $	-1	±0.5	1	-50		50	nA
I _{NC(ON)} , I _{NO(ON)}	ON leakage current		-1	±0.5	1	-50		50	nA
DIGITAL IN	IPUTS		- I						
V _{INH}	High-level input voltage					2.4		V _{CC}	V
V _{INL}	Low-level input voltage					0		0.8	V
I _{INL} , I _{INH}	Input current	$V_{IN} = V_{INL}$ or V_{INH}		0.005		-1		1	μA
C _{IN}	Control input capacitance			2.5					pF
DYNAMIC ⁽	1)								
t _{ON}	Turn-ON time	R_L = 300 Ω, C_L = 35 pF, V _{COM} = 3.3 V; see Figure 7-5		80	95			115	ns
t _{OFF}	Turn-OFF time	$\label{eq:relation} \begin{array}{l} R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF, \\ V_{COM} = 3.3 \ V \end{array}$		41	50			56	ns
t _{BBM}	Break-before-make time delay	$\label{eq:RL} \begin{array}{l} R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF, \\ V_{NC} = V_{NO} = 3.3 \ V; \ see \ Figure \ 7-6 \end{array}$		36		18			ns
Q _C	Charge injection	V_{NC} = V_{NO} = 0 V, R_{GEN} = 0 Ω , C_L = 1 nF; see Figure 7-7		26					рС
O _{ISO}	OFF isolation	R_L = 50 Ω, C_L = 5 pF, f = 1 MHz; see Figure 7-8		-70					dB
X _{TALK}	Channel-to-channel crosstalk	R_L = 50 Ω, C_L = 5 pF, f = 1 MHz, see Figure 7-9		-70					dB
BW	Bandwidth –3 dB	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 7-10		93					MHz
THD	Total harmonic distortion	R_L = 600 Ω, C_L = 15pF, VNO = 1V _{RMS} , f = 20 kHz; see Figure 7-11		0.004%					
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	f = 1 MHz; see Figure 7-4		14					pF
C _{COM(ON)} , C _{NC(ON)} , C _{NO(ON)}	COM, NC, NO ON capacitance	f = 1 MHz; see Figure 7-4		60					pF
SUPPLY		•							
Icc	Positive supply current			0.03				1	μA

(1) Specified by design, not subject to production test.

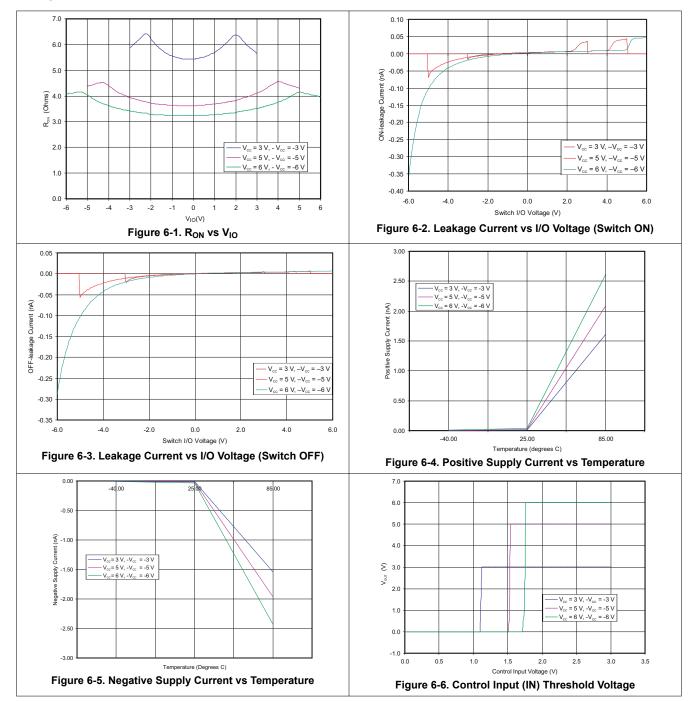
6.6 Electrical Characteristics: 12-V Single Supply

