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About This Manual
The MSP430 Optimizing C/C++ Compiler User's Guide explains how to use the following Texas Instruments
Code Generation compiler tools:

• Compiler
• Library build utility
• C++ name demangler

The TI compiler accepts C and C++ code conforming to the International Organization for Standardization (ISO)
standards for these languages. The compiler supports the 1989, 1999, and 2011 versions of the C language and
the 2014 version of the C++ language.

This user's guide discusses the characteristics of the TI C/C++ compiler. It assumes that you already know how
to write C/C++ programs. The C Programming Language (second edition), by Brian W. Kernighan and Dennis M.
Ritchie, describes C based on the ISO C standard. You can use the Kernighan and Ritchie (hereafter referred to
as K&R) book as a supplement to this manual. References to K&R C (as opposed to ISO C) in this manual refer
to the C language as defined in the first edition of Kernighan and Ritchie's The C Programming Language.

Preface
Read This First
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Notational Conventions
This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a special typeface .
Interactive displays use a bold version of the special typeface to distinguish commands that you enter from
items that the system displays (such as prompts, command output, error messages, etc.). Here is a sample
of C code:

     #include <stdio.h>
     main()
     {    printf("Hello World\n");
     }

• In syntax descriptions, instructions, commands, and directives are in a bold typeface and parameters are in
an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a syntax that
are in italics describe the type of information that should be entered.

• Square brackets ( [ and ] ) identify an optional parameter. If you use an optional parameter, you specify the
information within the brackets. Unless the square brackets are in the bold typeface, do not enter the
brackets themselves. The following is an example of a command that has an optional parameter:

cl430 [options] [filenames] [--run_linker [link_options] [object files]]

• Braces ( { and } ) indicate that you must choose one of the parameters within the braces; you do not enter the
braces themselves. This is an example of a command with braces that are not included in the actual syntax
but indicate that you must specify either the --rom_model or --ram_model option:

cl430 --run_linker  {--rom_model | --ram_model} filenames [--output_file= name.out]
--library= libraryname

• In assembler syntax statements, the leftmost column is reserved for the first character of a label or symbol. If
the label or symbol is optional, it is usually not shown. If a label or symbol is a required parameter, it is shown
starting against the left margin of the box, as in the example below. No instruction, command, directive, or
parameter, other than a symbol or label, can begin in the leftmost column.

symbol .usect "section name", size in bytes[, alignment]

• Some directives can have a varying number of parameters. For example, the .byte directive. This syntax is
shown as [, ..., parameter].
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Related Documentation
You can use the following books to supplement this user's guide:

ANSI X3.159-1989, Programming Language - C (Alternate version of the 1989 C Standard), American
National Standards Institute

ISO/IEC 9899:1989, International Standard - Programming Languages - C (The 1989 C Standard),
International Organization for Standardization

ISO/IEC 9899:1999, International Standard - Programming Languages - C (The 1999 C Standard),
International Organization for Standardization

ISO/IEC 9899:2011, International Standard - Programming Languages - C (The 2011 C Standard),
International Organization for Standardization

ISO/IEC 14882-2014, International Standard - Programming Languages - C++ (The 2014 C++ Standard),
International Organization for Standardization

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie, published by
Prentice-Hall, Englewood Cliffs, New Jersey, 1988

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup, published by Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990

C: A Reference Manual (fourth edition), by Samuel P. Harbison, and Guy L. Steele Jr., published by Prentice
Hall, Englewood Cliffs, New Jersey

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by O'Reilly
& Associates; ISBN: 1565923545, February 1999

Programming in C, Steve G. Kochan, Hayden Book Company

The C++ Programming Language (second edition), Bjarne Stroustrup, published by Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990

Tool Interface Standards (TIS) DWARF Debugging Information Format Specification Version 2.0, TIS
Committee, 1995

DWARF Debugging Information Format Version 3, DWARF Debugging Information Format Workgroup, Free
Standards Group, 2005 (http://dwarfstd.org)

DWARF Debugging Information Format Version 4, DWARF Debugging Information Format Workgroup, Free
Standards Group, 2010 (http://dwarfstd.org)

System V ABI specification (http://www.sco.com/developers/gabi/)
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Related Documentation From Texas Instruments
See the following resources for further information about the TI Code Generation Tools:

• Code Composer Studio Documentation Overview
• Texas Instruments E2E Software Tools Forum

You can use the following documents to supplement this user's guide:

SLAU131 MSP430 Assembly Language Tools User's Guide. Describes the assembly language tools (the
assembler, linker, and other tools used to develop assembly language code), assembler directives,
macros, object file format, and symbolic debugging directives for the MSP430 devices.

SLAA534 MSP430 Embedded Application Binary Interface Application Report. Provides a specification
for the ELF-based Embedded Application Binary Interface (EABI) for the MSP430 family of
processors from Texas Instruments. The EABI defines the low-level interface between programs,
program components, and the execution environment, including the operating system if one is
present.

SLAU049 MSP430x1xx Family User's Guide. Describes the MSP430x1xx™ CPU architecture, instruction
set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU144 MSP430x2xx Family User's Guide. Describes the MSP430x2xx™ CPU architecture, instruction
set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU012 MSP430x3xx Family User's Guide. Describes the MSP430x3xx™ CPU architecture, instruction
set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU056 MSP430x4xx Family User's Guide. Describes the MSP430x4xx™ CPU architecture, instruction
set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU208 MSP430x5xx Family User's Guide. Describes the MSP430x5xx™ CPU architecture, instruction
set, pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU134 MSP430FE42x ESP30CE1 Peripheral Module User's Guide. Describes common peripherals
available on the MSP430FE42x and ESP430CE1 ultra-low power microcontrollers. This book
includes information on the setup, operation, and registers of the ESP430CE1.

SPRAAB5 The Impact of DWARF on TI Object Files. Describes the Texas Instruments extensions to the
DWARF specification.

SPRUEX3 TI SYS/BIOS Real-time Operating System User's Guide. SYS/BIOS gives application developers
the ability to develop embedded real-time software. SYS/BIOS is a scalable real-time kernel. It is
designed to be used by applications that require real-time scheduling and synchronization or real-
time instrumentation. SYS/BIOS provides preemptive multithreading, hardware abstraction, real-
time analysis, and configuration tools.

Trademarks
MSP430x1xx™, MSP430x2xx™, MSP430x3xx™, MSP430x4xx™, MSP430x5xx™, MSP430™, and Code
Composer Studio™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.
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The MSP430™ is supported by a set of software development tools, which includes an optimizing C/C++
compiler, an assembler, a linker, and assorted utilities.

This chapter provides an overview of these tools and introduces the features of the optimizing C/C++ compiler.
The assembler and linker are discussed in detail in the MSP430 Assembly Language Tools User's Guide.

1.1 Software Development Tools Overview....................................................................................................................14
1.2 Compiler Interface...................................................................................................................................................... 15
1.3 ANSI/ISO Standard..................................................................................................................................................... 15
1.4 Output Files.................................................................................................................................................................16
1.5 Utilities.........................................................................................................................................................................16
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1.1 Software Development Tools Overview
Figure 1-1 illustrates the software development flow. The shaded portion of the figure highlights the most
common path of software development for C language programs. The other portions are peripheral functions
that enhance the development process.
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Figure 1-1. MSP430 Software Development Flow

The following list describes the tools that are shown in Figure 1-1:

• The compiler accepts C/C++ source code and produces MSP430 assembly language source code. See
Chapter 2.

• The assembler translates assembly language source files into machine language relocatable object files.
See the MSP430 Assembly Language Tools User's Guide.

• The linker combines relocatable object files into a single absolute executable object file. As it creates the
executable file, it performs relocation and resolves external references. The linker accepts relocatable object

Introduction to the Software Development Tools www.ti.com

14 MSP430 Optimizing C/C++ Compiler
v20.12.0.STS

SLAU132X – OCTOBER 2004 – REVISED DECEMBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU132X&partnum=


files and object libraries as input. See Chapter 4 for an overview of the linker. See the MSP430 Assembly
Language Tools User's Guide for details.

• The archiver allows you to collect a group of files into a single archive file, called a library. The archiver
allows you to modify such libraries by deleting, replacing, extracting, or adding members. One of the most
useful applications of the archiver is building a library of object files. See the MSP430 Assembly Language
Tools User's Guide.

• The run-time-support libraries contain the standard ISO C and C++ library functions, compiler-utility
functions, floating-point arithmetic functions, and C I/O functions that are supported by the compiler. See
Chapter 7.

The library-build utility automatically builds the run-time-support library if compiler and linker options require
a custom version of the library. See Section 7.4. Source code for the standard run-time-support library
functions for C and C++ is provided in the lib\src subdirectory of the directory where the compiler is installed.

• The hex conversion utility converts an object file into other object formats. You can download the converted
file to an EPROM programmer. See the MSP430 Assembly Language Tools User's Guide.

• The absolute lister accepts linked object files as input and creates .abs files as output. You can assemble
these .abs files to produce a listing that contains absolute, rather than relative, addresses. Without the
absolute lister, producing such a listing would be tedious and would require many manual operations. See the
MSP430 Assembly Language Tools User's Guide.

• The cross-reference lister uses object files to produce a cross-reference listing showing symbols, their
definitions, and their references in the linked source files. See the MSP430 Assembly Language Tools User's
Guide.

• The C++ name demangler is a debugging aid that converts names mangled by the compiler back to their
original names as declared in the C++ source code. As shown in Figure 1-1, you can use the C++ name
demangler on the assembly file that is output by the compiler; you can also use this utility on the assembler
listing file and the linker map file. See Chapter 8.

• The disassembler decodes object files to show the assembly instructions that they represent. See the
MSP430 Assembly Language Tools User's Guide.

• The main product of this development process is an executable object file that can be executed on a MSP430
device.

1.2 Compiler Interface
The compiler is a command-line program named cl430 . This program can compile, optimize, assemble, and link
programs in a single step. Within Code Composer Studio™, the compiler is run automatically to perform the
steps needed to build a project.

For more information about compiling a program, see Section 2.1

The compiler has straightforward calling conventions, so you can write assembly and C functions that call each
other. For more information about calling conventions, see Chapter 6.

1.3 ANSI/ISO Standard
The compiler supports the 1989, 1999, and 2011 versions of the C language and the 2014 version of the C++
language. The C and C++ language features in the compiler are implemented in conformance with the following
ISO standards:

• ISO-standard C

The C compiler supports the 1989, 1999, and 2011 versions of the C language.
– C89. Compiling with the --c89 option causes the compiler to conform to the ISO/IEC 9899:1990 C

standard, which was previously ratified as ANSI X3.159-1989. The names "C89" and "C90" refer to the
same programming language. "C89" is used in this document.

– C99. Compiling with the --c99 option causes the compiler to conform to the ISO/IEC 9899:1999 C
standard.
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– C11. Compiling with the --c11 option causes the compiler to conform to the ISO/IEC 9899:2011 C
standard.

The C language is also described in the second edition of Kernighan and Ritchie's The C Programming
Language (K&R).

• ISO-standard C++

The compiler uses the C++14 version of the C++ standard. Previously, C++03 was used. See the C++
Standard ISO/IEC 14882:2014. For a description of unsupported C++ features, see Section 5.2.

• ISO-standard run-time support

The compiler tools come with an extensive run-time library. Library functions conform to the ISO C/C++
library standard unless otherwise stated. The library includes functions for standard input and output, string
manipulation, dynamic memory allocation, data conversion, timekeeping, trigonometry, and exponential and
hyperbolic functions. Functions for signal handling are not included, because these are target-system
specific. For more information, see Chapter 7.

See Section 5.15 for command line options to select the C or C++ standard your code uses.

1.4 Output Files
The following types of output files are created by the compiler:

• ELF object files. Executable and Linking Format (ELF) enables supporting modern language features like
early template instantiation and exporting inline functions. ELF is part of the System V Application Binary
Interface (ABI). The ELF format used for MSP430 is extended by the MSP430 Embedded Application Binary
Interface (EABI), which is documented in SLAA534.

COFF object files are not supported in v15.6.0.STS and later versions of the TI Code Generation Tools. If you
would like to produce COFF output files, please use v4.4 of the MSP430 Code Generation Tools and refer to
SLAU132J for documentation.

1.5 Utilities
These features are compiler utilities:

• Library-build utility

The library-build utility lets you custom-build object libraries from source for any combination of run-time
models. For more information, see Section 7.4.

• C++ name demangler

The C++ name demangler (dem430 ) is a debugging aid that translates each mangled name it detects in
compiler-generated assembly code, disassembly output, or compiler diagnostic messages to its original
name found in the C++ source code. For more information, see Chapter 8.

• Hex conversion utility

For stand-alone embedded applications, the compiler has the ability to place all code and initialization data
into ROM, allowing C/C++ code to run from reset. The ELF files output by the compiler can be converted to
EPROM programmer data files by using the hex conversion utility, as described in the MSP430 Assembly
Language Tools User's Guide .
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The compiler translates your source program into machine language object code that the MSP430 can execute.
Source code must be compiled, assembled, and linked to create an executable file. All of these steps are
executed at once by using the compiler.

2.1 About the Compiler.................................................................................................................................................... 18
2.2 Invoking the C/C++ Compiler.....................................................................................................................................18
2.3 Changing the Compiler's Behavior with Options.................................................................................................... 19
2.4 Controlling the Compiler Through Environment Variables.................................................................................... 33
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2.9 Generating Cross-Reference Listing Information (--gen_cross_reference Option).............................................43
2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)...................................................................44
2.11 Using Inline Function Expansion............................................................................................................................ 45
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2.13 Controlling Application Binary Interface................................................................................................................48
2.14 Enabling Entry Hook and Exit Hook Functions..................................................................................................... 49
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2.1 About the Compiler
The compiler lets you compile, optimize, assemble, and optionally link in one step. The compiler performs the
following steps on one or more source modules:

• The compiler accepts C/C++ source code and assembly code. It produces object code.

You can compile C, C++, and assembly files in a single command. The compiler uses the filename
extensions to distinguish between different file types. See Section 2.3.9 for more information.

• The linker combines object files to create an executable or relinkable an executable file. The link step is
optional, so you can compile and assemble many modules independently and link them later. See Chapter 4
for information about linking the files.

Note
Invoking the Linker

By default, the compiler does not invoke the linker. You can invoke the linker by using the --run_linker
(-z) compiler option. See Section 4.1.1 for details.

For a complete description of the assembler and the linker, see the MSP430 Assembly Language Tools User's
Guide.

2.2 Invoking the C/C++ Compiler
To invoke the compiler, enter:

cl430 [options] [filenames] [--run_linker [link_options] object files]]

cl430 Command that runs the compiler and the assembler.
options Options that affect the way the compiler processes input files. The options are listed in Table 2-8 through Table

2-29.
filenames One or more C/C++ source files and assembly language source files.
--run_linker (-z) Option that invokes the linker. The --run_linker option's short form is -z. See Chapter 4 for more information.
link_options Options that control the linking process.
object files Names of the object files for the linking process.

The arguments to the compiler are of three types:

• Compiler options
• Link options
• Filenames

The --run_linker option indicates linking is to be performed. If the --run_linker option is used, any compiler
options must precede the --run_linker option, and all link options must follow the --run_linker option.

Source code filenames must be placed before the --run_linker option. Additional object file filenames can be
placed after the --run_linker option.

For example, if you want to compile two files named symtab.c and file.c, assemble a third file named seek.asm,
and link to create an executable program called myprogram.out, you will enter:

cl430 symtab.c file.c seek.asm --run_linker --library=lnk.cmd
       --output_file=myprogram.out
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2.3 Changing the Compiler's Behavior with Options
Options control the operation of the compiler. This section provides a description of option conventions and an
option summary table. It also provides detailed descriptions of the most frequently used options, including
options used for type-checking and assembling.

For a help screen summary of the options, enter cl430 with no parameters on the command line.

The following apply to the compiler options:

• There are typically two ways of specifying a given option. The "long form" uses a two hyphen prefix and is
usually a more descriptive name. The "short form" uses a single hyphen prefix and a combination of letters
and numbers that are not always intuitive.

• Options are usually case sensitive.
• Individual options cannot be combined.
• An option with a parameter should be specified with an equal sign before the parameter to clearly associate

the parameter with the option. For example, the option to undefine a constant can be expressed as --
undefine=name. Likewise, the option to specify the maximum amount of optimization can be expressed as -
O=3. You can also specify a parameter directly after certain options, for example -O3 is the same as -O=3.
No space is allowed between the option and the optional parameter, so -O 3 is not accepted.

• Files and options except the --run_linker option can occur in any order. The --run_linker option must follow all
compiler options and precede any linker options.

You can define default options for the compiler by using the MSP430_C_OPTION environment variable. For a
detailed description of the environment variable, see Section 2.4.1.

Table 2-8 through Table 2-29 summarize all options (including link options). Use the references in the tables for
more complete descriptions of the options.

Table 2-1. Processor Options
Option Alias Effect Section
--silicon_version={msp|mspx} -v Selects the instruction set. Section 2.3.4
--code_model={small|large} Specifies the code memory model. Section 6.1.1
--data_model={small|large|
    restricted}

Specifies the data memory model. Section 6.1.2

--near_data={globals|none} Specifies what data must be near. Default is globals. Section 6.1.3

Table 2-2. Optimization Options (1)

Option Alias Effect Section
--opt_level=off Disables all optimization . Section 3.1
--opt_level=n -On Level 0 (-O0) optimizes register usage only (default if option not

used) .
Level 1 (-O1) uses Level 0 optimizations and optimizes locally.
Level 2 (-O2) uses Level 1 optimizations and optimizes globally .
Level 3 (-O3) uses Level 2 optimizations and optimizes the file . 
Level 4 (-O4) uses Level 3 optimizations and performs link-time
optimization.

Section 3.1,
Section 3.3 ,
Section 3.6

--opt_for_speed[=n] -mf Controls the tradeoff between size and speed (0-5 range). If this
option is specified without n, the default value is 4. If this option is not
specified, the default setting is 1.

Section 3.2

(1) Note: Machine-specific options (see Table 2-14) can also affect optimization.

Table 2-3. Advanced Optimization Options (1)

Option Alias Effect Section
--align_for_power Aligns all functions and loops to 4-byte boundaries. Power savings

can be achieved if a small function or loop aligns to the 32-bit buffer
for fetching code from flash memory. Power savings is less
significant for larger functions and loops.

--
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Table 2-3. Advanced Optimization Options (1) (continued)
Option Alias Effect Section
--auto_inline=[size] -oi Sets automatic inlining size (--opt_level=3 only). If size is not

specified, the default is 1.
Section 3.5

--call_assumptions=n -opn Level 0 (-op0) specifies that the module contains functions and
variables that are called or modified from outside the source code
provided to the compiler.
Level 1 (-op1) specifies that the module contains variables modified
from outside the source code provided to the compiler but does not
use functions called from outside the source code.
Level 2 (-op2) specifies that the module contains no functions or
variables that are called or modified from outside the source code
provided to the compiler (default).
Level 3 (-op3) specifies that the module contains functions that are
called from outside the source code provided to the compiler but
does not use variables modified from outside the source code.

Section 3.4.1

--disable_inlining Prevents any inlining from occurring. Section 2.11
--fp_mode={relaxed|strict} Enables or disables relaxed floating-point mode. Section 2.3.3
--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic. Section 2.3.3
--gen_opt_info=n -onn Level 0 (-on0) disables the optimization information file.

Level 1 (-on2) produces an optimization information file.
Level 2 (-on2) produces a verbose optimization information file.

Section 3.3.1

--optimizer_interlist -os Interlists optimizer comments with assembly statements. Section 3.11
--program_level_compile -pm Combines source files to perform program-level optimization. Section 3.4
--aliased_variables -ma Assumes variables are aliased Section 3.9

(1) Note: Machine-specific options (see Table 2-14) can also affect optimization.

Table 2-4. Debug Options
Option Alias Effect Section
--symdebug:dwarf -g Default behavior. Enables symbolic debugging. The generation of

debug information does not impact optimization. Therefore,
generating debug information is enabled by default.

Section 2.3.5
Section 3.12

--symdebug:dwarf_version=2|3|4 Specifies the DWARF format version. Section 2.3.5
--symdebug:none Disables all symbolic debugging. Section 2.3.5

Section 3.12
--symdebug:skeletal (Deprecated; has no effect.)

Table 2-5. Include Options
Option Alias Effect Section
--include_path=directory -I Adds the specified directory to the #include search path. Section 2.5.2.1
--preinclude=filename Includes filename at the beginning of compilation. Section 2.3.3

Table 2-6. ULP Advisor Options
Option Alias Effect Section
--advice:power[={all|none|rulespec}] Enables checking the specified ULP Advisor rules. (Default is all.) Section 2.3.3
--advice:power_severity={error|
    warning|remark|suppress}

Sets the diagnostic severity for ULP Advisor rules. Section 2.3.3

Table 2-7. Hardware Configuration Advisor Options
Option Alias Effect Section
--advice:hw_config[={all|none|
rulespec}

Enables checking the device configuration settings. (Default is none
if this option is not included on the command line. Default is all if this
option is used, but with no value specified.)

Section 2.3.3
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Table 2-8. Control Options
Option Alias Effect Section
--compile_only -c Disables linking (negates --run_linker). Section 4.1.3
--help -h Prints (on the standard output device) a description of the options

understood by the compiler.
Section 2.3.2

--run_linker -z Causes the linker to be invoked from the compiler command line. Section 2.3.2
--skip_assembler -n Compiles C/C++ source file , producing an assembly language

output file. The assembler is not run and no object file is produced.
Section 2.3.2

Table 2-9. Language Options
Option Alias Effect Section
--c89 Processes C files according to the ISO C89 standard. Section 5.15
--c99 Processes C files according to the ISO C99 standard. Section 5.15
--c11 Processes C files according to the ISO C11 standard. Section 5.15
--c++14 Processes C++ files according to the ISO C++14 standard. 

The --c++03 option has been deprecated.
Section 5.15

--cpp_default -fg Processes all source files with a C extension as C++ source files. Section 2.3.7
--enum_type={packed|unpacked} Choose whether to use compact integer types to store small

enumerated types.
Section 2.3.4

--exceptions Enables C++ exception handling. Section 5.8
--extern_c_can_throw Allow extern C functions to propagate exceptions. --
--float_operations_allowed
={none|all|32|64}

Restricts the types of floating point operations allowed. Section 2.3.3

--gen_cross_reference -px Generates a cross-reference listing file (.crl). Section 2.9
--pending_instantiations=# Specify the number of template instantiations that may be in

progress at any given time. Use 0 to specify an unlimited number.
Section 2.3.4

--plain_char={signed|unsigned} -mc Changes variables of type char from unsigned to signed. Default is
unsigned.

Section 2.3.4

--printf_support={nofloat|full|
minimal}

Enables support for smaller, limited versions of the printf function
family (sprintf, fprintf, etc.) and the scanf function family (sscanf,
fscanf, etc.) run-time-support functions.

Section 2.3.3

--relaxed_ansi -pr Enables relaxed mode; ignores strict ISO violations. This is on by
default. To disable this mode, use the --strict_ansi option.

Section 5.15.3

--rtti -rtti Enables C++ run-time type information (RTTI). –-
--strict_ansi -ps Enables strict ANSI/ISO mode (for C/C++, not for K&R C). In this

mode, language extensions that conflict with ANSI/ISO C/C++ are
disabled. In strict ANSI/ISO mode, most ANSI/ISO violations are
reported as errors. Violations that are considered discretionary may
be reported as warnings instead.

Section 5.15.3

Table 2-10. Parser Preprocessing Options
Option Alias Effect Section
--preproc_dependency[=filename] -ppd Performs preprocessing only, but instead of writing preprocessed

output, writes a list of dependency lines suitable for input to a
standard make utility.

Section 2.5.8

--preproc_includes[=filename] -ppi Performs preprocessing only, but instead of writing preprocessed
output, writes a list of files included with the #include directive.

Section 2.5.9

--preproc_macros[=filename] -ppm Performs preprocessing only. Writes list of predefined and user-
defined macros to a file with the same name as the input but with
a .pp extension.

Section 2.5.10

--preproc_only -ppo Performs preprocessing only. Writes preprocessed output to a file
with the same name as the input but with a .pp extension.

Section 2.5.4

--preproc_with_comment -ppc Performs preprocessing only. Writes preprocessed output, keeping
the comments, to a file with the same name as the input but with
a .pp extension.

Section 2.5.6
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Table 2-10. Parser Preprocessing Options (continued)
Option Alias Effect Section
--preproc_with_compile -ppa Continues compilation after preprocessing with any of the -pp<x>

options that normally disable compilation.
Section 2.5.5

--preproc_with_line -ppl Performs preprocessing only. Writes preprocessed output with line-
control information (#line directives) to a file with the same name as
the input but with a .pp extension.

Section 2.5.7

Table 2-11. Predefined Macro Options
Option Alias Effect Section
--define=name[=def] -D Predefines name. Section 2.3.2
--undefine=name -U Undefines name. Section 2.3.2

Table 2-12. Diagnostic Message Options
Option Alias Effect Section
--compiler_revision Prints out the compiler release revision and exits. --
--diag_error=num -pdse Categorizes the diagnostic identified by num as an error. Section 2.7.1
--diag_remark=num -pdsr Categorizes the diagnostic identified by num as a remark. Section 2.7.1
--diag_suppress=num -pds Suppresses the diagnostic identified by num. Section 2.7.1
--diag_warning=num -pdsw Categorizes the diagnostic identified by num as a warning. Section 2.7.1
--diag_wrap={on|off} Wrap diagnostic messages (default is on). Note that this command-

line option cannot be used within the Code Composer Studio IDE.
--display_error_number -pden Displays a diagnostic's identifiers along with its text. Note that this

command-line option cannot be used within the Code Composer
Studio IDE.

Section 2.7.1

--emit_warnings_as_errors -pdew Treat warnings as errors. Section 2.7.1
--gen_func_info_listing Generate user information file (.aux). Section 2.3.2
--issue_remarks -pdr Issues remarks (non-serious warnings). Section 2.7.1
--no_warnings -pdw Suppresses diagnostic warnings (errors are still issued). Section 2.7.1
--quiet -q Suppresses progress messages (quiet). --
--set_error_limit=num -pdel Sets the error limit to num. The compiler abandons compiling after

this number of errors. (The default is 100.)
Section 2.7.1

--super_quiet -qq Super quiet mode. --
--tool_version -version Displays version number for each tool. --
--verbose Display banner and function progress information. --
--verbose_diagnostics -pdv Provides verbose diagnostic messages that display the original

source with line-wrap. Note that this command-line option cannot be
used within the Code Composer Studio IDE.

Section 2.7.1

--write_diagnostics_file -pdf Generates a diagnostic message information file. Compiler only
option. Note that this command-line option cannot be used within the
Code Composer Studio IDE.

Section 2.7.1

Table 2-13. Supplemental Information Options
Option Alias Effect Section
--gen_preprocessor_listing -pl Generates a raw listing file (.rl). Section 2.10
--section_sizes={on|off} Generates section size information, including sizes for sections

containing executable code and constants, constant or initialized
data (global and static variables), and uninitialized data. (Default is
off if this option is not included on the command line. Default is on if
this option is used with no value specified.)

Section 2.7.1

Table 2-14. Run-Time Model Options
Option Alias Effect Section
--common={on|off} On by default . When on, uninitialized file scope variables are emitted

as common symbols. When off, common symbols are not created.
Section 2.3.4
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Table 2-14. Run-Time Model Options (continued)
Option Alias Effect Section
--disable_interrupts_around_hw_mpy=off Setting this option to off leaves interrupts enabled during inlined

hardware multiply operations. This option can only be used if all ISRs
do not use multiplication or call other functions.

Section 2.3.4

--gen_data_subsections={on|off} Place all aggregate data (arrays, structs, and unions) into
subsections. This gives the linker more control over removing
unused data during the final link step. See the link to the right for
details about the default setting.

Section 4.2.2

--global_register={r4|r5} Reserves register for use by user.
--large_memory_model -ml Uses a large memory model when compiling for the MSP430X.

(Deprecated)
Section 2.3.4

--ramfunc={on|off} If set to on, specifies that all functions should be placed in
the .TI.ramfunc section, which is placed in RAM.

Section 2.3.4

--silicon_errata={errata} Generates code to work around the specified silicon errata. The
errata value may be CPU12, CPU13, CPU15, CPU18, CPU19,
CPU21, CPU22, CPU23, or CPU40. See the corresponding device
errata sheet for details.

--use_hw_mpy[={16|32|F5|none}] If --opt_for_speed is set to 1 or higher, replaces all references to the
default integer/long multiply routine with the version of the multiply
routine that uses the hardware multiplier support. Additionally, if --
opt_for_speed is set to 4 or 5, hardware multiplication is inlined
during code generation.

Section 2.3.4

Table 2-15. Entry/Exit Hook Options
Option Alias Effect Section
--entry_hook[=name] Enables entry hooks. Section 2.14
--entry_parm={none|name|
address}

Specifies the parameters to the function to the --entry_hook option. Section 2.14

--exit_hook[=name] Enables exit hooks. Section 2.14
--exit_parm={none|name|address} Specifies the parameters to the function to the --exit_hook option. Section 2.14
--remove_hooks_when_inlining Removes entry/exit hooks for auto-inlined functions. Section 2.14

Table 2-16. Feedback Options
Option Alias Effect Section
--analyze=codecov Generate analysis info from profile data. Section 3.8.2.2
--analyze_only Only generate analysis. Section 3.8.2.2
--gen_profile_info Generates instrumentation code to collect profile information. Section 3.7.1.3
--use_profile_info=file1[, file2,...] Specifies the profile information file(s). Section 3.7.1.3

Table 2-17. Assembler Options
Option Alias Effect Section
--keep_asm -k Keeps the assembly language (.asm) file. Section 2.3.11
--asm_listing -al Generates an assembly listing file. Section 2.3.11
--c_src_interlist -ss Interlists C source and assembly statements. Section 2.12

Section 3.11
--src_interlist -s Interlists optimizer comments (if available) and assembly source

statements; otherwise interlists C and assembly source statements.
Section 2.3.2

--absolute_listing -aa Enables absolute listing. Section 2.3.11
--asm_define=name[=def] -ad Sets the name symbol. Section 2.3.11
--asm_dependency -apd Performs preprocessing; lists only assembly dependencies. Section 2.3.11
--asm_includes -api Performs preprocessing; lists only included #include files. Section 2.3.11
--asm_undefine=name -au Undefines the predefined constant name. Section 2.3.11
--asm_listing_cross_reference -ax Generates the cross-reference file. Section 2.3.11
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Table 2-17. Assembler Options (continued)
Option Alias Effect Section
--include_file=filename -ahi Includes the specified file for the assembly module. Section 2.3.11

Table 2-18. File Type Specifier Options
Option Alias Effect Section
--asm_file=filename -fa Identifies filename as an assembly source file regardless of its

extension. By default, the compiler and assembler treat .asm files as
assembly source files.

Section 2.3.7

--c_file=filename -fc Identifies filename as a C source file regardless of its extension. By
default, the compiler treats .c files as C source files.

Section 2.3.7

--cpp_file=filename -fp Identifies filename as a C++ file, regardless of its extension. By
default, the compiler treats .C, .cpp, .cc and .cxx files as a C++ files.

Section 2.3.7

--obj_file=filename -fo Identifies filename as an object code file regardless of its extension.
By default, the compiler and linker treat .obj files as object code files,
including both *.c.obj and *.cpp.obj files.

Section 2.3.7

Table 2-19. Directory Specifier Options
Option Alias Effect Section
--abs_directory=directory -fb Specifies an absolute listing file directory. By default, the compiler

uses the object file directory.
Section 2.3.10

--asm_directory=directory -fs Specifies an assembly file directory. By default, the compiler uses the
current directory.

Section 2.3.10

--list_directory=directory -ff Specifies an assembly listing file and cross-reference listing file
directory By default, the compiler uses the object file directory.

Section 2.3.10

--obj_directory=directory -fr Specifies an object file directory. By default, the compiler uses the
current directory.

Section 2.3.10

--output_file=filename -fe Specifies a compilation output file name; can override --obj_directory. Section 2.3.10
--pp_directory=dir Specifies a preprocessor file directory. By default, the compiler uses

the current directory.
Section 2.3.10

--temp_directory=directory -ft Specifies a temporary file directory. By default, the compiler uses the
current directory.

Section 2.3.10

Table 2-20. Default File Extensions Options
Option Alias Effect Section
--asm_extension=[.]extension -ea Sets a default extension for assembly source files. Section 2.3.9
--c_extension=[.]extension -ec Sets a default extension for C source files. Section 2.3.9
--cpp_extension=[.]extension -ep Sets a default extension for C++ source files. Section 2.3.9
--listing_extension=[.]extension -es Sets a default extension for listing files. Section 2.3.9
--obj_extension=[.]extension -eo Sets a default extension for object files. Section 2.3.9

Table 2-21. Command Files Options
Option Alias Effect Section
--cmd_file=filename -@ Interprets contents of a file as an extension to the command line.

Multiple -@ instances can be used.
Section 2.3.2

2.3.1 Linker Options

The following tables list the linker options. See Chapter 4 of this document and the MSP430 Assembly
Language Tools User's Guide for details on these options.

Table 2-22. Linker Basic Options
Option Alias Description
--run_linker -z Enables linking.
--output_file=file -o Names the executable output file. The default filename is a .out file.
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Table 2-22. Linker Basic Options (continued)
Option Alias Description
--map_file=file -m Produces a map or listing of the input and output sections, including holes, and places

the listing in file.
--stack_size=size [-]-stack Sets C system stack size to size bytes and defines a global symbol that specifies the

stack size. Default = 128 bytes.
--heap_size=size [-]-heap Sets heap size (for the dynamic memory allocation in C) to size bytes and defines a

global symbol that specifies the heap size. Default = 128 bytes.

Table 2-23. File Search Path Options
Option Alias Description
--library=file -l Names an archive library or link command file as linker input.
--disable_auto_rts Disables the automatic selection of a run-time-support library. See Section 4.3.1.1.
--priority -priority Satisfies unresolved references by the first library that contains a definition for that

symbol.
--reread_libs -x Forces rereading of libraries, which resolves back references.
--search_path=pathname -I Alters library-search algorithms to look in a directory named with pathname before

looking in the default location. This option must appear before the --library option.

Table 2-24. Command File Preprocessing Options
Option Alias Description
--define=name=value Predefines name as a preprocessor macro.
--undefine=name Removes the preprocessor macro name.
--disable_pp Disables preprocessing for command files.

Table 2-25. Diagnostic Message Options
Option Alias Description
--diag_error=num Categorizes the diagnostic identified by num as an error.
--diag_remark=num Categorizes the diagnostic identified by num as a remark.
--diag_suppress=num Suppresses the diagnostic identified by num.
--diag_warning=num Categorizes the diagnostic identified by num as a warning.
--display_error_number Displays a diagnostic's identifiers along with its text.
--emit_references:file[=file] Emits a file containing section information. The information includes section size,

symbols defined, and references to symbols.
--emit_warnings_as_errors -pdew Treat warnings as errors.
--issue_remarks Issues remarks (non-serious warnings).
--no_demangle Disables demangling of symbol names in diagnostic messages.
--no_warnings Suppresses diagnostic warnings (errors are still issued).
--set_error_limit=count Sets the error limit to count. The linker abandons linking after this number of errors. (The

default is 100.)
--verbose_diagnostics Provides verbose diagnostic messages that display the original source with line-wrap.
--warn_sections -w Displays a message when an undefined output section is created.

Table 2-26. Linker Output Options
Option Alias Description
--absolute_exe -a Produces an absolute, executable object file. This is the default; if neither --

absolute_exe nor --relocatable is specified, the linker acts as if --absolute_exe were
specified.

--ecc={ on | off } Enable linker-generated Error Correcting Codes (ECC). The default is off.
--ecc:data_error Inject specified errors into the output file for testing.
--ecc:ecc_error Inject specified errors into the Error Correcting Code (ECC) for testing.
--mapfile_contents=attribute Controls the information that appears in the map file.
--relocatable -r Produces a nonexecutable, relocatable output object file.
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Table 2-26. Linker Output Options (continued)
Option Alias Description
--run_abs -abs Produces an absolute listing file.
--xml_link_info=file Generates a well-formed XML file containing detailed information about the result of a

link.

Table 2-27. Symbol Management Options
Option Alias Description
--entry_point=symbol -e Defines a global symbol that specifies the primary entry point for the executable object

file.
--globalize=pattern Changes the symbol linkage to global for symbols that match pattern.
--hide=pattern Hides symbols that match the specified pattern.
--localize=pattern Make the symbols that match the specified pattern local.
--make_global=symbol -g Makes symbol global (overrides -h).
--make_static -h Makes all global symbols static.
--no_symtable -s Strips symbol table information and line number entries from the executable object file.
--retain Retains a list of sections that otherwise would be discarded.
--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions.
--symbol_map=refname=defname Specifies a symbol mapping; references to the refname symbol are replaced with

references to the defname symbol. The --symbol_map option is supported when used
with --opt_level=4.

--undef_sym=symbol -u Adds symbol to the symbol table as an unresolved symbol.
--unhide=pattern Excludes symbols that match the specified pattern from being hidden.

Table 2-28. Run-Time Environment Options
Option Alias Description
--arg_size=size --args Reserve size bytes for the argc/argv memory area.
--cinit_hold_wdt={on|off} Link in an RTS auto-initialization routine that either holds (on) or does not hold (off) the

watchdog timer during cinit auto-initialization. See Section 4.3.5.
--cinit_compression[=type] Specifies the type of compression to apply to the C auto initialization data. The default if

this option is specified with no type is lzss for Lempel-Ziv-Storer-Szymanski
compression.

--copy_compression[=type] Compresses data copied by linker copy tables. The default if this option is specified with
no type is lzss for Lempel-Ziv-Storer-Szymanski compression.

--fill_value=value -f Sets default fill value for holes within output sections
--ram_model -cr Initializes variables at load time. See Section 4.3.7 for details.
--rom_model -c Autoinitializes variables at run time. See Section 4.3.7 for details.
--use_hw_mpy This option is a compiler option. It should be placed on the command line before the --

run_linker or -z option. See Section 2.3.4.

Table 2-29. Miscellaneous Options
Option Alias Description
--linker_help [-]-help Displays information about syntax and available options.
--preferred_order=function Prioritizes placement of functions.
--strict_compatibility[=off|on] Performs more conservative and rigorous compatibility checking of input object files.

Default is on.
--unused_section_elimination[=off|on] Eliminates sections that are not needed in the executable module. Default is on.
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2.3.2 Frequently Used Options

Following are detailed descriptions of options that you will probably use frequently:

--c_src_interlist Invokes the interlist feature, which interweaves original C/C++ source with compiler-generated
assembly language. The interlisted C statements may appear to be out of sequence. You can
use the interlist feature with the optimizer by combining the --optimizer_interlist and --
c_src_interlist options. See Section 3.11. The --c_src_interlist option can have a negative
performance and/or code size impact.

--cmd_file=filename Appends the contents of a file to the option set. Use this option to avoid limitations on command
line length or C style comments imposed by the operating system. Use a # or ; at the beginning
of a line in the command file to include comments. You can add comments by surrounded by /*
and */. To specify options, surround hyphens with quotation marks. For example, "--"quiet. You
can use the --cmd_file option multiple times to specify multiple files. For example, the following
indicates file3 should be compiled as source and file1 and file2 are --cmd_file files:

cl430 --cmd_file=file1 --cmd_file=file2 file3

--compile_only Suppresses the linker and overrides the --run_linker option, which specifies linking. The --
compile_only option's short form is -c. Use this option when you have --run_linker specified in
the MSP430_C_OPTION environment variable and you do not want to link. See Section 4.1.3.

--define=name[=def] Predefines the constant name for the preprocessor. This is equivalent to inserting #define name
def at the top of each C source file. If the optional[=def] is omitted, the name is set to 1. The --
define option's short form is -D.
If you want to define a quoted string and keep the quotation marks, do one of the following:
• For Windows, use --define=name="\"string def\"". For example, --define=car="\"sedan\""
• For UNIX, use --define=name='"string def"'. For example, --define=car='"sedan"'
• For CCS, enter the definition in a file and include that file with the --cmd_file option.

--gen_func_info_listing Generates a user information file with a .aux file extension. The file contains linker call graph
information on a per-file level.