 V_{CC} = 12 V ± 10%, - V_{CC} = 0 V, GND = 0 V, T_A = -40°C to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	1	Г _А = 25°С		T _A = -40°C to 85°C			UNIT
			MAX	MIN TYP		MAX	UNIT		
ANALOG SWI	тсн								
	Analog signal range					0		V _{CC}	V
R _{on}	ON-state resistance	$V_{NC} = 0$ V to 10.8 V or $V_{NO} = 0$ V to 10.8 V, $I_{COM} = -10$ mA, see Figure 7-1		5			5	8	Ω
ΔR _{on}	ON-state resistance match between channels			1.6	2.4			2.6	Ω
R _{on(flat)}	ON-state resistance flatness	$$V_{\rm NC}$$ = 3.3 V to 7V or $V_{\rm NO}$ = 3.3 V to 7 V, $$I_{\rm COM}$$ = -10 mA		1.7			1.8	3.2	Ω
LEAKAGE CU	IRRENTS							·	
I _{NC(OFF)} , I _{NO(OFF)}	OFF leakage current	$ \begin{array}{l} V_{NC} = 0 \; V \; to \; 10.8 \; V \; or \; V_{NO} = 0 \; V \; to \\ 10.8 \; V, \\ V_{COM} = 0 \; V \; to \; 10.8 \; V; \; see \; Figure \\ 7-2 \end{array} $	-10	±0.5	10	-50		50	nA
I _{NC(ON)} , I _{NO(ON)}	ON leakage current	$\begin{array}{c} V_{NC}=0 \; V \; to \; 10.8 V \; or \; V_{NO}=0 \; V \; to \\ 10.8 \; V, \\ V_{COM}= open; \; see \; Figure \; 7\text{-}3 \end{array}$	-10	±0.5	10	-50		50	nA
DIGITAL INPU	ITS				I				
V _{INH}	High-level input voltage					5		V _{CC}	V
V _{INL}	Low-level input voltage					0		0.8	V
I _{INL} , I _{INH}	Input current	$V_{IN} = V_{INL}$ or V_{INH}		±0.005		-0.1		0.1	μA
C _{IN}	Digital input capacitance			2.7					pF
DYNAMIC (1)									
t _{on}	Turn-ON time	R_L = 300 Ω, C_L = 35 pF, V _{COM} = 3.3 V; see Figure 7-5		56	85			110	ns
t _{OFF}	Turn-OFF time	$ \begin{array}{l} R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF, \\ V_{COM} = 3.3 \ V; \ see \ Figure \ 7-5 \end{array} $		25	30			31	ns
t _{BBM}	Break-before-make time delay	R_L = 300 Ω,C_L = 35 pF, V_{NC} = V_{NO} = 3.3 V; see Figure 7-6		30		19			ns
Q _C	Charge injection			491					pC
O _{ISO}	OFF isolation	$\label{eq:RL} \begin{array}{l} R_{L} = 50 \ \Omega, \ C_{L} = 5 \ pF, \ f = 1 \ MHz, \\ see \ Figure \ 7-8 \end{array}$		-70					dB
X _{TALK}	Channel-to-channel crosstalk	$\label{eq:RL} \begin{array}{l} R_{L} = 50 \; \Omega, \; C_{L} = 5 \; pF, \; f = 1 \; MHz, \\ see \ Figure \ 7-9 \end{array}$		-70					dB
BW	Bandwidth –3 dB	R_L = 50 Ω, C_L = 5 pF, see Figure 7-10		200					MHz
THD	Total harmonic distortion	$ R_L = 600 \ \Omega, \ C_L = 15 p F, \ V_{NO} = 1 \\ V_{RMS}, \ f = 20 \ kHz; \ see \ Figure \ 7-11 $		0.04%					
C _{NC(OFF)} , CI _{NO(OFF)}	NC, NO OFF capacitance	f = 1 MHz, see Figure 7-4		14					pF
C _{COM(ON)} , C _{NC(ON)} , C _{NO(ON)}	COM, NC, NO ON capacitance	f = 1 MHz, see Figure 7-4		55					pF
SUPPLY									
I _{cc}	Positive supply current			0.07				1	μA

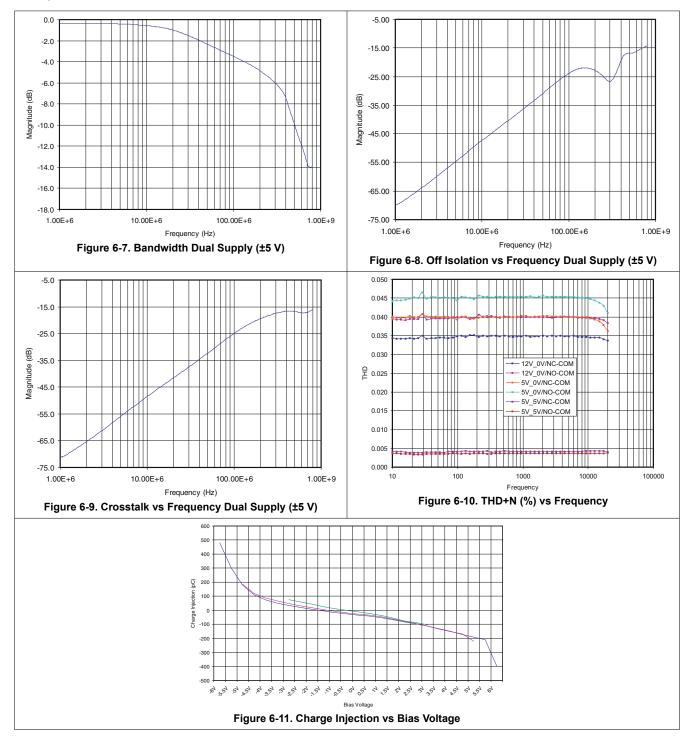
(1) Specified by design, not subject to production test.

6.7 Electrical Characteristics: 5-V Single Supply


$V_{CC} = 5 \text{ V} \pm 10\%$, $-V_{CC} = 0 \text{ V}$, GND = 0 V, $T_A = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Т.	_A = 25°C		T _A = –40°C to 85°C			UNIT	
	FARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN TYP		MAX	UNIT	
ANALOG SWI	тсн	· · ·						·		
	Analog signal range					0		V _{CC}	V	
R _{on}	ON-state resistance	$ \begin{array}{l} V_{NC} = 0 \ V \ to \ 4.5 \ V \ or \ V_{NO} = 0 \ V \ to \\ 4.5 \ V, \\ I_{COM} = -10 \ mA; \\ see \ Figure \ 7-1 \end{array} $		8	10			12.5	Ω	
ΔR _{on}	ON-state resistance match between channels			1	1.1			1.5	Ω	
R _{on(flat)}	ON-state resistance flatness	$V_{NC} = 0 V \text{ to } 4.5 V \text{ or } V_{NO} = 0 V \text{ to}$ 4.5 V, $I_{COM} = -10 \text{ mA}$		1.3			1.3	2	Ω	
LEAKAGE CU	RRENTS									
I _{NC(OFF)} , I _{NO(OFF)}	OFF leakage current	$ \begin{array}{c} V_{NC} = 0 \ V \ to \ 4.5 \ V \ or \ V_{NO} = 0 \ V \ to \\ 4.5 \ V, \\ V_{COM} = 0 \ V \ to \ 4.5 \ V; \ see \ Figure \ 7-2 \end{array} $	-1	±0.5	1	-50		50	nA	
I _{NC(ON)} , I _{NO(ON)}	ON leakage current	$ \begin{array}{l} V_{NC} = 0 \ V \ to \ 4.5 V \ or \ V_{NO} = 0 \ V \ to \\ 4.5 \ V, \\ V_{COM} = open; \ see \ Figure \ 7-3 \end{array} $	-1	±0.5	1	-50		50	nA	
DIGITAL INPU	TS									
V _{INH}	High-level input voltage					2.4		V _{CC}	V	
V _{INL}	Low-level input voltage					0		0.8	V	
I _{INL} , I _{INH}	Input current	$V_{IN} = V_{INL}$ or V_{INH}		0.01		-0.1		0.1	μA	
CIN	Digital input capacitance			2.8					pF	
DYNAMIC ⁽¹⁾										
t _{ON}	Turn-ON time	R_L = 300 Ω, C_L = 35 pF, V _{COM} = 3.3 V; see Figure 7-5		119	145			178	ns	
t _{OFF}	Turn-OFF time	R_L = 300 Ω, C_L = 35 pF, V _{COM} = 3.3 V; see Figure 7-5		38	47			95.2	ns	
t _{BBM}	Break-before-make time delay	R_L = 300 Ω, C_L = 35 pF, V _{NC} = V _{NO} = 3.3 V; see Figure 7-6		79		44			ns	
Q _C	Charge injection	$ \begin{array}{l} V_{GEN} = V_{NC} = V_{NO} = 0 \ V, \ R_{GEN} = 0 \\ \Omega, \ C_L = 1 \ nF; \\ see \ Figure \ 7\text{-}7 \end{array} $		65					рС	
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, $C_L = 5 pF$, f = 1 MHz, see Figure 7-8		-70					dB	
X _{TALK}	Channel-to-channel crosstalk	R_L = 50 Ω , C_L = 5 pF, f = 1 MHz, see Figure 7-9		-70					dB	
BW	Bandwidth –3 dB	R_L = 50 Ω , see Figure 7-10		152					MHz	
THD	Total harmonic distortion	R_L = 600 Ω, C_L = 15 pF, V_{NO} = 1 VRMS, f = 20 kHz; see Figure 7-11		0.04%						
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	f = 1 MHz, see Figure 7-4		15					pF	
C _{COM(ON)} , C _{NC(ON)} , I _{NO(ON)}	COM, NC, NO ON capacitance	f = 1 MHz, see Figure 7-4		55					pF	
POWER REQU	JIREMENTS									
I _{CC}	Positive supply current	V _{IN} = 0 V or V _{CC}		0.02				1	μA	

(1) Specified by design, not subject to production test.