--help Displays the syntax for invoking the compiler and lists available options. If the --help option is
followed by another option or phrase, detailed information about the option or phrase is
displayed. For example, to see information about debugging options use --help debug.

--include_path=directory Adds directory to the list of directories that the compiler searches for #include files. The --
include_path option's short form is - I . You can use this option several times to define several
directories; be sure to separate the --include_path options with spaces. If you do not specify a
directory name, the preprocessor ignores the --include_path option. See Section 2.5.2.1.

--keep_asm Retains the assembly language output from the compiler or assembly optimizer. Normally, the
compiler deletes the output assembly language file after assembly is complete. The --keep_asm
option's short form is -k.

--quiet Suppresses banners and progress information from all the tools. Only source filenames and
error messages are output. The --quiet option's short form is -q.

--run_linker Runs the linker on the specified object files. The --run_linker option and its parameters follow all
other options on the command line. All arguments that follow --run_linker are passed to the
linker. The --run_linker option's short form is -z. See Section 4.1.

--skip_assembler Compiles only. The specified source files are compiled but not assembled or linked. The --
skip_assembler option's short form is -n. This option overrides --run_linker. The output is
assembly language output from the compiler.

--src_interlist Invokes the interlist feature, which interweaves optimizer comments or C/C++ source with
assembly source. If the optimizer is invoked (--opt_level=n option), optimizer comments are
interlisted with the assembly language output of the compiler, which may rearrange code
significantly. If the optimizer is not invoked, C/C++ source statements are interlisted with the
assembly language output of the compiler, which allows you to inspect the code generated for
each C/C++ statement. The --src_interlist option implies the --keep_asm option. The --
src_interlist option's short form is -s.

--tool_version Prints the version number for each tool in the compiler. No compiling occurs.
--undefine=name Undefines the predefined constant name. This option overrides any --define options for the

specified constant. The --undefine option's short form is -U.
--verbose Displays progress information and toolset version while compiling. Resets the --quiet option.

www.ti.com Using the C/C++ Compiler

SLAU132X – OCTOBER 2004 – REVISED DECEMBER 2020
Submit Document Feedback

MSP430 Optimizing C/C++ Compiler
v20.12.0.STS

27

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU132X&partnum=


2.3.3 Miscellaneous Useful Options

Following are detailed descriptions of miscellaneous options:

--advice:hw_config={all|none
    rulespec}

Enables checking the device configuration. For example, the FRAM waitstate configuration is
checked. Information about resolving a device configuration issue can be found by clicking
the link provided in Code Composer Studio when one of these checks produces a warning.
See Section 5.4 for details.

--advice:power={all|none|
    rulespec}

Enables checking code against ULP (ultra low power) Advisor rules for possible power
inefficiencies. More detailed information can be found at www.ti.com/ulpadvisor. The rulespec
parameter is a comma-separated list of specifiers. See Section 5.3 for details.

--advice:power_severity={error|
    warning|remark|suppress}

Sets the diagnostic severity for ULP Advisor rules.

--float_operations_allowed= {none|all|32|
64}

Restricts the type of floating point operations allowed in the application. The default is all. If
set to none, 32, or 64, the application is checked for operations that will be performed at
runtime. For example, if --float_operations_allowed=32 is specified on the command line, the
compiler issues an error if a double precision operation will be generated. This can be used to
ensure that double precision operations are not accidentally introduced into an application.
The checks are performed after relaxed mode optimizations have been performed, so illegal
operations that are completely removed result in no diagnostic messages.

--fp_mode={relaxed|strict} The default floating-point mode is strict. To enable relaxed floating-point mode use the --
fp_mode=relaxed option. Relaxed floating-point mode causes double-precision floating-point
computations and storage to be converted to single-precision floating-point where possible.
This behavior does not conform with ISO, but it results in faster code, with some loss in
accuracy. The following specific changes occur in relaxed mode:
• If the result of a double-precision floating-point expression is assigned to a single-

precision floating-point or an integer or immediately used in a single-precision context,
the computations in the expression are converted to single-precision computations.
Double-precision constants in the expression are also converted to single-precision if
they can be correctly represented as single-precision constants.

• Calls to double-precision functions in math.h are converted to their single-precision
counterparts if all arguments are single-precision and the result is used in a single-
precision context. The math.h header file must be included for this optimization to work.

• Division by a constant is converted to inverse multiplication.

In the following examples, iN=integer variable, fN=float variable, and dN=double variable:

il = f1 + f2 * 5.0 -> +, * are float, 5.0 is converted to 5.0f
il = d1 + d2 * d3 -> +, * are float
f1 = f2 + f3 * 1.1; -> +, * are float, 1.1 is converted to 1.1f

To enable relaxed floating-point mode use the --fp_mode=relaxed option, which also sets --
fp_reassoc=on. To disable relaxed floating-point mode use the --fp_mode=strict option, which
also sets --fp_reassoc=off.
If --strict_ansi is specified, --fp_mode=strict is set automatically. You can enable the relaxed
floating-point mode with strict ANSI mode by specifying --fp_mode=relaxed after --strict_ansi.

--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic. If --strict_ansi is set, --
fp_reassoc=off is set since reassociation of floating-point arithmetic is an ANSI violation.
Because floating-point values are of limited precision, and because floating-point operations
round, floating-point arithmetic is neither associative nor distributive. For instance, (1 +
3e100) - 3e100 is not equal to 1 + (3e100 - 3e100). If strictly following IEEE 754, the compiler
cannot, in general, reassociate floating-point operations. Using --fp_reassoc=on allows the
compiler to perform the algebraic reassociation, at the cost of a small amount of precision for
some operations.

--preinclude=filename Includes the source code of filename at the beginning of the compilation. This can be used to
establish standard macro definitions. The filename is searched for in the directories on the
include search list. The files are processed in the order in which they were specified.
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--printf_support={full|
nofloat|minimal}

Enables support for smaller, limited versions of the printf function family (sprintf, fprintf, etc.)
and the scanf function family (sscanf, fscanf, etc.) run-time-support functions. The valid
values are:
• full: Supports all format specifiers. This is the default.
• nofloat: Excludes support for printing and scanning floating-point values. Supports all

format specifiers except %a, %A, %f, %F, %g, %G, %e, and %E.
• minimal: Supports the printing and scanning of integer, char, or string values without

width or precision flags. Specifically, only the %%, %d, %o, %c, %s, and %x format
specifiers are supported

There is no run-time error checking to detect if a format specifier is used for which support is
not included. The --printf_support option precedes the --run_linker option, and must be used
when performing the final link.

2.3.4 Run-Time Model Options

These options are specific to the MSP430 toolset. See the referenced sections for more information. MSP430-
specific assembler options are listed in Section 2.3.11.

The MSP430 compiler now supports only the Embedded Application Binary Interface (EABI) ABI, which uses the
ELF object format and the DWARF debug format. If you want support for the legacy COFF ABI, please use the
MSP430 v4.4 Code Generation Tools and refer to SLAU132J and SLAU131J for documentation.

--common={on|off} When on (the default ), uninitialized file scope variables are emitted as common symbols.
When off, common symbols are not created. The benefit of allowing common symbols to be
created is that generated code can remove unused variables that would otherwise increase
the size of the .bss section. (Uninitialized variables of a size larger than 32 bytes are
separately optimized through placement in separate subsections that can be omitted from a
link.) Variables cannot be common symbols if they are assigned to a section other than .bss .

--code_model={large|small} Specifies the code memory model: small (16-bit function pointers and low 64K memory) or
large (20-bit function pointers and 1MB address space). See Section 6.1.1 for details.

--data_model={restricted|large|
small}

Specifies the data memory model: small (16-bit data pointers and low 64K memory),
restricted (32-bit data pointers, objects restricted to 64K, and 1MB memory), and large (32-bit
data pointers and 1MB memory). See Section 6.1.2 for details.

--disable_interrupts_around_hw_mpy=off Setting this option to off leaves interrupts enabled during inlined
hardware multiplication. (Inlined hardware multiplication is controlled by
the --use_hw_mpy and --opt_for_speed options.)
This option should only be used if all ISRs in the application do not use
multiplication and do not call other functions. By default, if hardware
multiplication is inlined, interrupts are disabled during hardware
multiplication, because such operations are not re-entrant.
If this option is set to off and an ISR uses multiplication, the linker
issues a warning that multiplication within the ISR will use the RTS
software multiply routine instead of the RTS hardware multiply routine.
If this option is set to off and an ISR calls other functions, the linker
generates a non-fatal error diagnostic indicating that the option --
disable_interrupts_around_hw_mpy=off cannot be used if the
application includes ISRs with calls to other functions. The reason for
this is that if an ISR calls a routine that does multiplication using the
hardware multiplier, then the inlined hardware multipliers with interrupts
left enabled are no longer safe.

--enum_type={packed|unpacked} By default, the compiler uses --enum_type=unpacked, which means the compiler uses an
integer type no smaller than 16 bits (int, long, or long long) to store enumerated type
variables. The --enum_type=packed option causes the compiler to use an 8-bit integer type if
the enumeration constant values can fit into that 8-bit type. For details about enumerated
type sizes, see Section 5.5.1.
Do not link object files compiled with the --enum_type=packed option with object files that
have been compiled without it. If you are using the --enum_type=packed option, you must
use it consistently to compile all of your C/C++ files; otherwise, you will encounter errors that
cannot be detected until run-time.

--large_memory_model This option is deprecated. Use --data_model=large.
--near_data={globals|none} Specifies that global read/write data must be located in the first 64K of memory. See Section

6.1.3 for details.
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--pending_instantiations=# Specify the number of template instantiations that may be in progress at any given time. Use
0 to specify an unlimited number.

--plain_char={unsigned|signed} Specifies how to treat C/C++ plain char variables. Default is unsigned.
--ramfunc={on|off} If set to on, specifies that all functions should be placed in the .TI.ramfunc section, which is

placed in RAM. If set to off, only functions with the ramfunc function attribute are treated this
way. See Section 5.16.2.
Newer TI linker command files support the --ramfunc option automatically by placing
functions in the .TI.ramfunc section. If you have a linker command file that does not include a
section specification for the .TI.ramfunc section, you can modify the linker command file to
place this section in RAM. See the MSP430 Assembly Language Tools User's Guide for
details on section placement.

--silicon_version Selects the instruction set version. Using --silicon_version=mspx generates code for
MSP430X devices (20-bit code addressing). Using --silicon_version=msp generates code for
16-bit MSP430 devices.
Modules assembled/compiled for 16-bit MSP430 devices are not compatible with modules
that are assembled/compiled for 20-bit MSPx devices. The linker generates errors if an
attempt is made to combine incompatible object files.

--use_hw_mpy[= 16,32,F5,none] This option is a compiler option. It should be placed on the command line before the -z
option.
MSP430 devices do not have a multiply instruction, and some devices have no hardware
multiply at all. Multiplication is performed by a library function that either uses the hardware
multiply capability or simulates it in software. By default, the compiler generates references to
the version that does not use the hardware multiplier peripheral that is available on some
versions of the MSP430 device. If your MSP430 device has multiply hardware, you can
choose to use the library routine matching your hardware for best performance. When
compiling for a device where the hardware multiplier is available, use the --use_hw_mpy
compiler option.
At compile time, using this option causes hardware multiply calls to be inlined during code
generation if --opt_for_speed is set to 4 or 5 and --opt_level is set to any value other than
"off". See the --disable_interrupts_around_hw_mpy=off option if you want to control whether
interrupts are enabled during inlined hardware multiplication.
If inlining is not enabled but other optimization is enabled (--opt_for_speed is set to 1, 2, or
3), using this option causes the linker to replace all references to the default multiply routine
with the version of the multiply routine that uses the hardware multiplier support.
The optional argument indicates which version of the hardware multiply is being used and
must be one of the following:
• 16 uses the F1xx/2xx/4xx family 16-bit hardware multiplier (default)
• 32 uses the F4xx 32-bit hardware multiplier
• F5 uses the F5xx/6xx family 32-bit hardware multiplier
• none = does not use a hardware multiplier

For more information regarding the hardware multiplier, see the Family User’s Guide for the
MSP430x1xx, MSP430x3xx, MSP430x4xx, and MSP430x5xx.

2.3.5 Symbolic Debugging Options

The following options are used to select symbolic debugging :

--symdebug:dwarf (Default) Generates directives that are used by the C/C++ source-level debugger and enables
assembly source debugging in the assembler. The --symdebug:dwarf option's short form is -g.
See Section 3.12. For details on the DWARF format, see The DWARF Debugging Standard.

--symdebug:dwarf_
version={2|3|4}

Specifies the DWARF debugging format version (2, 3, or 4) to be generated when --
symdebug:dwarf (the default) is specified. By default, the compiler generates DWARF version 3
debug information. DWARF versions 2, 3, and 4 may be intermixed safely. When DWARF 4 is
used, type information is placed in the .debug_types section. At link time, duplicate type
information is removed. This method of type merging is superior to DWARF 2 or 3 and results in
a smaller executable. In addition, DWARF 4 reduces the size of intermediate object files in
comparison to DWARF 3. For more about TI extensions to the DWARF language, see The
Impact of DWARF on TI Object Files (SPRAAB5).

--symdebug:none Disables all symbolic debugging output. This option is not recommended; it prevents debugging
and most performance analysis capabilities.

--symdebug:skeletal Deprecated. Has no effect.
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2.3.6 Specifying Filenames

The input files that you specify on the command line can be C source files, C++ source files, assembly source
files, or object files. The compiler uses filename extensions to determine the file type.

Extension File Type
.asm, .abs, or .s* (extension begins with s) Assembly source
.c C source
.C Depends on operating system
.cpp, .cxx, .cc C++ source
.obj .c.obj .cpp.obj .o* .dll .so Object

Note

Case Sensitivity in Filename Extensions: Case sensitivity in filename extensions is determined by
your operating system. If your operating system is not case sensitive, a file with a .C extension is
interpreted as a C file. If your operating system is case sensitive, a file with a .C extension is
interpreted as a C++ file.

For information about how you can alter the way that the compiler interprets individual filenames, see Section
2.3.7. For information about how you can alter the way that the compiler interprets and names the extensions of
assembly source and object files, see Section 2.3.10.

You can use wildcard characters to compile or assemble multiple files. Wildcard specifications vary by system;
use the appropriate form listed in your operating system manual. For example, to compile all of the files in a
directory with the extension .cpp, enter the following:

cl430 *.cpp

Note

No Default Extension for Source Files is Assumed: If you list a filename called example on the
command line, the compiler assumes that the entire filename is example not example.c. No default
extensions are added onto files that do not contain an extension.

2.3.7 Changing How the Compiler Interprets Filenames

You can use options to change how the compiler interprets your filenames. If the extensions that you use are
different from those recognized by the compiler, you can use the filename options to specify the type of file. You
can insert an optional space between the option and the filename. Select the appropriate option for the type of
file you want to specify:

--asm_file=filename for an assembly language source file
--c_file=filename for a C source file
--cpp_file=filename for a C++ source file
--obj_file=filename for an object file

For example, if you have a C source file called file.s and an assembly language source file called assy, use the
--asm_file and --c_file options to force the correct interpretation:

cl430 --c_file=file.s --asm_file=assy

You cannot use the filename options with wildcard specifications.

www.ti.com Using the C/C++ Compiler

SLAU132X – OCTOBER 2004 – REVISED DECEMBER 2020
Submit Document Feedback

MSP430 Optimizing C/C++ Compiler
v20.12.0.STS

31

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU132X&partnum=


Note

The default file extensions for object files created by the compiler have been changed in order to
prevent conflicts when C and C++ files have the same names. Object files generated from C source
files have the .c.obj extension. Object files generated from C++ source files have the .cpp.obj
extension.

2.3.8 Changing How the Compiler Processes C Files

The --cpp_default option causes the compiler to process C files as C++ files. By default, the compiler treats files
with a .c extension as C files. See Section 2.3.9 for more information about filename extension conventions.

2.3.9 Changing How the Compiler Interprets and Names Extensions

You can use options to change how the compiler program interprets filename extensions and names the
extensions of the files that it creates. The filename extension options must precede the filenames they apply to
on the command line. You can use wildcard specifications with these options. An extension can be up to nine
characters in length. Select the appropriate option for the type of extension you want to specify:

--asm_extension=new extension for an assembly language file
--c_extension=new extension for a C source file
--cpp_extension=new extension for a C++ source file
--listing_extension=new extension sets default extension for listing files
--obj_extension=new extension for an object file

The following example assembles the file fit.rrr and creates an object file named fit.o:

cl430 --asm_extension=.rrr --obj_extension=.o fit.rrr

The period (.) in the extension is optional. You can also write the example above as:

cl430 --asm_extension=rrr --obj_extension=o fit.rrr

2.3.10 Specifying Directories

By default, the compiler program places the object, assembly, and temporary files that it creates into the current
directory. If you want the compiler program to place these files in different directories, use the following options:

--abs_directory=directory Specifies the destination directory for absolute listing files. The default is to use the same directory
as the object file directory. For example:

cl430 --abs_directory=d:\abso_list

--asm_directory=directory Specifies a directory for assembly files. For example:

cl430 --asm_directory=d:\assembly

--list_directory=directory Specifies the destination directory for assembly listing files and cross-reference listing files. The
default is to use the same directory as the object file directory. For example:

cl430 --list_directory=d:\listing

--obj_directory=directory Specifies a directory for object files. For example:

cl430 --obj_directory=d:\object
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--output_file=filename Specifies a compilation output file name; can override --obj_directory . For example:

cl430 --output_file=transfer

--pp_directory=directory Specifies a preprocessor file directory for object files (default is .). For example:

cl430 --pp_directory=d:\preproc

--temp_directory=directory Specifies a directory for temporary intermediate files. For example:

cl430 --temp_directory=d:\temp

2.3.11 Assembler Options

Following are assembler options that you can use with the compiler. For more information, see the MSP430
Assembly Language Tools User's Guide.

--absolute_listing Generates a listing with absolute addresses rather than section-relative offsets.
--asm_define=name[=def] Predefines the constant name for the assembler; produces a .set directive for a constant or

an .arg directive for a string. If the optional [=def] is omitted, the name is set to 1. If you
want to define a quoted string and keep the quotation marks, do one of the following:
• For Windows, use --asm_define=name="\"string def\"". For example: --

asm_define=car="\"sedan\""
• For UNIX, use --asm_define=name='"string def"'. For example: --

asm_define=car='"sedan"'
• For Code Composer Studio, enter the definition in a file and include that file with the --

cmd_file option.

--asm_dependency Performs preprocessing for assembly files, but instead of writing preprocessed output,
writes a list of dependency lines suitable for input to a standard make utility. The list is
written to a file with the same name as the source file but with a .ppa extension.

--asm_includes Performs preprocessing for assembly files, but instead of writing preprocessed output,
writes a list of files included with the #include directive. The list is written to a file with the
same name as the source file but with a .ppa extension.

--asm_listing Produces an assembly listing file.
--asm_undefine=name Undefines the predefined constant name. This option overrides any --asm_define options

for the specified name.
--asm_listing_cross_reference Produces a symbolic cross-reference in the listing file.
--include_file=filename Includes the specified file for the assembly module; acts like an .include directive. The file is

included before source file statements. The included file does not appear in the assembly
listing files.

2.3.12 Deprecated Options

Several compiler options have been deprecated, removed, or renamed. The compiler continues to accept some
of the deprecated options, but they are not recommended for use.

2.4 Controlling the Compiler Through Environment Variables
An environment variable is a system symbol that you define and assign a string to. Setting environment variables
is useful when you want to run the compiler repeatedly without re-entering options, input filenames, or
pathnames.

Note

C_OPTION and C_DIR -- The C_OPTION and C_DIR environment variables are deprecated. Use
device-specific environment variables instead.
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2.4.1 Setting Default Compiler Options (MSP430_C_OPTION)

You might find it useful to set the compiler, assembler, and linker default options using the MSP430_C_OPTION
environment variable. If you do this, the compiler uses the default options and/or input filenames that you name
MSP430_C_OPTION every time you run the compiler.

Setting the default options with these environment variables is useful when you want to run the compiler
repeatedly with the same set of options and/or input files. After the compiler reads the command line and the
input filenames, it looks for the MSP430_C_OPTION environment variable and processes it.

The table below shows how to set the MSP430_C_OPTION environment variable. Select the command for your
operating system:

Operating System Enter
UNIX (Bourne shell) MSP430_C_OPTION=" option1 [option2 . . .]"; export MSP430_C_OPTION
Windows set MSP430_C_OPTION= option1 [option2 . . .]

Environment variable options are specified in the same way and have the same meaning as they do on the
command line. For example, if you want to always run quietly (the --quiet option), enable C/C++ source
interlisting (the --src_interlist option), and link (the --run_linker option) for Windows, set up the
MSP430_C_OPTION environment variable as follows:

set MSP430_C_OPTION=--quiet --src_interlist --run_linker

Any options following --run_linker on the command line or in MSP430_C_OPTION are passed to the linker.
Thus, you can use the MSP430_C_OPTION environment variable to specify default compiler and linker options
and then specify additional compiler and linker options on the command line. If you have set --run_linker in the
environment variable and want to compile only, use the compiler --compile_only option. These additional
examples assume MSP430_C_OPTION is set as shown above:

cl430 *c                         ; compiles and links
cl430 --compile_only *.c         ; only compiles
cl430 *.c --run_linker lnk.cmd   ; compiles and links using a command file
cl430 --compile_only *.c --run_linker lnk.cmd  
        ; only compiles (--compile_only overrides --run_linker)

For details on compiler options, see Section 2.3. For details on linker options, see the Linker Description chapter
in the MSP430 Assembly Language Tools User's Guide .
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2.4.2 Naming One or More Alternate Directories (MSP430_C_DIR)

The linker uses the MSP430_C_DIR environment variable to name alternate directories that contain object
libraries. The command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) MSP430_C_DIR=" pathname1 ; pathname2 ;..."; export MSP430_C_DIR
Windows set MSP430_C_DIR= pathname1 ; pathname2 ;...

The pathnames are directories that contain input files. The pathnames must follow these constraints:

• Pathnames must be separated with a semicolon.
• Spaces or tabs at the beginning or end of a path are ignored. For example, the space before and after the

semicolon in the following is ignored:

    set MSP430_C_DIR=c:\path\one\to\tools ; c:\path\two\to\tools

• Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces. For
example, the pathnames in the following are valid:

    set MSP430_C_DIR=c:\first path\to\tools;d:\second path\to\tools

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell)

unset MSP430_C_DIR

Windows
set MSP430_C_DIR=

2.5 Controlling the Preprocessor
This section describes features that control the preprocessor, which is part of the parser. A general description of
C preprocessing is in section A12 of K&R. The C/C++ compiler includes standard C/C++ preprocessing
functions, which are built into the first pass of the compiler. The preprocessor handles:
• Macro definitions and expansions
• #include files
• Conditional compilation
• Various preprocessor directives, specified in the source file as lines beginning with the # character

The preprocessor produces self-explanatory error messages. The line number and the filename where the error
occurred are printed along with a diagnostic message.
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2.5.1 Predefined Macro Names

The compiler maintains and recognizes the predefined macro names listed in Table 2-30.

Table 2-30. Predefined MSP430 Macro Names
Macro Name Description
__DATE__(1) Expands to the compilation date in the form mmm dd yyyy

__FILE__(1) Expands to the current source filename
__LARGE_CODE_MODEL__ Defined if --code_model=large is specified
__LARGE_DATA_MODEL__ Defined if --data_model=large or −−data_model=restricted is specified
__LINE__(1) Expands to the current line number
__LONG_PTRDIFF_T__ Defined when --data_model=large is specified. Indicates ptrdiff_t is a long.
__MSP430__ Always defined
__MSP430X__ Defined if --silicon_version=mspx is specified
__MSP430X461X__ Defined if --silicon_version=mspx is specified
__PTRDIFF_T_TYPE__ Set to the type of ptrdiff_t. Determined by the --data_model option.
__signed_chars__ Defined if char types are signed by default (--plain_char=signed)
__SIZE_T_TYPE__ Set to the type of size_t. Determined by the --data_model option.
__STDC__(1) Defined to 1 to indicate that compiler conforms to ISO C Standard. See Section 5.1 for

exceptions to ISO C conformance.
__STDC_VERSION__ C standard macro.
__STDC_HOSTED__ C standard macro. Always defined to 1.
__STDC_NO_THREADS__ C standard macro. Always defined to 1.
__TI_COMPILER_VERSION__ Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does not

contain a decimal. For example, version 3.2.1 is represented as 3002001. The leading zeros
are dropped to prevent the number being interpreted as an octal.

__TI_EABI__ Defined to 1 if the EABI is enabled (see Section 2.13); otherwise, it is undefined.
__TI_GNU_ATTRIBUTE_SUPPORT__ Defined to 1 if GCC extensions are enabled (which is the default)
__TI_STRICT_ANSI_MODE__ Defined to 1 if strict ANSI/ISO mode is enabled (the --strict_ansi option is used); otherwise, it is

defined as 0.
__TI_STRICT_FP_MODE__ Defined to 1 if --fp_mode=strict is used (default); otherwise, it is defined as 0.
__TIME__(1) Expands to the compilation time in the form "hh:mm:ss"
__unsigned_chars__ Defined if char types are unsigned by default (default or −− plain_char=unsigned)
__UNSIGNED_LONG_SIZE_T__ Defined when --data_model=large is specified. Indicates size_t is an unsigned long.
_INLINE Expands to 1 if optimization is used (--opt_level or -O option); undefined otherwise.

(1) Specified by the ISO standard

You can use the names listed in Table 2-30 in the same manner as any other defined name. For example,

printf ( "%s %s" , __TIME__ , __DATE__);

translates to a line such as:

printf ("%s %s" , "13:58:17", "Jan 14 1997");
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2.5.2 The Search Path for #include Files

The #include preprocessor directive tells the compiler to read source statements from another file. When
specifying the file, you can enclose the filename in double quotes or in angle brackets. The filename can be a
complete pathname, partial path information, or a filename with no path information.

• If you enclose the filename in double quotes (" "), the compiler searches for the file in this order:
1. The directory of the file that contains the #include directive and in the directories of any files that contain

that file.
2. Directories named with the --include_path option.
3. Directories set with the MSP430_C_DIR environment variable.

• If you enclose the filename in angle brackets (< >), the compiler searches for the file in the following
directories in this order:
1. Directories named with the --include_path option.
2. Directories set with the MSP430_C_DIR environment variable.

See Section 2.5.2.1 for information on using the --include_path option. See Section 2.4.2 for more information on
input file directories.

2.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)

The --include_path option names an alternate directory that contains #include files. The --include_path option's
short form is -I . The format of the --include_path option is:

--include_path=directory1 [--include_path= directory2 ...]

There is no limit to the number of --include_path options per invocation of the compiler; each --include_path
option names one directory. In C source, you can use the #include directive without specifying any directory
information for the file; instead, you can specify the directory information with the --include_path option.

For example, assume that a file called source.c is in the current directory. The file source.c contains the following
directive statement:

   #include "alt.h"

Assume that the complete pathname for alt.h is:

UNIX /tools/files/alt.h
Windows c:\tools\files\alt.h

The table below shows how to invoke the compiler. Select the command for your operating system:

Operating System Enter
UNIX

cl430 --include_path=/tools/files source.c

Windows
cl430 --include_path=c:\tools\files source.c
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Note

Specifying Path Information in Angle Brackets: If you specify the path information in angle
brackets, the compiler applies that information relative to the path information specified with --
include_path options and the MSP430_C_DIR environment variable.

For example, if you set up MSP430_C_DIR with the following command:

MSP430_C_DIR "/usr/include;/usr/ucb"; export MSP430_C_DIR

or invoke the compiler with the following command:

cl430 --include_path=/usr/include file.c

and file.c contains this line:

#include <sys/proc.h>

the result is that the included file is in the following path:

/usr/include/sys/proc.h

2.5.3 Support for the #warning and #warn Directives

In strict ANSI mode, the TI preprocessor allows you to use the #warn directive to cause the preprocessor to
issue a warning and continue preprocessing. The #warn directive is equivalent to the #warning directive
supported by GCC, IAR, and other compilers.

If you use the --relaxed_ansi option (on by default), both the #warn and #warning preprocessor directives are
supported.

2.5.4 Generating a Preprocessed Listing File (--preproc_only Option)

The --preproc_only option allows you to generate a preprocessed version of your source file with an extension
of .pp. The compiler's preprocessing functions perform the following operations on the source file:

• Each source line ending in a backslash (\) is joined with the following line.
• Trigraph sequences are expanded.
• Comments are removed.
• #include files are copied into the file.
• Macro definitions are processed.
• All macros are expanded.
• All other preprocessing directives, including #line directives and conditional compilation, are expanded.

The --preproc_only option is useful when creating a source file for a technical support case or to ask a question
about your code. It allows you to reduce the test case to a single source file, because #include files are
incorporated when the preprocessor runs.

2.5.5 Continuing Compilation After Preprocessing (--preproc_with_compile Option)

If you are preprocessing, the preprocessor performs preprocessing only; it does not compile your source code.
To override this feature and continue to compile after your source code is preprocessed, use the --
preproc_with_compile option along with the other preprocessing options. For example, use --
preproc_with_compile with --preproc_only to perform preprocessing, write preprocessed output to a file with
a .pp extension, and compile your source code.
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2.5.6 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)

The --preproc_with_comment option performs all of the preprocessing functions except removing comments and
generates a preprocessed version of your source file with a .pp extension. Use the --preproc_with_comment
option instead of the --preproc_only option if you want to keep the comments.

2.5.7 Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)

By default, the preprocessed output file contains no preprocessor directives. To include the #line directives, use
the --preproc_with_line option. The --preproc_with_line option performs preprocessing only and writes
preprocessed output with line-control information (#line directives) to a file named as the source file but with
a .pp extension.

2.5.8 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)

The --preproc_dependency option performs preprocessing only. Instead of writing preprocessed output, it writes
a list of dependency lines suitable for input to a standard make utility. If you do not supply an optional filename,
the list is written to a file with the same name as the source file but a .pp extension.

2.5.9 Generating a List of Files Included with #include (--preproc_includes Option)

The --preproc_includes option performs preprocessing only, but instead of writing preprocessed output, writes a
list of files included with the #include directive. If you do not supply an optional filename, the list is written to a file
with the same name as the source file but with a .pp extension.

2.5.10 Generating a List of Macros in a File (--preproc_macros Option)

The --preproc_macros option generates a list of all predefined and user-defined macros. If you do not supply an
optional filename, the list is written to a file with the same name as the source file but with a .pp extension.

The output includes only those files directly included by the source file. Predefined macros are listed first and
indicated by the comment /* Predefined */. User-defined macros are listed next and indicated by the source
filename.

2.6 Passing Arguments to main()
Some programs pass arguments to main() via argc and argv. This presents special challenges in an embedded
program that is not run from the command line. In general, argc and argv are made available to your program
through the .args section. There are various ways to populate the contents of this section for use by your
program.

To cause the linker to allocate an .args section of the appropriate size, use the --arg_size=size linker option. This
option tells the linker to allocate an uninitialized section named .args, which can be used by the loader to pass
arguments from the command line of the loader to the program. The size is the number of bytes to be allocated.
When you use the --arg_size option, the linker defines the __c_args__ symbol to contain the address of
the .args section.

It is the responsibility of the loader to populate the .args section. The loader and the target boot code can use
the .args section and the __c_args__ symbol to determine whether and how to pass arguments from the host to
the target program. The format of the arguments is an array of pointers to char on the target. Due to variations in
loaders, it is not specified how the loader determines which arguments to pass to the target.

If you are using Code Composer Studio to run your application, you can use the Scripting Console tool to
populate the .args section. To open this tool, choose View > Scripting Console from the CCS menus. You can
use the loadProg command to load an object file and its associated symbol table into memory and pass an array
of arguments to main(). These arguments are automatically written to the allocated .args section.

The loadProg syntax is as follows, where file is an executable file and args is an object array of arguments. Use
JavaScript to declare the array of arguments before using this command.

loadProg(file, args)
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The .args section is loaded with the following data for non-SYS/BIOS-based executables, where each element in
the argv[] array contains a string corresponding to that argument:

Int argc;
Char * argv[0];
Char * argv[1];
...
Char * argv[n];

For SYS/BIOS-based executables, the elements in the .args section are as follows:

Int argc;
Char ** argv;    /* points to argv[0] */
Char * envp;     /* ignored by loadProg command */
Char * argv[0];
Char * argv[1];
...
Char * argv[n];

For more details, see the "Scripting Console" page.

2.7 Understanding Diagnostic Messages
One of the primary functions of the compiler and linker is to report diagnostic messages for the source program.
A diagnostic message indicates that something may be wrong with the program. When the compiler or linker
detects a suspect condition, it displays a message in the following format:

" file.c ", line n : diagnostic severity : diagnostic message

" file.c " The name of the file involved
line n : The line number where the diagnostic applies
diagnostic severity The diagnostic message severity (severity category descriptions follow)
diagnostic message The text that describes the problem

Diagnostic messages have a severity, as follows:

• A fatal error indicates a problem so severe that the compilation cannot continue. Examples of such problems
include command-line errors, internal errors, and missing include files. If multiple source files are being
compiled, any source files after the current one will not be compiled.

• An error indicates a violation of the syntax or semantic rules of the C/C++ language. Compilation may
continue, but object code is not generated.

• A warning indicates something that is likely to be a problem, but cannot be proven to be an error. For
example, the compiler emits a warning for an unused variable. An unused variable does not affect program
execution, but its existence suggests that you might have meant to use it. Compilation continues and object
code is generated (if no errors are detected).

• A remark is less serious than a warning. It may indicate something that is a potential problem in rare cases,
or the remark may be strictly informational. Compilation continues and object code is generated (if no errors
are detected). By default, remarks are not issued. Use the --issue_remarks compiler option to enable
remarks.

• Advice provides information about recommended usage. It is not provided in the same way as the other
diagnostic categories described here. Instead, it is only available in Code Composer Studio in the Advice
area, which is a tab that appears next to the Problems tab. This advice cannot be controlled or accessed via
the command line. The advice provided includes suggested settings for the --opt_level and --opt_for_speed
options. In addition, messages about suggested code changes from the ULP (Ultra-Low Power) Advisor are
provided in this tab.
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Diagnostic messages are written to standard error with a form like the following example:

"test.c", line 5: error: a break statement may only be used within a loop or switch
    break; 
    ^

By default, the source code line is not printed. Use the --verbose_diagnostics compiler option to display the
source line and the error position. The above example makes use of this option.

The message identifies the file and line involved in the diagnostic, and the source line itself (with the position
indicated by the ^ character) follows the message. If several diagnostic messages apply to one source line, each
diagnostic has the form shown; the text of the source line is displayed several times, with an appropriate position
indicated each time.

Long messages are wrapped to additional lines, when necessary.

You can use the --display_error_number command-line option to request that the diagnostic's numeric identifier
be included in the diagnostic message. When displayed, the diagnostic identifier also indicates whether the
diagnostic can have its severity overridden on the command line. If the severity can be overridden, the
diagnostic identifier includes the suffix -D (for discretionary); otherwise, no suffix is present. For example:

"Test_name.c", line 7: error #64-D: declaration does not declare anything
    struct {};
      ^
"Test_name.c", line 9: error #77: this declaration has no storage class or type specifier 
    xxxxx;
    ^

Because errors are determined to be discretionary based on the severity in a specific context, an error can be
discretionary in some cases and not in others. All warnings and remarks are discretionary.

For some messages, a list of entities (functions, local variables, source files, etc.) is useful; the entities are listed
following the initial error message:

"test.c", line 4: error: more than one instance of overloaded function "f" 
            matches the argument list:
            function "f(int)"
            function "f(float)"
            argument types are: (double)
   f(1.5);
   ^

In some cases, additional context information is provided. Specifically, the context information is useful when the
front end issues a diagnostic while doing a template instantiation or while generating a constructor, destructor, or
assignment operator function. For example:

"test.c", line 7: error: "A::A()" is inaccessible
   B x;
   ^
          detected during implicit generation of "B::B()" at line 7

Without the context information, it is difficult to determine to what the error refers.

2.7.1 Controlling Diagnostic Messages

The C/C++ compiler provides diagnostic options to control compiler- and linker-generated diagnostic messages.
The diagnostic options must be specified before the --run_linker option.

--diag_error=num Categorizes the diagnostic identified by num as an error. To determine the numeric identifier of a
diagnostic message, use the --display_error_number option first in a separate compile. Then use --
diag_error=num to recategorize the diagnostic as an error. You can only alter the severity of
discretionary diagnostic messages.
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--diag_remark=num Categorizes the diagnostic identified by num as a remark. To determine the numeric identifier of a
diagnostic message, use the --display_error_number option first in a separate compile. Then use --
diag_remark=num to recategorize the diagnostic as a remark. You can only alter the severity of
discretionary diagnostic messages.

--diag_suppress=num Suppresses the diagnostic identified by num. To determine the numeric identifier of a diagnostic
message, use the --display_error_number option first in a separate compile. Then use --
diag_suppress=num to suppress the diagnostic. You can only suppress discretionary diagnostic
messages.

--diag_warning=num Categorizes the diagnostic identified by num as a warning. To determine the numeric identifier of a
diagnostic message, use the --display_error_number option first in a separate compile. Then use --
diag_warning=num to recategorize the diagnostic as a warning. You can only alter the severity of
discretionary diagnostic messages.

--display_error_number Displays a diagnostic's numeric identifier along with its text. Use this option in determining which
arguments you need to supply to the diagnostic suppression options (--diag_suppress, --diag_error, --
diag_remark, and --diag_warning). This option also indicates whether a diagnostic is discretionary. A
discretionary diagnostic is one whose severity can be overridden. A discretionary diagnostic includes the
suffix -D; otherwise, no suffix is present. See Section 2.7.

--emit_warnings_as_
    errors

Treats all warnings as errors. This option cannot be used with the --no_warnings option. The --
diag_remark option takes precedence over this option. This option takes precedence over the --
diag_warning option.

--issue_remarks Issues remarks (non-serious warnings), which are suppressed by default.
--no_warnings Suppresses diagnostic warnings (errors are still issued).
--section_sizes={on|off} Generates section size information, including sizes for sections containing executable code and

constants, constant or initialized data (global and static variables), and uninitialized data. Section size
information is output during both the assembly and linking phases. This option should be placed on the
command line with the compiler options (that is, before the --run_linker or --z option).

--set_error_limit=num Sets the error limit to num, which can be any decimal value. The compiler abandons compiling after this
number of errors. (The default is 100.)

--verbose_diagnostics Provides verbose diagnostic messages that display the original source with line-wrap and indicate the
position of the error in the source line. Note that this command-line option cannot be used within the
Code Composer Studio IDE.

--write_diagnostics_file Produces a diagnostic message information file with the same source file name with an .err extension.
(The --write_diagnostics_file option is not supported by the linker.) Note that this command-line option
cannot be used within the Code Composer Studio IDE.

2.7.2 How You Can Use Diagnostic Suppression Options

The following example demonstrates how you can control diagnostic messages issued by the compiler. You
control the linker diagnostic messages in a similar manner.

int one();
int I;
int main()
{
   switch (I){
   case  1;
      return one ();
      break;
   default:
      return 0;
   break;
   }
}

If you invoke the compiler with the --quiet option, this is the result:

"err.c", line 9: warning: statement is unreachable
"err.c", line 12: warning: statement is unreachable
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Because it is standard programming practice to include break statements at the end of each case arm to avoid
the fall-through condition, these warnings can be ignored. Using the --display_error_number option, you can find
out the diagnostic identifier for these warnings. Here is the result:

[err.c]
"err.c", line 9: warning #111-D: statement is unreachable
"err.c", line 12: warning #111-D: statement is unreachable

Next, you can use the diagnostic identifier of 111 as the argument to the --diag_remark option to treat this
warning as a remark. This compilation produces no diagnostic messages (because remarks are disabled by
default).

Note

You can suppress any non-fatal errors, but be careful to make sure you only suppress diagnostic
messages that you understand and are known not to affect the correctness of your program.

2.8 Other Messages
Other error messages that are unrelated to the source, such as incorrect command-line syntax or inability to find
specified files, are usually fatal. They are identified by the symbol >> preceding the message.