6.8 Typical Characteristics

6.8 Typical Characteristics (continued)

Channel ON

 $V_I = V_{IH} \text{ or } V_{IL}$

 $V_{COM} - V_{NO}$

COM

7 Parameter Measurement Information

7.1 Test Circuits

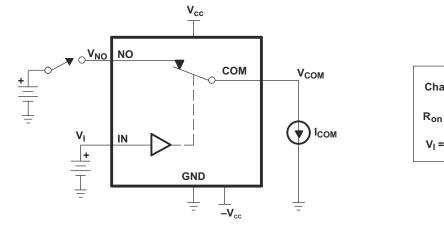


Figure 7-1. ON-State Resistance

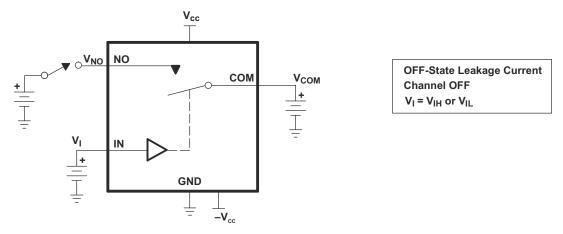
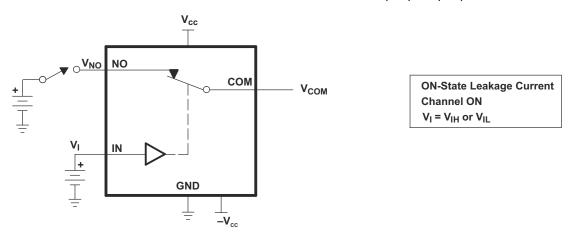
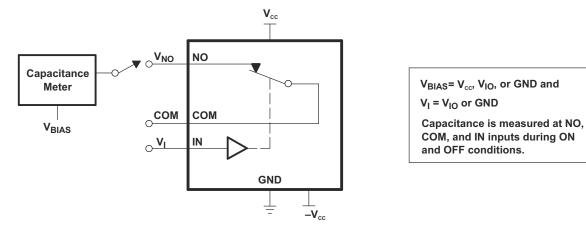
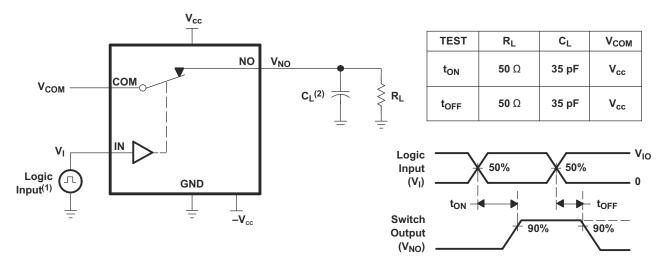
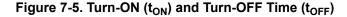
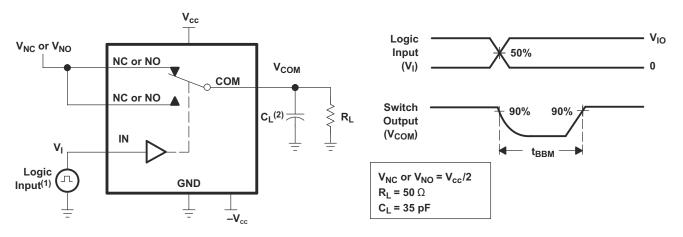




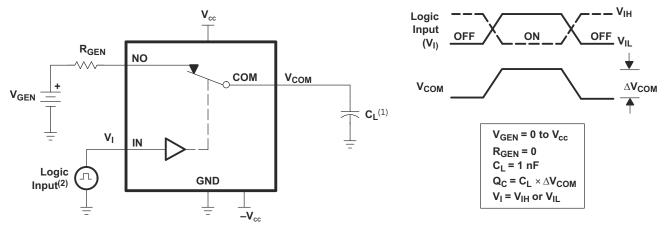
Figure 7-2. OFF-State Leakage Current (I_{COM(OFF)}, I_{NC(OFF)})







⁽¹⁾ All input pulses are supplied by generators having the following characteristics: PRR< 10 MHz, $Z_0 = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns. ⁽²⁾ C_L includes probe and jig capacitance.



⁽¹⁾ All input pulses are supplied by generators having the following characteristics: PRR≤ 10 MHz, $Z_0 = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns. ⁽²⁾ C_L includes probe and jig capacitance.

Figure 7-6. Break-Before-Make Time Delay (t_{BBM})

 $^{(1)}$ C_L includes probe and jig capacitance.

⁽²⁾ All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.

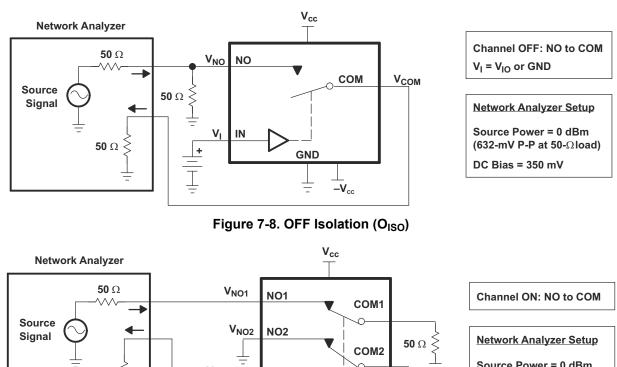
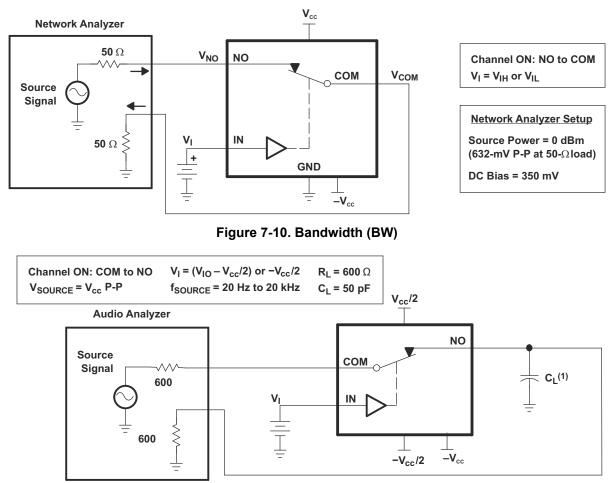


Figure 7-7. Charge Injection (Q_C)

Source Power = 0 dBm (632 mV P-P at 50 Ωload) DC Bias = 350 mV

Figure 7-9. Channel-to-Channel Crosstalk (X_{TALK})


GND

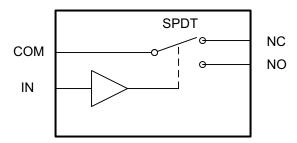
IN

+

50 Ω ≥

 $^{(1)}\,$ C $_{L}$ includes probe and jig capacitance.

Figure 7-11. Total Harmonic Distortion



8 Detailed Description

8.1 Overview

The TS12A12511 is a bidirectional, single channel, single-pole double-throw (SPDT) analog switch that can pass signals with swings of 0 to 12 V or -6 V to 6 V. This switch conducts equally well in both directions when it is on. It also offers a low ON-state resistance of 5 Ω (typical), which is matched to within 1 Ω between channels. The maximum current consumption is < 1 μ A and -3 dB bandwidth is > 93 MHz. The TS12A12511 exhibits break-before-make switching action, preventing momentary shorting when switching channels. This device is available in an 8-lead MSOP, 8-lead SOT-23, and 8-pin QFN package.

8.2 Functional Block Diagram

8.3 Feature Description

The TS12A12511 can pass signals with swings of 0 to 12 V or -6 V to 6. The device is great for applications where the AC signals do not have a common mode voltage since both the positive and negative swing of the signal can be passed through the device with little distortion.

8.4 Device Functional Modes

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO								
L	On	Off								
Н	Off	On								

Table 8-1. Truth Table

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

Analog signals that range over the entire supply voltage (V_{CC} to GND) or (V_{CC} to $-V_{CC}$) can be passed with very little change in ON-state resistance. The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

9.2 Typical Application

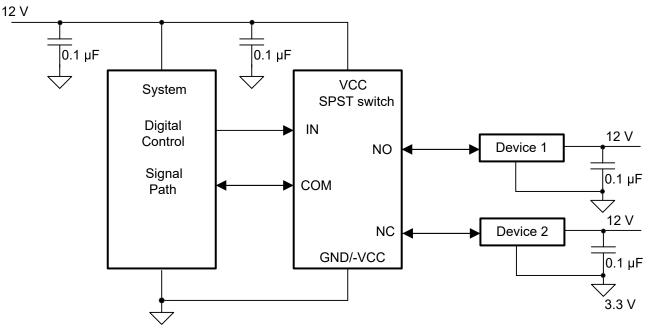


Figure 9-1. Typical Application Schematic

9.2.1 Design Requirements

Pull the digitally controlled input select pin IN to VCC or GND to avoid unwanted switch states that could result if the logic control pin is left floating.

9.2.2 Detailed Design Procedure

Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch since the TS12A12511 input or output signal swing of the device is dependent of the supply voltage V_{CC} and $-V_{CC}$.