2.9 Generating Cross-Reference Listing Information (--gen_cross_reference Option)
The --gen_cross_reference option generates a cross-reference listing file that contains reference information for
each identifier in the source file. (The --gen_cross_reference option is separate from --
asm_listing_cross_reference, which is an assembler rather than a compiler option.) The cross-reference listing
file has the same name as the source file with a .crl extension.

The information in the cross-reference listing file is displayed in the following format:

sym-id name X filename line number column number

sym-id An integer uniquely assigned to each identifier
name The identifier name
X One of the following values:

D Definition
d Declaration (not a definition)
M Modification
A Address taken
U Used
C Changed (used and modified in a single operation)
R Any other kind of reference
E Error; reference is indeterminate

filename The source file
line number The line number in the source file
column number The column number in the source file
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2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)
The --gen_preprocessor_listing option generates a raw listing file that can help you understand how the compiler
is preprocessing your source file. Whereas the preprocessed listing file (generated with the --preproc_only, --
preproc_with_comment, --preproc_with_line, and --preproc_dependency preprocessor options) shows a
preprocessed version of your source file, a raw listing file provides a comparison between the original source line
and the preprocessed output. The raw listing file has the same name as the corresponding source file with an .rl
extension.

The raw listing file contains the following information:

• Each original source line
• Transitions into and out of include files
• Diagnostic messages
• Preprocessed source line if nontrivial processing was performed (comment removal is considered trivial;

other preprocessing is nontrivial)

Each source line in the raw listing file begins with one of the identifiers listed in Table 2-31.

Table 2-31. Raw Listing File Identifiers
Identifier Definition

N Normal line of source
X Expanded line of source. It appears immediately following the normal line of source

if nontrivial preprocessing occurs.
S Skipped source line (false #if clause)
L Change in source position, given in the following format:

L line number filename key

Where line number is the line number in the source file. The key is present only
when the change is due to entry/exit of an include file. Possible values of key are:
1 = entry into an include file
2 = exit from an include file

The --gen_preprocessor_listing option also includes diagnostic identifiers as defined in Table 2-32.

Table 2-32. Raw Listing File Diagnostic Identifiers
Diagnostic Identifier Definition

E Error
F Fatal
R Remark
W Warning

Diagnostic raw listing information is displayed in the following format:

S filename line number column number diagnostic

S One of the identifiers in Table 2-32 that indicates the severity of the diagnostic
filename The source file
line number The line number in the source file
column number The column number in the source file
diagnostic The message text for the diagnostic
Diagnostic messages after the end of file are indicated as the last line of the file with a column number of 0. When diagnostic message text
requires more than one line, each subsequent line contains the same file, line, and column information but uses a lowercase version of the
diagnostic identifier. For more information about diagnostic messages, see Section 2.7.
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2.11 Using Inline Function Expansion
When an inline function is called, a copy of the C/C++ source code for the function is inserted at the point of the
call. This is known as inline function expansion, commonly called function inlining or just inlining. Inline function
expansion can speed up execution by eliminating function call overhead. This is particularly beneficial for very
small functions that are called frequently. Function inlining involves a tradeoff between execution speed and
code size, because the code is duplicated at each function call site. Large functions that are called in many
places are poor candidates for inlining.

Note

Excessive Inlining Can Degrade Performance: Excessive inlining can make the compiler
dramatically slower and degrade the performance of generated code.

Function inlining is triggered by the following situations:

• The use of built-in intrinsic operations. Intrinsic operations look like function calls, and are inlined
automatically, even though no function body exists.

• Use of the inline keyword or the equivalent __inline keyword. Functions declared with the inline
keyword may be inlined by the compiler if you set --opt_level=0 or greater. The inline keyword is a suggestion
from the programmer to the compiler. Even if your optimization level is high, inlining is still optional for the
compiler. The compiler decides whether to inline a function based on the length of the function, the number of
times it is called, your --opt_for_speed setting, and any contents of the function that disqualify it from inlining
(see Section 2.11.2). Functions can be inlined at --opt_level=0 or above if the function body is visible in the
same module or if -pm is also used and the function is visible in one of the modules being compiled.
Functions may be inlined at link time if the file containing the definition and the call site were both compiled
with --opt_level=4. Functions defined as both static and inline are more likely to be inlined.

• When --opt_level=3 or greater is used, the compiler may automatically inline eligible functions even if they are
not declared as inline functions. The same list of decision factors listed for functions explicitly defined with the
inline keyword is used. For more about automatic function inlining, see Section 3.5.

• The pragma FUNC_ALWAYS_INLINE (Section 5.11.11) and the equivalent always_inline attribute
(Section 5.16.2) force a function to be inlined (where it is legal to do so) unless --opt_level=off. That is, the
pragma FUNC_ALWAYS_INLINE forces function inlining even if the function is not declared as inline and the
--opt_level=0 or --opt_level=1.

• The FORCEINLINE pragma (Section 5.11.9) forces functions to be inlined in the annotated statement. That
is, it has no effect on those functions in general, only on function calls in a single statement. The
FORCEINLINE_RECURSIVE pragma forces inlining not only of calls visible in the statement, but also in the
inlined bodies of calls from that statement.

• The --disable_inlining option prevents any inlining. The pragma FUNC_CANNOT_INLINE prevents a function
from being inlined. The NOINLINE pragma prevents calls within a single statement from being inlined.
(NOINLINE is the inverse of the FORCEINLINE pragma.)

Note

Function Inlining Can Greatly Increase Code Size: Function inlining increases code size, especially
inlining a function that is called in a number of places. Function inlining is optimal for functions that are
called only from a small number of places and for small functions.

The semantics of the inline keyword in C code follow the C99 standard. The semantics of the inline
keyword in C++ code follow the C++ standard.

The inline keyword is supported in all C++ modes, in relaxed ANSI mode for all C standards, and in strict
ANSI mode for C99 and C11. It is disabled in strict ANSI mode for C89, because it is a language extension that
could conflict with a strictly conforming program. If you want to define inline functions while in strict ANSI C89
mode, use the alternate keyword __inline .
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Compiler options that affect inlining are: --opt_level, --auto_inline, --remove_hooks_when_inlining, --
opt_for_speed, and --disable_inlining.

2.11.1 Inlining Intrinsic Operators

The compiler has a number of built-in function-like operations called intrinsics. The implementation of an intrinsic
function is handled by the compiler, which substitutes a sequence of instructions for the function call. This is
similar to the way inline functions are handled; however, because the compiler knows the code of the intrinsic
function, it can perform better optimization.

Intrinsics are inlined whether or not you use the optimizer. For details about intrinsics, and a list of the intrinsics,
see Section 6.8.1. In addition to those listed, abs and memcpy are implemented as intrinsics.

2.11.2 Inlining Restrictions

The compiler makes decisions about which functions to inline based on the factors mentioned in Section 2.11. In
addition, there are several restrictions that can disqualify a function from being inlined by automatic inlining or
inline keyword-based inlining.

The compiler will leave calls as they are if the function:

• Has a different number of arguments than the call site
• Has an argument whose type is incompatible with the corresponding call site argument
• Is not declared inline and returns void but its return value is needed

The compiler will also not inline a call if the function has features that create difficult situations for the compiler:

• Has a variable-length argument list
• Never returns
• Is a recursive or non-leaf function that exceeds the depth limit
• Is not declared inline and contains an asm() statement that is not a comment
• Is an interrupt function
• Is the main() function
• Is not declared inline and will require too much stack space for local array or structure variables
• Contains a volatile local variable or argument
• Is a C++ function that contains a catch
• Is not defined in the current compilation unit and -O4 optimization is not used

A call in a statement that is annotated with a NOINLINE pragma will not be inlined, regardless of other
indications (including a FUNC_ALWAYS_INLINE pragma or always_inline attribute on the called function).

A call in a statement that is annotated with a FORCEINLINE pragma will always be inlined, if it is not disqualified
for one of the reasons above, even if the called function has a FUNC_CANNOT_INLINE pragma or
cannot_inline attribute.

In other words, a statement-level pragma overrides a function-level pragma or attribute. If both NOINLINE and
FORCEINLINE apply to the same statement, then the one that appears first will be used and the rest will be
ignored.
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2.12 Using Interlist
The compiler tools include a feature that interlists C/C++ source statements into the assembly language output
of the compiler. The interlist feature enables you to inspect the assembly code generated for each C statement.
The interlist behaves differently, depending on whether or not the optimizer is used, and depending on which
options you specify.

The easiest way to invoke the interlist feature is to use the --c_src_interlist option. To compile and run the interlist
on a program called function.c, enter:

cl430 --c_src_interlist function

The --c_src_interlist option prevents the compiler from deleting the interlisted assembly language output file. The
output assembly file, function.asm, is assembled normally.

When you invoke the interlist feature without the optimizer, the interlist runs as a separate pass between the
code generator and the assembler. It reads both the assembly and C/C++ source files, merges them, and writes
the C/C++ statements into the assembly file as comments.

For information about using the interlist feature with the optimizer, see Section 3.11. Using the --c_src_interlist
option can cause performance and/or code size degradation.

The following example shows a typical interlisted assembly file.

;******************************************************************************
        .compiler_opts --mem_model:code=flat --mem_model:data=flat --symdebug:none
;       acp430 -@/var/tmp/TI764/AAAv0aGVG
        .sect   ".text"
        .align  2
        .clink
        .global main
;-----------------------------------------------------------------------
;   3 | int main()
;-----------------------------------------------------------------------
;******************************************************************************
;* FUNCTION NAME: main                                                        *
;*                                                                            *
;*   Regs Modified     : SP,SR,r11,r12,r13,r14,r15                            *
;*   Regs Used         : SP,SR,r11,r12,r13,r14,r15                            *
;*   Local Frame Size  : 2 Args + 0 Auto + 0 Save = 2 byte                    *
;******************************************************************************
main:
;* ---------------------------------------------------------------------------*
        SUB.W     #2,SP
;-----------------------------------------------------------------------
;   5 | printf("Hello, world\n");
;-----------------------------------------------------------------------
        MOV.W     #$C$SL1+0,0(SP)       ; |5|
        CALL      #printf               ; |5|
                                          ; |5|
;-----------------------------------------------------------------------
;   7 | return 0;
;-----------------------------------------------------------------------
        MOV.W     #0,r12                ; |7|
        ADD.W     #2,SP                 ; |7|
        RET       ; |7|
        ; |7|
;******************************************************************************
;* STRINGS                                                                    *
;******************************************************************************
        .sect   ".const"
        .align  2
$C$SL1: .string "Hello, world",10,0
;******************************************************************************
;* UNDEFINED EXTERNAL REFERENCES                                              *
;******************************************************************************
        .global printf
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2.13 Controlling Application Binary Interface
An Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. An ABI allows ABI-compliant object files to be linked together,
regardless of their source, and allows the resulting executable to run on any system that supports that ABI.

Object files conforming to different ABIs cannot be linked together. The linker detects this situation and
generates an error.

The MSP430 compiler now supports only the Embedded Application Binary Interface (EABI) ABI, which uses the
ELF object format and the DWARF debug format. If you want support for the legacy COFF ABI, please use the
MSP430 v4.4 Code Generation Tools and refer to SLAU132J and SLAU131J for documentation.

All code in an EABI application must be built for EABI. Make sure all your libraries are available in EABI mode
before migrating COFF ABI systems to MSP430 EABI.

For more details on the ABI, see Section 5.13.
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2.14 Enabling Entry Hook and Exit Hook Functions
An entry hook is a routine that is called upon entry to each function in the program. An exit hook is a routine that
is called upon exit of each function. Applications for hooks include debugging, trace, profiling, and stack overflow
checking.

Entry and exit hooks are enabled using the following options:

--entry_hook[=name] Enables entry hooks. If specified, the hook function is called name. Otherwise, the default entry hook
function name is __entry_hook.

--entry_parm{=name|
address|none}

Specify the parameters to the hook function. The name parameter specifies that the name of the calling
function is passed to the hook function as an argument. In this case the signature for the hook function
is: void hook(const char *name);
The address parameter specifies that the address of the calling function is passed to the hook function.
In this case the signature for the hook function is: void hook(void (*addr)());
The none parameter specifies that the hook is called with no parameters. This is the default. In this case
the signature for the hook function is: void hook(void);

--exit_hook[=name] Enables exit hooks. If specified, the hook function is called name. Otherwise, the default exit hook
function name is __exit_hook.

--exit_parm{=name|
address|none}

Specify the parameters to the hook function. The name parameter specifies that the name of the calling
function is passed to the hook function as an argument. In this case the signature for the hook function
is: void hook(const char *name);
The address parameter specifies that the address of the calling function is passed to the hook function.
In this case the signature for the hook function is: void hook(void (*addr)());
The none parameter specifies that the hook is called with no parameters. This is the default. In this case
the signature for the hook function is: void hook(void);

The presence of the hook options creates an implicit declaration of the hook function with the given signature. If
a declaration or definition of the hook function appears in the compilation unit compiled with the options, it must
agree with the signatures listed above.

In C++, the hooks are declared extern "C". Thus you can define them in C (or assembly) without being
concerned with name mangling.

Hooks can be declared inline, in which case the compiler tries to inline them using the same criteria as other
inline functions.

Entry hooks and exit hooks are independent. You can enable one but not the other, or both. The same function
can be used as both the entry and exit hook.

You must take care to avoid recursive calls to hook functions. The hook function should not call any function
which itself has hook calls inserted. To help prevent this, hooks are not generated for inline functions, or for the
hook functions themselves.

You can use the --remove_hooks_when_inlining option to remove entry/exit hooks for functions that are auto-
inlined by the optimizer.

See Section 5.11.23 for information about the NO_HOOKS pragma.
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The compiler tools can perform many optimizations to improve the execution speed and reduce the size of C and
C++ programs by simplifying loops, rearranging statements and expressions, and allocating variables into
registers.

This chapter describes how to invoke different levels of optimization and describes which optimizations are
performed at each level. This chapter also describes how you can use the Interlist feature when performing
optimization and how you can debug optimized code.

3.1 Invoking Optimization................................................................................................................................................ 52
3.2 Controlling Code Size Versus Speed........................................................................................................................53
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3.1 Invoking Optimization
The C/C++ compiler is able to perform various optimizations. High-level optimizations are performed in the
optimizer and low-level, target-specific optimizations occur in the code generator. Use higher optimization levels,
such as --opt_level=2 and --opt_level=3, to achieve optimal code.

The easiest way to invoke optimization is to use the compiler program, specifying the --opt_level=n option on the
compiler command line. You can use -On to alias the --opt_level option. The n denotes the level of optimization
(0, 1, 2, 3, and 4), which controls the type and degree of optimization.

• --opt_level=off or -Ooff
– Performs no optimization

• --opt_level=0 or -O0
– Performs control-flow-graph simplification
– Allocates variables to registers
– Performs loop rotation
– Eliminates unused code
– Simplifies expressions and statements
– Expands calls to functions declared inline

• --opt_level=1 or -O1

Performs all --opt_level=0 (-O0) optimizations, plus:
– Performs local copy/constant propagation
– Removes unused assignments
– Eliminates local common expressions

• --opt_level=2 or -O2

Performs all --opt_level=1 (-O1) optimizations, plus:
– Performs loop optimizations
– Eliminates global common subexpressions
– Eliminates global unused assignments
– Performs loop unrolling

• --opt_level=3 or -O3

Performs all --opt_level=2 (-O2) optimizations, plus:
– Removes all functions that are never called
– Simplifies functions with return values that are never used
– Inlines calls to small functions
– Reorders function declarations; the called functions attributes are known when the caller is optimized
– Propagates arguments into function bodies when all calls pass the same value in the same argument

position
– Identifies file-level variable characteristics

If you use --opt_level=3 (-O3), see Section 3.3 and Section 3.4 for more information.
• --opt_level=4 or -O4

Performs link-time optimization. See Section 3.6 for details.

For details about how the --opt_level and --opt_for_speed options and various pragmas affect inlining, see
Section 2.11.

Debugging is enabled by default, and the optimization level is unaffected by the generation of debug information.

Optimizations are performed by the stand-alone optimization pass. The code generator performs several
additional optimizations, particularly processor-specific optimizations. It does so regardless of whether you
invoke the optimizer. These optimizations are always enabled, though they are more effective when the
optimizer is used.
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3.2 Controlling Code Size Versus Speed
To balance the tradeoff between code size and speed, use the --opt_for_speed option. The level of optimization
(0-5) controls the type and degree of code size or code speed optimization:

• --opt_for_speed=0

Optimizes code size with a high risk of worsening or impacting performance.
• --opt_for_speed=1

Optimizes code size with a medium risk of worsening or impacting performance.
• --opt_for_speed=2

Optimizes code size with a low risk of worsening or impacting performance.
• --opt_for_speed=3

Optimizes code performance/speed with a low risk of worsening or impacting code size.
• --opt_for_speed=4

Optimizes code performance/speed with a medium risk of worsening or impacting code size.
• --opt_for_speed=5

Optimizes code performance/speed with a high risk of worsening or impacting code size.

If you specify the --opt_for_speed option without a parameter, the default setting is --opt_for_speed=4. If you do
not specify the --opt_for_speed option, the default setting is 1

3.3 Performing File-Level Optimization (--opt_level=3 option)
The --opt_level=3 option (aliased as the -O3 option) instructs the compiler to perform file-level optimization. You
can use the --opt_level=3 option alone to perform general file-level optimization, or you can combine it with other
options to perform more specific optimizations. The options listed in Table 3-1 work with --opt_level=3 to perform
the indicated optimization:

Table 3-1. Options That You Can Use With --opt_level=3
If You ... Use this Option See
Want to create an optimization information file --gen_opt_level=n Section 3.3.1
Want to compile multiple source files --program_level_compile Section 3.4

3.3.1 Creating an Optimization Information File (--gen_opt_info Option)

When you invoke the compiler with the --opt_level=3 option , you can use the --gen_opt_info option to create an
optimization information file that you can read. The number following the option denotes the level (0, 1, or 2).
The resulting file has an .nfo extension. Use Table 3-2 to select the appropriate level to append to the option.

Table 3-2. Selecting a Level for the --gen_opt_info Option
If you... Use this option
Do not want to produce an information file, but you used the --gen_opt_level=1 or --gen_opt_level=2 option
in a command file or an environment variable. The --gen_opt_level=0 option restores the default behavior of
the optimizer.

--gen_opt_info=0

Want to produce an optimization information file --gen_opt_info=1
Want to produce a verbose optimization information file --gen_opt_info=2

3.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)
You can specify program-level optimization by using the --program_level_compile option with the --opt_level=3
option (aliased as -O3). (If you use --opt_level=4 (-O4), the --program_level_compile option cannot be used,
because link-time optimization provides the same optimization opportunities as program level optimization.)

www.ti.com Optimizing Your Code

SLAU132X – OCTOBER 2004 – REVISED DECEMBER 2020
Submit Document Feedback

MSP430 Optimizing C/C++ Compiler
v20.12.0.STS

53

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU132X&partnum=


With program-level optimization, all of your source files are compiled into one intermediate file called a module.
The module moves to the optimization and code generation passes of the compiler. Because the compiler can
see the entire program, it performs several optimizations that are rarely applied during file-level optimization:

• If a particular argument in a function always has the same value, the compiler replaces the argument with the
value and passes the value instead of the argument.

• If a return value of a function is never used, the compiler deletes the return code in the function.
• If a function is not called directly or indirectly by main(), the compiler removes the function.

The --program_level_compile option requires use of --opt_level=3 or higher in order to perform these
optimizations.

To see which program-level optimizations the compiler is applying, use the --gen_opt_level=2 option to generate
an information file. See Section 3.3.1 for more information.

In Code Composer Studio, when the --program_level_compile option is used, C and C++ files that have the
same options are compiled together. However, if any file has a file-specific option that is not selected as a
project-wide option, that file is compiled separately. For example, if every C and C++ file in your project has a
different set of file-specific options, each is compiled separately, even though program-level optimization has
been specified. To compile all C and C++ files together, make sure the files do not have file-specific options. Be
aware that compiling C and C++ files together may not be safe if previously you used a file-specific option.

Note
Compiling Files With the --program_level_compile and --keep_asm Options

If you compile all files with the --program_level_compile and --keep_asm options, the compiler
produces only one .asm file, not one for each corresponding source file.

3.4.1 Controlling Program-Level Optimization (--call_assumptions Option)

You can control program-level optimization, which you invoke with --program_level_compile --opt_level=3, by
using the --call_assumptions option. Specifically, the --call_assumptions option indicates if functions in other
modules can call a module's external functions or modify a module's external variables. The number following --
call_assumptions indicates the level you set for the module that you are allowing to be called or modified. The --
opt_level=3 option combines this information with its own file-level analysis to decide whether to treat this
module's external function and variable declarations as if they had been declared static. Use Table 3-3 to select
the appropriate level to append to the --call_assumptions option.

Table 3-3. Selecting a Level for the --call_assumptions Option
If Your Module … Use this Option
Has functions that are called from other modules and global variables that are modified in other modules --call_assumptions=0
Does not have functions that are called by other modules but has global variables that are modified in other
modules

--call_assumptions=1

Does not have functions that are called by other modules or global variables that are modified in other
modules

--call_assumptions=2

Has functions that are called from other modules but does not have global variables that are modified in
other modules

--call_assumptions=3

In certain circumstances, the compiler reverts to a different --call_assumptions level from the one you specified,
or it might disable program-level optimization altogether. Table 3-4 lists the combinations of --call_assumptions
levels and conditions that cause the compiler to revert to other --call_assumptions levels.

Table 3-4. Special Considerations When Using the --call_assumptions Option

If --call_assumptions is... Under these Conditions...
Then the --call_assumptions
Level...

Not specified The --opt_level=3 optimization level was specified Defaults to --call_assumptions=2
Not specified The compiler sees calls to outside functions under the --opt_level=3

optimization level
Reverts to --call_assumptions=0
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Table 3-4. Special Considerations When Using the --call_assumptions Option (continued)

If --call_assumptions is... Under these Conditions...
Then the --call_assumptions
Level...

Not specified Main is not defined Reverts to --call_assumptions=0
--call_assumptions=1 or
--call_assumptions=2

No function has main defined as an entry point, and no interrupt
functions are defined, and no functions are identified by the
FUNC_EXT_CALLED pragma

Reverts to --call_assumptions=0

--call_assumptions=1 or
--call_assumptions=2

A main function is defined, or, an interrupt function is defined, or a
function is identified by the FUNC_EXT_CALLED pragma

Remains --call_assumptions=1 or
--call_assumptions=2

--call_assumptions=3 Any condition Remains --call_assumptions=3

In some situations when you use --program_level_compile and --opt_level=3, you must use a --call_assumptions
option or the FUNC_EXT_CALLED pragma. See Section 3.4.2 for information about these situations.

3.4.2 Optimization Considerations When Mixing C/C++ and Assembly

If you have any assembly functions in your program, you need to exercise caution when using the --
program_level_compile option. The compiler recognizes only the C/C++ source code and not any assembly
code that might be present. Because the compiler does not recognize the assembly code calls and variable
modifications to C/C++ functions, the --program_level_compile option optimizes out those C/C++ functions. To
keep these functions, place the FUNC_EXT_CALLED pragma (see Section 5.11.13) before any declaration or
reference to a function that you want to keep.

Another approach you can take when you use assembly functions in your program is to use the --
call_assumptions=n option with the --program_level_compile and --opt_level=3 options. See Section 3.4.1 for
information about the --call_assumptions=n option.

In general, you achieve the best results through judicious use of the FUNC_EXT_CALLED pragma in
combination with --program_level_compile --opt_level=3 and --call_assumptions=1 or --call_assumptions=2.

If any of the following situations apply to your application, use the suggested solution:

• Situation: Your application consists of C/C++ source code that calls assembly functions. Those assembly
functions do not call any C/C++ functions or modify any C/C++ variables.

Solution: Compile with --program_level_compile --opt_level=3 --call_assumptions=2 to tell the compiler that
outside functions do not call C/C++ functions or modify C/C++ variables.

If you compile with the --program_level_compile --opt_level=3 options only, the compiler reverts from the
default optimization level (--call_assumptions=2) to --call_assumptions=0. The compiler uses --
call_assumptions=0, because it presumes that the calls to the assembly language functions that have a
definition in C/C++ may call other C/C++ functions or modify C/C++ variables.

• Situation: Your application consists of C/C++ source code that calls assembly functions. The assembly
language functions do not call C/C++ functions, but they modify C/C++ variables.

Solution: Try both of these solutions and choose the one that works best with your code:
– Compile with --program_level_compile --opt_level=3 --call_assumptions=1.
– Add the volatile keyword to those variables that may be modified by the assembly functions and compile

with --program_level_compile --opt_level=3 --call_assumptions=2.
• Situation: Your application consists of C/C++ source code and assembly source code. The assembly

functions are interrupt service routines that call C/C++ functions; the C/C++ functions that the assembly
functions call are never called from C/C++. These C/C++ functions act like main: they function as entry points
into C/C++.

Solution: Add the volatile keyword to the C/C++ variables that may be modified by the interrupts. Then, you
can optimize your code in one of these ways:
– You achieve the best optimization by applying the FUNC_EXT_CALLED pragma to all of the entry-point

functions called from the assembly language interrupts, and then compiling with --program_level_compile
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--opt_level=3 --call_assumptions=2. Be sure that you use the pragma with all of the entry-point functions.
If you do not, the compiler might remove the entry-point functions that are not preceded by the
FUNC_EXT_CALLED pragma.

– Compile with --program_level_compile --opt_level=3 --call_assumptions=3. Because you do not use the
FUNC_EXT_CALLED pragma, you must use the --call_assumptions=3 option, which is less aggressive
than the --call_assumptions=2 option, and your optimization may not be as effective.

Keep in mind that if you use --program_level_compile --opt_level=3 without additional options, the compiler
removes the C functions that the assembly functions call. Use the FUNC_EXT_CALLED pragma to keep
these functions.

3.5 Automatic Inline Expansion (--auto_inline Option)
When optimizing with the --opt_level=3 option (aliased as -O3), the compiler automatically inlines small
functions. A command-line option, --auto_inline=size, specifies the size threshold. Any function larger than the
size threshold is not automatically inlined. You can use the --auto_inline=size option in the following ways:

• If you set the size parameter to 0 (--auto_inline=0), automatic inline expansion is disabled.
• If you set the size parameter to a nonzero integer, the compiler uses this size threshold as a limit to the size

of the functions it automatically inlines. The compiler multiplies the number of times the function is inlined
(plus 1 if the function is externally visible and its declaration cannot be safely removed) by the size of the
function.

The compiler inlines the function only if the result is less than the size parameter. The compiler measures the
size of a function in arbitrary units; however, the optimizer information file (created with the --gen_opt_level=1 or
--gen_opt_level=2 option) reports the size of each function in the same units that the --auto_inline option uses.

The --auto_inline=size option controls only the inlining of functions that are not explicitly declared as inline. If you
do not use the --auto_inline=size option, the compiler inlines very small functions.

For information about interactions between command-line options, pragmas, and keywords that affect inlining,
see Section 2.11.

Note
Optimization Level 3 and Inlining: In order to turn on automatic inlining, you must use the --
opt_level=3 option. If you desire the --opt_level=3 optimizations, but not automatic inlining, use --
auto_inline=0 with the --opt_level=3 option.

Note
Inlining and Code Size: Expanding functions inline increases code size, especially inlining a function
that is called in a number of places. Function inlining is optimal for functions that are called only from a
small number of places and for small functions. To prevent increases in code size because of inlining,
use the --auto_inline=0 option. This option causes the compiler to inline intrinsics only.

3.6 Link-Time Optimization (--opt_level=4 Option)
Link-time optimization is an optimization mode that allows the compiler to have visibility of the entire program.
The optimization occurs at link-time instead of compile-time like other optimization levels.

Link-time optimization is invoked using the --opt_level=4 option. This option must be placed before the --
run_linker (-z) option on the command line, because both the compiler and linker are involved in link-time
optimization. At compile time, the compiler embeds an intermediate representation of the file being compiled into
the resulting object file. At link-time this representation is extracted from every object file which contains it, and is
used to optimize the entire program.

If you use --opt_level=4 (-O4), the --program_level_compile option cannot also be used, because link-time
optimization provides the same optimization opportunities as program level optimization (Section 3.4). Link-time
optimization provides the following benefits:
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• Each source file can be compiled separately. One issue with program-level compilation is that it requires all
source files to be passed to the compiler at one time. This often requires significant modification of a
customer's build process. With link-time optimization, all files can be compiled separately.

• References to C/C++ symbols from assembly are handled automatically. When doing program-level
compilation, the compiler has no knowledge of whether a symbol is referenced externally. When performing
link-time optimization during a final link, the linker can determine which symbols are referenced externally and
prevent eliminating them during optimization.

• Third party object files can participate in optimization. If a third party vendor provides object files that were
compiled with the --opt_level=4 option, those files participate in optimization along with user-generated files.
This includes object files supplied as part of the TI run-time support. Object files that were not compiled with –
opt_level=4 can still be used in a link that is performing link-time optimization. Those files that were not
compiled with –opt_level=4 do not participate in the optimization.

• Source files can be compiled with different option sets. With program-level compilation, all source files must
be compiled with the same option set. With link-time optimization files can be compiled with different options.
If the compiler determines that two options are incompatible, it issues an error.

3.6.1 Option Handling

When performing link-time optimization, source files can be compiled with different options. When possible, the
options that were used during compilation are used during link-time optimization. For options which apply at the
program level, --auto_inline for instance, the options used to compile the main function are used. If main is not
included in link-time optimization, the option set used for the first object file specified on the command line is
used. Some options, --opt_for_speed for instance, can affect a wide range of optimizations. For these options,
the program-level behavior is derived from main, and the local optimizations are obtained from the original option
set.

Some options are incompatible when performing link-time optimization. These are usually options which conflict
on the command line as well, but can also be options that cannot be handled during link-time optimization.

3.6.2 Incompatible Types

During a normal link, the linker does not check to make sure that each symbol was declared with the same type
in different files. This is not necessary during a normal link. When performing link-time optimization, however, the
linker must ensure that all symbols are declared with compatible types in different source files. If a symbol is
found which has incompatible types, an error is issued. The rules for compatible types are derived from the C
and C++ standards.

3.7 Using Feedback Directed Optimization
Feedback directed optimization provides a method for finding frequently executed paths in an application using
compiler-based instrumentation. This information is fed back to the compiler and is used to perform
optimizations. This information is also used to provide you with information about application behavior.

3.7.1 Feedback Directed Optimization

Feedback directed optimization uses run-time feedback to identify and optimize frequently executed program
paths. Feedback directed optimization is a two-phase process.

3.7.1.1 Phase 1 -- Collect Program Profile Information

In this phase the compiler is invoked with the option --gen_profile_info, which instructs the compiler to add
instrumentation code to collect profile information. The compiler inserts a minimal amount of instrumentation
code to determine control flow frequencies. Memory is allocated to store counter information.

The instrumented application program is executed on the target using representative input data sets. The input
data sets should correlate closely with the way the program is expected to be used in the end product
environment. When the program completes, a run-time-support function writes the collected information into a
profile data file called a PDAT file. Multiple executions of the program using different input data sets can be
performed and in such cases, the run-time-support function appends the collected information into the PDAT file.
The resulting PDAT file is post-processed using a tool called the Profile Data Decoder or pdd430. The pdd430
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tool consolidates multiple data sets and formats the data into a feedback file (PRF file, see Section 3.7.2) for
consumption by phase 2 of feedback directed optimization.

3.7.1.2 Phase 2 -- Use Application Profile Information for Optimization

In this phase, the compiler is invoked with the --use_profile_info=file.prf option, which reads the specified PRF
file generated in phase 1. In phase 2, optimization decisions are made using the data generated during phase 1.
The profile feedback file is used to guide program optimization. The compiler optimizes frequently executed
program paths more aggressively.

The compiler uses data in the profile feedback file to guide certain optimizations of frequently executed program
paths.

3.7.1.3 Generating and Using Profile Information

There are two options that control feedback directed optimization:

--gen_profile_info tells the compiler to add instrumentation code to collect profile information. When the program executes the
run-time-support exit() function, the profile data is written to a PDAT file. This option applies to all the C/C++
source files being compiled on the command-line.
If the environment variable TI_PROFDATA on the host is set, the data is written into the specified file.
Otherwise, it uses the default filename: pprofout.pdat. The full pathname of the PDAT file (including the
directory name) can be specified using the TI_PROFDATA host environment variable.
By default, the RTS profile data output routine uses the C I/O mechanism to write data to the PDAT file. You
can install a device handler for the PPHNDL device to re-direct the profile data to a custom device driver
routine. For example, this could be used to send the profile data to a device that does not use a file system.
Feedback directed optimization requires you to turn on at least some debug information when using the --
gen_profile_info option. This enables the compiler to output debug information that allows pdd430 to correlate
compiled functions and their associated profile data.

--use_profile_info specifies the profile information file(s) to use for performing phase 2 of feedback directed optimization. More
than one profile information file can be specified on the command line; the compiler uses all input data from
multiple information files. The syntax for the option is:
--use_profile_info==file1[, file2, ..., filen]
If no filename is specified, the compiler looks for a file named pprofout.prf in the directory where the compiler
in invoked.

3.7.1.4 Example Use of Feedback Directed Optimization

These steps illustrate the creation and use of feedback directed optimization.

1. Generate profile information.

cl430 --opt_level=2 --gen_profile_info foo.c --run_linker --output_file=foo.out
     --library=lnk.cmd --library=rts430.lib

2. Execute the application.

The execution of the application creates a PDAT file named pprofout.pdat in the current (host) directory. The
application can be run on target hardware connected to a host machine.

3. Process the profile data.

After running the application with multiple data-sets, run pdd430 on the PDAT files to create a profile
information (PRF) file to be used with --use_profile_info.

pdd430 -e foo.out -o pprofout.prf pprofout.pdat

4. Re-compile using the profile feedback file.

cl430 --opt_level=2 --use_profile_info=pprofout.prf foo.c --run_linker
     --output_file=foo.out --library=lnk.cmd --library=rts430.lib
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3.7.1.5 The .ppdata Section

The profile information collected in phase 1 is stored in the .ppdata section, which must be allocated into target
memory. The .ppdata section contains profiler counters for all functions compiled with --gen_profile_info. The
default lnk.cmd file in has directives to place the .ppdata section in data memory. If the link command file has no
section directive for allocating .ppdata section, the link step places the .ppdata section in a writable memory
range.

The .ppdata section must be allocated memory in multiples of 32 bytes. Please refer to the linker command file
in the distribution for example usage.

3.7.1.6 Feedback Directed Optimization and Code Size Tune

Feedback directed optimization is different from the Code Size Tune feature in Code Composer Studio (CCS).
The code size tune feature uses CCS profiling to select specific compilation options for each function in order to
minimize code size while still maintaining a specific performance point. Code size tune is coarse-grained, since it
is selecting an option set for the whole function. Feedback directed optimization selects different optimization
goals along specific regions within a function.

3.7.1.7 Instrumented Program Execution Overhead

During profile collection, the execution time of the application may increase. The amount of increase depends on
the size of the application and the number of files in the application compiled for profiling.

The profiling counters increase the code and data size of the application. Consider using the option when using
profiling to mitigate the code size increase. This has no effect on the accuracy of the profile data being collected.
Since profiling only counts execution frequency and not cycle counts, code size optimization flags do not affect
profiler measurements.

3.7.1.8 Invalid Profile Data

When recompiling with --use_profile_info, the profile information is invalid in the following cases:

• The source file name changed between the generation of profile information (gen-profile) and the use of the
profile information (use-profile).

• The source code was modified since gen-profile. In this case, profile information is invalid for the modified
functions.

• Certain compiler options used with gen-profile are different from those with used with use-profile. In particular,
options that affect parser behavior could invalidate profile data during use-profile. In general, using different
optimization options during use-profile should not affect the validity of profile data.

3.7.2 Profile Data Decoder

The code generation tools include a tool called the Profile Data Decoder or pdd430, which is used for post
processing profile data (PDAT) files. The pdd430 tool generates a profile feedback (PRF) file. See Section 3.7.1
for a discussion of where pdd430 fits in the profiling flow. The pdd430 tool is invoked with this syntax:

pdd430 -e exec.out -o application.prf filename .pdat

-a Computes the average of the data values in the data sets instead of accumulating data values
-e exec.out Specifies exec.out is the name of the application executable.
-o application.prf Specifies application.prf is the formatted profile feedback file that is used as the argument to --

use_profile_info during recompilation. If no output file is specified, the default output filename is
pprofout.prf.

filename .pdat Is the name of the profile data file generated by the run-time-support function. This is the default name and
it can be overridden by using the host environment variable TI_PROFDATA.

The run-time-support function and pdd430 append to their respective output files and do not overwrite them.
This enables collection of data sets from multiple runs of the application.
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Note
Profile Data Decoder Requirements

Your application must be compiled with at least DWARF debug support to enable feedback directed
optimization. When compiling for feedback directed optimization, the pdd430 tool relies on basic
debug information about each function in generating the formatted .prf file.

The pprofout.pdat file generated by the run-time support is a raw data file of a fixed format understood
only by pdd430. You should not modify this file in any way.

3.7.3 Feedback Directed Optimization API

There are two user interfaces to the profiler mechanism. You can start and stop profiling in your application by
using the following run-time-support calls.

• _TI_start_pprof_collection()

This interface informs the run-time support that you wish to start profiling collection from this point on and
causes the run-time support to clear all profiling counters in the application (that is, discard old counter
values).

• _TI_stop_pprof_collection()

This interface directs the run-time support to stop profiling collection and output profiling data into the output
file (into the default file or one specified by the TI_PROFDATA host environment variable). The run-time
support also disables any further output of profile data into the output file during exit(), unless you call
_TI_start_pprof_collection() again.

3.7.4 Feedback Directed Optimization Summary

Options

--gen_profile_info Adds instrumentation to the compiled code. Execution of the code results in profile data being emitted
to a PDAT file.

--use_profile_info=file.prf Uses profile information for optimization and/or generating code coverage information.
--analyze=codecov Generates a code coverage information file and continues with profile-based compilation. Must be

used with --use_profile_info.
--analyze_only Generates only a code coverage information file. Must be used with --use_profile_info. You must

specify both --analyze=codecov and --analyze_only to do code coverage analysis of the instrumented
application.

Host Environment Variables

TI_PROFDATA Writes profile data into the specified file
TI_COVDIR Creates code coverage files in the specified directory
TI_COVDATA Writes code coverage data into the specified file

API

_TI_start_pprof_collection() Clears the profile counters to file
_TI_stop_pprof_collection() Writes out all profile counters to file
PPHDNL Device driver handle for low-level C I/O based driver for writing out profile data from a target program.

Files Created

*.pdat Profile data file, which is created by executing an instrumented program and used as input to the
profile data decoder

*.prf Profiling feedback file, which is created by the profile data decoder and used as input to the re-
compilation step
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3.8 Using Profile Information to Analyze Code Coverage
You can use the analysis information from the Profile Data Decoder to analyze code coverage.

3.8.1 Code Coverage

The information collected during feedback directed optimization can be used for generating code coverage
reports. As with feedback directed optimization, the program must be compiled with the --gen_profile_info option.
Code coverage conveys the execution count of each line of source code in the file being compiled, using data
collected during profiling.

3.8.1.1 Phase1 -- Collect Program Profile Information

In this phase, the compiler is invoked with --gen_profile_info, which instructs the compiler to add instrumentation
code to collect profile information. The compiler inserts a small amount of instrumentation code to determine
control flow frequencies. Memory is allocated to store counter information.

The instrumented application program is executed on the target using representative input data sets. The input
data sets should correlate closely with the way the program is expected to be used in the end product
environment. When the program completes, a run-time-support function writes the collected information into a
profile data file called a PDAT file. Multiple executions of the program using different input data sets can be
performed and in such cases, the run-time-support function appends the collected information into the PDAT file.
The resulting PDAT file is post-processed using a tool called the Profile Data Decoder or pdd430. The pdd430
tool consolidates multiple data sets and formats the data into a feedback file (PRF file, see Section 3.7.2) for
consumption by phase 2 of feedback directed optimization.