9.2.3 Application Curve

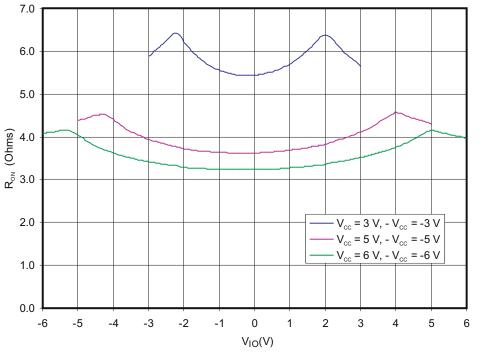


Figure 9-2. R_{ON} vs V_{IO}

10 Power Supply Recommendations

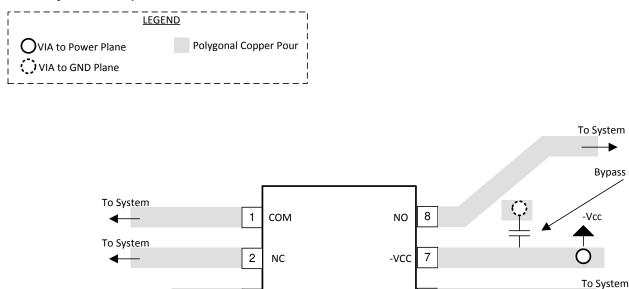
Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence VCC and -VCC on first, followed by NO, NC, or COM.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the VCC supply to other components. A 0.1-µF capacitor, connected from VCC to GND, is adequate for most applications.

11 Layout

11.1 Layout Guidelines

It is recommended to place a bypass capacitor as close to the supply pins, VCC and -VCC, as possible to help smooth out lower frequency noise and provide better load regulation across the frequency spectrum. Minimize trace lengths and vias on the signal paths to preserve signal integrity.


6

5

IN

N.C.

11.2 Layout Example

3

4 VCC

GND

Bypass Capacitor

->

Bypass Capacitor

Figure 11-1. Layout Schematic

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
TS12A12511DCNR	ACTIVE	SOT-23	DCN	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	NFHS NFHA	Samples
TS12A12511DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2US 2UA	Samples
TS12A12511DRJR	ACTIVE	SON	DRJ	8	1000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ZVE	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

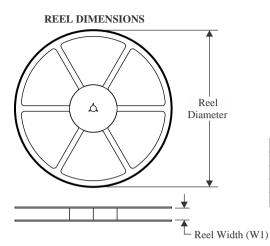
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

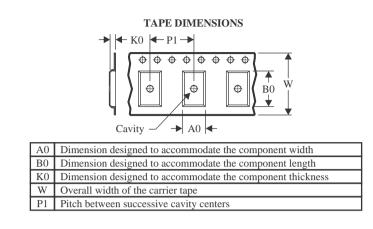
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

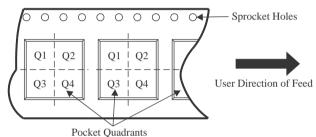
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

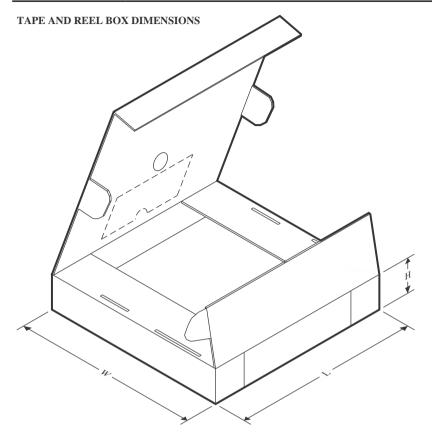


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS12A12511DCNR	SOT-23	DCN	8	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
TS12A12511DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TS12A12511DRJR	SON	DRJ	8	1000	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

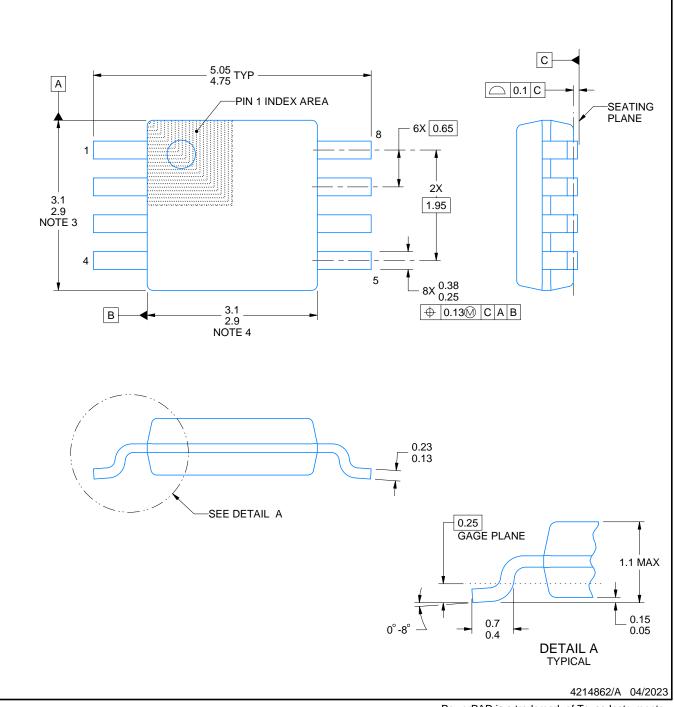
www.ti.com

PACKAGE MATERIALS INFORMATION

3-Jun-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS12A12511DCNR	SOT-23	DCN	8	3000	202.0	201.0	28.0
TS12A12511DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
TS12A12511DRJR	SON	DRJ	8	1000	210.0	185.0	35.0


DGK0008A

PACKAGE OUTLINE

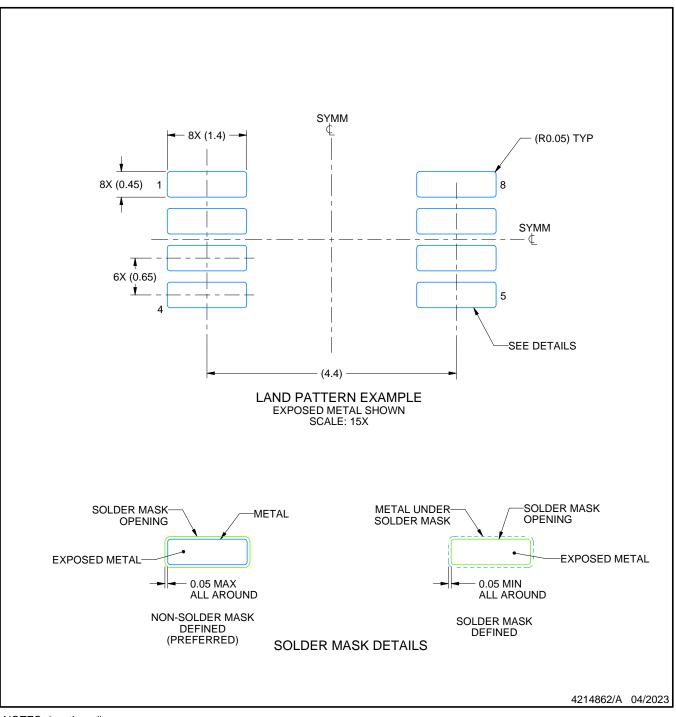
VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.



DGK0008A

EXAMPLE BOARD LAYOUT

[™] VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

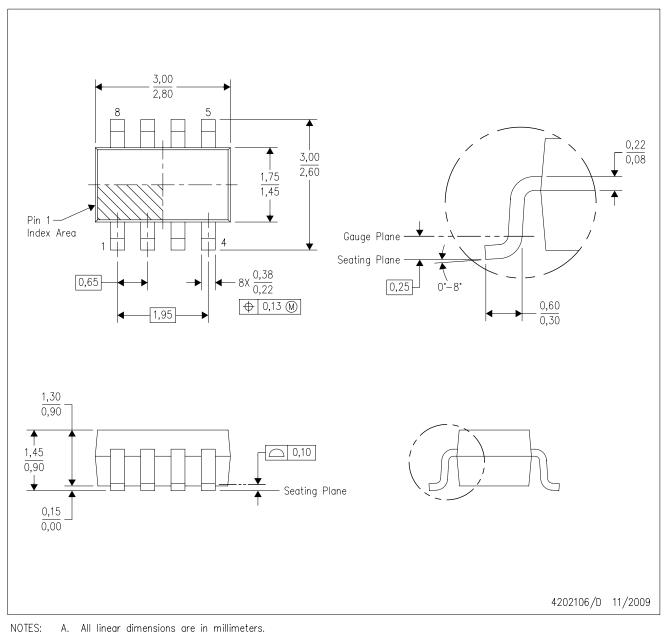
- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown
- on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