3.8.1.2 Phase 2 -- Generate Code Coverage Reports

In this phase, the compiler is invoked with the --use_profile_info=file.prf option, which indicates that the compiler
should read the specified PRF file generated in phase 1. The application must also be compiled with either the --
codecov or --onlycodecov option; the compiler generates a code-coverage info file. The --codecov option directs
the compiler to continue compilation after generating code-coverage information, while the --onlycodecov option
stops the compiler after generating code-coverage data. For example:

cl430 --opt_level=2 --use_profile_info=pprofout.prf --onlycodecov foo.c

You can specify two environment variables to control the destination of the code-coverage information file.

• The TI_COVDIR environment variable specifies the directory where the code-coverage file should be
generated. The default is the directory where the compiler is invoked.

• The TI_COVDATA environment variable specifies the name of the code-coverage data file generated by the
compiler. the default is filename.csv where filename is the base-name of the file being compiled. For
example, if foo.c is being compiled, the default code-coverage data file name is foo.csv.

If the code-coverage data file already exists, the compiler appends the new dataset at the end of the file.

Code-coverage data is a comma-separated list of data items that can be conveniently handled by data-
processing tools and scripting languages. The following is the format of code-coverage data:

"filename-with-full-path","funcname",line#,column#,exec-frequency,"comments"

"filename-with-full-path" Full pathname of the file corresponding to the entry
"funcname" Name of the function
line# Line number of the source line corresponding to frequency data
column# Column number of the source line
exec-frequency Execution frequency of the line
"comments" Intermediate-level representation of the source-code generated by the parser
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The full filename, function name, and comments appear within quotation marks ("). For example:

"/some_dir/zlib/msp430/deflate.c","_deflateInit2_",216,5,1,"( strm->zalloc )"

Other tools, such as a spreadsheet program, can be used to format and view the code coverage data.

3.8.2 Related Features and Capabilities

The code generation tools provide some features and capabilities that can be used in conjunction with code
coverage analysis. The following is a summary:

3.8.2.1 Path Profiler

The code generation tools include a path profiling utility, pprof430, that is run from the compiler, cl430. The
pprof430 utility is invoked by the compiler when the --gen_profile or the --use_profile command is used from the
compiler command line:

cl430 --gen_profile ... file.c

cl430 --use_profile ... file.c

For further information about profile-based optimization and a more detailed description of the profiling
infrastructure, see Section 3.7.

3.8.2.2 Analysis Options

The path profiling utility, pprof430, appends code coverage information to existing CSV (comma separated
values) files that contain the same type of analysis information.

The utility checks to make sure that an existing CSV file contains analysis information that is consistent with the
type of analysis information it is being asked to generate . Attempts to mix code coverage and other analysis
information in the same output CSV file will be detected, and pprof430 will emit a fatal error and abort.

--analyze=codecov Instructs the compiler to generate code coverage analysis information. This option replaces the
previous --codecov option.

--analyze_only Halts compilation after generation of analysis information is completed.

3.8.2.3 Environment Variables

To assist with the management of output CSV analysis files, pprof430 supports this environment variable:

TI_ANALYSIS_DIR Specifies the directory in which the output analysis file will be generated.

3.9 Accessing Aliased Variables in Optimized Code
Aliasing occurs when a single object can be accessed in more than one way, such as when two pointers point to
the same object or when a pointer points to a named object. Aliasing can disrupt optimization because any
indirect reference can refer to another object. The optimizer analyzes the code to determine where aliasing can
and cannot occur, then optimizes as much as possible while still preserving the correctness of the program. The
optimizer behaves conservatively. If there is a chance that two pointers are pointing to the same object, then the
optimizer assumes that the pointers do point to the same object.

The compiler assumes that if the address of a local variable is passed to a function, the function changes the
local variable by writing through the pointer. This makes the local variable's address unavailable for use
elsewhere after returning. For example, the called function cannot assign the local variable's address to a global
variable or return the local variable's address. In cases where this assumption is invalid, use the --
aliased_variables compiler option to force the compiler to assume worst-case aliasing. In worst-case aliasing,
any indirect reference can refer to such a variable.
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3.10 Use Caution With asm Statements in Optimized Code
You must be extremely careful when using asm (inline assembly) statements in optimized code. The compiler
rearranges code segments, uses registers freely, and can completely remove variables or expressions. Although
the compiler never optimizes out an asm statement (except when it is unreachable), the surrounding
environment where the assembly code is inserted can differ significantly from the original C/C++ source code.

It is usually safe to use asm statements to manipulate hardware controls such as interrupt masks, but asm
statements that attempt to interface with the C/C++ environment or access C/C++ variables can have
unexpected results. After compilation, check the assembly output to make sure your asm statements are correct
and maintain the integrity of the program.

3.11 Using the Interlist Feature With Optimization
You control the output of the interlist feature when compiling with optimization (the --opt_level=n or -On option)
with the --optimizer_interlist and --c_src_interlist options.

• The --optimizer_interlist option interlists compiler comments with assembly source statements.
• The --c_src_interlist and --optimizer_interlist options together interlist the compiler comments and the original

C/C++ source with the assembly code.

When you use the --optimizer_interlist option with optimization, the interlist feature does not run as a separate
pass. Instead, the compiler inserts comments into the code, indicating how the compiler has rearranged and
optimized the code. These comments appear in the assembly language file as comments starting with ;**. The
C/C++ source code is not interlisted, unless you use the --c_src_interlist option also.

The interlist feature can affect optimized code because it might prevent some optimization from crossing C/C++
statement boundaries. Optimization makes normal source interlisting impractical, because the compiler
extensively rearranges your program. Therefore, when you use the --optimizer_interlist option, the compiler
writes reconstructed C/C++ statements.

Note
Impact on Performance and Code Size: The --c_src_interlist option can have a negative effect on
performance and code size.

When you use the --c_src_interlist and --optimizer_interlist options with optimization, the compiler inserts its
comments and the interlist feature runs before the assembler, merging the original C/C++ source into the
assembly file.

For example, suppose the following C code is compiled with optimization (--opt_level=2) and --optimizer_interlist
options:

int copy (char *str, const char *s, int n)
{
   int i;
   for (i = 0; i < n; i ++)
      *str++ = *s++;
}

The assembly file contains compiler comments interlisted with assembly code.

main:
;* -----------------------------------------------------------------------*
        SUB.W      #2,SP
;** 5   -------------------------   printf((const unsigned char *)"Hello, world\n");
        MOV.W      #$C$SL1+0,0(SP)       ; |5|
        CALL       #printf               ; |5|
                                         ; |5|
;** 6   -------------------------   return 0;
        MOV.W      #0,r12                ; |6|
        ADD.W      #2,SP
        RET
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If you add the --c_src_interlist option (compile with --opt_level=2, --c_src_interlist, and --optimizer_interlist), the
assembly file contains compiler comments and C source interlisted with assembly code.

main:
;* ----------------------------------------------------------------------------*
        SUB.W      #2,SP
;** 5   -------------------------   printf((const unsigned char *)"Hello, world\n");
;------------------------------------------------------------------------
;   5 | printf ("Hello, world\n");
;------------------------------------------------------------------------
        MOV.W      #$C$SL1+0,0(SP)       ; |5|
        CALL       #printf               ; |5|
                                         ; |5|
;** 6   -------------------------   return 0;
;------------------------------------------------------------------------
;   6 | return 0;
;------------------------------------------------------------------------
        MOV.W      #0,r12                ; |6|
        ADD.W      #2,SP
        RET

3.12 Debugging Optimized Code
The compiler generates symbolic debugging information by default at all optimization levels. Generating debug
information does not affect compiler optimization or generated code. However, higher levels of optimization
negatively impact the debugging experience due to the code transformations that are done. For the best
debugging experience use --opt_level=off.

The default optimization level is off.

Debug information increases the size of object files, but it does not affect the size of code or data on the target. If
object file size is a concern and debugging is not needed, use --symdebug:none to disable the generation of
debug information.

3.13 What Kind of Optimization Is Being Performed?
The MSP430 C/C++ compiler uses a variety of optimization techniques to improve the execution speed of your
C/C++ programs and to reduce their size. Following are some of the optimizations performed by the compiler:

Optimization See
Cost-based register allocation Section 3.13.1
Alias disambiguation Section 3.13.1
Branch optimizations and control-flow simplification Section 3.13.3
Data flow optimizations
• Copy propagation
• Common subexpression elimination
• Redundant assignment elimination

Section 3.13.4

Expression simplification Section 3.13.5
Inline expansion of functions Section 3.13.6
Function Symbol Aliasing Section 3.13.7
Induction variable optimizations and strength reduction Section 3.13.8
Loop-invariant code motion Section 3.13.9
Loop rotation Section 3.13.10
Instruction scheduling Section 3.13.11

MSP430-Specific Optimization See
Tail merging Section 3.13.12
Integer division with constant divisor Section 3.13.13
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3.13.1 Cost-Based Register Allocation

The compiler, when optimization is enabled, allocates registers to user variables and compiler temporary values
according to their type, use, and frequency. Variables used within loops are weighted to have priority over others,
and those variables whose uses do not overlap can be allocated to the same register.

Induction variable elimination and loop test replacement allow the compiler to recognize the loop as a simple
counting loop and unroll or eliminate the loop. Strength reduction turns the array references into efficient pointer
references with autoincrements.

3.13.2 Alias Disambiguation

C and C++ programs generally use many pointer variables. Frequently, compilers are unable to determine
whether or not two or more I values (lowercase L: symbols, pointer references, or structure references) refer to
the same memory location. This aliasing of memory locations often prevents the compiler from retaining values
in registers because it cannot be sure that the register and memory continue to hold the same values over time.

Alias disambiguation is a technique that determines when two pointer expressions cannot point to the same
location, allowing the compiler to freely optimize such expressions.

3.13.3 Branch Optimizations and Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges the linear sequences of operations
(basic blocks) to remove branches or redundant conditions. Unreachable code is deleted, branches to branches
are bypassed, and conditional branches over unconditional branches are simplified to a single conditional
branch.

When the value of a condition is determined at compile time (through copy propagation or other data flow
analysis), the compiler can delete a conditional branch. Switch case lists are analyzed in the same way as
conditional branches and are sometimes eliminated entirely. Some simple control flow constructs are reduced to
conditional instructions, totally eliminating the need for branches.

3.13.4 Data Flow Optimizations

Collectively, the following data flow optimizations replace expressions with less costly ones, detect and remove
unnecessary assignments, and avoid operations that produce values that are already computed. The compiler
with optimization enabled performs these data flow optimizations both locally (within basic blocks) and globally
(across entire functions).

• Copy propagation. Following an assignment to a variable, the compiler replaces references to the variable
with its value. The value can be another variable, a constant, or a common subexpression. This can result in
increased opportunities for constant folding, common subexpression elimination, or even total elimination of
the variable.

• Common subexpression elimination. When two or more expressions produce the same value, the
compiler computes the value once, saves it, and reuses it.

• Redundant assignment elimination. Often, copy propagation and common subexpression elimination
optimizations result in unnecessary assignments to variables (variables with no subsequent reference before
another assignment or before the end of the function). The compiler removes these dead assignments.

3.13.5 Expression Simplification

For optimal evaluation, the compiler simplifies expressions into equivalent forms, requiring fewer instructions or
registers. Operations between constants are folded into single constants. For example, a = (b + 4) - (c + 1)
becomes a = b - c + 3.

3.13.6 Inline Expansion of Functions

The compiler replaces calls to small functions with inline code, saving the overhead associated with a function
call as well as providing increased opportunities to apply other optimizations. For information about interactions
between command-line options, pragmas, and keywords that affect inlining, see Section 2.11.
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3.13.7 Function Symbol Aliasing

The compiler recognizes a function whose definition contains only a call to another function. If the two functions
have the same signature (same return value and same number of parameters with the same type, in the same
order), then the compiler can make the calling function an alias of the called function.

For example, consider the following:

int bbb(int arg1, char *arg2);
int aaa(int n, char *str)
{
   return bbb(n, str);
} 

For this example, the compiler makes aaa an alias of bbb, so that at link time all calls to function aaa should be
redirected to bbb. If the linker can successfully redirect all references to aaa, then the body of function aaa can
be removed and the symbol aaa is defined at the same address as bbb.

For information about using the GCC function attribute syntax to declare function aliases, see Section 5.16.2

3.13.8 Induction Variables and Strength Reduction

Induction variables are variables whose value within a loop is directly related to the number of executions of the
loop. Array indices and control variables for loops are often induction variables.

Strength reduction is the process of replacing inefficient expressions involving induction variables with more
efficient expressions. For example, code that indexes into a sequence of array elements is replaced with code
that increments a pointer through the array.

Induction variable analysis and strength reduction together often remove all references to your loop-control
variable, allowing its elimination.

3.13.9 Loop-Invariant Code Motion

This optimization identifies expressions within loops that always compute to the same value. The computation is
moved in front of the loop, and each occurrence of the expression in the loop is replaced by a reference to the
precomputed value.

3.13.10 Loop Rotation

The compiler evaluates loop conditionals at the bottom of loops, saving an extra branch out of the loop. In many
cases, the initial entry conditional check and the branch are optimized out.

3.13.11 Instruction Scheduling

The compiler performs instruction scheduling, which is the rearranging of machine instructions in such a way that
improves performance while maintaining the semantics of the original order. Instruction scheduling is used to
improve instruction parallelism and hide latencies. It can also be used to reduce code size.

3.13.12 Tail Merging

If you are optimizing for code size, tail merging can be very effective for some functions. Tail merging finds basic
blocks that end in an identical sequence of instructions and have a common destination. If such a set of blocks is
found, the sequence of identical instructions is made into its own block. These instructions are then removed
from the set of blocks and replaced with branches to the newly created block. Thus, there is only one copy of the
sequence of instructions, rather than one for each block in the set.

3.13.13 Integer Division With Constant Divisor

The optimizer attempts to rewrite integer divide operations with constant divisors. The integer divides are
rewritten as a multiply with the reciprocal of the divisor. This occurs at optimization level 2 (--opt_level=2 or -O2)
and higher. You must also compile with the --opt_for_speed option, which selects compile for speed.
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The C/C++ Code Generation Tools provide two methods for linking your programs:
• You can compile individual modules and link them together. This method is especially useful when you have

multiple source files.
• You can compile and link in one step. This method is useful when you have a single source module.

This chapter describes how to invoke the linker with each method. It also discusses special requirements of
linking C/C++ code, including the run-time-support libraries, specifying the type of initialization, and allocating the
program into memory. For a complete description of the linker, see the MSP430 Assembly Language Tools
User's Guide .

4.1 Invoking the Linker Through the Compiler (-z Option)........................................................................................... 68
4.2 Linker Code Optimizations........................................................................................................................................ 70
4.3 Controlling the Linking Process............................................................................................................................... 70

Chapter 4
Linking C/C++ Code
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4.1 Invoking the Linker Through the Compiler (-z Option)
This section explains how to invoke the linker after you have compiled and assembled your programs: as a
separate step or as part of the compile step.

4.1.1 Invoking the Linker Separately

This is the general syntax for linking C/C++ programs as a separate step:

cl430 --run_linker {--rom_model | --ram_model} filenames

[options] [--output_file= name.out] --library= library [lnk.cmd]

cl430 --run_linker The command that invokes the linker.
--rom_model | --ram_model Options that tell the linker to use special conventions defined by the C/C++ environment.

When you use cl430 --run_linker without listing any C/C++ files to be compiled on the
command line, you must use --rom_model or --ram_model on the command line or in the
linker command file. The --rom_model option uses automatic variable initialization at run
time; the --ram_model option uses variable initialization at load time. See Section 4.3.7 for
details about using the --rom_model and --ram_model options. If you fail to specify the ROM
or RAM model, you will see a linker warning that says:

warning: no suitable entry-point found; setting to 0

filenames Names of object files, linker command files, or archive libraries. The default extensions for
input files are .c.obj (for C source files) and .cpp.obj (for C++ source files). Any other
extension must be explicitly specified. The linker can determine whether the input file is an
object or ASCII file that contains linker commands. The default output filename is a.out,
unless you use the --output_file option.

options Options affect how the linker handles your object files. Linker options can only appear after
the --run_linker option on the command line, but otherwise may be in any order. (Options
are discussed in detail in the MSP430 Assembly Language Tools User's Guide .)

--output_file= name.out Names the output file.
--library= library Identifies the appropriate archive library containing C/C++ run-time-support and floating-

point math functions, or linker command files. If you are linking C/C++ code, you must use a
run-time-support library. You can use the libraries included with the compiler, or you can
create your own run-time-support library. If you have specified a run-time-support library in a
linker command file, you do not need this parameter. The --library option's short form is -l.

lnk.cmd Contains options, filenames, directives, or commands for the linker.

Note

The default file extensions for object files created by the compiler have been changed. Object files
generated from C source files have the .c.obj extension. Object files generated from C++ source files
have the .cpp.obj extension.

When you specify a library as linker input, the linker includes and links only those library members that resolve
undefined references. The linker uses a default allocation algorithm to allocate your program into memory. You
can use the MEMORY and SECTIONS directives in the linker command file to customize the allocation process.
For information, see the MSP430 Assembly Language Tools User's Guide .

You can link a C/C++ program consisting of object files prog1.c.obj, prog2.c.obj, and prog3.cpp.obj, with an
executable object file filename of prog.out with the command:

cl430 --run_linker --rom_model prog1 prog2 prog3 --output_file=prog.out
     --library=rts430.lib
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4.1.2 Invoking the Linker as Part of the Compile Step

This is the general syntax for linking C/C++ programs as part of the compile step:

cl430 filenames [options] --run_linker [--rom_model | --ram_model] filenames

[options] [--output_file= name.out] --library= library [lnk.cmd]

The --run_linker option divides the command line into the compiler options (the options before --run_linker) and
the linker options (the options following --run_linker). The --run_linker option must follow all source files and
compiler options on the command line.

All arguments that follow --run_linker on the command line are passed to the linker. These arguments can be
linker command files, additional object files, linker options, or libraries. These arguments are the same as
described in Section 4.1.1.

All arguments that precede --run_linker on the command line are compiler arguments. These arguments can be
C/C++ source files, assembly files, or compiler options. These arguments are described in Section 2.2.

You can compile and link a C/C++ program consisting of object files prog1.c, prog2.c, and prog3.c, with an
executable object file filename of prog.out with the command:

cl430 prog1.c prog2.c prog3.c --run_linker --rom_model --output_file=prog.out --library=rts430.lib

When you use cl430 --run_linker after listing at least one C/C++ file to be compiled on the same command line,
by default the --rom_model is used for automatic variable initialization at run time. See Section 4.3.7 for details
about using the --rom_model and --ram_model options.

Note

Order of Processing Arguments in the Linker

The order in which the linker processes arguments is important. The compiler passes arguments to
the linker in the following order:
1. Object filenames from the command line
2. Arguments following the --run_linker option on the command line
3. Arguments following the --run_linker option from the MSP430_C_OPTION environment variable

4.1.3 Disabling the Linker (--compile_only Compiler Option)

You can override the --run_linker option by using the --compile_only compiler option. The -run_linker option's
short form is -z and the --compile_only option's short form is -c.

The --compile_only option is especially helpful if you specify the --run_linker option in the MSP430_C_OPTION
environment variable and want to selectively disable linking with the --compile_only option on the command line.
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4.2 Linker Code Optimizations

4.2.1 Conditional Linking

With ELF conditional linking, all sections are considered eligible for removal through conditional linking, except
the .reset section. Sections are not removed if they are referenced or if they are marked with the .retain directive.

A section that is never referenced by any other section in the program is removed from the program
automatically, unless it is marked with .retain or is the .reset section. Conditional linking is disabled when
performing a partial link or when relocation information is kept with the output of the link.

4.2.2 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)

Similarly to code sections described in the previous section, data can either be placed in a single section or
multiple sections. The benefit of multiple data sections is that the linker may omit unused data structures from
the executable. This option causes aggregate data—arrays, structs, and unions—to be placed in separate
subsections of the data section.

If this option is not used, the default is "on". If this option is used but neither "on" nor "off" is specified, an error
message is provided.

4.3 Controlling the Linking Process
Regardless of the method you choose for invoking the linker, special requirements apply when linking C/C++
programs. You must:

• Include the compiler's run-time-support library
• Specify the type of boot-time initialization
• Determine how you want to allocate your program into memory

This section discusses how these factors are controlled and provides an example of the standard default linker
command file. For more information about how to operate the linker, see the linker description in the MSP430
Assembly Language Tools User's Guide .

4.3.1 Including the Run-Time-Support Library

You must link all C/C++ programs with a run-time-support library. The library contains standard C/C++ functions
as well as functions used by the compiler to manage the C/C++ environment. The following sections describe
two methods for including the run-time-support library.

4.3.1.1 Automatic Run-Time-Support Library Selection

The linker assumes you are using the C and C++ conventions if either the --rom_model or --ram_model linker
option is specified, or if at least one C/C++ file to compile is listed on the command line. See Section 4.3.7 for
details about using the --rom_model and --ram_model options.

If the linker assumes you are using the C and C++ conventions and the entry point for the program (normally
c_int00) is not resolved by any specified object file or library, the linker attempts to automatically include the most
compatible run-time-support library for your program. The run-time-support library chosen by the compiler is
searched after any other libraries specified with the --library option on the command line or in the linker
command file. If libc.a is explicitly used, the appropriate run-time-support library is included in the search order
where libc.a is specified.

You can disable the automatic selection of a run-time-support library by using the --disable_auto_rts option.

If the --issue_remarks option is specified before the --run_linker option during the linker, a remark is generated
indicating which run-time support library was linked in. If a different run-time-support library is desired than the
one reported by --issue_remarks, you must specify the name of the desired run-time-support library using the --
library option and in your linker command files when necessary.
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Example 4-1. Using the --issue_remarks Option

cl430 --issue_remarks main.c --run_linker --rom_model
<Linking>
remark: linking in "libc.a"
remark: linking in "rts430.lib" in place of "libc.a"

4.3.1.2 Manual Run-Time-Support Library Selection

You can bypass automatic library selection by explicitly specifying the desired run-time-support library to use.
Use the --library linker option to specify the name of the library. The linker will search the path specified by the --
search_path option and then the MSP430_C_DIR environment variable for the named library. You can use the --
library linker option on the command line or in a command file.

cl430 --run_linker {--rom_model | --ram_model} filenames --library= libraryname

4.3.1.3 Library Order for Searching for Symbols

Generally, you should specify the run-time-support library as the last name on the command line because the
linker searches libraries for unresolved references in the order that files are specified on the command line. If
any object files follow a library, references from those object files to that library are not resolved. You can use the
--reread_libs option to force the linker to reread all libraries until references are resolved. Whenever you specify
a library as linker input, the linker includes and links only those library members that resolve undefined
references.

By default, if a library introduces an unresolved reference and multiple libraries have a definition for it, then the
definition from the same library that introduced the unresolved reference is used. Use the --priority option if you
want the linker to use the definition from the first library on the command line that contains the definition.

4.3.2 Run-Time Initialization

You must link all C/C++ programs with a bootstrap routine, which will initialize the C/C++ environment and
begin the program. The bootstrap routine is responsible for the following tasks:

1. Set up the stack
2. Process the .cinit run-time initialization table to autoinitialize global variables (when using the --rom_model

option)
3. Call all global constructors (.init_array) for C++
4. Call the main() function
5. Call exit() when main() returns

Note

The _c_int00 Symbol

If you use the --ram_model or --rom_model link option, _c_int00 is automatically defined as the entry
point for the program. If your command line does not list any C/C++ files to compile and does not
specify either the --ram_model or --rom_model link option, the linker does not know whether or not to
use the C/C++ conventions, and you will receive a linker warning that says "warning: no suitable
entry-point found; setting to 0". See Section 4.3.7 for details about using the --rom_model and --
ram_model options.

4.3.3 Initialization by the Interrupt Vector

If your C/C++ program begins running at RESET, you must set up the RESET vector to branch to a suitable
bootstrap routine, such as _c_int00. You must also make sure the interrupt vectors are included in the project,
typically by using the --undef_sym linker option to make a symbol at the start of the interrupt vector a root linker
object. The boot.c.obj object in the run-time support library provides a section named .reset containing a
reference to _c_int00 which is suitable to place in the RESET vector in the linker command file.
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4.3.4 Initialization of the FRAM Memory Protection Unit

The linker supports initialization of the FRAM memory protection unit (MPU). The linker uses a boot routine that
performs MPU initialization based on the definition of certain symbols. The TI-provided linker command files that
are used by default for different devices define the necessary symbols so MPU initialization happens
automatically. Code and data sections are automatically given the correct access permissions. If you want to
manually adjust how the MPU is initialized you can modify the __mpuseg and __mpusam definitions in the linker
command file. The MPU-specific boot routine is used when these two symbols are defined and it sets the value
of the MPUSEG and MPUSAM registers based on these values. If you do not want the MPU initialized you can
remove these definitions from the linker command file.

4.3.5 Initialization of Cinit and Watchdog Timer Hold

You can use the --cinit_hold_wdt option to specify whether the watchdog timer should be held (on) or not held
(off) during cinit auto-initialization. Setting this option causes an RTS auto-initialization routine to be linked in with
the program to handle the desired watchdog timer behavior.

4.3.6 Global Object Constructors

Global C++ variables that have constructors and destructors require their constructors to be called during
program initialization and their destructors to be called during program termination. The C++ compiler produces
a table of constructors to be called at startup.

Constructors for global objects from a single module are invoked in the order declared in the source code, but
the relative order of objects from different object files is unspecified.

Global constructors are called after initialization of other global variables and before the main() function is called.
Global destructors are invoked during the exit run-time support function, similar to functions registered through
atexit.

Section 6.9.3.6 discusses the format of the global constructor table for EABI mode.

4.3.7 Specifying the Type of Global Variable Initialization

The C/C++ compiler produces data tables for initializing global variables. Section 6.9.3.4 discusses the format of
these initialization tables. The initialization tables are used in one of the following ways:

• Global variables are initialized at run time. Use the --rom_model linker option (see Section 6.9.3.3).
• Global variables are initialized at load time. Use the --ram_model linker option (see Section 6.9.3.5).

If you use the linker command line without compiling any C/C++ files, you must use either the --rom_model or --
ram_model option. These options tell the linker two things. First, they indicate that the linker should follow C/C++
conventions, using the definition of main() to link in the c_int00 boot routines. Second, they tell the linker whether
to select initialization at run time or load time. If your command line fails to include one of these options when it is
required, you will see "warning: no suitable entry-point found; setting to 0".

If you use a single command line to both compile and link, the --rom_model option is the default. If used, the --
rom_model or --ram_model option must follow the --run_linker option (see Section 4.1).

For details on linking conventions for EABI with --rom_model and --ram_model, see Section 6.9.3.3 and Section
6.9.3.5, respectively.

Note

Boot Loader

A loader is not included as part of the C/C++ compiler tools. See the "Program Loading and Running"
chapter of the MSP430 Assembly Language Tools User's Guide for more about boot loading.
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4.3.8 Specifying Where to Allocate Sections in Memory

The compiler produces relocatable blocks of code and data. These blocks, called sections, are allocated in
memory in a variety of ways to conform to a variety of system configurations. See Section 6.1.4 for a complete
description of how the compiler uses these sections.

The compiler creates two basic kinds of sections: initialized and uninitialized. Table 4-1 summarizes the
initialized sections. Table 4-2 summarizes the uninitialized sections.

Table 4-1. Initialized Sections Created by the Compiler
Name Contents
.binit Boot time copy tables (See the MSP430 Assembly Language Tools User's Guide for information on BINIT in

linker command files.)
.mspabi.exidx Index table for exception handling; read-only (see --exceptions option).
.mspabi.extab Unwinding instructions for exception handling; read-only (see --exceptions option).
.data Global and static non-const variables that are explicitly initialized.
.init_array Table of constructors to be called at startup.
.name.load Compressed image of section name; read-only (See the MSP430 Assembly Language Tools User's Guide for

information on copy tables.)
.ovly Copy tables other than boot time (.binit) copy tables. Read-only data.
.rodata Global and static variables that have const qualifiers.
.TI.crctab Generated CRC checking tables. Read-only data.
.TI.noinit The pragma NOINIT causes a non-initailized variable to be placed in the .TI.noinit section. The default linker

command file places this section with .bss. See Section 5.11.21 for details about the NOINIT and PERSISTENT
pragmas.

.TI.persistent The pragma PERSISTENT causes an initialized variable to be placed in the .TI.persistent section. The default
linker command file places this section with .data.

Table 4-2. Uninitialized Sections Created by the Compiler
Name Contents
.args Linker-created section used to pass arguments from the command line of the loader to the program
.bss Uninitialized global and static variables
.cio Buffers for stdio functions from the run-time support library
.stack Function call frame stack
.sysmem Memory pool (heap) for dynamic memory allocation (malloc, etc)

When you link your program, you must specify where to allocate the sections in memory. In general, initialized
sections are linked into ROM or RAM; uninitialized sections are linked into RAM.

The linker provides MEMORY and SECTIONS directives for allocating sections. For more information about
allocating sections into memory, see the MSP430 Assembly Language Tools User's Guide .
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4.3.9 A Sample Linker Command File

Linker Command File shows a typical linker command file that links a 32-bit C program. The command file in this
example is named lnk32.cmd and lists several link options:

−−rom_model Tells the linker to use autoinitialization at run time

--stack_size Tells the linker to set the C stack size at 0x140 bytes

--heap_size Tells the linker to set the heap size to 0x120 bytes

--library Tells the linker to use an archive library file, rts430.lib

To link the program, enter:

cl430 --run_linker object_file(s) --output_file= file --map_file= file lnk.cmd

Linker Command File

--rom_model
--stack_size=0x0140
--heap_size=0x120
--library=rts430.lib
/*****************************************************************************/
/* SPECIFY THE SYSTEM MEMORY MAP                                             */
/*****************************************************************************/
MEMORY
{
    SFR(R)           : origin = 0x0000, length = 0x0010
    PERIPHERALS_8BIT : origin = 0x0010, length = 0x00F0
    PERIPHERALS_16BIT: origin = 0x0100, length = 0x0100
    RAM(RW)          : origin = 0x0200, length = 0x0800
    INFOA            : origin = 0x1080, length = 0x0080
    INFOB            : origin = 0x1000, length = 0x0080
    FLASH            : origin = 0x1100, length = 0xEEE0
    VECTORS(R)       : origin = 0xFFE0, length = 0x001E
    RESET            : origin = 0xFFFE, length = 0x0002
}
/****************************************************************************/
/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY                              */
/****************************************************************************/
SECTIONS
{
    .bss          : {} > RAM           /* UNINITIALIZED GLOBAL, STATIC      */
    .sysmem       : {} > RAM           /* DYNAMIC MEMORY ALLOCATION AREA    */
    .stack        : {} > RAM           /* SOFTWARE SYSTEM STACK             */
    .cio          : {} > RAM           /* C I/O BUFFER                      */
    .text         : {} > FLASH           /* PROGRAM CODE                      */
    .data         : {} > FLASH           /* INITIALIZED GLOBAL, STATIC        */
    .const        : {} > FLASH           /* CONSTANT DATA                     */
    .args         : {} > FLASH           /* PROGRAM ARGUMENTS                 */ 
    .cinit        : {} > FLASH           /* GLOBAL INITIALIZATION DATA        */
    .init_array   : {} > FLASH           /* EABI C++ GLOBAL CONSTRUCTOR TABLE */
    .mspabi.exidx : {} > FLASH           /* EABI TDEH METADATA                */
    .mspabi.extab : {} > FLASH           /* EABI TDEH METADATA                */
    .intvecs      : {} > VECTORS       /* INTERRUPT VECTORS                 */
    .reset        : > RESET 
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The C language supported by the MSP430 was developed by a committee of the American National Standards
Institute (ANSI) and subsequently adopted by the International Standards Organization (ISO).

The C++ language supported by the MSP430 is defined by the ANSI/ISO/IEC 14882:2014 standard with certain
exceptions.

5.1 Characteristics of MSP430 C.....................................................................................................................................76
5.2 Characteristics of MSP430 C++.................................................................................................................................80
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5.1 Characteristics of MSP430 C
The C compiler supports the 1989, 1999, and 2011 versions of the C language:

• C89. Compiling with the --c89 option causes the compiler to conform to the ISO/IEC 9899:1990 C standard,
which was previously ratified as ANSI X3.159-1989. The names "C89" and "C90" refer to the same
programming language. "C89" is used in this document.

• C99. Compiling with the --c99 option causes the compiler to conform to the ISO/IEC 9899:1999 C standard.
• C11. Compiling with the --c11 option causes the compiler to conform to the ISO/IEC 9899:2011 C standard.

The C language is also described in the second edition of Kernighan and Ritchie's The C Programming
Language (K&R). The compiler can also accept many of the language extensions found in the GNU C compiler
(see Section 5.16).

The compiler supports some features of C99 and C11 in the default relaxed ANSI mode with C89 support. It
supports all language features of C99 in C99 mode and all language features of C11 in C11 mode. See Section
5.15.

The atomic operations in C11 are supported in the relaxed ANSI mode (on by default) and in C11 mode. An
atomic operation is implemented by disabling interrupts across the operation.

The ANSI/ISO standard identifies some features of the C language that may be affected by characteristics of the
target processor, run-time environment, or host environment. This set of features can differ among standard
compilers.

Unsupported features of the C library are:

• The run-time library has minimal support for wide characters. The type wchar_t is implemented as unsigned
int (16-bits). The wide character set is equivalent to the set of values of type char. The library includes the
header files <wchar.h> and <wctype.h>, but does not include all the functions specified in the standard. See
Section 5.6 for information about extended and multibyte character sets.

• The run-time library includes the header file <locale.h>, but with a minimal implementation. The only
supported locale is the C locale. That is, library behavior that is specified to vary by locale is hard-coded to
the behavior of the C locale, and attempting to install a different locale by way of a call to setlocale() will
return NULL.

• Some run-time functions and features in the C99/C11 specifications are not supported. See Section 5.15.

5.1.1 Implementation-Defined Behavior

The C standard requires that conforming implementations provide documentation on how the compiler handles
instances of implementation-defined behavior.

The TI compiler officially supports a freestanding environment. The C standard does not require a freestanding
environment to supply every C feature; in particular the library need not be complete. However, the TI compiler
strives to provide most features of a hosted environment.

The section numbers in the lists that follow correspond to section numbers in Appendix J of the C99 standard.
The numbers in parentheses at the end of each item are sections in the C99 standard that discuss the topic.
Certain items listed in Appendix J of the C99 standard have been omitted from this list.

J.3.1 Translation

• The compiler and related tools emit diagnostic messages with several distinct formats. Diagnostic messages
are emitted to stderr; any text on stderr may be assumed to be a diagnostic. If any errors are present, the tool
will exit with an exit status indicating failure (non-zero). (3.10, 5.1.1.3)

• Nonempty sequences of white-space characters are preserved and are not replaced by a single space
character in translation phase 3. (5.1.1.2)
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J.3.2 Environment

• The compiler does not support multibyte characters in identifiers, string literals, or character constants. There
is no mapping from multibyte characters to the source character set. However, the compiler accepts multibyte
characters in comments. See Section 5.6 for details. (5.1.1.2)

• The name of the function called at program startup is "main" (5.1.2.1)
• Program termination does not affect the environment; there is no way to return an exit code to the

environment. By default, the program is known to have halted when execution reaches the special C$$EXIT
label. (5.1.2.1)

• In relaxed ANSI mode, the compiler accepts "void main(void)" and "void main(int argc, char *argv[])" as
alternate definitions of main. The alternate definitions are rejected in strict ANSI mode. (5.1.2.2.1)

• If space is provided for program arguments at link time with the --args option and the program is run under a
system that can populate the .args section (such as CCS), argv[0] will contain the filename of the executable,
argv[1] through argv[argc-1] will contain the command-line arguments to the program, and argv[argc] will be
NULL. Otherwise, the value of argv and argc are undefined. (5.1.2.2.1)

• Interactive devices include stdin, stdout, and stderr (when attached to a system that honors CIO requests).
Interactive devices are not limited to those output locations; the program may access hardware peripherals
that interact with the external state. (5.1.2.3)

• Signals are not supported. The function signal is not supported. (7.14) (7.14.1.1)
• The library function getenv is implemented through the CIO interface. If the program is run under a system

that supports CIO, the system performs getenv calls on the host system and passes the result back to the
program. Otherwise the operation of getenv is undefined. No method of changing the environment from
inside the target program is provided. (7.20.4.5)

• The system function is not supported. (7.20.4.6).

J.3.3. Identifiers

• The compiler does not support multibyte characters in identifiers. See Section 5.6 for details. (6.4.2)
• The number of significant initial characters in an identifier is unlimited. (5.2.4.1, 6.4.2)

J.3.4 Characters

• The number of bits in a byte (CHAR_BIT) is 8. See Section 5.5 for details about data types. (3.6)
• The execution character set is the same as the basic execution character set: plain ASCII. (5.2.1)
• The values produced for the standard alphabetic escape sequences are as follows: (5.2.2)

Escape
Sequence

ASCII Meaning Integer Value

\a BEL (bell) 7
\b BS (backspace) 8
\f FF (form feed) 12
\n LF (line feed) 10
\r CR (carriage

return)
13

\t HT (horizontal tab) 9
\v VT (vertical tab) 11

• The value of a char object into which any character other than a member of the basic execution character set
has been stored is the ASCII value of that character. (6.2.5)

• Plain char is identical to unsigned char, but can be changed to signed char with the --plain_char=signed
option. (6.2.5, 6.3.1.1)

• The source character set and execution character set are both plain ASCII, so the mapping between them is
one-to-one. The compiler accepts multibyte characters in comments. See Section 5.6 for details. (6.4.4.4,
5.1.1.2)

• The compiler currently supports only one locale, "C". (6.4.4.4).
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• The compiler currently supports only one locale, "C". (6.4.5).

J.3.5 Integers

• No extended integer types are provided. (6.2.5)
• Negative values for signed integer types are represented as two's complement, and there are no trap

representations. (6.2.6.2)
• No extended integer types are provided, so there is no change to the integer ranks. (6.3.1.1)
• When an integer is converted to a signed integer type which cannot represent the value, the value is

truncated (without raising a signal) by discarding the bits which cannot be stored in the destination type; the
lowest bits are not modified. (6.3.1.3)

• Right shift of a signed integer value performs an arithmetic (signed) shift. The bitwise operations other than
right shift operate on the bits in exactly the same way as on an unsigned value. That is, after the usual
arithmetic conversions, the bitwise operation is performed without regard to the format of the integer type, in
particular the sign bit. (6.5)

J.3.6 Floating point

• The accuracy of floating-point operations (+ - * /) is bit-exact. The accuracy of library functions that return
floating-point results is not specified. (5.2.4.2.2)

• The compiler does not provide non-standard values for FLT_ROUNDS (5.2.4.2.2)
• The compiler does not provide non-standard negative values of FLT_EVAL_METHOD (5.2.4.2.2)
• The rounding direction when an integer is converted to a floating-point number is IEEE-754 "round to even".

(6.3.1.4)
• The rounding direction when a floating-point number is converted to a narrower floating-point number is

IEEE-754 "round to even". (6.3.1.5)
• For floating-point constants that are not exactly representable, the implementation uses the nearest

representable value. (6.4.4.2)
• The compiler does not contract float expressions. (6.5)
• The default state for the FENV_ACCESS pragma is off. (7.6.1)
• The TI compiler does not define any additional float exceptions (7.6, 7.12)
• The default state for the FP_CONTRACT pragma is off. (7.12.2)
• The "inexact" floating-point exception cannot be raised if the rounded result equals the mathematical result.

(F.9)
• The "underflow" and "inexact" floating-point exceptions cannot be raised if the result is tiny but not inexact.

(F.9)

J.3.7 Arrays and pointers

• When converting a pointer to an integer or vice versa, the pointer is considered an unsigned integer of the
same size, and the normal integer conversion rules apply. Some pointers are not the same size as any
integral type, but the conversion proceeds as if such a type did exist, with the rules implied by normal integer
conversion.

• When converting a pointer to an integer or vice versa, if the bitwise representation of the destination can hold
all of the bits in the bitwise representation of the source, the bits are copied exactly. (6.3.2.3)

• The size of the result of subtracting two pointers to elements of the same array is the size of ptrdiff_t, which is
defined in Section 5.5. (6.5.6)

J.3.8 Hints

• When the optimizer is used, the register storage-class specifier is ignored. When the optimizer is not used,
the compiler will preferentially place register storage class objects into registers to the extent possible. The
compiler reserves the right to place any register storage class object somewhere other than a register. (6.7.1)

• The inline function specifier is ignored unless the optimizer is used. For other restrictions on inlining, see
Section 2.11.2. (6.7.4)
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J.3.9 Structures, unions, enumerations, and bit-fields

• A "plain" int bit-field is treated as a signed int bit-field. (6.7.2, 6.7.2.1)
• In addition to _Bool, signed int, and unsigned int, the compiler allows char, signed char, unsigned char,

signed short, unsigned shot, signed long, unsigned long, signed long long, unsigned long long, and enum
types as bit-field types. (6.7.2.1)

• Bit-fields may not straddle a storage-unit boundary.(6.7.2.1)
• Bit-fields are allocated in endianness order within a unit. (6.7.2.1)
• Non-bit-field members of structures are aligned as specified in Section 6.2. (6.7.2.1)
• The integer type underlying each enumerated type is described in Section 5.5.1. (6.7.2.2)

J.3.10 Qualifiers

• The TI compiler does not shrink or grow volatile accesses. It is the user's responsibility to make sure the
access size is appropriate for devices that only tolerate accesses of certain widths. The TI compiler does not
change the number of accesses to a volatile variable unless absolutely necessary. This is significant for read-
modify-write expressions such as += ; for an architecture which does not have a corresponding read-modify-
write instruction, the compiler will be forced to use two accesses, one for the read and one for the write. Even
for architectures with such instructions, it is not guaranteed that the compiler will be able to map such
expressions to an instruction with a single memory operand. It is not guaranteed that the memory system will
lock that memory location for the duration of the instruction. In a multi-core system, some other core may
write the location after a RMW instruction reads it, but before it writes the result. The TI compiler will not
reorder two volatile accesses, but it may reorder a volatile and a non-volatile access, so volatile cannot be
used to create a critical section. Use some sort of lock if you need to create a critical section. (6.7.3)

J.3.11 Preprocessing directives

• Include directives may have one of two forms, " " or < >. For both forms, the compiler will look for a real file
on-disk by that name using the include file search path. See Section 2.5.2. (6.4.7).

• The value of a character constant in a constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set (both are ASCII). (6.10.1).

• The compiler uses the file search path to search for an included < > delimited header file. See Section 2.5.2.
(6.10.2).

• he compiler uses the file search path to search for an included " " delimited header file. See Section 2.5.2.
(6.10.2). (6.10.2).

• There is no arbitrary nesting limit for #include processing. (6.10.2).
• See Section 5.11 for a description of the recognized non-standard pragmas. (6.10.6).
• The date and time of translation are always available from the host. (6.10.8).

J.3.12 Library functions

• Almost all of the library functions required for a hosted implementation are provided by the TI library, with
exceptions noted in Section 5.15.1. (5.1.2.1).

• The format of the diagnostic printed by the assert macro is "Assertion failed, (assertion macro argument), file
file, line line". (7.2.1.1).

• No strings other than "C" and "" may be passed as the second argument to the setlocale function (7.11.1.1).
• No signal handling is supported. (7.14.1.1).
• The +INF, -INF, +inf, -inf, NAN, and nan styles can be used to print an infinity or NaN. (7.19.6.1, 7.24.2.1).
• The output for %p conversion in the fprintf or fwprintf function is the same as %x of the appropriate size.

(7.19.6.1, 7.24.2.1).
• The termination status returned to the host environment by the abort, exit, or _Exit function is not returned to

the host environment. (7.20.4.1, 7.20.4.3, 7.20.4.4).
• The system function is not supported. (7.20.4.6).
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J.3.13 Architecture

• The values or expressions assigned to the macros specified in the headers float.h, limits.h, and stdint.h are
described along with the sizes and format of integer types are described in Section 5.5. (5.2.4.2, 7.18.2,
7.18.3)

• The number, order, and encoding of bytes in any object are described in Section 6.2.1. (6.2.6.1)
• The value of the result of the sizeof operator is the storage size for each type, in terms of bytes. See Section

6.2. (6.5.3.4)

5.2 Characteristics of MSP430 C++
The MSP430 compiler supports C++ as defined in the ANSI/ISO/IEC 14882:2014 standard (C++14), including
these features:

• Complete C++ standard library support, with exceptions noted below.
• Templates
• Exceptions, which are enabled with the --exceptions option; see Section 5.8.
• Run-time type information (RTTI), which can be enabled with the --rtti compiler option.

The compiler supports the 2014 standard of C++ as standardized by the ISO. However, the following features
are not implemented or fully supported:

• The compiler does not support embedded C++ run-time-support libraries.
• The library supports wide chars (wchar_t), in that template functions and classes that are defined for char are

also available for wchar_t. For example, wide char stream classes wios, wiostream, wstreambuf and so on
(corresponding to char classes ios, iostream, streambuf) are implemented. However, there is no low-level file
I/O for wide chars. Also, the C library interface to wide char support (through the C++ headers <cwchar> and
<cwctype>) is limited as described above in the C library.

• The reinterpret_cast type does not allow casting a pointer-to-member of one class to a pointer-to-member of
another class if the classes are unrelated.

• Constant expressions for target-specific types are only partially supported.
• New character types (introduced in the C++11 standard) are not supported.
• Unicode string literals (introduced in the C++11 standard) are not supported.
• Universal character names in literals (introduced in the C++11 standard) are not supported.
• Strong compare and exchange (introduced in the C++11 standard) are not supported.
• Bidirectional fences (introduced in the C++11 standard) are not supported.
• Memory model (introduced in the C++11 standard) is not supported.
• Propagating exceptions (introduced in the C++11 standard) is not supported.
• Thread-local storage (introduced in the C++11 standard) is not supported.
• Dynamic initialization and destruction with concurrency (introduced in the C++11 standard) is not supported.

The changes made in order to support C++14 may cause "undefined symbol" errors to occur if you link with a C+
+ object file or library that was compiled with an older version of the compiler. If such linktime errors occur,
recompile your C++ code using the --no_demangle command-line option. If any undefined symbol names begin
with _Z or _ZVT, recompile the entire application, including object files and libraries. If you do not have source
code for the libraries, download a newly-compiled version of the library.
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5.3 Using the ULP Advisor
You can get feedback about your code from the ULP (Ultra-Low Power) Advisor. For a list and descriptions of the
ULP rules, see www.ti.com/ulpadvisor. You can enable/disable the rules using any of the following. Using
multiple --advice options on the command line is permitted.

• The --advice:power option lets you specify which rules to check.
• The --advice:power_severity option lets you specify whether ULP Advisor rule violations are errors, warnings,

remarks, or not reported.
• The CHECK_ULP pragma enables/disables ULP Advisor rules at the source level. This pragma has the

same effect as using the --advice:power option. See Section 5.11.3.
• The RESET_ULP pragma resets the specified ULP Advisor rules to their state before any CHECK_ULP

pragmas were processed. See Section 5.11.26.

The --advice:power option enables checking specified ULP Advisor rules. The syntax is:

--advice:power={all|none|rulespec}

The rulespec parameter is a comma-separated list of rule numbers to enable. For example, --
advice:power=1.1,7.2,7.3,7.4 enables rules 1.1, 7.2, 7.3, and 7.4.

The --advice:power_severity option sets the diagnostic severity for ULP Advisor rules. The syntax is:

--advice:power_severity={error|warning|remark|suppress}

The syntax of the pragmas is:

#pragma CHECK_ULP ("{all|none|rulespec}")
#pragma RESET_ULP ("{all|rulespec}")

5.4 Advice on Hardware Configuration
The --advice:hw_config option lets you enable, disable, or configure the checks to perform related to the device's
configuration settings. For example, the FRAM waitstate configuration is checked. Information about resolving a
device configuration issue can be found by clicking the link provided in Code Composer Studio when one of
these checks produces a warning.

The syntax is:

--advice:hw_config={all|none|rulespec}

The rulespec parameter is a comma-separated list of rule numbers to enable.
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5.5 Data Types
Table 5-1 lists the size, representation, and range of each scalar data type for the MSP430 compiler. Many of the
range values are available as standard macros in the header file limits.h.

The storage and alignment of data types is described in Section 6.2.

Table 5-1. MSP430 C/C++ Data Types
Range

Type Size Alignment Representation Minimum Maximum
signed char 8 bits 8 Binary -128 127
char 8 bits 8 ASCII 0 or -128 (1) 255 or 127 (1)

unsigned char 8 bits 8 Binary 0 255
bool (C99) 8 bits 8 Binary 0 (false) 1 (true)
_Bool (C99) 8 bits 8 Binary 0 (false) 1 (true)
bool (C++) 8 bits 8 Binary 0 (false) 1 (true)
short, signed short 16 bits 16 Binary -32 768 32 767
unsigned short 16 bits 16 Binary 0 65 535
int, signed int 16 bits 16 Binary -32 768 32 767
unsigned int 16 bits 16 Binary 0 65 535
long, signed long 32 bits 16 Binary -2 147 483 648 2 147 483 647
unsigned long 32 bits 16 Binary 0 4 294 967 295
long long, signed long long 64 bits 16 Binary -9 223 372 036 854 775

808
9 223 372 036 854 775
807

unsigned long long 64 bits 16 Binary 0 18 446 744 073 709 551
615

enum varies (2) 16 Binary varies varies
float 32 bits 16 IEEE 32-bit 1.175 494e-38(3) 3.40 282 346e+38
double 64 bits 16 IEEE 64-bit 2.22 507 385e-308(3) 1.79 769 313e+308
long double 64 bits 16 IEEE 64-bit 2.22 507 385e-308(3) 1.79 769 313e+308
function and data pointers varies (see

Table 5-2)
16

(1) "Plain" char has the same representation as either signed char or unsigned char. The --plain_char option specifies whether "plain" char
is signed or unsigned. The default is unsigned.

(2) For details about the size of an enum type, see Section 5.5.1.
(3) Figures are minimum precision.

The char type is unsigned by default. This is in contrast to the "signed char" and "unsigned char" types, which
specify their sign behavior. You can change the default for the "char" type using the --plain_char=signed
compiler option.

Negative values for signed types are represented using two's complement.

The additional types from C, C99 and C++ are defined as synonyms for standard types:

    typedef unsigned int     wchar_t;
   typedef unsigned int     wint_t;

MSP devices support multiple data and code memory models. The code and data model affects the size,
alignment, and storage space used for function pointers, data pointers, the size_t type, and the ptrdiff_t type.
Pointers with sizes that are not a power of 2 are always stored in a container with a size of a power of 2 bits.
That is, 20-bit types are stored in 32 bits.
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Table 5-2. Data Sizes for MSP430 Pointers
Code or Data Model Type Size Storage Alignment
small code model function pointer 16 16 16
large code model function pointer 20 32 16

small data model data pointer 16 16 16
small data model size_t 16 16 16
small data model ptrdiff_t 16 16 16

restricted data model data pointer 20 32 16
restricted data model size_t 16 16 16
restricted data model ptrdiff_t 16 16 16

large data model (1) data pointer 20 32 16
large data model size_t 32 32 16
large data model ptrdiff_t 32 32 16

(1) MSP430X large-data model is specified by --silicon_version=mspx --data_model=large

5.5.1 Size of Enum Types

In the following declaration, enum e is an enumerated type. Each of a and b are enumeration constants.

enum e { a, b=N };

Each enumerated type is assigned an integer type that can hold all of the enumeration constants. This integer
type is the "underlying type." The type of each enumeration constant is also an integer type, and in C might not
be the same type. Be careful to note the difference between the underlying type of an enumerated type and the
type of an enumeration constant.

The size and signedness chosen for the enumerated type and each enumeration constant depend on the values
of the enumeration constants and whether you are compiling for C or C++. C++11 allows you to specify a
specific type for an enumeration type; if such a type is provided, it will be used and the rest of this section does
not apply.

In C++ mode, the compiler allows enumeration constants up to the largest integral type (64 bits). The C standard
says that all enumeration constants in strictly conforming C code (C89/C99/C11) must have a value that fits into
the type "int;" however, as an extension, you may use enumeration constants larger than "int" even in C mode.

You may control the strategy for picking enumerated types by using either the --enum_type command line
option, or by using an attribute, or both. If you use the --enum_type=packed option, the compiler uses the
smallest type it can for the enumerated type. If you use the --enum_type=unpacked option (the default), it will
use the smallest type no smaller than "int." You can use the "packed" or "unpacked" attribute to set the strategy
for a single enum type; this overrides the value of the command line option.

For example, this enumerated type will be of type unsigned char, even if --enum_type=unpacked is specified on
the command line.

enum { a, b, c } __attribute__((packed));

This enumerated type will be of type unsigned int, even if --enum_type=packed is specified on the command
line.

enum { a, b, c } __attribute__((unpacked));

You can use the packed/unpacked attribute on enumerated types in header files to ensure that an enumerated
type is always the same size, even if the --enum_type option is changed on the command line.
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For the enumerated type, the compiler selects the first type in the following list that is big enough and of the
correct sign to represent all of the values of the enumeration constants. The "short" types are not used because
they are the same size as the "int" type.

• unsigned char (only if --enum_type=packed is used)
• signed char (only if --enum_type=packed is used)
• unsigned int
• signed int
• unsigned long
• signed long
• unsigned long long
• signed long long

For example, by default (--enum_type=unpacked) this enumerated type will have "unsigned int" as its underlying
type:

enum ui { a, b, c };

But this one will have "signed int" as its underlying type:

enum si { a, b, c, d = -1 };

And this one will have "signed long" as its underlying type:

enum sl { a, b, c, d = -1, e = UINT_MAX };

For C++, the enumeration constants are all of the same type as the enumerated type.

For C, the enumeration constants are assigned types depending on their value. All enumeration constants with
values that can fit into "int" are given type "int," even if the underlying type of the enumerated type is smaller than
"int." All enumeration constants that don't fit in an "int" are given the same type as the underlying type of the
enumerated type. This means that some enumeration constants may have a different size and signedness than
the enumeration type.

5.6 File Encodings and Character Sets
The compiler accepts source files with one of two distinct encodings:

• UTF-8 with Byte Order Mark (BOM). These files may contain extended (multibyte) characters in C/C++
comments. In all other contexts—including string constants, identifiers, assembly files, and linker command
files—only 7-bit ASCII characters are supported.

• Plain ASCII files. These files must contain only 7-bit ASCII characters.

To choose the UTF-8 encoding in Code Composer Studio, open the Preferences dialog, select General >
Workspace, and set the Text File Encoding to UTF-8.

If you use an editor that does not have a "plain ASCII" encoding mode, you can use Windows-1252 (also called
CP-1252) or ISO-8859-1 (also called Latin 1), both of which accept all 7-bit ASCII characters. However, the
compiler may not accept extended characters in these encodings, so you should not use extended characters,
even in comments.

Wide character (wchar_t) types and operations are supported by the compiler. However, wide character strings
may not contain characters beyond 7-bit ASCII. The encoding of wide characters is 7-bit ASCII, 0 extended to
the width of the wchar_t type.
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5.7 Keywords
The MSP430 C/C++ compiler supports all of the standard C89 keywords, including const, volatile, and register. It
supports all of the standard C99 keywords, including inline and restrict. It supports all of the standard C11
keywords. It also supports TI extension keywords __interrupt, and __asm. Some keywords are not available in
strict ANSI mode.

The following keywords may appear in other target documentation and require the same treatment as the
interrupt and restrict keywords:

• trap
• reentrant
• cregister

5.7.1 The const Keyword

The C/C++ compiler supports the ANSI/ISO standard keyword const in all modes . This keyword gives you
greater optimization and control over allocation for certain data objects. You can apply the const qualifier to the
definition of any variable or array to ensure that its value is not altered.

Global objects qualified as const are placed in the .const section. The linker allocates the .const section from
ROM or FLASH, which are typically more plentiful than RAM. The const data storage allocation rule has the
following exceptions:

• If volatile is also specified in the object definition. For example, volatile const int x . Volatile
keywords are assumed to be allocated to RAM. (The program is not allowed to modify a const volatile object,
but something external to the program might.)

• If the object has automatic storage ( function scope).
• If the object is a C++ object with a "mutable" member.
• If the object is initialized with a value that is not known at compile time (such as the value of another

variable).

In these cases, the storage for the object is the same as if the const keyword were not used.

The placement of the const keyword is important. For example, the first statement below defines a constant
pointer p to a modifiable int. The second statement defines a modifiable pointer q to a constant int:

int * const p = &x;
const int * q = &x;

Using the const keyword, you can define large constant tables and allocate them into system ROM. For
example, to allocate a ROM table, you could use the following definition:

const int digits[] = {0,1,2,3,4,5,6,7,8,9};

5.7.2 The __interrupt Keyword

The compiler extends the C/C++ language by adding the __interrupt keyword, which specifies that a function is
treated as an interrupt function. This keyword is an IRQ interrupt. The alternate keyword, "interrupt", may also be
used except in strict ANSI C or C++ modes.

Note that the interrupt function attribute described in Section 5.11.19 is the recommended syntax for declaring
interrupt functions.

Functions that handle interrupts follow special register-saving rules and a special return sequence. The
implementation stresses safety. The interrupt routine does not assume that the C run-time conventions for the
various CPU register and status bits are in effect; instead, it re-establishes any values assumed by the run-time
environment. When C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine
registers that are used by the routine or by any function called by the routine. When you use the __interrupt
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keyword with the definition of the function, the compiler generates register saves based on the rules for interrupt
functions and the special return sequence for interrupts.

You can only use the __interrupt keyword with a function that is defined to return void and that has no
parameters. The body of the interrupt function can have local variables and is free to use the stack or global
variables. For example:

__interrupt void int_handler()
{   unsigned int flags;
    ...}

The name c_int00 is the C/C++ entry point. This name is reserved for the system reset interrupt. This special
interrupt routine initializes the system and calls the main() function. Because it has no caller, c_int00 does not
save any registers.

Note
Hwi Objects and the __interrupt Keyword: The __interrupt keyword must not be used when SYS/
BIOS Hwi objects are used in conjunction with C functions. The Hwi_enter/Hwi_exit macros and the
Hwi dispatcher already contain this functionality, and the use of the C modifier can cause unwanted
conflicts.

Note
Interrupt service routine (ISR) warning: The linker emits a warning for any device specific interrupts
that do not have an associated interrupt service routine. However, a default vector handler is now
provided by the run-time support (RTS) library, so you should not see this error if you are linking with
the provided RTS library.

5.7.3 The restrict Keyword

To help the compiler determine memory dependencies, you can qualify a pointer, reference, or array with the
restrict keyword. The restrict keyword is a type qualifier that can be applied to pointers, references, and arrays.
Its use represents a guarantee by you, the programmer, that within the scope of the pointer declaration the
object pointed to can be accessed only by that pointer. Any violation of this guarantee renders the program
undefined. This practice helps the compiler optimize certain sections of code because aliasing information can
be more easily determined.

The "restrict" keyword is a C99 keyword, and cannot be accepted in strict ANSI C89 mode. Use the "__restrict"
keyword if the strict ANSI C89 mode must be used. See Section 5.15.

The following example uses the restrict keyword to tell the compiler that the function func1 is never called with
the pointers a and b pointing to objects that overlap in memory. You are promising that accesses through a and b
will never conflict; therefore, a write through one pointer cannot affect a read from any other pointers. The
precise semantics of the restrict keyword are described in the 1999 version of the ANSI/ISO C Standard.

void func1(int * restrict a, int * restrict b)
{
  /* func1's code here */
}

The following example uses the restrict keyword when passing arrays to a function. Here, the arrays c and d
must not overlap, nor may c and d point to the same array.

void func2(int c[restrict], int d[restrict])
{
  int i;
  for(i = 0; i < 64; i++)
  {
    c[i] += d[i];
    d[i] += 1;
  }
}

C/C++ Language Implementation www.ti.com

86 MSP430 Optimizing C/C++ Compiler
v20.12.0.STS

SLAU132X – OCTOBER 2004 – REVISED DECEMBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU132X&partnum=


5.7.4 The volatile Keyword

The C/C++ compiler supports the volatile keyword in all modes . In addition, the __volatile keyword is supported
in relaxed ANSI mode for C89, C99, C11, and C++.

The volatile keyword indicates to the compiler that there is something about how the variable is accessed that
requires that the compiler not use overly-clever optimization on expressions involving that variable. For example,
the variable may also be accessed by an external program, an interrupt, another thread, or a peripheral device.

The compiler eliminates redundant memory accesses whenever possible, using data flow analysis to figure out
when it is legal. However, some memory accesses may be special in some way that the compiler cannot see,
and in such cases you should use the volatile keyword to prevent the compiler from optimizing away something
important. The compiler does not optimize out any accesses to variables declared volatile. The number of
volatile reads and writes will be exactly as they appear in the C/C++ code, no more and no less and in the same
order.

Any variable which might be modified by something external to the obvious control flow of the program (such as
an interrupt service routine) must be declared volatile. This tells the compiler that an interrupt function might
modify the value at any time, so the compiler should not perform optimizations which will change the number or
order of accesses of that variable. This is the primary purpose of the volatile keyword. In the following example,
the loop intends to wait for a location to be read as 0xFF:

   unsigned int *ctrl;
   while (*ctrl !=0xFF);

However, in this example, *ctrl is a loop-invariant expression, so the loop is optimized down to a single-memory
read. To get the desired result, define ctrl as:

   volatile unsigned int *ctrl;

Here the *ctrl pointer is intended to reference a hardware location, such as an interrupt flag.

The volatile keyword must also be used when accessing memory locations that represent memory-mapped
peripheral devices. Such memory locations might change value in ways that the compiler cannot predict. These
locations might change if accessed, or when some other memory location is accessed, or when some signal
occurs.

Volatile must also be used for local variables in a function which calls setjmp, if the value of the local variables
needs to remain valid if a longjmp occurs.

#include <stdlib.h>
jmp_buf context;
void function()
{
    volatile int x = 3;
    switch(setjmp(context))
    {
        case 0: setup(); break;
        default:
        {
           /* We only reach here if longjmp occurs. Because x's lifetime begins before setjmp  
              and lasts through longjmp, the C standard requires x be declared "volatile". */
           printf("x == %d\n", x); 
           break;
        }
    }
}
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5.8 C++ Exception Handling
The compiler supports the C++ exception handling features defined by the ANSI/ISO 14882 C++ Standard. See
The C++ Programming Language, Third Edition by Bjarne Stroustrup. The compiler's --exceptions option
enables exception handling. The compiler’s default is no exception handling support.

For exceptions to work correctly, all C++ files in the application must be compiled with the --exceptions option,
regardless of whether exceptions occur in that file. Mixing exception-enabled and exception-disabled object files
and libraries can lead to undefined behavior.

Exception handling requires support in the run-time-support library, which come in exception-enabled and
exception-disabled forms; you must link with the correct form. When using automatic library selection (the
default), the linker automatically selects the correct library Section 4.3.1.1. If you select the library manually, you
must use run-time-support libraries whose name contains _eh if you enable exceptions.

Using the --exceptions option causes the compiler to insert exception handling code. This code will increase the
size of the program , but the EABI implementation requires smaller code size overhead by moving the
information to const data sections.

See Section 7.1 for details on the run-time libraries.

5.9 Register Variables and Parameters
The C/C++ compiler treats register variables (variables defined with the register keyword) differently, depending
on whether you use the --opt_level (-O) option.

• Compiling with optimization

The compiler ignores any register definitions and allocates registers to variables and temporary values by
using an algorithm that makes the most efficient use of registers.

• Compiling without optimization

If you use the register keyword, you can suggest variables as candidates for allocation into registers. The
compiler uses the same set of registers for allocating temporary expression results as it uses for allocating
register variables.

The compiler attempts to honor all register definitions. If the compiler runs out of appropriate registers, it frees a
register by moving its contents to memory. If you define too many objects as register variables, you limit the
number of registers the compiler has for temporary expression results. This limit causes excessive movement of
register contents to memory.

Any object with a scalar type (integral, floating point, or pointer) can be defined as a register variable. The
register designator is ignored for objects of other types, such as arrays.

The register storage class is meaningful for parameters as well as local variables. Normally, in a function, some
of the parameters are copied to a location on the stack where they are referenced during the function body. The
compiler copies a register parameter to a register instead of the stack, which speeds access to the parameter
within the function.

For more information about register conventions, see Section 6.3.
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5.10 The __asm Statement
The C/C++ compiler can embed assembly language instructions or directives directly into the assembly
language output of the compiler. This capability is an extension to the C/C++ language implemented through the
__asm keyword. The __asm keyword provides access to hardware features that C/C++ cannot provide.

The alternate keyword, "asm", may also be used except in strict ANSI C mode. It is available in relaxed C and C
++ modes.

Using __asm is syntactically performed as a call to a function named __asm, with one string constant argument:

__asm(" assembler text ");

The compiler copies the argument string directly into your output file. The assembler text must be enclosed in
double quotes. All the usual character string escape codes retain their definitions. For example, you can insert
a .byte directive that contains quotes as follows:

__asm("STR: .byte \"abc\"");

The naked function attribute can be used to identify functions that are written as embedded assembly functions
using __asm statements. See Section 5.16.2.

The inserted code must be a legal assembly language statement. Like all assembly language statements, the
line of code inside the quotes must begin with a label, a blank, a tab, or a comment (asterisk or semicolon). The
compiler performs no checking on the string; if there is an error, the assembler detects it. For more information
about the assembly language statements, see the MSP430 Assembly Language Tools User's Guide.

The __asm statements do not follow the syntactic restrictions of normal C/C++ statements. Each can appear as
a statement or a declaration, even outside of blocks. This is useful for inserting directives at the very beginning
of a compiled module.

The __asm statement does not provide any way to refer to local variables. If your assembly code needs to refer
to local variables, you will need to write the entire function in assembly code.

For more information, refer to Section 6.6.5.

Note

Avoid Disrupting the C/C++ Environment With asm Statements

Be careful not to disrupt the C/C++ environment with __asm statements. The compiler does not check
the inserted instructions. Inserting jumps and labels into C/C++ code can cause unpredictable results
in variables manipulated in or around the inserted code. Directives that change sections or otherwise
affect the assembly environment can also be troublesome.

Be especially careful when you use optimization with __asm statements. Although the compiler cannot
remove __asm statements, it can significantly rearrange the code order near them and cause
undesired results.
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5.11 Pragma Directives
The following pragma directives tell the compiler how to treat a certain function, object, or section of code.

• BIS_IE1_INTERRUPT (See Section 5.11.1)
• CALLS (See Section 5.11.2)
• CHECK_ULP (See Section 5.11.3)
• CODE_ALIGN (See Section 5.11.4)
• CODE_SECTION (See Section 5.11.5)
• DATA_ALIGN (See Section 5.11.6)
• DATA_SECTION (See Section 5.11.7)
• diag_suppress, diag_remark, diag_warning, diag_error, diag_default, diag_push, diag_pop (See Section

5.11.8)
• FORCEINLINE (See Section 5.11.9)
• FORCEINLINE_RECURSIVE (See Section 5.11.10)
• FUNC_ALWAYS_INLINE (See Section 5.11.11)
• FUNC_CANNOT_INLINE (See Section 5.11.12)
• FUNC_EXT_CALLED (See Section 5.11.13)
• FUNC_IS_PURE (See Section 5.11.14)
• FUNC_NEVER_RETURNS (See Section 5.11.15)
• FUNC_NO_GLOBAL_ASG (See Section 5.11.16)
• FUNC_NO_IND_ASG (See Section 5.11.17)
• FUNCTION_OPTIONS (See Section 5.11.18)
• INTERRUPT (See Section 5.11.19)
• LOCATION (See Section 5.11.20)
• NOINIT (See Section 5.11.21)
• NOINLINE (See Section 5.11.22)
• NO_HOOKS (See Section 5.11.23)
• once (See Section 5.11.24)
• pack (See Section 5.11.25)
• PERSISTENT (See Section 5.11.21)
• RESET_ULP (See Section 5.11.26)
• RETAIN (See Section 5.11.27)
• SET_CODE_SECTION (See Section 5.11.28)
• SET_DATA_SECTION (See Section 5.11.28)
• vector (See Section 5.11.29)
• WEAK (See Section 5.11.30)

The arguments func and symbol cannot be defined or declared inside the body of a function. You must specify
the pragma outside the body of a function; and the pragma specification must occur before any declaration,
definition, or reference to the func or symbol argument. If you do not follow these rules, the compiler issues a
warning and may ignore the pragma.

For pragmas that apply to functions or symbols, the syntax differs between C and C++.

• In C, you must supply the name of the object or function to which you are applying the pragma as the first
argument. Because the entity operated on is specified, a pragma in C can appear some distance way from
the definition of that entity.

• In C++, pragmas are positional. They do not name the entity on which they operate as an argument. Instead,
they always operate on the next entity defined after the pragma.
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5.11.1 The BIS_IE1_INTERRUPT

The BIS_IE1_INTERRUPT pragma treats the named function as an interrupt routine. Additionally, the compiler
generates a BIS operation on the IE1 special function register upon function exit. The mask value, which must
be an 8-bit constant literal, is logically ORed with the IE1 SFR, just before the RETI instruction. The compiler
assumes the IE1 SFR is mapped to address 0x0000.

The syntax of the pragma in C is:

#pragma BIS_IE1_INTERRUPT ( func , mask )

The syntax of the pragma in C++ is:
#pragma BIS_IE1_INTERRUPT ( mask )

In C, the argument func is the name of the function that is an interrupt. In C++, the pragma applies to the next
function declared.

5.11.2 The CALLS Pragma

The CALLS pragma specifies a set of functions that can be called indirectly from a specified calling function.

The CALLS pragma is used by the compiler to embed debug information about indirect calls in object files. Using
the CALLS pragma on functions that make indirect calls enables such indirect calls to be included in calculations
for such functions' inclusive stack sizes. For more information on generating function stack usage information,
see the -cg option of the Object File Display Utility in the "Invoking the Object File Display Utility" section of the
MSP430 Assembly Language Tools User's Guide .

The CALLS pragma can precede either the calling function's definition or its declaration. In C, the pragma must
have at least 2 arguments—the first argument is the calling function, followed by at least one function that will be
indirectly called from the calling function. In C++, the pragma applies to the next function declared or defined,
and the pragma must have at least one argument.

The syntax for the CALLS pragma in C is as follows. This indicates that calling_function can indirectly call
function_1 through function_n.
#pragma CALLS ( calling_function, function_1, function_2, ..., function_n )

The syntax for the CALLS pragma in C++ is:
#pragma CALLS ( function_1_mangled_name, ..., function_n_mangled_name )

Note that in C++, the arguments to the CALLS pragma must be the full mangled names for the functions that can
be indirectly called from the calling function.

The GCC-style "calls" function attribute (see Section 5.16.2), which has the same effect as the CALLS pragma,
has the following syntax:

__attribute__((calls("function_1","function_2",..., "function_n")))

5.11.3 The CHECK_ULP Pragma

The CHECK_ULP pragma enables/disables ULP Advisor rules at the source level. This pragma has the same
effect as using the --advice:power option.

The syntax of the pragma in C is:
#pragma CHECK_ULP (" {all|none|rulespec} ")

The rulespec parameter is a comma-separated list of rule numbers. See Section 5.3 for the syntax. See
www.ti.com/ulpadvisor for a list of rules.

The RESET_ULP pragma can be used to reset any CHECK_ULP pragmas; see Section 5.11.26.
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5.11.4 The CODE_ALIGN Pragma

The CODE_ALIGN pragma aligns func along the specified alignment. The alignment constant must be a power
of 2. The CODE_ALIGN pragma is useful if you have functions that you want to start at a certain boundary.

The CODE_ALIGN pragma has the same effect as using the GCC-style aligned function attribute. See
Section 5.16.2.

The syntax of the pragma in C is:
#pragma CODE_ALIGN ( func , constant )

The syntax of the pragma in C++ is:
#pragma CODE_ALIGN ( constant )

5.11.5 The CODE_SECTION Pragma

The CODE_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in a
section named section name. The CODE_SECTION pragma is useful if you have code objects that you want to
link into an area separate from the .text section. The CODE_SECTION pragma has the same effect as using the
GCC-style section function attribute. See Section 5.16.2.

The syntax of the pragma in C is:

#pragma CODE_SECTION ( symbol , " section name ")

The syntax of the pragma in C++ is:

#pragma CODE_SECTION (" section name ")

The following example demonstrates the use of the CODE_SECTION pragma.

Using the CODE_SECTION Pragma in C

#pragma CODE_SECTION(funcA,"codeA")
int funcA(int a)
{
    int i;
    return (i = a);
}
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This example C code results in the following generated assembly code:

    .sect "codeA"
    .align 2
    .global funcA
;*****************************************************************************
;* FUNCTION NAME: funcA                                                      *
;*                                                                           *
;* Regs Modified       : SP,SR,r12                                           *
;* Regs Used           : SP,SR,r12                                           *
;* Local Frame Size    : 0 Args + 4 Auto + 0 Save = 4 byte                   *
;*****************************************************************************
funcA:
;* --------------------------------------------------------------------------*
      SUB.W     #4,SP
      MOV.W     r12,0(SP)               ; |4|
      MOV.W     0(SP),2(SP)             ; |6|
      MOV.W     2(SP),r12               ; |6|
      ADD.W     #4,SP
      RET

Using the CODE_SECTION Pragma in C++

#pragma CODE_SECTION("codeB")
int i_arg(int x) { return 1; }
int f_arg(float x) { return 2; }

This example C++ code results in the following generated assembly code:

      .sect "codeB"
      .align   2
      .global  i_arg__Fi
;*****************************************************************************
;* FUNCTION NAME: i_arg(int)                                                 *
;*                                                                           *
;*   Regs Modified     : SP,SR,r12                                           *
;*   Regs Used         : SP,SR,r12                                           *
;*   Local Frame Size  : 0 Args + 2 Auto + 0 Save = 2 byte                   *
;*****************************************************************************
i_arg__Fi:
;* --------------------------------------------------------------------------*
        SUB.W     #2,SP
        MOV.W     r12,0(SP)             ; |2|
        MOV.W     #1,r12                ; |2|
        ADD.W     #2,SP
        RET
      .sect ".text"
      .align      2
      .global     f_arg__Ff
;*****************************************************************************
;* FUNCTION NAME: f_arg(float)                                               *
;*                                                                           *
;*   Regs Modified     : SP,SR,r12                                           *
;*   Regs Used         : SP,SR,r12,r13                                       *
;*   Local Frame Size  : 0 Args + 4 Auto + 0 Save = 4 byte                   *
;*****************************************************************************
f_arg__Ff:
;* --------------------------------------------------------------------------*
        SUB.W     #4,SP
        MOV.W     r12,0(SP)             ; |3|
        MOV.W     r13,2(SP)             ; |3|
        MOV.W     #2,r12                ; |3|
        ADD.W     #4,SP
        RET
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5.11.6 The DATA_ALIGN Pragma

The DATA_ALIGN pragma aligns the symbol in C, or the next symbol declared in C++, to an alignment
boundary. The alignment boundary is the maximum of the symbol's default alignment value or the value of the
constant in bytes. The constant must be a power of 2. The maximum alignment is 32768.

The DATA_ALIGN pragma cannot be used to reduce an object's natural alignment.

Using the DATA_ALIGN pragma has the same effect as using the GCC-style aligned variable attribute. See
Section 5.16.3.

The syntax of the pragma in C is:

#pragma DATA_ALIGN ( symbol , constant )

The syntax of the pragma in C++ is:

#pragma DATA_ALIGN ( constant )

5.11.7 The DATA_SECTION Pragma

The DATA_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in a
section named section name. This pragma is useful if you have data objects that you want to link into an area
separate from the .bss section.

Using the DATA_SECTION pragma has the same effect as using the GCC-style section variable attribute.
See Section 5.16.3.

The syntax of the pragma in C is:

#pragma DATA_SECTION ( symbol , " section name ")

The syntax of the pragma in C++ is:

#pragma DATA_SECTION (" section name ")

Example 5-1 through Example 5-3 demonstrate the use of the DATA_SECTION pragma.

Example 5-1. Using the DATA_SECTION Pragma C Source File

#pragma DATA_SECTION(bufferB, "my_sect")
char bufferA[512];
char bufferB[512];

Example 5-2. Using the DATA_SECTION Pragma C++ Source File

char bufferA[512];
#pragma DATA_SECTION("my_sect")
char bufferB[512];

Example 5-3. Using the DATA_SECTION Pragma Assembly Source File

         .global  bufferA
         .bss     bufferA,512,2
         .global  bufferB
bufferB: .usect "my_sect",512,2
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5.11.8 The Diagnostic Message Pragmas

The following pragmas can be used to control diagnostic messages in the same ways as the corresponding
command line options:

Pragma Option Description
diag_suppress num -pds=num[, num2, num3...] Suppress diagnostic num

diag_remark num -pdsr=num[, num2, num3...] Treat diagnostic num as a remark
diag_warning num -pdsw=num[, num2, num3...] Treat diagnostic num as a warning
diag_error num -pdse=num[, num2, num3...] Treat diagnostic num as an error
diag_default num n/a Use default severity of the diagnostic
diag_push n/a Push the current diagnostics severity state to store it for later use.
diag_pop n/a Pop the most recent diagnostic severity state stored with #pragma diag_push to

be the current setting.

The syntax of the diag_suppress, diag_remark, diag_warning, and diag_error pragmas in C is:

#pragma diag_ xxx [=]num[, num2, num3...]

Notice that the names of these pragmas are in lowercase.

The diagnostic affected (num) is specified using either an error number or an error tag name. The equal sign (=)
is optional. Any diagnostic can be overridden to be an error, but only diagnostic messages with a severity of
discretionary error or below can have their severity reduced to a warning or below, or be suppressed. The
diag_default pragma is used to return the severity of a diagnostic to the one that was in effect before any
pragmas were issued (i.e., the normal severity of the message as modified by any command-line options).

The diagnostic identifier number is output with the message when you use the -pden command line option.

5.11.9 The FORCEINLINE Pragma

The FORCEINLINE pragma can be placed before a statement to force any function calls made in that statement
to be inlined. It has no effect on other calls to the same functions.

The compiler only inlines a function if it is legal to inline the function. Functions are never inlined if the compiler is
invoked with the --opt_level=off option. A function can be inlined even if the function is not declared with the
inline keyword. A function can be inlined even if the compiler is not invoked with any --opt_level command-line
option.

The syntax of the pragma in C/C++ is:

#pragma FORCEINLINE

For example, in the following example, the mytest() and getname() functions are inlined, but the error() function
is not.

#pragma FORCEINLINE
if (!mytest(getname(myvar))) {
    error();         
}

Placing the FORCEINLINE pragma before the call to error() would inline that function but not the others.

For information about interactions between command-line options, pragmas, and keywords that affect inlining,
see Section 2.11.

Notice that the FORCEINLINE, FORCEINLINE_RECURSIVE, and NOINLINE pragmas affect only the C/C++
statement that follows the pragma. The FUNC_ALWAYS_INLINE and FUNC_CANNOT_INLINE pragmas affect
an entire function.
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5.11.10 The FORCEINLINE_RECURSIVE Pragma

The FORCEINLINE_RECURSIVE can be placed before a statement to force any function calls made in that
statement to be inlined along with any calls made from those functions. That is, calls that are not visible in the
statement but are called as a result of the statement will be inlined.

The syntax of the pragma in C/C++ is:

#pragma FORCEINLINE_RECURSIVE

For information about interactions between command-line options, pragmas, and keywords that affect inlining,
see Section 2.11.

5.11.11 The FUNC_ALWAYS_INLINE Pragma

The FUNC_ALWAYS_INLINE pragma instructs the compiler to always inline the named function.

The compiler only inlines a function if it is legal to inline the function. Functions are never inlined if the compiler is
invoked with the --opt_level=off option. A function can be inlined even if the function is not declared with the
inline keyword. A function can be inlined even if the compiler is not invoked with any --opt_level command-line
option. See Section 2.11 for details about interaction between various types of inlining.

This pragma must appear before any declaration or reference to the function that you want to inline. In C, the
argument func is the name of the function that will be inlined. In C++, the pragma applies to the next function
declared.

This pragma can be used to force inlining at link time across C files.

The FUNC_ALWAYS_INLINE pragma has the same effect as using the GCC-style always_inline function
attribute. See Section 5.16.2.

The syntax of the pragma in C is:

#pragma FUNC_ALWAYS_INLINE ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_ALWAYS_INLINE

The following example uses this pragma:

#pragma FUNC_ALWAYS_INLINE(functionThatMustGetInlined)
static inline void functionThatMustGetInlined(void) {
    P1OUT |= 0x01;
    P1OUT &= ~0x01;
}

Note
Use Caution with the FUNC_ALWAYS_INLINE Pragma

The FUNC_ALWAYS_INLINE pragma overrides the compiler's inlining decisions. Overuse of this
pragma could result in increased compilation times or memory usage, potentially enough to consume
all available memory and result in compilation tool failures.
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5.11.12 The FUNC_CANNOT_INLINE Pragma

The FUNC_CANNOT_INLINE pragma instructs the compiler that the named function cannot be expanded inline.
Any function named with this pragma overrides any inlining you designate in any other way, such as using the
inline keyword. Automatic inlining is also overridden with this pragma; see Section 2.11.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the
argument func is the name of the function that cannot be inlined. In C++, the pragma applies to the next function
declared.

The FUNC_CANNOT_INLINE pragma has the same effect as using the GCC-style noinline function
attribute. See Section 5.16.2.

The syntax of the pragma in C is:

#pragma FUNC_CANNOT_INLINE ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_CANNOT_INLINE

5.11.13 The FUNC_EXT_CALLED Pragma

When you use the --program_level_compile option, the compiler uses program-level optimization. When you use
this type of optimization, the compiler removes any function that is not called, directly or indirectly, by main(). You
might have C/C++ functions that are called instead of main().

The FUNC_EXT_CALLED pragma specifies that the optimizer should keep these C functions or any functions
these C/C++ functions call. These functions act as entry points into C/C++. The pragma must appear before any
declaration or reference to the function to keep. In C, the argument func is the name of the function to keep. In C
++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

#pragma FUNC_EXT_CALLED ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_EXT_CALLED

Except for _c_int00, which is the name reserved for the system reset interrupt for C/C++programs, the name of
the interrupt (the func argument) does not need to conform to a naming convention.

When you use program-level optimization, you may need to use the FUNC_EXT_CALLED pragma with certain
options. See Section 3.4.2.
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5.11.14 The FUNC_IS_PURE Pragma

The FUNC_IS_PURE pragma specifies to the compiler that the named function has no side effects. This allows
the compiler to do the following:

• Delete the call to the function if the function's value is not needed
• Delete duplicate functions

The pragma must appear before any declaration or reference to the function. In C, the argument func is the
name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

#pragma FUNC_IS_PURE ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_IS_PURE

5.11.15 The FUNC_NEVER_RETURNS Pragma

The FUNC_NEVER_RETURNS pragma specifies to the compiler that the function never returns to its caller.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the
argument func is the name of the function that does not return. In C++, the pragma applies to the next function
declared.

The syntax of the pragma in C is:

#pragma FUNC_NEVER_RETURNS ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_NEVER_RETURNS

5.11.16 The FUNC_NO_GLOBAL_ASG Pragma

The FUNC_NO_GLOBAL_ASG pragma specifies to the compiler that the function makes no assignments to
named global variables and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the
argument func is the name of the function that makes no assignments. In C++, the pragma applies to the next
function declared.

The syntax of the pragma in C is:

#pragma FUNC_NO_GLOBAL_ASG ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_NO_GLOBAL_ASG
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5.11.17 The FUNC_NO_IND_ASG Pragma

The FUNC_NO_IND_ASG pragma specifies to the compiler that the function makes no assignments through
pointers and contains no asm statements.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the
argument func is the name of the function that makes no assignments. In C++, the pragma applies to the next
function declared.

The syntax of the pragma in C is:

#pragma FUNC_NO_IND_ASG ( func )

The syntax of the pragma in C++ is:

#pragma FUNC_NO_IND_ASG

5.11.18 The FUNCTION_OPTIONS Pragma

The FUNCTION_OPTIONS pragma allows you to compile a specific function in a C or C++ file with additional
command-line compiler options. The affected function will be compiled as if the specified list of options appeared
on the command line after all other compiler options. In C, the pragma is applied to the function specified. In C+
+, the pragma is applied to the next function.

The syntax of the pragma in C is:

#pragma FUNCTION_OPTIONS ( func , " additional options " )

The syntax of the pragma in C++ is:

#pragma FUNCTION_OPTIONS( " additional options " )

Supported options for this pragma are --opt_level, --auto_inline, --code_state, and --opt_for_speed.

In order to use --opt_level and --auto_inline with the FUNCTION_OPTIONS pragma, the compiler must be
invoked with some optimization level (that is, at least --opt_level=0). The FUNCTION_OPTIONS pragma is
ignored if --opt_level=off. The FUNCTION_OPTIONS pragma cannot be used to completely disable the
optimizer for the compilation of a function; the lowest optimization level that can be specified is --opt_level=0.
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5.11.19 The INTERRUPT Pragma

The INTERRUPT pragma enables you to handle interrupts directly with C code. In C, the argument func is the
name of a function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

#pragma INTERRUPT ( func )

The syntax of the pragma in C++ is:

#pragma INTERRUPT
void func ( void )

The GCC interrupt attribute syntax, which has the same effects as the INTERRUPT pragma, is as follows. Note
that the interrupt attribute can precede either the function's definition or its declaration.

__attribute__((interrupt )) void func ( void )

The return address of the interrupt function is placed on the stack.

The interrupt attribute syntax allows you to optionally specify a numeric argument that indicates the vector
location as specified for the vector pragma. For example:

#define TIMER_A0 20
#define TIMER_A1 10
__attribute__((interrupt(TIMER_A0))) void foo1()    {
    int i;
    for (i=1; i < 1000; i++)
        global_ptr[i] = i;
}

#pragma INTERRUPT ( func , {HPI|LPI} )

#pragma INTERRUPT ( {HPI|LPI} )

Note
Hwi Objects and the INTERRUPT Pragma: The INTERRUPT pragma must not be used when SYS/
BIOS Hwi objects are used in conjunction with C functions. The Hwi_enter/Hwi_exit macros and the
Hwi dispatcher contain this functionality, and the use of the C modifier can cause negative results.

Note
Interrupt service routine (ISR) warning

The linker emits a warning for any device-specific interrupts with no associated interrupt service
routine. However, a default vector handler is provided by the run-time support (RTS) library, so you
should not see this error if you are linking with the provided RTS library.
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5.11.20 The LOCATION Pragma

The compiler supports the ability to specify the run-time address of a variable at the source level. This can be
accomplished with the LOCATION pragma or the GCC-style location attribute. The LOCATION pragma has the
same effect as using the GCC-style location function attribute. See Section 5.16.2.

The syntax of the pragma in C is:

#pragma LOCATION( x , address )
int x

The syntax of the pragmas in C++ is:

#pragma LOCATION( address )
int x

The syntax of the pragma for IAR is:

#pragma location= address

int x

The syntax of the GCC-style attribute (see Section 5.16.3) is:

int x __attribute__((location( address )))

The NOINIT pragma may be used in conjunction with the LOCATION pragma to map variables to special
memory locations; see Section 5.11.21.

5.11.21 The NOINIT and PERSISTENT Pragmas

Global and static variables are zero-initialized by default. However, in applications that use non-volatile memory,
it may be desirable to have variables that are not initialized. Noinit variables are global or static variables that are
not zero-initialized at startup or reset.

Variables can be declared as noinit or persistent using either pragmas or variable attributes. See Section 5.16.3
for information about using variable attributes in declarations.

Noinit and persistent variables behave identically with the exception of whether or not they are initialized at load
time.

• The NOINIT pragma may be used only with uninitialized variables. It prevents such variables from being set
to 0 during a reset. It may be used in conjunction with the LOCATION pragma to map variables to special
memory locations, like memory-mapped registers, without generating unwanted writes.

• The PERSISTENT pragma may be used only with statically-initialized variables. It prevents such variables
from being initialized during a reset. Persistent variables disable startup initialization; they are given an initial
value when the code is loaded, but are never again initialized.

By default, noinit or persistent variables are placed in sections named .TI.noinit and .TI.persistent ,
respectively. The location of these sections is controlled by the linker command file. Typically .TI.persistent
sections are placed in FRAM for devices that support FRAM and .TI.noinit sections are placed in RAM.
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Note

When using these pragmas in non-volatile FRAM memory, the memory region could be protected
against unintended writes through the device's Memory Protection Unit. Some devices have memory
protection enabled by default. Please see the information about memory protection in the datasheet
for your device. If the Memory Protection Unit is enabled, it first needs to be disabled before modifying
the variables.

If you are using non-volatile RAM, you can define a persistent variable with an initial value of zero loaded into
RAM. The program can increment that variable over time as a counter, and that count will not disappear if the
device loses power and restarts, because the memory is non-volatile and the boot routines do not initialize it
back to zero. For example:

#pragma PERSISTENT(x)
#pragma location = 0xC200   // memory address in RAM
int x = 0; 
void main() {
    run_init();
    while (1) {
        run_actions(x); 
        __delay_cycles(1000000); 
        x++;
    }
}

The syntax of the pragmas in C is:

#pragma NOINIT ( x )
int x ;
#pragma PERSISTENT ( x )
int x =10;

The syntax of the pragmas in C++ is:

#pragma NOINIT
int x ;
#pragma PERSISTENT
int x =10;

The syntax of the GCC attributes is:

int x __attribute__((noinit));
int x __attribute__((persistent)) = 0;

5.11.22 The NOINLINE Pragma

The NOINLINE pragma can be placed before a statement to prevent any function calls made in that statement
from being inlined. It has no effect on other calls to the same functions.

The syntax of the pragma in C/C++ is:

#pragma NOINLINE

For information about interactions between command-line options, pragmas, and keywords that affect inlining,
see Section 2.11.
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5.11.23 The NO_HOOKS Pragma

The NO_HOOKS pragma prevents entry and exit hook calls from being generated for a function.

The syntax of the pragma in C is:

#pragma NO_HOOKS ( func )

The syntax of the pragma in C++ is:

#pragma NO_HOOKS

See Section 2.14 for details on entry and exit hooks.

5.11.24 The once Pragma

The once pragma tells the C preprocessor to ignore a #include directive if that header file has already been
included. For example, this pragma may be used if header files contain definitions, such as struct definitions, that
would cause a compilation error if they were executed more than once.

This pragma should be used at the beginning of a header file that should only be included once. For example:

// hdr.h
#pragma once
#warn You will only see this message one time
struct foo 
{
    int member;
};

This pragma is not part of the C or C++ standard, but it is a widely-supported preprocessor directive. Note that
this pragma does not protect against the inclusion of a header file with the same contents that has been copied
to another directory.

5.11.25 The pack Pragma

The pack pragma can be used to control the alignment of fields within a class, struct, or union type. The syntax
of the pragma in C/C++ can be any of the following.
#pragma pack ( n )

The above form of the pack pragma affects all class, struct, or union type declarations that follow this pragma in
a file. It forces the maximum alignment of each field to be the value specified by n. Valid values for n are 1, 2, 4,
8, and 16 bytes.

#pragma pack ( push, n )
#pragma pack ( pop )

The above form of the pack pragma affects only class, struct, and union type declarations between push and
pop directives. (A pop directive with no prior push results in a warning diagnostic from the compiler.) The
maximum alignment of all fields declared is n. Valid values for n are 1, 2, 4, 8, and 16 bytes.

#pragma pack ( show )

The above form of the pack pragma sends a warning diagnostic to stderr to record the current state of the pack
pragma stack. You can use this form while debugging.

For more about packed fields, see Section 5.16.4.
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5.11.26 The RESET_ULP Pragma

The RESET_ULP pragma resets the specified ULP Advisor rules to the state they were before any CHECK_ULP
pragmas (see Section 5.11.3) were processed. For instance, if a rule was enabled on the command line but
disabled in the source, the RESET_ULP pragma resets it to enabled. This pragma accepts the same format as
the --advice:power option, except for the "none" keyword.

The syntax of the pragma in C is:
#pragma RESET_ULP (" {all|rulespec} ")

The rulespec parameter is a comma-separated list of rule numbers. See Section 5.3 for details. See www.ti.com/
ulpadvisor for a list of rules.

5.11.27 The RETAIN Pragma

The RETAIN pragma can be applied to a code or data symbol.

It causes a .retain directive to be generated into the section that contains the definition of the symbol. The .retain
directive indicates to the linker that the section is ineligible for removal during conditional linking. Therefore,
regardless whether or not the section is referenced by another section in the application that is being compiled
and linked, it will be included in the output file result of the link.

The RETAIN pragma has the same effect as using the retain function or variable attribute. See Section 5.16.2
and Section 5.16.3, respectively.

The syntax of the pragma in C is:
#pragma RETAIN ( symbol )

The syntax of the pragma in C++ is:
#pragma RETAIN
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5.11.28 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas

These pragmas can be used to set the section for all declarations below the pragma.

The syntax of the pragmas in C/C++ is:

#pragma SET_CODE_SECTION (" section name ")

#pragma SET_DATA_SECTION (" section name ")

In Setting Section With SET_DATA_SECTION Pragma x and y are put in the section mydata. To reset the
current section to the default used by the compiler, a blank parameter should be passed to the pragma. An easy
way to think of the pragma is that it is like applying the CODE_SECTION or DATA_SECTION pragma to all
symbols below it.

Setting Section With SET_DATA_SECTION Pragma

#pragma SET_DATA_SECTION("mydata")
int x;
int y;
#pragma SET_DATA_SECTION()

The pragmas apply to both declarations and definitions. If applied to a declaration and not the definition, the
pragma that is active at the declaration is used to set the section for that symbol. Here is an example:

Setting a Section With SET_CODE_SECTION Pragma

#pragma SET_CODE_SECTION("func1")
extern void func1();
#pragma SET_CODE_SECTION()
...
void func1() { ... }

In Setting a Section With SET_CODE_SECTION Pragma func1 is placed in section func1. If conflicting sections
are specified at the declaration and definition, a diagnostic is issued.

The current CODE_SECTION and DATA_SECTION pragmas and GCC attributes can be used to override the
SET_CODE_SECTION and SET_DATA_SECTION pragmas. For example:

Overriding SET_DATA_SECTION Setting

#pragma DATA_SECTION(x, "x_data")
#pragma SET_DATA_SECTION("mydata")
int x;
int y;
#pragma SET_DATA_SECTION()

In Overriding SET_DATA_SECTION Setting x is placed in x_data and y is placed in mydata. No diagnostic is
issued for this case.

The pragmas work for both C and C++. In C++, the pragmas are ignored for templates and for implicitly created
objects, such as implicit constructors and virtual function tables.
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5.11.29 The vector Pragma

The vector pragma indicates that the function that follows is to be used as the interrupt vector routine for the
listed vectors. The syntax of the pragma is:

#pragma vector = vec1[, vec2 , vec3, ...]

The vector pragma requires linker command file support. The command file must specify output sections for
each interrupt vector of the form .intxx where xx is the number of the interrupt vector. The output sections must
map to the physical memory location of the appropriate interrupt vector. The standard linker command files are
set up to handle the vector pragma. See Section 6.7.4.

If you do not specify an ISR routine for some interrupt vectors, an ISR routine will be provided for those vectors
from the RTS library and the RTS library will automatically be linked with your application. The default ISR
routine puts the device in low power mode. You can override the ISR provided by the RTS with the
unused_interrupts keyword as follows:

#pragma vector=unused_interrupts
interrupt void user_trap_function(void)
{
    // code for handling all interrupts that do not have 
    // specific ISRs
}

The __even_in_range intrinsic provides a hint to the compiler when generating switch statements for interrupt
vector routines. The intrinsic is usually used as follows:

switch (__even_in_range( x , NUM ))
{
...
}

The __even_in_range intrinsic returns the value x to control the switch statement, but also tells the compiler that
x must be an even value in the range of 0 to NUM, inclusive.

Note
Interrupt service routine (ISR) warning

The linker emits a warning for any device-specific interrupts that do not have an associated interrupt
service routine. However, a default vector handler is now provided by the run-time support (RTS)
library, so you should not see this error if you are linking with the provided RTS library.

For more details, see the MSP430 Assembly Language Tools User's Guide section for the .intvec directive.

5.11.30 The WEAK Pragma

The WEAK pragma gives weak binding to a symbol.

The syntax of the pragma in C is:

#pragma WEAK ( symbol )

The syntax of the pragma in C++ is:

#pragma WEAK

The WEAK pragma makes symbol a weak reference if it is a reference, or a weak definition, if it is a definition.
The symbol can be a data or function variable. In effect, unresolved weak references do not cause linker errors
and do not have any effect at run time. The following apply for weak references:
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• Libraries are not searched to resolve weak references. It is not an error for a weak reference to remain
unresolved.

• During linking, the value of an undefined weak reference is:
– Zero if the relocation type is absolute
– The address of the place if the relocation type is PC-relative
– The address of the nominal base address if the relocation type is base-relative.

A weak definition does not change the rules by which object files are selected from libraries. However, if a link
set contains both a weak definition and a non-weak definition, the non-weak definition is always used.

The WEAK pragma has the same effect as using the weak function or variable attribute. See Section 5.16.2 and
Section 5.16.3, respectively.

5.12 The _Pragma Operator
The MSP430 C/C++ compiler supports the C99 preprocessor _Pragma() operator. This preprocessor operator is
similar to #pragma directives. However, _Pragma can be used in preprocessing macros (#defines).

The syntax of the operator is:

_Pragma (" string_literal ");

The argument string_literal is interpreted in the same way the tokens following a #pragma directive are
processed. The string_literal must be enclosed in quotes. A quotation mark that is part of the string_literal must
be preceded by a backward slash.

You can use the _Pragma operator to express #pragma directives in macros. For example, the DATA_SECTION
syntax:

#pragma DATA_SECTION( func ," section ")

Is represented by the _Pragma() operator syntax:

_Pragma ("DATA_SECTION( func ,\" section \")")

The following code illustrates using _Pragma to specify the DATA_SECTION pragma in a macro:

...
#define EMIT_PRAGMA(x) _Pragma(#x)
#define COLLECT_DATA(var) EMIT_PRAGMA(DATA_SECTION(var,"mysection"))
COLLECT_DATA(x)
int x;
...

The EMIT_PRAGMA macro is needed to properly expand the quotes that are required to surround the section
argument to the DATA_SECTION pragma.
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5.13 Application Binary Interface
An Application Binary Interface (ABI) defines how functions that are compiled or assembled separately (possibly
by compilers from different vendors) can work together. This involves standardizing the data type representation,
register conventions, and function structure and calling conventions. An ABI defines linkname generation from C
symbol names. It defines the object file format and the debug format. It defines how the system is initialized. In
the case of C++, it defines C++ name mangling and exception handling support.

The COFF ABI is not supported in v15.6.0.STS and later versions of the TI Code Generation Tools. If you would
like to produce COFF output files, please use v4.4 of the MSP430 Code Generation Tools and refer to
SPRU132J for documentation.

MSP430 uses the EABI ABI, which requires the ELF object file format. This format supports modern language
features like early template instantiation and exporting inline functions.

TI-specific information on EABI mode is described in Section 6.9.3.

To generate object files compatible with EABI, you must use MSP430 compiler version 4.0 or greater; see
Section 2.13.

The __TI_EABI__ predefined symbol is defined and set to 1 if compiling for EABI.

For low-level details about the MSP430 EABI, see The MSP430 Embedded Application Binary Interface
(SLAA534).

5.14 Object File Symbol Naming Conventions (Linknames)
Each externally visible identifier is assigned a unique symbol name to be used in the object file, a so-called
linkname. This name is assigned by the compiler according to an algorithm which depends on the name, type,
and source language of the symbol. This algorithm may add a prefix to the identifier (typically an underscore),
and it may mangle the name.

User-defined symbols in C code and in assembly code are stored in the same namespace, which means you are
responsible for making sure that your C identifiers do not collide with your assembly code identifiers. You may
have identifiers that collide with assembly keywords (for instance, register names); in this case, the compiler
automatically uses an escape sequence to prevent the collision. The compiler escapes the identifier with double
parallel bars, which instructs the assembler not to treat the identifier as a keyword. You are responsible for
making sure that C identifiers do not collide with user-defined assembly code identifiers.

Name mangling encodes the types of the parameters of a function in the linkname for a function. Name mangling
only occurs for C++ functions which are not declared 'extern "C"'. Mangling allows function overloading, operator
overloading, and type-safe linking. Be aware that the return value of the function is not encoded in the mangled
name, as C++ functions cannot be overloaded based on the return value.

For example, the general form of a C++ linkname for a function named func is:

func__F parmcodes

Where parmcodes is a sequence of letters that encodes the parameter types of func.

For this simple C++ source file:

int foo(int i){ }   //global C++ function

This is the resulting assembly code:

foo__Fi

The linkname of foo is foo__Fi, indicating that foo is a function that takes a single argument of type int. To aid
inspection and debugging, a name demangling utility is provided that demangles names into those found in the
original C++ source. See Chapter 8 for more information.
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The mangling algorithm follows that described in the Itanium C++ ABI (http://www.codesourcery.com/cxx-abi/
abi.html).

int foo(int i) { } would be mangled "_Z3fooi"

5.15 Changing the ANSI/ISO C/C++ Language Mode
The language mode command-line options determine how the compiler interprets your source code. You specify
one option to identify which language standard your code follows. You can also specify a separate option to
specify how strictly the compiler should expect your code to conform to the standard.

Specify one of the following language options to control the language standard that the compiler expects the
source to follow. The options are:

• ANSI/ISO C89 (--c89, default for C files)
• ANSI/ISO C99 (--c99, see Section 5.15.1.)
• ANSI/ISO C11 (--c11, see Section 5.15.2)
• ISO C++14 (--c++14 , used for all C++ files , see Section 5.2.)

Use one of the following options to specify how strictly the code conforms to the standard:

• Relaxed ANSI/ISO (--relaxed_ansi or -pr) This is the default.
• Strict ANSI/ISO (--strict_ansi or -ps)

The default is relaxed ANSI/ISO mode. Under relaxed ANSI/ISO mode, the compiler accepts language
extensions that could potentially conflict with ANSI/ISO C/C++. Under strict ANSI mode, these language
extensions are suppressed so that the compiler will accept all strictly conforming programs. (See Section
5.15.3.)

5.15.1 C99 Support (--c99)

The compiler supports the 1999 standard of C as standardized by the ISO. However, the following list of run-time
functions and features are not implemented or fully supported:

• inttypes.h
– wcstoimax() / wcstoumax()

• stdio.h
– The %e specifier may produce "-0" when "0" is expected by the standard
– snprintf() does not properly pad with spaces when writing to a wide character array

• stdlib.h
– vfscanf() / vscanf() / vsscanf() return value on floating point matching failure is incorrect

• wchar.h
– getws() / fputws()
– mbrlen()
– mbsrtowcs()
– wcscat()
– wcschr()
– wcscmp() / wcsncmp()
– wcscpy() / wcsncpy()
– wcsftime()
– wcsrtombs()
– wcsstr()
– wcstok()
– wcsxfrm()
– Wide character print / scan functions
– Wide character conversion functions
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5.15.2 C11 Support (--c11)

The compiler supports the 2011 standard of C as standardized by the ISO. However, in addition to the list in
Section 5.15.1, the following run-time functions and features are not implemented or fully supported in C11
mode:

• threads.h

5.15.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)

Under relaxed ANSI/ISO mode (the default), the compiler accepts language extensions that could potentially
conflict with a strictly conforming ANSI/ISO C/C++ program. Under strict ANSI mode, these language extensions
are suppressed so that the compiler will accept all strictly conforming programs.

Use the --strict_ansi option when you know your program is a conforming program and it will not compile in
relaxed mode. In this mode, language extensions that conflict with ANSI/ISO C/C++ are disabled and the
compiler will emit error messages where the standard requires it to do so. Violations that are considered
discretionary by the standard may be emitted as warnings instead.

Examples:

The following is strictly conforming C code, but will not be accepted by the compiler in the default relaxed mode.
To get the compiler to accept this code, use strict ANSI mode. The compiler will suppress the interrupt keyword
language exception, and interrupt may then be used as an identifier in the code.

int main()
{
    int interrupt = 0;
    return 0;
}

The following is not strictly conforming code. The compiler will not accept this code in strict ANSI mode. To get
the compiler to accept it, use relaxed ANSI mode. The compiler will provide the interrupt keyword extension and
will accept the code.

interrupt void isr(void);
int main()
{
    return 0;
}

The following code is accepted in all modes. The __interrupt keyword does not conflict with the ANSI/ISO C
standard, so it is always available as a language extension.

__interrupt void isr(void);
int main()
{
    return 0;
}

The default mode is relaxed ANSI. This mode can be selected with the --relaxed_ansi (or -pr) option. Relaxed
ANSI mode accepts the broadest range of programs. It accepts all TI language extensions, even those which
conflict with ANSI/ISO, and ignores some ANSI/ISO violations for which the compiler can do something
reasonable. Some GCC language extensions described in Section 5.16 may conflict with strict ANSI/ISO
standards, but many do not conflict with the standards.
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5.16 GNU and Clang Language Extensions
The GNU compiler collection (GCC) defines a number of language features not found in the ANSI/ISO C and C+
+ standards. The definition and examples of these extensions (for GCC version 4.7) can be found at the GNU
web site, http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions. Most of these extensions
are also available for C++ source code.

The compiler also supports the following Clang macro extensions, which are described in the Clang 6
Documentation:

• __has_feature (up to tests described for Clang 3.5)
• __has_extension (up to tests described for Clang 3.5)
• __has_include
• __has_include_next
• __has_builtin (see Section 5.16.5)
• __has_attribute

5.16.1 Extensions

Most of the GCC language extensions are available in the TI compiler when compiling in relaxed ANSI mode (--
relaxed_ansi).

The extensions that the TI compiler supports are listed in Table 5-3, which is based on the list of extensions
found at the GNU web site. The shaded rows describe extensions that are not supported.

Table 5-3. GCC Language Extensions
Extensions Descriptions
Statement expressions Putting statements and declarations inside expressions (useful for creating smart 'safe' macros)

Local labels Labels local to a statement expression

Labels as values Pointers to labels and computed gotos

Nested functions As in Algol and Pascal, lexical scoping of functions

Constructing calls Dispatching a call to another function

Naming types(1) Giving a name to the type of an expression

typeof operator typeof referring to the type of an expression

Generalized lvalues Using question mark (?) and comma (,) and casts in lvalues

Conditionals Omitting the middle operand of a ?: expression

Hex floats Hexadecimal floating-point constants

Complex Data types for complex numbers

Zero length Zero-length arrays

Variadic macros Macros with a variable number of arguments

Variable length Arrays whose length is computed at run time

Empty structures Structures with no members

Subscripting Any array can be subscripted, even if it is not an lvalue.

Escaped newlines Slightly looser rules for escaped newlines

Multi-line strings(1) String literals with embedded newlines

Pointer arithmetic Arithmetic on void pointers and function pointers

Initializers Non-constant initializers

Compound literals Compound literals give structures, unions, or arrays as values

Designated initializers Labeling elements of initializers

Cast to union Casting to union type from any member of the union

Case ranges 'Case 1 ... 9' and such

Mixed declarations Mixing declarations and code

Function attributes Declaring that functions have no side effects, or that they can never return
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Table 5-3. GCC Language Extensions (continued)
Extensions Descriptions
Attribute syntax Formal syntax for attributes

Function prototypes Prototype declarations and old-style definitions

C++ comments C++ comments are recognized.

Dollar signs A dollar sign is allowed in identifiers.

Character escapes The character ESC is represented as \e

Variable attributes Specifying the attributes of variables

Type attributes Specifying the attributes of types

Alignment Inquiring about the alignment of a type or variable

Inline Defining inline functions (as fast as macros)

Assembly labels Specifying the assembler name to use for a C symbol

Extended asm Assembler instructions with C operands

Constraints Constraints for asm operands

Wrapper headers Wrapper header files can include another version of the header file using #include_next

Alternate keywords Header files can use __const__, __asm__, etc

Explicit reg vars Defining variables residing in specified registers

Incomplete enum types Define an enum tag without specifying its possible values

Function names Printable strings which are the name of the current function

Return address Getting the return or frame address of a function (limited support)

Other built-ins Other built-in functions (see Section 5.16.5)

Vector extensions Using vector instructions through built-in functions

Target built-ins Built-in functions specific to particular targets

Pragmas Pragmas accepted by GCC

Unnamed fields Unnamed struct/union fields within structs/unions

Thread-local Per-thread variables

Binary constants Binary constants using the '0b' prefix.

(1) Feature defined for GCC 3.0; definition and examples at http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions

5.16.2 Function Attributes

The following GCC function attributes are supported:

• alias
• aligned
• always_inline
• call_conv
• calls
• const
• constructor
• deprecated
• format
• format_arg
• interrupt
• malloc
• naked
• noinline
• noreturn
• pure
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• ramfunc
• section
• unused
• used
• warn_unused_result
• weak

The following additional TI-specific function attribute is supported:

• retain

For example, this function declaration uses the alias attribute to make "my_alias" a function alias for the
"myFunc" function:

void my_alias() __attribute__((alias("myFunc")));

The aligned function attribute has the same effect as the CODE_ALIGN pragma. See Section 5.11.4

The always_inline function attribute has the same effect as the FUNC_ALWAYS_INLINE pragma. See Section
5.11.11

The call_conv attribute can be used to modify the calling conventions to allow both the IAR and TI compilers to
link against the same ROM image. This function attribute allows functions compiled with the TI compiler to be
linked with a ROM image generated by the IAR compiler. Note that the TI compiler does not generate ROM
images.

The call_conv attribute can be specified with "cc_rom" (for IAR/TI compatibility) or "cc_norm" (the default calling
convention). Use "cc_rom" if you want to share a ROM image compiled with IAR. The following example uses
the call_conv attribute in several ways:

#define __cc_rom __attribute__((call_conv("cc_rom"))) 
 
__cc_rom void rom_func(void)
{
   ...
}
typedef __cc_rom void (rom_func_t)(void);
 
int main()
{
   rom_func();
 
   rom_func_t *fp = (rom_func_t*)0x1234; 
   fp();
 
   ((void (__cc_rom *)(void))0x2468)();
 
   void (__cc_rom *rom_func_ptr)(void); 
   rom_func_ptr = &rom_func;
   rom_func_ptr();
}

If you want IAR/TI compatibility with your calling conventions, be aware of the following restrictions on parameter
passing.

• All parameters combined must fit in registers. Registers may not be passed on the stack.
• Only scalar parameters are allowed. Do not pass structs.
• Do not pass function pointers, enums, or doubles.
• For single registers, use R12,13,14,15 in that order.
• For register pairs, use R12:R13 or R14:R15 in that order.
• For register quads, use R12:R13:R14:R15.
• For MSP430, always use CALL/RET.
• For MSP430x always uses CALLA/RETA.
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• For save-on-call registers, use R11-R15.
• For save-on-entry registers, use R4-R10.

The calls attribute has the same effect as the CALLS pragma, which is described in Section 5.11.2.

The format attribute is applied to the declarations of printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf,
vsnprintf, scanf, fscanf, vfscanf, vscanf, vsscanf, and sscanf in stdio.h. Thus when GCC extensions are enabled,
the data arguments of these functions are type checked against the format specifiers in the format string
argument and warnings are issued when there is a mismatch. These warnings can be suppressed in the usual
ways if they are not desired.

See Section 5.11.19 for more about using the interrupt function attribute.

The malloc attribute is applied to the declarations of malloc, calloc, realloc and memalign in stdlib.h.

The naked attribute identifies functions that are written as embedded assembly functions using __asm
statements. The compiler does not generate prologue and epilog sequences for such functions. See Section
5.10.

The noinline function attribute has the same effect as the FUNC_CANNOT_INLINE pragma. See Section
5.11.12

The ramfunc attribute specifies that a function will be placed in and executed from RAM. The ramfunc attribute
allows the compiler to optimize functions for RAM execution, as well as to automatically copy functions to RAM
on flash-based devices. For example:

__attribute__((ramfunc))
void f(void) {
   ... 
}

The --ramfunc=on option specifies that all functions compiled with this option are placed in and executed from
RAM, even if this function attribute is not used.

Newer TI linker command files support the ramfunc attribute automatically by placing functions with this attribute
in the .TI.ramfunc section. If you have a linker command file that does not include a section specification for
the .TI.ramfunc section, you can modify the linker command file to place this section in RAM. See the MSP430
Assembly Language Tools User's Guide for details on section placement.

The retain attribute has the same effect as the RETAIN pragma (Section 5.11.27). That is, the section that
contains the function will not be omitted from conditionally linked output even if it is not referenced elsewhere in
the application.

The section attribute when used on a function has the same effect as the CODE_SECTION pragma. See
Section 5.11.5

The weak attribute has the same effect as the WEAK pragma (Section 5.11.30).
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5.16.3 Variable Attributes

The following variable attributes are supported:

• aligned
• deprecated
• location
• mode
• noinit
• packed
• persistent
• retain
• section
• transparent_union
• unused
• used
• weak

The aligned attribute when used on a variable has the same effect as the DATA_ALIGN pragma. See Section
5.11.6

The location attribute has the same effect as the LOCATION pragma. See Section 5.11.20. For example:

__attribute__((location(0x100))) extern struct PERIPH peripheral;

The noinit and persistent attributes apply to the ROM initialization model and allow an application to avoid
initializing certain global variables during a reset. The alternative RAM initialization model initializes variables
only when the image is loaded; no variables are initialized during a reset. See the "RAM Model vs. ROM Model"
section and its subsections in the MSP430 Assembly Language Tools User's Guide.

The noinit attribute can be used on uninitialized variables; it prevents those variables from being set to 0 during
a reset. The persistent attribute can be used on initialized variables; it prevents those variables from being
initialized during a reset. By default, variables marked noinit or persistent will be placed in sections
named .TI.noinit and .TI.persistent , respectively. The location of these sections is controlled by the
linker command file. Typically .TI.persistent sections are placed in FRAM for devices that support FRAM
and .TI.noinit sections are placed in RAM. Also see Section 5.11.21.

The packed attribute may be applied to individual fields within a struct or union. The behavior of the packed
attribute for structure and union fields is described in Section 5.16.4.

The retain attribute has the same effect as the RETAIN pragma (Section 5.11.27). That is, the section that
contains the variable will not be omitted from conditionally linked output even if it is not referenced elsewhere in
the application.

The section attribute when used on a variable has the same effect as the DATA_SECTION pragma. See
Section 5.11.7

The used attribute is defined in GCC 4.2 (see http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-
Attributes.html#Variable-Attributes).

The weak attribute has the same effect as the WEAK pragma (Section 5.11.30).
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5.16.4 Type Attributes

The following type attributes are supported:

• aligned
• deprecated
• packed
• transparent_union
• unused

The packed attribute is supported for struct and union types if the --relaxed_ansi option is used.

Members of a packed structure are stored as closely to each other as possible, omitting additional bytes of
padding usually added to preserve word-alignment. For example, assuming a word-size of 4 bytes ordinarily has
3 bytes of padding between members c1 and i, and another 3 bytes of trailing padding after member c2, leading
to a total size of 12 bytes:

    struct unpacked_struct { char c1; int i; char c2;}; 

However, the members of a packed struct are byte-aligned. Thus the following does not have any bytes of
padding between or after members and totals 6 bytes:

   struct __attribute__((__packed__)) packed_struct { char c1; int i; char c2; };

Subsequently, packed structures in an array are packed together without trailing padding between array
elements.

Using "packed" on a bit-field overrides the EABI requirements for bit-fields. For non-packed bit-fields, the
declared type of a bit-field is used for the container type. For packed bit-fields, the smallest integral type (except
bool) is used, regardless of the declared type. For non-packed volatile bit-fields, the bit-field must be accessed
using one access of the same size as the declared type. For packed volatile bit-fields, the access must be of the
same size as the actual container type, and may not be the same as the declared type; additionally, the actual
container might not be aligned, and might span more than one aligned container boundary, so accessing a
packed volatile bit-field may require more than one memory access. This can also affect the overall size of the
struct; for instance, if the struct contains only the bit-field, the struct might not be as large as the declared type of
the bit-field. For both packed and unpacked bit-fields, bit-fields are bit-aligned and are packed together with
adjacent bit-fields with no padding, are entirely contained within an integer container that is at least byte-aligned;
and do not alter the alignment of adjacent non-bitfield struct members.

The "packed" attribute can be applied only to the original definition of a structure or union type. It cannot be
applied with a typedef to a non-packed structure that has already been defined, nor can it be applied to the
declaration of a struct or union object. Therefore, any given structure or union type can only be packed or non-
packed, and all objects of that type will inherit its packed or non-packed attribute.

The "packed" attribute is not applied recursively to structure types that are contained within a packed structure.
Thus, in the following example the member s retains the same internal layout as in the first example above.
There is no padding between c and s, so s falls on an unaligned boundary:

   struct __attribute__((__packed__)) outer_packed_struct { char c; struct unpacked_struct s; };
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It is illegal to implicitly or explicitly cast the address of a packed struct member as a pointer to any non-packed
type except an unsigned char. In the following example, p1, p2, and the call to foo are all illegal.

   void foo(int *param);
   struct packed_struct ps;
   int *p1 = &ps.i;
   int *p2 = (int *)&ps.i;
   foo(&ps.i);

However, it is legal to explicitly cast the address of a packed struct member as a pointer to an unsigned char:

   unsigned char *pc = (unsigned char *)&ps.i;

The "packed" attribute can also be applied to enumerated types. On an enum, "packed" indicates that the
smallest integral type should be used.

The TI compiler also supports an unpacked attribute for an enumeration type to allow you to indicate that the
representation is to be an integer type that is no smaller than int; in other words, it is not packed.

5.16.5 Built-In Functions

The following built-in functions are supported:

• __builtin_abs()
• __builtin_constant_p()
• __builtin_expect()
• __builtin_fabs()
• __builtin_fabsf()
• __builtin_frame_address()
• __builtin_labs()
• __builtin_memcpy()
• __builtin_return_address()

The __builtin_frame_address() function always returns zero .

The __builtin_return_address() function always returns zero.

5.17 Compiler Limits
Due to the variety of host systems supported by the C/C++ compiler and the limitations of some of these
systems, the compiler may not be able to successfully compile source files that are excessively large or
complex. In general, exceeding such a system limit prevents continued compilation, so the compiler aborts
immediately after printing the error message. Simplify the program to avoid exceeding a system limit.

Some systems do not allow filenames longer than 500 characters. Make sure your filenames are shorter than
500.

The compiler has no arbitrary limits but is limited by the amount of memory available on the host system. On
smaller host systems such as PCs, the optimizer may run out of memory. If this occurs, the optimizer terminates
and the shell continues compiling the file with the code generator. This results in a file compiled with no
optimization. The optimizer compiles one function at a time, so the most likely cause of this is a large or
extremely complex function in your source module. To correct the problem, your options are:

• Don't optimize the module in question.
• Identify the function that caused the problem and break it down into smaller functions.
• Extract the function from the module and place it in a separate module that can be compiled without

optimization so that the remaining functions can be optimized.
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This chapter describes the MSP430 C/C++ run-time environment. To ensure successful execution of C/C++
programs, it is critical that all run-time code maintain this environment. It is also important to follow the guidelines
in this chapter if you write assembly language functions that interface with C/C++ code.
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6.1 Memory Model
The MSP430 compiler treats memory as a single linear block that is partitioned into subblocks of code and data.
Each subblock of code or data generated by a C program is placed in its own continuous memory space. The
compiler assumes that the full 16-bit (for MSP430) or 20-bit (for MSP430X) address space is available in target
memory.

Note
The Linker Defines the Memory Map

The linker, not the compiler, defines the memory map and allocates code and data into target memory.
The compiler assumes nothing about the types of memory available, about any locations not available
for code or data (holes), or about any locations reserved for I/O or control purposes. The compiler
produces relocatable code that allows the linker to allocate code and data into the appropriate
memory spaces. For example, you can use the linker to allocate global variables into on-chip RAM or
to allocate executable code into external ROM. You can allocate each block of code or data
individually into memory, but this is not a general practice (an exception to this is memory-mapped I/O,
although you can access physical memory locations with C/C++ pointer types).

6.1.1 Code Memory Models

The MSP430 compiler supports two different code memory models, small and large, which are controlled by the
--code_model option.

• The small code model uses 16-bit function pointers and requires all code and all text sections to be placed in
the low 64K of memory. This is the only valid code model for 16-bit MSP430 devices.

• The large code model provides a 1 MB address space for code and uses 20-bit function pointers. It is the
default for MSP430X devices, including the MSP430F5xxx and MSP430F6xxx families. Interrupt service
routines must still be placed in the low 64 KB of memory (see Section 6.7.5).

The small code model is slightly more efficient in terms of run-time performance and memory usage when
compared to the large code model. Therefore, it is beneficial to use the small code model when all code and text
sections will fit in the low 64K of memory. Modules assembled/compiled using the small-code model are not
compatible with modules that are assembled/compiled using large-code model. The linker generates an error if
any attempt is made to combine object files that use different code memory models. An appropriate run-time
library must be used as well.

6.1.2 Data Memory Models

The MSP430 compiler supports three different data memory models: small, restricted and large. The data model
used is controlled by the --data_model option. The 16-bit MSP430 devices always use the small data memory
model. The 20-bit MSP430X devices can use any data memory model and use the small data model by default.

• The small data model requires that all data sections be located in the low 64K of memory. Data pointers are
16-bits in size. This is the most efficient data model in terms of performance and application size.

• The restricted data model allows data to be located throughout the entire 1MB address space available on
MSP430X devices with only a minimal efficiency penalty over the small data model. It is restricted because
individual objects (structures, arrays, etc.) cannot be larger than 64K in size. Data pointers are 32-bits in size.

• The large data model also allows data to be located throughout the entire 1MB address space and also
places no restriction on the maximum size of an individual object. Permitting individual objects to be greater
than 64K in size causes code generated for the large data model to be less efficient than code generated for
the restricted data model.

Data memory is also affected by the --near_data option as described in Section 6.1.3.

The maximum size of an object (size_t) and the maximum difference between two pointers (ptrdiff_t) are
increased from 16-bits to 32-bits in the large data model. Applications that rely on size_t or ptrdiff_t to be a
specific size may need to be updated.
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Object files built with different data models are not compatible. All files in an application must be built with the
same data model. Additionally, a run-time-support library matching that data model must be used. When using
automatic library selection (the default), the linker will automatically select the correct library Section 4.3.1.1. If
you select the library manually, you must select the matching library according to Section 7.1.8.

6.1.3 Support for Near Data

Most MSP430X devices do not have any writeable memory above the 64K boundary. However, most FRAM
MSP430x devices and a few non-FRAM devices have writeable memory above 64k boundary.

For those few non-FRAM devices with high RAM (above 64K), non-constant data may be placed above the 64K
boundary by the linker command file.

For all other devices, which have no writeable memory above the 64K boundary even when the restricted or
large data models are used, only constant data will be placed above 64K. The compiler can take advantage of
this knowledge to produce more efficient code. The --near_data option controls this optimization.

When --near_data=globals is specified, this option tells the compiler that all global read/write data must be
located in the first 64K of memory. This is the default behavior. Global read/write data is placed by default in
the .bss and .data sections.

If --near_data=none is specified, this option tells the compiler that it cannot rely on this assumption to generate
more efficient code.

6.1.4 Sections

The compiler produces relocatable blocks of code and data called sections. The sections are allocated into
memory in a variety of ways to conform to a variety of system configurations. For more information about
sections and allocating them, see the introductory object file information in the MSP430 Assembly Language
Tools User's Guide .

There are two basic types of sections:

• Initialized sections contain data or executable code. Initialized sections are usually, but not always, read-
only. The C/C++ compiler creates the following initialized sections:
– The .binit section contains boot time copy tables. This is a read-only section. For details on BINIT, see

the MSP430 Assembly Language Tools User's Guide .
– The .cinit section contains tables for initializing variables and constants. This is a read-only section. The

compiler does not create this section; instead, the linker does.
– The .init_array section contains the table of pointers to initialization routines for global C++ objects.
– The .ovly section contains copy tables for unions in which different sections have the same run address.

This is a read-only section.
– The .data section contains initialized global and static variables.
– For EABI only, the .mspabi.exidx section contains the index table for exception handling.

The .mspabi.extab section contains unwinding instructions for exception handling. These sections are
read-only. See the --exceptions option for details.

– The .const section contains string constants, string literals, switch tables, and data defined with the C/C+
+ qualifier const (provided the constant is not also defined as volatile or one of the exceptions described in
Section 5.7.1). This is a read-only section. String literals are placed in the .const:.string subsection to
enable greater link-time placement control.

– The .text section contains all the executable code and compiler-generated constants. This section is
usually read-only.

– The .TI.crctab section contains CRC checking tables. This is a read-only section.
• Uninitialized sections reserve space in memory (usually RAM). A program can use this space at run time to

create and store variables. The compiler creates the following uninitialized sections:
– The .bss section reserves space for global and static variables. At boot or load time, the C/C++ boot

routine or the loader copies data out of the .cinit section (which can be in ROM) and stores it in the .bss
section.
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– For EABI only, the .bss section reserves space for uninitialized global and static variables. Uninitialized
variables that are also unused are usually created as common symbols (unless you specify --
common=off) instead of being placed in .bss so that they can be excluded from the resulting application.

– The .stack section reserves memory for the C/C++ software stack.
– The .sysmem section reserves space for dynamic memory allocation. This space is used by dynamic

memory allocation routines, such as malloc(), calloc(), realloc(), or new(). If a C/C++ program does not
use these functions, the compiler does not create the .sysmem section.

The assembler creates the default sections .text, .bss, and .data. You can instruct the compiler to create
additional sections by using the CODE_SECTION and DATA_SECTION pragmas (see Section 5.11.5 and
Section 5.11.7).

The linker takes the individual sections from different object files and combines sections that have the same
name. The resulting output sections and the appropriate placement in memory for each section are listed in
Table 6-1. You can place these output sections anywhere in the address space as needed to meet system
requirements.

Table 6-1. Summary of Sections and Memory Placement
Section Type of Memory Section Type of Memory
.bss RAM .pinit

or .init_array
ROM or RAM

.cinit ROM or RAM .stack RAM

.const ROM or RAM .sysmem RAM

.data RAM .text ROM or RAM

You can use the SECTIONS directive in the linker command file to customize the section-allocation process. For
more information about allocating sections into memory, see the linker description chapter in the MSP430
Assembly Language Tools User's Guide.

6.1.5 C/C++ Software Stack

The C/C++ compiler uses a function frame stack to:

• Allocate local variables
• Pass arguments to functions
• Save register contents

The run-time stack grows from the high addresses to the low addresses. The compiler uses the R1 register to
manage this stack. R1 is the stack pointer (SP), which points to the next unused location on the stack.

The linker sets the stack size, creates a global symbol, __TI_STACK_SIZE, and assigns it a value equal to the
stack size in bytes. The default stack size is 80 bytes. You can change the stack size at link time by using the --
stack_size option with the linker command. For more information on the --stack_size option, see the linker
description chapter in the MSP430 Assembly Language Tools User's Guide.

Note
Save-On-Entry Registers and C/C+ Stack Size

Since register sizes increase for MSP430X devices (specified with --silicon_version=mspx), saving
and restoring save-on-entry registers requires 32-bits of stack space for each register saved on the
stack. When you are porting code originally written for 16-bit MSP430 devices, you may need to
increase the C stack size from previous values.

At system initialization, SP is set to a designated address for the top of the stack. This address is the first
location past the end of the .stack section. Since the position of the stack depends on where the .stack section is
allocated, the actual address of the stack is determined at link time.

The C/C++ environment automatically decrements SP at the entry to a function to reserve all the space
necessary for the execution of that function. The stack pointer is incremented at the exit of the function to restore
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the stack to the state before the function was entered. If you interface assembly language routines to C/C++
programs, be sure to restore the stack pointer to the same state it was in before the function was entered.

For more information about using the stack pointer, see Section 6.3; for more information about the stack, see
Section 6.4.

Note
Stack Overflow

The compiler provides no means to check for stack overflow during compilation or at run time. A stack
overflow disrupts the run-time environment, causing your program to fail. Be sure to allow enough
space for the stack to grow. You can use the --entry_hook option to add code to the beginning of each
function to check for stack overflow; see Section 2.14.

6.1.6 Dynamic Memory Allocation

The run-time-support library supplied with the MSP430 compiler contains several functions (such as malloc,
calloc, and realloc) that allow you to allocate memory dynamically for variables at run time.

Memory is allocated from a global pool, or heap, that is defined in the .sysmem section. You can set the size of
the .sysmem section by using the --heap_size=size option with the linker command. The linker also creates a
global symbol, __TI_SYSMEM_SIZE, and assigns it a value equal to the size of the heap in bytes. The default
size is 128 bytes. For more information on the --heap_size option, see the linker description chapter in the
MSP430 Assembly Language Tools User's Guide .

If you use any C I/O function, the RTS library allocates an I/O buffer for each file you access. This buffer will be a
bit larger than BUFSIZ, which is defined in stdio.h and defaults to 256. Make sure you allocate a heap large
enough for these buffers or use setvbuf to change the buffer to a statically-allocated buffer.

Dynamically allocated objects are not addressed directly (they are always accessed with pointers) and the
memory pool is in a separate section (.sysmem); therefore, the dynamic memory pool can have a size limited
only by the amount of available memory in your system. To conserve space in the .bss section, you can allocate
large arrays from the heap instead of defining them as global or static. For example, instead of a definition such
as:

struct big table[100];

Use a pointer and call the malloc function:

struct big *table
table = (struct big *)malloc(100*sizeof(struct big));

When allocating from a heap, make sure the size of the heap is large enough for the allocation. This is
particularly important when allocating variable-length arrays.
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6.2 Object Representation
For general information about data types, see Section 5.5. This section explains how various data objects are
sized, aligned, and accessed.

6.2.1 Data Type Storage

Table 6-2 lists register and memory storage for various data types:

Table 6-2. Data Representation in Registers and Memory
Data Type Register Storage Memory Storage
char Bits 0-7 of register 8 bits aligned to 8-bit boundary
unsigned char Bits 0-7 of register 8 bits aligned to 8-bit boundary
short Bits 0-15 of register 16 bits aligned to 16-bit boundary
unsigned short Bits 0-15 of register 16 bits aligned to 16-bit boundary
int Entire register 16 bits aligned to 16-bit boundary
unsigned int Entire register 16 bits aligned to 16-bit boundary
enum (1) Entire register 16 bits aligned to 16-bit boundary
float Two registers, which need not be adjacent 32 bits aligned to 16-bit boundary
long Two registers, which need not be adjacent 32 bits aligned to 16-bit boundary
unsigned long Two registers, which need not be adjacent 32 bits aligned to 16-bit boundary
long long Four registers, which need not be adjacent 64 bits aligned to 16-bit boundary
unsigned long long Four registers, which need not be adjacent 64 bits aligned to 16-bit boundary
double Four registers, which need not be adjacent 64 bits aligned to 16-bit boundary
long double Four registers, which need not be adjacent 64 bits aligned to 16-bit boundary
struct Members are stored as their individual types

require.
Multiple of 8 bits aligned to boundary of largest
member type; members are stored and aligned as
their individual types require.

array Members are stored as their individual types
require.

Members are stored as their individual types require.
All arrays inside a structure are aligned according to
the type of each element in the array.

pointer to data member Bits 0-15 of register for MSP430. Bits 0-19 of
register for MSP430X.

varies, see Table 5-2

pointer to member function Components stored as their individual types require 64 bits aligned to 32-bit boundary

(1) The size of an enum varies by the size of the largest enum value and by whether it is packed or not. For details about the size of an
enum type, see Section 5.5.1.

6.2.1.1 Pointer to Member Function Types

Pointer to member function objects are stored as a structure with three members, and the layout is equivalent to:

struct {
   short int d;
   short int i;
   union {
      void (f) ();
      long 0; 
   }
};

The parameter d is the offset added to the beginning of the class object for this pointer. The parameter I is the
index into the virtual function table, offset by 1. The index enables the NULL pointer to be represented. Its value
is -1 if the function is nonvirtual. The parameter f is the pointer to the member function if it is nonvirtual, when I is
0. The 0 is the offset to the virtual function pointer within the class object.
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6.2.1.2 Structure and Array Alignment

Structures are aligned according to the member with the most restrictive alignment requirement. Structures do
not contain padding after the last member. Elements of arrays are stored in the same manner as if they were
individual objects.

The minimum alignment for arrays is that required by the type of its elements.

6.2.1.3 Field/Structure Alignment

When the compiler allocates space for a structure, it allocates as many words as are needed to hold all of the
structure's members and to comply with alignment constraints for each member.

When a structure contains a 32-bit (long) member, the long is aligned to a 1-word (16-bit) boundary. This may
require padding before, inside, or at the end of the structure to ensure that the long is aligned accordingly and
that the sizeof value for the structure is an even value.

All non-field types are aligned on word or byte boundaries. Fields are allocated as many bits as requested.
Adjacent fields are packed into adjacent bits of a word, but they do not overlap words. If a field would overlap
into the next word, the entire field is placed into the next word.

Fields are packed as they are encountered; the least significant bits of the structure word are filled first. Example
6-1 shows the C code definition of var while Figure 6-1 shows the memory layout of var.

Example 6-1. C Code Definition of var

struct example { char c; long l; int bf1:1; int bf2:2; int bf3:3; int bf4:4; int bf5:5; int bf6:6; };

123451

long (high)

long (low)

<pad> char c

<pad 10 bits> 6

012345678910111213141516

var + 0

var + 2

var + 4

var + 6

var + 8

Figure 6-1. Memory Layout of var

6.2.2 Character String Constants

In C, a character string constant is used in one of the following ways:

• To initialize an array of characters. For example:

   char s[] = "abc";

When a string is used as an initializer, it is simply treated as an initialized array; each character is a separate
initializer. For more information about initialization, see Section 6.9.

• In an expression. For example:

   strcpy (s, "abc");

When a string is used in an expression, the string itself is defined in the .const section with the .string
assembler directive, along with a unique label that points to the string; the terminating 0 byte is included. For
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example, the following lines define the string abc, and the terminating 0 byte (the label SL5 points to the
string):

        .sect   ".const"
   SL5: .string "abc",0

String labels have the form SLn, where n is a number assigned by the compiler to make the label unique. The
number begins at 0 and is increased by 1 for each string defined. All strings used in a source module are
defined at the end of the compiled assembly language module.

The label SLn represents the address of the string constant. The compiler uses this label to reference the
string expression.

Because strings are stored in the .const section (possibly in ROM) and shared, it is bad practice for a
program to modify a string constant. The following code is an example of incorrect string use:

   const char   *a = "abc"
   a[1] = 'x';             /* Incorrect! undefined behavior */

6.3 Register Conventions
Strict conventions associate specific registers with specific operations in the C/C++ environment. If you plan to
interface an assembly language routine to a C/C++ program, you must understand and follow these register
conventions.

The register conventions dictate how the compiler uses registers and how values are preserved across function
calls. Table 6-3 shows the types of registers affected by these conventions. Table 6-4 summarizes how the
compiler uses registers and whether their values are preserved across calls. For information about how values
are preserved across calls, see Section 6.4.

Table 6-3. How Register Types Are Affected by the Conventions
Register Type Description
Argument register Passes arguments during a function call
Return register Holds the return value from a function call
Expression register Holds a value
Argument pointer Used as a base value from which a function's parameters (incoming

arguments) are accessed
Stack pointer Holds the address of the top of the software stack
Program counter Contains the current address of code being executed

Table 6-4. Register Usage and Preservation Conventions
Register Alias Usage Preserved by Function(1)

R0 PC Program counter N/A
R1 SP Stack pointer N/A(2)

R2 SR Status register N/A
R3 Constant generator N/A
R4-R10 Expression register Child
R11 Expression register Parent
R12 Expression register, argument pointer, return register Parent
R13 Expression register, argument pointer, return register Parent
R14 Expression register, argument pointer, return register Parent
R15 Expression register, argument pointer, return register Parent

(1) The parent function refers to the function making the function call. The child function refers to the function being called.
(2) The SP is preserved by the convention that everything pushed on the stack is popped off before returning.
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6.4 Function Structure and Calling Conventions
The C/C++ compiler imposes a strict set of rules on function calls. Except for special run-time support functions,
any function that calls or is called by a C/C++ function must follow these rules. Failure to adhere to these rules
can disrupt the C/C++ environment and cause a program to fail.

The following sections use this terminology to describe the function-calling conventions of the C/C++ compiler:
• Argument block. The part of the local frame used to pass arguments to other functions. Arguments are

passed to a function by moving them into the argument block rather than pushing them on the stack. The
local frame and argument block are allocated at the same time.

• Register save area. The part of the local frame that is used to save the registers when the program calls the
function and restore them when the program exits the function.

• Save-on-call registers. Registers R11-R15. The called function does not preserve the values in these
registers; therefore, the calling function must save them if their values need to be preserved.

• Save-on-entry registers. Registers R4-R10. It is the called function's responsibility to preserve the values in
these registers. If the called function modifies these registers, it saves them when it gains control and
preserves them when it returns control to the calling function.

Figure 6-2 illustrates a typical function call. In this example, arguments are passed to the function, and the
function uses local variables and calls another function. The first four arguments are passed to registers R12-
R15. This example also shows allocation of a local frame and argument block for the called function. Functions
that have no local variables and do not require an argument block do not allocate a local frame.

Move arguments to

argument block;

call functionBefore call

Caller’s

local variables

High

Caller’s

argument

block

Caller’s

local variables

Argument 5...

argument n

SP

High

Caller’s

local variables

Callee’s

argument

block

Low Low Low

Allocate new frame and

argument block

Register

save area High

Callee’s

local variables

Register

save area

SP

SP

Argument 1 → register R12

Argument 2 → register R13

Argument 3 → register R14

Argument 4 → register R15

Register

save area

Register

save area

Argument 5...

argument n

Legend: SP: stack pointer

Figure 6-2. Use of the Stack During a Function Call
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6.4.1 How a Function Makes a Call

A function (parent function) performs the following tasks when it calls another function (child function).

struct big { long x[10]; };
 struct small { int x; };

T0 T0 AC0 AR0

int fn(int i1, long l2, int *p3);

AC0 AR0 T0 T1 AR1

long fn(int *p1, int i2, int i3, int i4);

AR0 AR1

struct big fn(int *p1);

T0 AR0 AR1

int fn(struct big b, int *p1);

AC0  AR0

struct small fn(int *p1);

T0 AC0 AR0

int fn(struct small b, int *p1);

T0 stack stack...

int printf(char *fmt, ...);

AC0 AC2 AC2 stack T0

void fn(long l1, long l2, long l3, long l4, int i5);

AC0 AC1 AC2 AR0 AR1

void fn(long l1, long l2, long l3, int *p4, int *p5,

AR2 AR3 AR4 T0 T1

int *p6, int *p7, int *p8, int i9, int i10);

1. The calling function (parent) is responsible for preserving any save-on-call registers across the call that are
live across the call. (The save-on-call registers are R11-R15.)

2. If the called function (child) returns a structure, the caller allocates space for the structure and passes the
address of that space to the called function as the first argument.

3. The caller places the first arguments in registers R12-R15, in that order. The caller moves the remaining
arguments to the argument block in reverse order, placing the leftmost remaining argument at the lowest
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address. Thus, the leftmost remaining argument is placed at the top of the stack. An argument with a type
larger than 16 bits that would start in a save-on-call register may be split between R15 and the stack.

4. The caller calls the function.

Functions defined in C++ that must be called in asm must be defined extern "C", and functions defined in
asm that must be called in C++ must be prototyped extern "C" in the C++ file.

6.4.2 How a Called Function Responds

A called function (child function) must perform the following tasks:

1. If the function is declared with an ellipsis, it can be called with a variable number of arguments. The called
function pushes these arguments on the stack if they meet both of these criteria:
• The argument includes or follows the last explicitly declared argument.
• The argument is passed in a register.

2. The called function pushes register values of all the registers that are modified by the function and that must
be preserved upon exit of the function onto the stack. Normally, these registers are the save-on-entry
registers (R4-R10) if the function contains calls. If the function is an interrupt, additional registers may need to
be preserved. For more information, see Section 6.7.

3. The called function allocates memory for the local variables and argument block by subtracting a constant
from the SP. This constant is computed with the following formula:

size of all local variables + max = constant

The max argument specifies the size of all parameters placed in the argument block for each call.
4. The called function executes the code for the function.
5. If the called function returns a value, it places the value in R12, R12 and R13, or R12 through R15,

depending on the size of the return type.
6. If the called function returns a structure, it copies the structure to the memory block that the first argument,

R12, points to. If the caller does not use the return value, R12 is set to 0. This directs the called function not
to copy the return structure.

Structures and unions are always passed by reference.

In this way, the caller can be smart about telling the called function where to return the structure. For
example, in the statement s = func(x), where s is a structure and f is a function that returns a structure, the
caller can simply pass the address of s as the first argument and call f. The function f then copies the return
structure directly into s, performing the assignment automatically.

You must be careful to properly declare functions that return structures, both at the point where they are
called (so the caller properly sets up the first argument) and at the point where they are declared (so the
function knows to copy the result).

7. The called function deallocates the frame and argument block by adding the constant computed in Step 3.
8. The called function restores all registers saved in Step 2.
9. The called function (func) returns.
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The following example is typical of how a called function responds to a call:

func:                     ; Called function entry point
        PUSH.W    r10
        PUSH.W    r9      ; Save SOE registers
        SUB.W     #2,SP   ; Allocate the frame
        :
        :                 ; Body of function
        :
        ADD.W     #2,SP   ; Deallocate the frame
        POP       r9      ; Restore SOE registers
        POP       r10
        RET               ; Return

6.4.3 Accessing Arguments and Local Variables

A function accesses its local nonregister variables and stack arguments indirectly through the stack pointer (SP
or R1). The SP always points to the top of the stack (the most recently pushed value).

Since the stack grows toward smaller addresses, the local data on the stack for the C/C++ function is accessed
with a positive offset from the SP register.

6.5 Accessing Linker Symbols in C and C++
See the section on "Using Linker Symbols in C/C++ Applications" in the MSP430 Assembly Language Tools
User's Guide for information about referring to linker symbols in C/C++ code.

6.6 Interfacing C and C++ With Assembly Language
The following are ways to use assembly language with C/C++ code:

• Use separate modules of assembled code and link them with compiled C/C++ modules (see Section 6.6.1).
• Use assembly language variables and constants in C/C++ source (see Section 6.6.3).
• Use inline assembly language embedded directly in the C/C++ source (see Section 6.6.5).

6.6.1 Using Assembly Language Modules With C/C++ Code

Interfacing C/C++ with assembly language functions is straightforward if you follow the calling conventions
defined in Section 6.4, and the register conventions defined in Section 6.3. C/C++ code can access variables
and call functions defined in assembly language, and assembly code can access C/C++ variables and call C/C+
+ functions.

Follow these guidelines to interface assembly language and C:

• You must preserve any dedicated registers modified by a function. Dedicated registers include:
– Save-on-entry registers (R4-R10)
– Stack pointer (SP or R1)

If the SP is used normally, it does not need to be explicitly preserved. In other words, the assembly function is
free to use the stack as long as anything that is pushed onto the stack is popped back off before the function
returns (thus preserving SP).

Any register that is not dedicated can be used freely without first being saved.
• Interrupt routines must save all the registers they use. For more information, see Section 6.7.
• When you call a C/C++ function from assembly language, load the designated registers with arguments and

push the remaining arguments onto the stack as described in Section 6.4.1.

Remember that a function can alter any register not designated as being preserved without having to restore
it. If the contents of any of these registers must be preserved across the call, you must explicitly save them.

• Functions must return values correctly according to their C/C++ declarations. Double values are returned in
R12 and R13, and structures are returned as described in Step 2 of Section 6.4.1. Any other values are
returned in R12.
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• No assembly module should use the .cinit section for any purpose other than autoinitialization of global
variables. The C/C++ startup routine assumes that the .cinit section consists entirely of initialization tables.
Disrupting the tables by putting other information in .cinit can cause unpredictable results.

• The compiler assigns linknames to all external objects. Thus, when you write assembly language code, you
must use the same linknames as those assigned by the compiler. See Section 5.14 for details.

• Any object or function declared in assembly language that is accessed or called from C/C++ must be
declared with the .def or .global directive in the assembly language modifier. This declares the symbol as
external and allows the linker to resolve references to it.

Likewise, to access a C/C++ function or object from assembly language, declare the C/C++ object with
the .ref or .global directive in the assembly language module. This creates an undeclared external reference
that the linker resolves.

• Any assembly routines that interface with MSP430x C programs are required to conform to the large-code
model:
– Use CALLA/RETA instead of CALL/RET
– Use PUSHM.A/POPM.A to save and restore any used save-on-entry registers. The entire 20-bit register

must be saved/restored.
– Manipulation of function pointers requires 20-bit operations (OP.A)
– If interfacing with C code compiled for the large-data model, data pointer manipulation must be performed

using 20-bit operations (OP.A).

6.6.2 Accessing Assembly Language Functions From C/C++

Functions defined in C++ that will be called from assembly should be defined as extern "C" in the C++ file.
Functions defined in assembly that will be called from C++ must be prototyped as extern "C" in C++.

Example 6-2 illustrates a C++ function called main, which calls an assembly language function called asmfunc,
Example 6-3. The asmfunc function takes its single argument, adds it to the C++ global variable called gvar, and
returns the result.

Example 6-2. Calling an Assembly Language Function From a C/C++ Program

extern "C" {
extern int asmfunc(int a); /* declare external asm function */
int gvar = 0;              /* define global variable        */
}
void main()
{
   int var = 5;
   var = asmfunc(var);         /* call function normally       */

Example 6-3. Assembly Language Program Called by Example 6-2

      .global asmfunc
      .global gvar
asmfunc:
      MOV   &gvar,R11
      ADD   R11,R12
      RET

In the C++ program in Example 6-2, the extern "C" declaration tells the compiler to use C naming conventions
(i.e., no name mangling). When the linker resolves the .global asmfunc reference, the corresponding definition in
the assembly file will match.

The parameter var is passed in R12, and the result is returned in R12.
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6.6.3 Accessing Assembly Language Variables From C/C++

It is sometimes useful for a C/C++ program to access variables or constants defined in assembly language.
There are several methods that you can use to accomplish this, depending on where and how the item is
defined: a variable defined in the .bss section, a variable not defined in the .bss section, or a linker symbol.

6.6.3.1 Accessing Assembly Language Global Variables

Accessing variables from the .bss section or a section named with .usect is straightforward:

1. Use the .bss or .usect directive to define the variable.
2. Use the .def or .global directive to make the definition external.
3. Use the appropriate linkname in assembly language.
4. In C/C++, declare the variable as extern and access it normally.

Example 6-5 and Example 6-4 show how you can access a variable defined in .bss.

Example 6-4. Assembly Language Variable Program

       .bss     var,4,4      ; Define the variable
       .global  var          ; Declare it as external

Example 6-5. C Program to Access Assembly Language From Example 6-4

extern int var;       /* External variable */
var = 1;              /* Use the variable  */

6.6.3.2 Accessing Assembly Language Constants

You can define global constants in assembly language by using the .set directive in combination with either
the .def or .global directive, or you can define them in a linker command file using a linker assignment statement.
These constants are accessible from C/C++ only with the use of special operators.

For variables defined in C/C++ or assembly language, the symbol table contains the address of the value
contained by the variable. When you access an assembly variable by name from C/C++, the compiler gets the
value using the address in the symbol table.

For assembly constants, however, the symbol table contains the actual value of the constant. The compiler
cannot tell which items in the symbol table are addresses and which are values. If you access an assembly (or
linker) constant by name, the compiler tries to use the value in the symbol table as an address to fetch a value.
To prevent this behavior, you must use the & (address of) operator to get the value (_symval). In other words, if x
is an assembly language constant, its value in C/C++ is &x. See the section on "Using Linker Symbols in C/C++
Applications" in the MSP430 Assembly Language Tools User's Guide for more examples that use _symval.

For more about symbols and the symbol table, refer to the section on "Symbols" in the MSP430 Assembly
Language Tools User's Guide.

You can use casts and #defines to ease the use of these symbols in your program, as in Example 6-6 and
Example 6-7.

Example 6-6. Accessing an Assembly Language Constant From C

extern int table_size;        /*external ref */
#define TABLE_SIZE ((int) _symval(&table_size)) /* use cast to hide address-of */
      .
for (I=0; i<TABLE_SIZE; ++I)  /* use like normal symbol */
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Example 6-7. Assembly Language Program for Example 6-6

table_size  .set10000     ; define the constant
             .global _table_size  ; make it global

Because you are referencing only the symbol's value as stored in the symbol table, the symbol's declared type is
unimportant. In Example 6-6, int is used. You can reference linker-defined symbols in a similar manner.

6.6.4 Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes between
C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations will cause
suitable assembly to be generated automatically, allowing you to reference the C/C++ constructs in assembly
code. For more information, see the C/C++ header files chapter in the MSP430 Assembly Language Tools
User's Guide.

6.6.5 Using Inline Assembly Language

Within a C/C++ program, you can use the asm statement to insert a single line of assembly language into the
assembly language file created by the compiler. A series of asm statements places sequential lines of assembly
language into the compiler output with no intervening code. For more information, see Section 5.10.

The asm statement is useful for inserting comments in the compiler output. Simply start the assembly code string
with a semicolon (;) as shown below:

asm(";*** this is an assembly language comment");

Note

Using the asm Statement: Keep the following in mind when using the asm statement:
• Be extremely careful not to disrupt the C/C++ environment. The compiler does not check or

analyze the inserted instructions.
• Avoid inserting jumps or labels into C/C++ code because they can produce unpredictable results

by confusing the register-tracking algorithms that the code generator uses.
• Do not change the value of a C/C++ variable when using an asm statement. This is because the

compiler does not verify such statements. They are inserted as is into the assembly code, and
potentially can cause problems if you are not sure of their effect.

• Do not use the asm statement to insert assembler directives that change the assembly
environment.

• Avoid creating assembly macros in C code and compiling with the --symdebug:dwarf (or -g) option.
The C environment’s debug information and the assembly macro expansion are not compatible.

6.7 Interrupt Handling
As long as you follow the guidelines in this section, you can interrupt and return to C/C++ code without disrupting
the C/C++ environment. When the C/C++ environment is initialized, the startup routine does not enable or
disable interrupts. If the system is initialized by way of a hardware reset, interrupts are disabled. If your system
uses interrupts, you must handle any required enabling or masking of interrupts. Such operations have no effect
on the C/C++ environment and are easily incorporated with asm statements or calling an assembly language
function.
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6.7.1 Saving Registers During Interrupts

When C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine registers that
are used by the routine or by any functions called by the routine. Register preservation must be explicitly
handled by the interrupt routine.

6.7.2 Using C/C++ Interrupt Routines

A C/C++ interrupt routine is like any other C/C++ function in that it can have local variables and register
variables. Except for software interrupt routines, an interrupt routine must be declared with no arguments and
must return void. For example:

__interrupt void example (void)
{
...
}

If a C/C++ interrupt routine does not call any other functions, only those registers that the interrupt handler uses
are saved and restored. However, if a C/C++ interrupt routine does call other functions, these functions can
modify unknown registers that the interrupt handler does not use. For this reason, the routine saves all the save-
on-call registers if any other functions are called. (This excludes banked registers.) Do not call interrupt handling
functions directly.

Interrupts can be handled directly with C/C++ functions by using the INTERRUPT pragma or the __interrupt
keyword. For information, see Section 5.11.19 and Section 5.7.2, respectively.

6.7.3 Using Assembly Language Interrupt Routines

You can handle interrupts with assembly language code as long as you follow the same register conventions the
compiler does. Like all assembly functions, interrupt routines can use the stack (16-bit limit), access global C/C+
+ variables, and call C/C++ functions normally. When calling C/C++ functions, be sure that any save-on-call
registers are preserved before the call because the C/C++ function can modify any of these registers. You do not
need to save save-on-entry registers because they are preserved by the called C/C++ function.

6.7.4 Interrupt Vectors

The interrupt vectors for the MSP430 and MSP430X devices are 16 bits. Therefore, interrupt service routines
(ISRs) must be placed into the low 64K of memory. Convenience macros are provided in the MSP430X device
headers file to declare interrupts to ensure 16-bit placement when linking.

Alternatively, use the CODE_SECTIONS pragma to place the code for ISRs into sections separate from the
default .text sections. Use the linker command file and the SECTIONS directive to ensure the code sections
associated with ISRs are placed into low memory.

If you do not specify an ISR for some interrupt vectors, an ISR will be provided for those vectors from the RTS
library and the RTS library will automatically be linked with your application. The default ISR puts the device in
low power mode. You can override the ISR provided by the RTS with the pragma vector and the
unused_interrupts keyword as shown in Section 5.11.29.

6.7.5 Other Interrupt Information

An interrupt routine can perform any task performed by any other function, including accessing global variables,
allocating local variables, and calling other functions.

When you write interrupt routines, keep the following points in mind:

• It is your responsibility to handle any special masking of interrupts.
• A C/C++ interrupt routine cannot be called directly from C/C++ code. You need to arrange for an interrupt

signal to happen.
• In a system reset interrupt, such as _c_int00, you cannot assume that the run-time environment is set up;

therefore, you cannot allocate local variables, and you cannot save any information on the run-time stack.
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6.8 Using Intrinsics to Access Assembly Language Statements
The compiler recognizes a number of intrinsic operators. Intrinsics are used like functions and produce assembly
language statements that would otherwise be inexpressible in C/C++. You can use C/C++ variables with these
intrinsics, just as you would with any normal function. The intrinsics are specified with a double leading
underscore, and are accessed by calling them as you do a function. (Both single and double leading
underscores can be used with intrinsics, but a double underscore is preferred. For example:

short state;
   :
state = __get_SR_register();

No declaration of the intrinsic functions is necessary.

6.8.1 MSP430 Intrinsics

Table 6-5 lists all of the intrinsic operators in the MSP430 C/C++ compiler. A function-like prototype is presented
for each intrinsic that shows the expected type for each parameter. If the argument type does not match the
parameter, type conversions are performed on the argument. The intrinsics.h file in the compiler's "include"
directory contains function-like prototypes for all supported intrinsics.

For more information on the resulting assembly language mnemonics, see the MSP430x1xx Family User’s
Guide, the MSP430x3xx Family User’s Guide, and the MSP430x4xx Family User’s Guide.

Table 6-5. MSP430 Intrinsics
Intrinsic Generated Assembly
unsigned short __bcd_add_short(unsigned short op1, unsigned short op2); MOV op1, dst

CLRC
DADD op2, dst

unsigned long __bcd_add_long(unsigned long op1, unsigned long op2); MOV op1_low, dst_low
MOV op1_hi, dst_hi
CLRC
DADD op2_low, dst_low
DADD op2_hi, dst_hi

unsigned short __bic_SR_register(unsigned short mask); BIC mask, SR

unsigned short __bic_SR_register_on_exit(unsigned short mask); BIC mask, saved_SR

unsigned short __bis_SR_register(unsigned short mask); BIS mask, SR

unsigned short __bis_SR_register_on_exit(unsigned short mask); BIS mask, saved_SR

unsigned long __data16_read_addr(unsigned short addr); MOV.W addr, Rx
MOVA 0(Rx), dst

void __data16_write_addr (unsigned short addr, unsigned long src); MOV.W addr, Rx
MOVA src, 0(Rx)

unsigned char __data20_read_char(unsigned long addr);(1) MOVA addr, Rx
MOVX.B 0(Rx), dst

unsigned long __data20_read_long(unsigned long addr);(1) MOVA addr, Rx
MOVX.W 0(Rx), dst.lo
MOVX.W 2(Rx), dst.hi

unsigned short __data20_read_short(unsigned long addr);(1) MOVA addr, Rx
MOVX.W 0(Rx), dst

void __data20_write_char(unsigned long addr, unsigned char src);(1) MOVA addr, Rx
MOVX.B src, 0(Rx)

void __data20_write_long(unsigned long addr, unsigned long src);(1) MOVA addr, Rx
MOVX.W src.lo, 0(Rx)
MOVX.W src.hi, 2(Rx)

void __data20_write_short(unsigned long addr, unsigned short src);(1) MOVA addr, Rx
MOVX.W src, 0(Rx)

void __delay_cycles(unsigned long); See Section 6.8.3.
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Table 6-5. MSP430 Intrinsics (continued)
Intrinsic Generated Assembly
void __disable_interrupt(void);

OR
__disable_interrupts(void);

DINT

void __enable_interrupt(void);
OR
__enable_interrupts(void);

EINT

unsigned int __even_in_range(unsigned int, unsigned int); See Section 5.11.29.

unsigned short __get_interrupt_state(void); MOV SR, dst

unsigned short __get_R4_register(void); /* deprecated */ MOV.W R4, dst

unsigned short __get_R5_register(void); /* deprecated */ MOV.W R5, dst

unsigned short __get_SP_register(void); MOV SP, dst

unsigned short __get_SR_register(void); MOV SR, dst

unsigned short __get_SR_register_on_exit(void); MOV saved_SR, dst

void __low_power_mode_0(void); BIS.W #0x18, SR

void __low_power_mode_1(void); BIS.W #0x58, SR

void __low_power_mode_2(void); BIS.W #0x98, SR

void __low_power_mode_3(void); BIS.W #0xD8, SR

void __low_power_mode_4(void); BIS.W #0xF8, SR

void __low_power_mode_off_on_exit(void); BIC.W #0xF0, saved_SR

void __never_executed(void); See Section 6.8.4.

void __no_operation(void); NOP

void __op_code(unsigned short); Encodes whatever instruction
corresponds to the argument.

short __saturated_add_signed_short( short src1, short src2 ); Instructions to perform saturated
addition on short values. Values outside
the range of a signed short are capped
at the maximum or minimum value as
appropriate.

long __saturated_add_signed_long( long src1, long src2 ); Instructions to perform saturated
addition on long values. Values outside
the range of a signed long are capped
at the maximum or minimum value as
appropriate.

short __saturated_sub_signed_short( short src1, short src2 ); Instructions to perform saturated
subtraction on short values. Values
outside the range of a signed short are
capped at the maximum or minimum
value as appropriate.

long __saturated_sub_signed_long( long src1, long src2 ); Instructions to perform saturated
subtraction on long values. Values
outside the range of a signed long are
capped at the maximum or minimum
value as appropriate.

void __set_interrupt_state(unsigned short src); MOV src, SR

void __set_R4_register(unsigned short src); /* deprecated */ MOV.W src, R4

void __set_R5_register(unsigned short src); /* deprecated */ MOV.W src, R5

void __set_SP_register(unsigned short src); MOV src, SP

unsigned short __swap_bytes(unsigned short src); MOV src, dst
SWPB dst

(1) Intrinsic encodes multiple instructions depending on the code. The most common instructions produced are presented here.
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6.8.2 Deprecated Intrinsics

The following intrinsics have been deprecated. Using them is not recommended, because they may not be
supported in future releases.

Table 6-6. Deprecated Intrinsics
Intrinsic
__get_R4_register

__get_R5_register

__set_R4_register

__set_R5_register

6.8.3 The __delay_cycle Intrinsic

The __delay_cycles intrinsic inserts code to consume precisely the number of specified cycles with no side
effects. The number of cycles delayed must be a compile-time constant.

6.8.4 The __never_executed Intrinsic

The MSP430 C/C++ Compiler supports a __never_executed( ) intrinsic that can be used to assert that a default
label in a switch block is never executed. If you assert that a default label is never executed the compiler can
generate more efficient code based on the values specified in the case labels within a switch block.

6.8.4.1 Using __never_executed With a Vector Generator

The __never_executed( ) intrinsic is specifically useful for testing the values of an MSP430 interrupt vector
generator such as the vector generator for Timer A (TAIV). MSP430 vector generator values are mapped to an
interrupt source and are characterized in that they fall within a specific range and can only take on even values.
A common way to handle a particular interrupt source represented in a vector generator is to use a switch
statement. However, a compiler is constrained by the C language in that it can make no assumptions about what
values a switch expression may have. The compiler will have to generate code to handle every possible value,
which leads to what would appear to be inefficient code.

The __never_executed( ) intrinsic can be used to assert to the compiler that a switch expression can only take
on values represented by the case labels within a switch block. Having this assertion, the compiler can avoid
generating test code for handling values not specified by the switch case labels. Having this assertion is
specifically suited for handling values that characterize a vector generator.

Example 6-8 illustrates a switch block that handles the values of the Timer B (TBIV) vector generator.

Example 6-8. TBIV Vector Generator

__interrupt void Timer_B1 (void)
{
 switch( TBIV )
 {
   case  0: break; /* Do nothing */
   case  2: TBCCR1 += 255;
            state +=1;
            break;
   case  4: TBCCR0 = 254;
            TBCCR1 = 159;
            state =200;
            break;
   case  6: break;
   case  8: break;
   case 10: break;
   case 12: break;
   case 14: break;
   default:  __never_executed();
 }
}
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In Example 6-8 using the __never_executed( ) intrinsic asserts that the value of TBIV can only take on the
values specified by the case labels, namely the even values from 0 to 14. Normally, the compiler would have to
generate code to handle any value which would result in extra range checks. Instead, for this example, the
compiler will generate a switch table where the value of TBIV is simply added to the PC to jump to the
appropriate code block handling each value represented by the case labels.

6.8.4.2 Using __never_executed With General Switch Expressions

Using the __never_executed( ) intrinsic at the default label can also improve the generated switch code for more
general switch expressions that do not involve vector generator type values.

Example 6-9. General Switch Statement

switch( val)
{
  case 0:
  case 5: action(a); break;
  case 14: action(b); break;
  default: __never_executed();
}

Normally, for the switch expression values 0 and 5, the compiler generates code to test for both 0 and 5 since
the compiler must handle the possible values 1−4. The __never_executed( ) intrinsic in Example 6-9 asserts that
val cannot take on the values 1−4 and therefore the compiler only needs to generate a single test (val < 6) to
handle both case labels.

Additionally, using the __never_executed( ) intrinsic results in the assertion that if val is not 0 or 5 then it has to
be 14 and the compiler has no need to generate code to test for val == 14.

The __never_executed( ) intrinsic is only defined when specified as the single statement following a default case
label. The compiler ignores the use of the intrinsic in any other context.

6.9 System Initialization
Before you can run a C/C++ program, you must create the C/C++ run-time environment. The C/C++ boot routine
performs this task using a function called _c_int00. The run-time-support source library, rts.src, contains the
source to this routine in a module named boot.c (or boot.asm).

To begin running the system, the _c_int00 function can be called by reset hardware. You must link the _c_int00
function with the other object files. This occurs automatically when you use the --rom_model or --ram_model link
option and include a standard run-time-support library as one of the linker input files.

When C/C++ programs are linked, the linker sets the entry point value in the executable output file to the symbol
_c_int00.

The _c_int00 function performs the following tasks to initialize the environment:

1. Reserves space for the user mode run-time stack, and sets up the initial value of the stack pointer (SP)
2. It initializes global variables by copying the data from the initialization tables to the storage allocated for the

variables in the .bss section. If you are initializing variables at load time (--ram_model option), a loader
performs this step before the program runs (it is not performed by the boot routine). For more information,
see Section 6.9.3.

3. Executes the global constructors found in the global constructors table. For more information, see Section
6.9.3.6.

4. Calls the main() function to run the C/C++ program

You can replace or modify the boot routine to meet your system requirements. However, the boot routine must
perform the operations listed above to correctly initialize the C/C++ environment.
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6.9.1 Boot Hook Functions for System Pre-Initialization

Boot hooks are points at which you may insert application functions into the C/C++ boot process. Default boot
hook functions are provided with the run-time support (RTS) library. However, you can implement customized
versions of these boot hook functions, which override the default boot hook functions in the RTS library if they
are linked before the run-time library. Such functions can perform any application-specific initialization before
continuing with the C/C++ environment setup.

Note that the TI-RTOS operating system uses custom versions of the boot hook functions for system setup, so
you should be careful about overriding these functions if you are using TI-RTOS.

The following boot hook functions are available:

_system_pre_init(): This function provides a place to perform application-specific initialization. It is invoked after
the stack pointer is initialized but before any C/C++ environment setup is performed. By default,
_system_pre_init() should return a non-zero value. The default C/C++ environment setup is bypassed if
_system_pre_init() returns 0.

_system_post_cinit(): This function is invoked during C/C++ environment setup, after C/C++ global data is
initialized but before any C++ constructors are called. This function should not return a value.

The _c_int00( ) initialization routine also provides a mechanism for an application to perform the setup (set I/O
registers, enable/disable timers, etc.) before the C/C++ environment is initialized.

6.9.2 Run-Time Stack

The run-time stack is allocated in a single continuous block of memory and grows down from high addresses to
lower addresses. The SP points to the top of the stack.

The code does not check to see if the run-time stack overflows. Stack overflow occurs when the stack grows
beyond the limits of the memory space that was allocated for it. Be sure to allocate adequate memory for the
stack.

The stack size can be changed at link time by using the --stack_size link option on the linker command line and
specifying the stack size as a constant directly after the option.

The C/C++ boot routine shipped with the compiler sets up the user/thread mode run-time stack. If your program
uses a run-time stack when it is in other operating modes, you must also allocate space and set up the run-time
stack corresponding to those modes.

6.9.3 Automatic Initialization of Variables

Any global variables declared as preinitialized must have initial values assigned to them before a C/C++ program
starts running. The process of retrieving these variables' data and initializing the variables with the data is called
autoinitialization. Internally, the compiler and linker coordinate to produce compressed initialization tables. Your
code should not access the initialization table.

6.9.3.1 Zero Initializing Variables

In ANSI C, global and static variables that are not explicitly initialized must be set to 0 before program execution.
The C/C++ compiler supports preinitialization of uninitialized variables by default. This can be turned off by
specifying the linker option --zero_init=off.

Zero initialization takes place only if the --rom_model linker option, which causes autoinitialization to occur, is
used. If you use the --ram_model option for linking, the linker does not generate initialization records, and the
loader must handle both data and zero initialization.

6.9.3.2 Direct Initialization

The compiler uses direct initialization to initialize global variables. For example, consider the following C code:

int i    = 23;
int a[5] = { 1, 2, 3, 4, 5 };
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The compiler allocates the variables 'i' and 'a[] to .data section and the initial values are placed directly.

        .global i
        .data
        .align  4
i:
        .field          23,32                   ; i @ 0
        .global a
        .data
        .align  4
a:
        .field          1,32                    ; a[0] @ 0
        .field          2,32                    ; a[1] @ 32
        .field          3,32                    ; a[2] @ 64
        .field          4,32                    ; a[3] @ 96
        .field          5,32                    ; a[4] @ 128

Each compiled module that defines static or global variables contains these .data sections. The linker treats
the .data section like any other initialized section and creates an output section. In the load-time initialization
model, the sections are loaded into memory and used by the program. See Section 6.9.3.5.

In the run-time initialization model, the linker uses the data in these sections to create initialization data and an
additional compressed initialization table. The boot routine processes the initialization table to copy data from
load addresses to run addresses. See Section 6.9.3.3.

6.9.3.3 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke the
linker with the --rom_model option.

Using this method, the linker creates a compressed initialization table and initialization data from the direct
initialized sections in the compiled module. The table and data are used by the C/C++ boot routine to initialize
variables in RAM using the table and data in ROM.

Figure 6-3 illustrates autoinitialization at run time. Use this method in any system where your application runs
from code burned into ROM.

C auto init
table and data

(ROM)

.data
uninitialized

(RAM)

Boot
routine

Loader

Object file Memory

C auto init
table and data

(ROM)
(.cinit section)

Figure 6-3. Autoinitialization at Run Time
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6.9.3.4 Autoinitialization Tables

The compiled object files do not have initialization tables. The variables are initialized directly. The linker, when
the --rom_model option is specified, creates C auto initialization table and the initialization data. The linker
creates both the table and the initialization data in an output section named .cinit.

The autoinitialization table has the following format:

The linker defined symbols __TI_CINIT_Base and __TI_CINIT_Limit point to the start and end of the table,
respectively. Each entry in this table corresponds to one output section that needs to be initialized. The
initialization data for each output section could be encoded using different encoding.

The load address in the C auto initialization record points to initialization data with the following format:

8-bit index Encoded data

The first 8-bits of the initialization data is the handler index. It indexes into a handler table to get the address of a
handler function that knows how to decode the following data.

The handler table is a list of 32-bit function pointers.

32-bit handler 1 address

32-bit handler n address

_TI_Handler_Table_Base:

_TI_Handler_Table_Limit:

The encoded data that follows the 8-bit index can be in one of the following format types. For clarity the 8-bit
index is also depicted for each format.

6.9.3.4.1 Length Followed by Data Format

8-bit index 24-bit padding 32-bit length (N) N byte initialization data (not compressed)

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length field encodes
the length of the initialization data in bytes (N). N byte initialization data is not compressed and is copied to the
run address as is.

The run-time support library has a function __TI_zero_init() to process this type of initialization data. The first
argument to this function is the address pointing to the byte after the 8-bit index. The second argument is the run
address from the C auto initialization record.

6.9.3.4.2 Zero Initialization Format

8-bit index 24-bit padding 32-bit length (N)

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length field encodes
the number of bytes to be zero initialized.
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The run-time support library has a function __TI_zero_init() to process the zero initialization. The first argument
to this function is the address pointing to the byte after the 8-bit index. The second argument is the run address
from the C auto initialization record.

6.9.3.4.3 Run Length Encoded (RLE) Format

8-bit index Initialization data compressed using run length encoding

The data following the 8-bit index is compressed using Run Length Encoded (RLE) format. uses a simple run
length encoding that can be decompressed using the following algorithm:

1. Read the first byte, Delimiter (D).
2. Read the next byte (B).
3. If B != D, copy B to the output buffer and go to step 2.
4. Read the next byte (L).

a. If L == 0, then length is either a 16-bit, a 24-bit value, or we’ve reached the end of the data, read next byte
(L).
i. If L == 0, length is a 24-bit value or the end of the data is reached, read next byte (L).

1. If L == 0, the end of the data is reached, go to step 7.
2. Else L <<= 16, read next two bytes into lower 16 bits of L to complete 24-bit value for L.

ii. Else L <<= 8, read next byte into lower 8 bits of L to complete 16-bit value for L.
b. Else if L > 0 and L < 4, copy D to the output buffer L times. Go to step 2.
c. Else, length is 8-bit value (L).

5. Read the next byte (C); C is the repeat character.
6. Write C to the output buffer L times; go to step 2.
7. End of processing.

The run-time support library has a routine __TI_decompress_rle24() to decompress data compressed using
RLE. The first argument to this function is the address pointing to the byte after the 8-bit index. The second
argument is the run address from the C auto initialization record.

Note
RLE Decompression Routine

The previous decompression routine, __TI_decompress_rle(), is included in the run-time-support
library for decompressing RLE encodings generated by older versions of the linker.

6.9.3.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format

8-bit index Initialization data compressed using LZSS

The data following the 8-bit index is compressed using LZSS compression. The run-time support library has the
routine __TI_decompress_lzss() to decompress the data compressed using LZSS. The first argument to this
function is the address pointing to the byte after the 8-bit index. The second argument is the run address from
the C auto initialization record.

6.9.3.5 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot time and by saving the memory
used by the initialization tables. To use this method, invoke the linker with the --ram_model option.

When you use the --ram_model link option, the linker does not generate C autoinitialization tables and data. The
direct initialized sections (.data) in the compiled object files are combined according to the linker command file to
generate initialized output sections. The loader loads the initialized output sections into memory. After the load,
the variables are assigned their initial values.

Since the linker does not generate the C autoinitialization tables, no boot time initialization is performed.
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Figure 6-4 illustrates the initialization of variables at load time.

.data section
(initialized)

(RAM)

.data
section

Loader

Object file Memory

Figure 6-4. Initialization at Load Time

6.9.3.6 Global Constructors

All global C++ variables that have constructors must have their constructor called before main(). The compiler
builds a table of global constructor addresses that must be called, in order, before main() in a section
called .init_array. The linker combines the .init_array section form each input file to form a single table in
the .init_array section. The boot routine uses this table to execute the constructors. The linker defines two
symbols to identify the combined .init_array table as shown below. This table is not null terminated by the linker.

Address of constructor 1

Address of constructor 2

Address of constructor n

__TI_INITARRAY_Base:

__TI_INITARRAY_Limit:

Figure 6-5. Constructor Table
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6.9.4 Initialization Tables

The tables in the .cinit section consist of variable-size initialization records. Each variable that must be
autoinitialized has a record in the .cinit section. Figure 6-6 shows the format of the .cinit section and the
initialization records.

Initialization record 2

Initialization record 1

Initialization record n

Initialization record 3

.cinit section

Size in

bytes
Initialization

data

Initialization record

?

Pointer to

.bss area

Figure 6-6. Format of Initialization Records in the .cinit Section

The fields of an initialization record contain the following information:

• The first field of an initialization record contains the size (in bytes) of the initialization data.
• The second field contains the starting address of the area within the .bss section where the initialization data

must be copied.
• The third field contains the data that is copied into the .bss section to initialize the variable.

Each variable that must be autoinitialized has an initialization record in the .cinit section.

The following example shows initialized global variables defined in C.

int x;
short i = 23;
int *p = 
int a[5] = {1,2,3,4,5};
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The corresponding initialization table is as follows. The section .cinit:c is a subsection in the .cinit section that
contains all scalar data. The subsection is handled as one record during initialization, which minimizes the
overall size of the .cinit section.

        .global _x
        .bss    _x,4,4
        .sect   ".cinit:c"
        .align  8
        .field          (CIR - $) - 8, 32
        .field          _I+0,32
        .field         23,16                    ; _I @ 0
        .sect   ".text"
        .global _I
_I:     .usect  ".bss:c",2,2
        .sect   ".cinit:c"
        .align  4
        .field         _x,32                    ; _p @ 0
        .sect   ".text"
        .global _p
_p:     .usect  ".bss:c",4,4
        .sect   ".cinit"
        .align  8
        .field          IR_1,32
        .field          _a+0,32
        .field         1,32                     ; _a[0] @ 0
        .field         2,32                     ; _a[1] @ 32
        .field         3,32                     ; _a[2] @ 64
        .field         4,32                     ; _a[3] @ 96
        .field         5,32                     ; _a[4] @ 128
IR_1:   .set    20
        .sect   ".text"
        .global _a
        .bss    _a,20,4
;**********************************************************************
;* MARK THE END OF THE SCALAR INIT RECORD IN CINIT:C                  *
;**********************************************************************
CIR:    .sect   ".cinit:c"

The .cinit section must contain only initialization tables in this format. When interfacing assembly language
modules, do not use the .cinit section for any other purpose.

The table in the .pinit section simply consists of a list of addresses of constructors to be called (as shown in the
following figure). The constructors appear in the table after the .cinit initialization.

Address of constructor 2

Address of constructor 1

Address of constructor n

Address of constructor 3

.pinit section

�

•

•

Figure 6-7. Format of Initialization Records in the .pinit Section

When you use the --rom_model or --ram_model option, the linker combines the .cinit sections from all the C/C++
modules and appends a null word to the end of the composite .cinit section. This terminating record appears as
a record with a size field of 0 and marks the end of the initialization tables.

Likewise, the --rom_model or --ram_model link option causes the linker to combine all of the .pinit sections from
all C/C++ modules and append a null word to the end of the composite .pinit section. The boot routine knows the
end of the global constructor table when it encounters a null constructor address.

The const-qualified variables are initialized differently; see Section 5.7.1.
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6.10 Compiling for 20-Bit MSP430X Devices
The MSP430 tools support compiling and linking code for MSP430 and MSP430X (MSP430X) devices. See the
following for more information on options and topics that apply to compiling for the MSP430X devices:

• Use the --silicon_version=mspx option to compile for MSP430X devices. See Section 2.3.4.
• Function pointers are 20-bits. See Section 5.5 and Table 6-2.
• The compiler supports a large-code memory model while generating code for MSP430X devices. See

Section 6.1.1.
• The compiler supports a large-data memory model while generating code for MSP430X devices. See Section

6.1.2.
• Any assembly routines that interface with MSP430X C programs must fit the large code model. See Section

6.6.1.
• Interrupt service routines must be placed into low memory. See Section 6.7.4.
• Link with the rts430x.lib or rts430x_eh.lib run-time-support library.
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Some of the features of C/C++ (such as I/O, dynamic memory allocation, string operations, and trigonometric
functions) are provided as an ANSI/ISO C/C++ standard library, rather than as part of the compiler itself. The TI
implementation of this library is the run-time-support library (RTS). The C/C++ compiler implements the ISO
standard library except for those facilities that handle exception conditions, signal and locale issues (properties
that depend on local language, nationality, or culture). Using the ANSI/ISO standard library ensures a consistent
set of functions that provide for greater portability.

In addition to the ANSI/ISO-specified functions, the run-time-support library includes routines that give you
processor-specific commands and direct C language I/O requests. These are detailed in Section 7.1 and Section
7.2.

A library-build utility is provided with the code generation tools that lets you create customized run-time-support
libraries. This process is described in Section 7.4 .

7.1 C and C++ Run-Time Support Libraries................................................................................................................. 148
7.2 The C I/O Functions..................................................................................................................................................150
7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)........................................................162
7.4 Library-Build Process.............................................................................................................................................. 163
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7.1 C and C++ Run-Time Support Libraries
MSP430 compiler releases include pre-built run-time support (RTS) libraries that provide all the standard
capabilities. Separate libraries are provided for each ABI and C++ exception support. See Section 7.1.8 for
information on the library-naming conventions.

The run-time-support library contains the following:
• ANSI/ISO C/C++ standard library
• C I/O library
• Low-level support functions that provide I/O to the host operating system
• Fundamental arithmetic routines
• System startup routine, _c_int00
• Compiler helper functions (to support language features that are not directly efficiently expressible in C/C++)

The run-time-support libraries do not contain functions involving signals and locale issues.

The C++ library supports wide chars, in that template functions and classes that are defined for char are also
available for wide char. For example, wide char stream classes wios, wiostream, wstreambuf and so on
(corresponding to char classes ios, iostream, streambuf) are implemented. However, there is no low-level file I/O
for wide chars. Also, the C library interface to wide char support (through the C++ headers <cwchar> and
<cwctype>) is limited as described in Section 5.1.

TI does not provide documentation that covers the functionality of the C++ library. TI suggests referring to one of
the following sources:

• The Standard C++ Library: A Tutorial and Reference, Nicolai M. Josuttis, Addison-Wesley, ISBN
0-201-37926-0

• The C++ Programming Language (Third or Special Editions), Bjarne Stroustrup, Addison-Wesley, ISBN
0-201-88954-4 or 0-201-70073-5

7.1.1 Linking Code With the Object Library

When you link your program, you must specify the object library as one of the linker input files so that references
to the I/O and run-time-support functions can be resolved. You can either specify the library or allow the compiler
to select one for you. See Section 4.3.1 for further information.

When a library is linked, the linker includes only those library members required to resolve undefined references.
For more information about linking, see theMSP430 Assembly Language Tools User's Guide .

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support functions
and variables that can be called and referenced from both C and C++ will have the same linkage.

7.1.2 Header Files

You must use the header files provided with the compiler run-time support when using functions from C/C++
standard library. Set the MSP_C_DIR environment variable to the absolute path of the "include" directory in the
compiler release.

7.1.3 Modifying a Library Function

You can inspect or modify library functions by examining the source code in the lib/src subdirectory of the
compiler installation. For example, C:\ti\ccsv7\tools\compiler\ msp430_#.#.# \lib\src .

One you have located the relevant source code, change the specific function file and rebuild the library.

You can use this source tree to rebuild the rts430.lib library or to build a new library. See Section 7.1.8 for details
on library naming and Section 7.4 for details on building

Using Run-Time-Support Functions and Building Libraries www.ti.com

148 MSP430 Optimizing C/C++ Compiler
v20.12.0.STS

SLAU132X – OCTOBER 2004 – REVISED DECEMBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU132X&partnum=


 

7.1.4 Support for String Handling

The library includes the header files <string.h> and <strings.h>, which provide the following functions for string
handling beyond those required.

• string.h
– strdup(), which duplicates a string by dynamically allocating memory and copying the string to this

allocated memory
– strcmp() and strncmp(), which perform case-sensitive string comparisons
– memcpy(), which copies memory from one location to another
– memcmp(), which compares sections of memory

• strings.h
– bcmp(), which is equivalent to memcmp()
– bcopy(), which is equivalent to memmove()
– bzero(), which is equivalent to memset(.., 0, ...);
– ffs(), which finds the first bit set and returns the index of that bit
– index(), which is equivalent to strchr()
– rindex(), which is equivalent to strrchr()
– strcasecmp() and strncasecmp(), which perform case-insensitive string comparisons

7.1.5 Minimal Support for Internationalization

The library includes the header files <locale.h>, <wchar.h>, and <wctype.h>, which provide APIs to support non-
ASCII character sets and conventions. Our implementation of these APIs is limited in the following ways:

• The library has minimal support for wide and multibyte characters. The type wchar_t is implemented as
unsigned int. The wide character set is equivalent to the set of values of type char. The library includes the
header files <wchar.h> and <wctype.h> but does not include all the functions specified in the standard. See
Section 5.6 for more information about extended character sets.

• The C library includes the header file <locale.h> but with a minimal implementation. The only supported
locale is the C locale. That is, library behavior that is specified to vary by locale is hard-coded to the behavior
of the C locale, and attempting to install a different locale via a call to setlocale() will return NULL.

7.1.6 Allowable Number of Open Files

In the <stdio.h> header file, the value for the macro FOPEN_MAX has the value of the macro _NFILE, which is
set to 10. The impact is that you can only have 10 files simultaneously open at one time (including the pre-
defined streams - stdin, stdout, stderr).

The C standard requires that the minimum value for the FOPEN_MAX macro is 8. The macro determines the
maximum number of files that can be opened at one time. The macro is defined in the stdio.h header file and
can be modified by changing the value of the _NFILE macro and recompiling the library.

7.1.7 Nonstandard Header Files in the Source Tree

The source code in the lib/src subdirectory of the compiler installation contains certain files that are not specified
by the ISO/ANSI standard, but are needed to build the library:

• The file.h file includes macros and definitions used for low-level I/O functions. This file is available to be
included by the user. Although it is non-standard, it is needed for building the library. There are other header
files in this same category, such as cpy_tbl.h.

• The format.h file includes structures and macros used in printf and scanf.
• The 430cio.h file includes low-level, target-specific C I/O macro definitions. If necessary, you can customize

430cio.h.
• The rtti.h file includes internal function prototypes necessary to implement run-time type identification.
• The vtbl.h file contains the definition of a class's virtual function table format.
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7.1.8 Library Naming Conventions

By default, the linker uses automatic library selection to select the correct run-time-support library (see Section
4.3.1.1) for your application. If you select the library manually, you must select the matching library using a
naming scheme like the following:

rts430[x[l]][abi][_eh].lib

rts430 Indicates a 16-bit MSP430 library.
x Optional x indicates a 20-bit MSP430X library.
l Optional l after x indicates a 20-bit large code, large-data model MSP430X library. (This format is the old style.)
abi Indicates the application binary interface (ABI) used. Although the COFF file format is no longer supported, the library

filename still contains "_eabi" to distinguish the EABI libraries from older COFF libraries.
_eabi EABI

_eh Indicates the library has exception handling support
_lc Indicates the library supports large code
_sc Indicates the library supports small code
_ld Indicates the library supports large data
_rd Indicates the library supports restricted data
_sd Indicates the library supports small data

7.2 The C I/O Functions
The C I/O functions make it possible to access the host's operating system to perform I/O. The capability to
perform I/O on the host gives you more options when debugging and testing code.

The I/O functions are logically divided into layers: high level, low level, and device-driver level.

With properly written device drivers, the C-standard high-level I/O functions can be used to perform I/O on
custom user-defined devices. This provides an easy way to use the sophisticated buffering of the high-level I/O
functions on an arbitrary device.

Note

Debugger Required for Default HOST: For the default HOST device to work, there must be a
debugger to handle the C I/O requests; the default HOST device cannot work by itself in an embedded
system. To work in an embedded system, you will need to provide an appropriate driver for your
system.

Note

C I/O Mysteriously Fails: If there is not enough space on the heap for a C I/O buffer, operations on
the file will silently fail. If a call to printf() mysteriously fails, this may be the reason. The heap needs to
be at least large enough to allocate a block of size BUFSIZ (defined in stdio.h) for every file on which
I/O is performed, including stdout, stdin, and stderr, plus allocations performed by the user's code,
plus allocation bookkeeping overhead. Alternately, declare a char array of size BUFSIZ and pass it to
setvbuf to avoid dynamic allocation. To set the heap size, use the --heap_size option when linking
(refer to the Linker Description chapter in the MSP430 Assembly Language Tools User's Guide).

Using Run-Time-Support Functions and Building Libraries www.ti.com

150 MSP430 Optimizing C/C++ Compiler
v20.12.0.STS

SLAU132X – OCTOBER 2004 – REVISED DECEMBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU132X&partnum=


Note

Open Mysteriously Fails: The run-time support limits the total number of open files to a small
number relative to general-purpose processors. If you attempt to open more files than the maximum,
you may find that the open will mysteriously fail. You can increase the number of open files by
extracting the source code from rts.src and editing the constants controlling the size of some of the C
I/O data structures. The macro _NFILE controls how many FILE (fopen) objects can be open at one
time (stdin, stdout, and stderr count against this total). (See also FOPEN_MAX.) The macro
_NSTREAM controls how many low-level file descriptors can be open at one time (the low-level files
underlying stdin, stdout, and stderr count against this total). The macro _NDEVICE controls how many
device drivers are installed at one time (the HOST device counts against this total).

7.2.1 High-Level I/O Functions

The high-level functions are the standard C library of stream I/O routines (printf, scanf, fopen, getchar, and so
on). These functions call one or more low-level I/O functions to carry out the high-level I/O request. The high-
level I/O routines operate on FILE pointers, also called streams.

Portable applications should use only the high-level I/O functions.

To use the high-level I/O functions, include the header file stdio.h, or cstdio for C++ code, for each module that
references a C I/O function. For example, given the following C program in a file named main.c:

#include <stdio.h>
void main()
{
   FILE *fid;
   fid = fopen("myfile","w");
   fprintf(fid,"Hello, world\n");
   fclose(fid);
   printf("Hello again, world\n");
}

Issuing the following compiler command compiles, links, and creates the file main.out from the run-time-support
library:

cl430 main.c --run_linker --heap_size=400 --library=rts430_eabi.lib --output_file=main.out

Executing main.out results in

Hello, world

being output to a file and

Hello again, world

being output to your host's stdout window.

7.2.1.1 Formatting and the Format Conversion Buffer

The internal routine behind the C I/O functions—such as printf(), vsnprintf(), and snprintf()—reserves stack
space for a format conversion buffer. The buffer size is set by the macro FORMAT_CONVERSION_BUFFER,
which is defined in format.h. Consider the following issues before reducing the size of this buffer:

• The default buffer size is 100 bytes. If MINIMAL is defined, the size is set to 32, which allows integer values
without width specifiers to be printed.

• Each conversion specified with %xxxx (except %s) must fit in FORMAT_CONVERSION_BUFSIZE. This
means any individual formatted float or integer value, accounting for width and precision specifiers, needs to
fit in the buffer. Since the actual value of any representable number should easily fit, the main concern is
ensuring the width and/or precision size meets the constraints.
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• The length of converted strings using %s are unaffected by any change in
FORMAT_CONVERSION_BUFSIZE. For example, you can specify printf("%s value is %d",
some_really_long_string, intval) without a problem.

• The constraint is for each individual item being converted. For example a format string of %d item1 %f
item2 %e item3 does not need to fit in the buffer. Instead, each converted item specified with a % format
must fit.

• There is no buffer overrun check.

7.2.2 Overview of Low-Level I/O Implementation

The low-level functions are comprised of seven basic I/O functions: open, read, write, close, lseek, rename, and
unlink. These low-level routines provide the interface between the high-level functions and the device-level
drivers that actually perform the I/O command on the specified device.

The low-level functions are designed to be appropriate for all I/O methods, even those which are not actually
disk files. Abstractly, all I/O channels can be treated as files, although some operations (such as lseek) may not
be appropriate. See Section 7.2.3 for more details.

The low-level functions are inspired by, but not identical to, the POSIX functions of the same names.

The low-level functions operate on file descriptors. A file descriptor is an integer returned by open, representing
an opened file. Multiple file descriptors may be associated with a file; each has its own independent file position
indicator.

open

Open File for I/O

Syntax #include <file.h>

int open (const char * path , unsigned flags , int file_descriptor );

Description The open function opens the file specified by path and prepares it for I/O.

• The path is the filename of the file to be opened, including an optional directory path
and an optional device specifier (see Section 7.2.5).

• The flags are attributes that specify how the file is manipulated. The flags are specified
using the following symbols:

   O_RDONLY   (0x0000)   /* open for reading */
   O_WRONLY   (0x0001)   /* open for writing */
   O_RDWR     (0x0002)   /* open for read & write */
   O_APPEND   (0x0008)   /* append on each write */
   O_CREAT    (0x0200)   /* open with file create */
   O_TRUNC    (0x0400)   /* open with truncation */
   O_BINARY   (0x8000)   /* open in binary mode */

Low-level I/O routines allow or disallow some operations depending on the flags used
when the file was opened. Some flags may not be meaningful for some devices,
depending on how the device implements files.

• The file_descriptor is assigned by open to an opened file.

The next available file descriptor is assigned to each new file opened.

Return Value The function returns one of the following values:

non-negative file descriptor if successful
-1 on failure
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close

Close File for I/O

Syntax #include <file.h>

int close (int file_descriptor );

Description The close function closes the file associated with file_descriptor.

The file_descriptor is the number assigned by open to an opened file.

Return Value The return value is one of the following:

0 if successful
-1 on failure

read

Read Characters from a File

Syntax #include <file.h>

int read (int file_descriptor , char * buffer , unsigned count );

Description The read function reads count characters into the buffer from the file associated with
file_descriptor.

• The file_descriptor is the number assigned by open to an opened file.
• The buffer is where the read characters are placed.
• The count is the number of characters to read from the file.

Return Value The function returns one of the following values:

0 if EOF was encountered before any characters were read
# number of characters read (may be less than count)
-1 on failure

write

Write Characters to a File

Syntax #include <file.h>

int write (int file_descriptor , const char * buffer , unsigned count );

Description The write function writes the number of characters specified by count from the buffer to
the file associated with file_descriptor.

• The file_descriptor is the number assigned by open to an opened file.
• The buffer is where the characters to be written are located.
• The count is the number of characters to write to the file.

Return Value The function returns one of the following values:

# number of characters written if successful (may be less than count)
-1 on failure
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lseek

Set File Position Indicator

Syntax for C #include <file.h>

off_t lseek (int file_descriptor , off_t offset , int origin );

Description The lseek function sets the file position indicator for the given file to a location relative to
the specified origin. The file position indicator measures the position in characters from
the beginning of the file.

• The file_descriptor is the number assigned by open to an opened file.
• The offset indicates the relative offset from the origin in characters.
• The origin is used to indicate which of the base locations the offset is measured from.

The origin must be one of the following macros:

SEEK_SET (0x0000) Beginning of file

SEEK_CUR (0x0001) Current value of the file position indicator

SEEK_END (0x0002) End of file

Return Value The return value is one of the following:

# new value of the file position indicator if successful
(off_t)-1 on failure

unlink

Delete File

Syntax #include <file.h>

int unlink (const char * path );

Description The unlink function deletes the file specified by path. Depending on the device, a deleted
file may still remain until all file descriptors which have been opened for that file have
been closed. See Section 7.2.3.

The path is the filename of the file, including path information and optional device prefix.
(See Section 7.2.5.)

Return Value The function returns one of the following values:

0 if successful
-1 on failure
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rename

Rename File

Syntax for C #include {<stdio.h> | <file.h>}

int rename (const char * old_name , const char * new_name );

Syntax for C++ #include {<cstdio> | <file.h>}

int std::rename (const char * old_name , const char * new_name );

Description The rename function changes the name of a file.

• The old_name is the current name of the file.
• The new_name is the new name for the file.

Note

The optional device specified in the new name must match the device of the
old name. If they do not match, a file copy would be required to perform the
rename, and rename is not capable of this action.

Return Value The function returns one of the following values:

0 if successful
-1 on failure

Note

Although rename is a low-level function, it is defined by the C standard and can
be used by portable applications.

7.2.3 Device-Driver Level I/O Functions

At the next level are the device-level drivers. They map directly to the low-level I/O functions. The default device
driver is the HOST device driver, which uses the debugger to perform file operations. The HOST device driver is
automatically used for the default C streams stdin, stdout, and stderr.

The HOST device driver shares a special protocol with the debugger running on a host system so that the host
can perform the C I/O requested by the program. Instructions for C I/O operations that the program wants to
perform are encoded in a special buffer named _CIOBUF_ in the .cio section. The debugger halts the program at
a special breakpoint (C$$IO$$), reads and decodes the target memory, and performs the requested operation.
The result is encoded into _CIOBUF_, the program is resumed, and the target decodes the result.

The HOST device is implemented with seven functions, HOSTopen, HOSTclose, HOSTread, HOSTwrite,
HOSTlseek, HOSTunlink, and HOSTrename, which perform the encoding. Each function is called from the low-
level I/O function with a similar name.

A device driver is composed of seven required functions. Not all function need to be meaningful for all devices,
but all seven must be defined. Here we show the names of all seven functions as starting with DEV, but you may
choose any name except for HOST.
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DEV_open

Open File for I/O

Syntax int DEV_open (const char * path , unsigned flags , int llv_fd );

Description This function finds a file matching path and opens it for I/O as requested by flags.

• The path is the filename of the file to be opened. If the name of a file passed to open
has a device prefix, the device prefix will be stripped by open, so DEV_open will not
see it. (See Section 7.2.5 for details on the device prefix.)

• The flags are attributes that specify how the file is manipulated. The flags are specified
using the following symbols:

   O_RDONLY   (0x0000)   /* open for reading */
   O_WRONLY   (0x0001)   /* open for writing */
   O_RDWR     (0x0002)   /* open for read & write */
   O_APPEND   (0x0008)   /* append on each write */
   O_CREAT    (0x0200)   /* open with file create */
   O_TRUNC    (0x0400)   /* open with truncation */
   O_BINARY   (0x8000)   /* open in binary mode */

See POSIX for further explanation of the flags.
• The llv_fd is treated as a suggested low-level file descriptor. This is a historical artifact;

newly-defined device drivers should ignore this argument. This differs from the low-
level I/O open function.

This function must arrange for information to be saved for each file descriptor, typically
including a file position indicator and any significant flags. For the HOST version, all the
bookkeeping is handled by the debugger running on the host machine. If the device uses
an internal buffer, the buffer can be created when a file is opened, or the buffer can be
created during a read or write.

Return Value This function must return -1 to indicate an error if for some reason the file could not be
opened; such as the file does not exist, could not be created, or there are too many files
open. The value of errno may optionally be set to indicate the exact error (the HOST
device does not set errno). Some devices might have special failure conditions; for
instance, if a device is read-only, a file cannot be opened O_WRONLY.

On success, this function must return a non-negative file descriptor unique among all
open files handled by the specific device. The file descriptor need not be unique across
devices. The device file descriptor is used only by low-level functions when calling the
device-driver-level functions. The low-level function open allocates its own unique file
descriptor for the high-level functions to call the low-level functions. Code that uses only
high-level I/O functions need not be aware of these file descriptors.
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DEV_close

Close File for I/O

Syntax int DEV_close (int dev_fd );

Description This function closes a valid open file descriptor.

On some devices, DEV_close may need to be responsible for checking if this is the last
file descriptor pointing to a file that was unlinked. If so, it is responsible for ensuring that
the file is actually removed from the device and the resources reclaimed, if appropriate.

Return Value This function should return -1 to indicate an error if the file descriptor is invalid in some
way, such as being out of range or already closed, but this is not required. The user
should not call close() with an invalid file descriptor.

DEV_read

Read Characters from a File

Syntax int DEV_read (int dev_fd , char * buf , unsigned count );

Description The read function reads count bytes from the input file associated with dev_fd.

• The dev_fd is the number assigned by open to an opened file.
• The buf is where the read characters are placed.
• The count is the number of characters to read from the file.

Return Value This function must return -1 to indicate an error if for some reason no bytes could be read
from the file. This could be because of an attempt to read from a O_WRONLY file, or for
device-specific reasons.

If count is 0, no bytes are read and this function returns 0.

This function returns the number of bytes read, from 0 to count. 0 indicates that EOF was
reached before any bytes were read. It is not an error to read less than count bytes; this is
common if the are not enough bytes left in the file or the request was larger than an
internal device buffer size.

DEV_write

Write Characters to a File

Syntax int DEV_write (int dev_fd , const char * buf , unsigned count );

Description This function writes count bytes to the output file.

• The dev_fd is the number assigned by open to an opened file.
• The buffer is where the write characters are placed.
• The count is the number of characters to write to the file.

Return Value This function must return -1 to indicate an error if for some reason no bytes could be
written to the file. This could be because of an attempt to read from a O_RDONLY file, or
for device-specific reasons.
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DEV_lseek

Set File Position Indicator

Syntax off_t DEV_lseek (int dev_fd , off_t offset , int origin );

Description This function sets the file's position indicator for this file descriptor as lseek.

If lseek is supported, it should not allow a seek to before the beginning of the file, but it
should support seeking past the end of the file. Such seeks do not change the size of the
file, but if it is followed by a write, the file size will increase.

Return Value If successful, this function returns the new value of the file position indicator.

This function must return -1 to indicate an error if for some reason no bytes could be
written to the file. For many devices, the lseek operation is nonsensical (e.g. a computer
monitor).

DEV_unlink

Delete File

Syntax int DEV_unlink (const char * path );

Description Remove the association of the pathname with the file. This means that the file may no
longer be opened using this name, but the file may not actually be immediately removed.

Depending on the device, the file may be immediately removed, but for a device which
allows open file descriptors to point to unlinked files, the file will not actually be deleted
until the last file descriptor is closed. See Section 7.2.3.

Return Value This function must return -1 to indicate an error if for some reason the file could not be
unlinked (delayed removal does not count as a failure to unlink.)

If successful, this function returns 0.

DEV_rename

Rename File

Syntax int DEV_rename (const char * old_name , const char * new_name );

Description This function changes the name associated with the file.

• The old_name is the current name of the file.
• The new_name is the new name for the file.

Return Value This function must return -1 to indicate an error if for some reason the file could not be
renamed, such as the file doesn't exist, or the new name already exists.

Note

It is inadvisable to allow renaming a file so that it is on a different device. In
general this would require a whole file copy, which may be more expensive than
you expect.

If successful, this function returns 0.
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7.2.4 Adding a User-Defined Device Driver for C I/O

The function add_device allows you to add and use a device. When a device is registered with add_device, the
high-level I/O routines can be used for I/O on that device.

You can use a different protocol to communicate with any desired device and install that protocol using
add_device; however, the HOST functions should not be modified. The default streams stdin, stdout, and stderr
can be remapped to a file on a user-defined device instead of HOST by using freopen() as in Example 7-1. If the
default streams are reopened in this way, the buffering mode will change to _IOFBF (fully buffered). To restore
the default buffering behavior, call setvbuf on each reopened file with the appropriate value (_IOLBF for stdin
and stdout, _IONBF for stderr).

The default streams stdin, stdout, and stderr can be mapped to a file on a user-defined device instead of HOST
by using freopen() as shown in Example 7-1. Each function must set up and maintain its own data structures as
needed. Some function definitions perform no action and should just return.

Note

Use Unique Function Names

The function names open, read, write, close, lseek, rename, and unlink are used by the low-level
routines. Use other names for the device-level functions that you write.

Use the low-level function add_device() to add your device to the device_table. The device table is a statically
defined array that supports n devices, where n is defined by the macro _NDEVICE found in stdio.h/cstdio.

The first entry in the device table is predefined to be the host device on which the debugger is running. The low-
level routine add_device() finds the first empty position in the device table and initializes the device fields with
the passed-in arguments. For a complete description, see the add_device function.

Example 7-1. Mapping Default Streams to Device

#include <stdio.h>
#include <file.h>
#include "mydevice.h"
void main()
{
    add_device("mydevice", _MSA, 
               MYDEVICE_open, MYDEVICE_close, 
               MYDEVICE_read, MYDEVICE_write, 
               MYDEVICE_lseek, MYDEVICE_unlink, MYDEVICE_rename);
    /*-----------------------------------------------------------------------*/
    /* Re-