DGK0008A

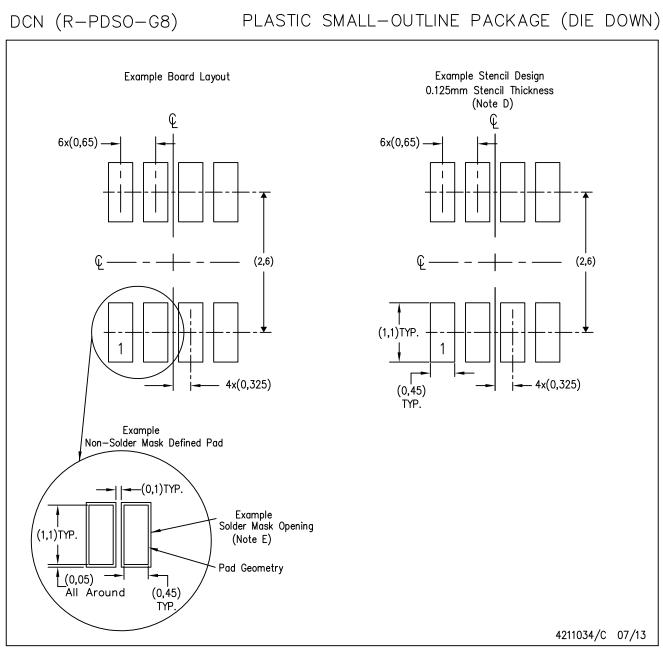
EXAMPLE STENCIL DESIGN

[™] VSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

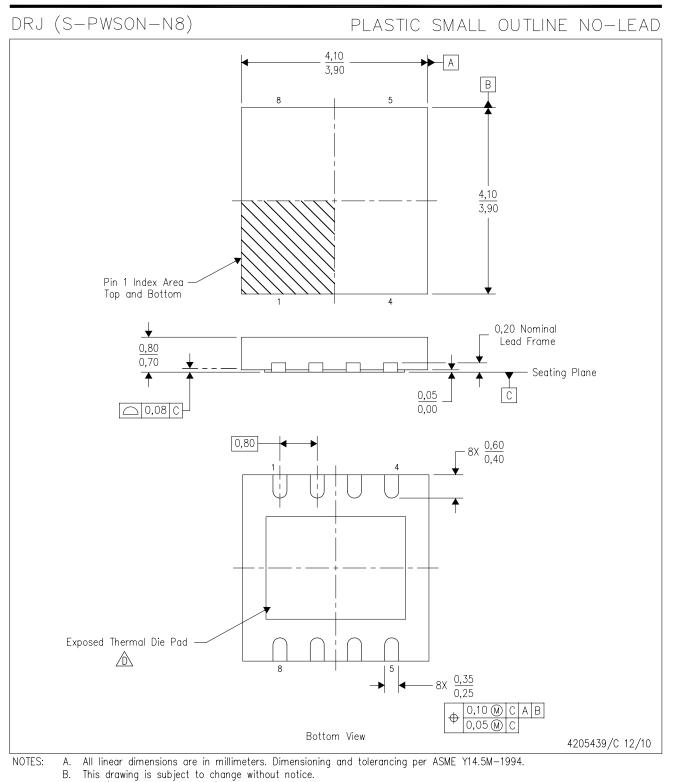

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

12. Board assembly site may have different recommendations for stencil design.


DCN (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

- A. All linear dimensions are in millimeters.
- Β. This drawing is subject to change without notice. C. Package outline exclusive of metal burr & dambar protrusion/intrusion.
- Package outline inclusive of solder plating. D.
- E. A visual index feature must be located within the Pin 1 index area.
- F. Falls within JEDEC MO-178 Variation BA.
- G. Body dimensions do not include flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.



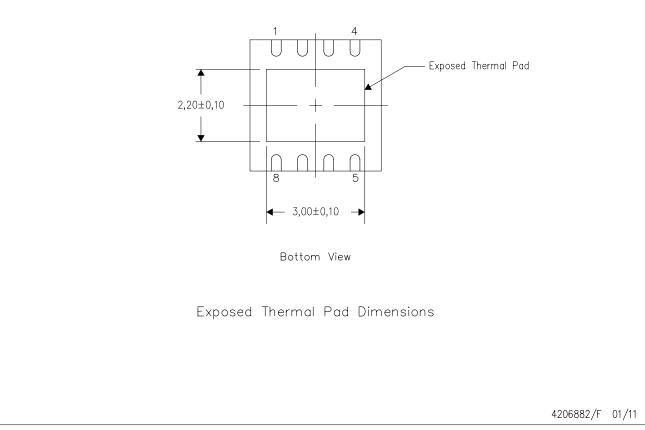
- NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers D. should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

C. SON (Small Outline No-Lead) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

E. Package complies to JEDEC MO-229 variation WGGB.

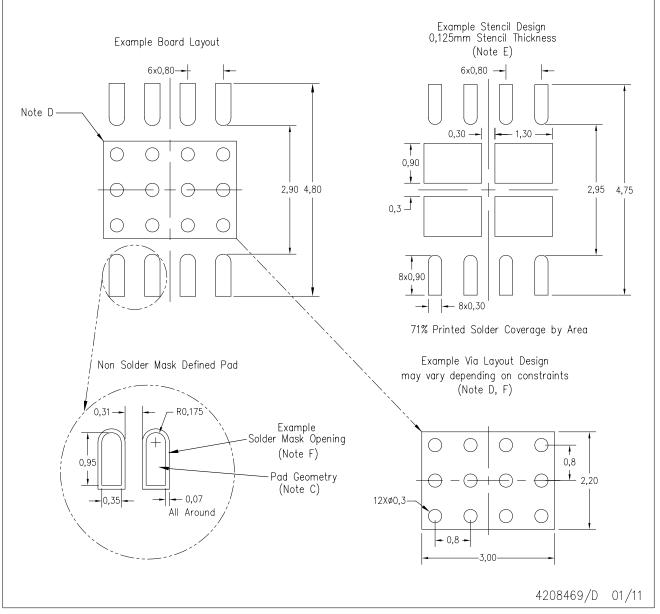


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

DRJ (S-PWSON-N8)

SMALL PACKAGE OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with electropolish and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances and vias tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated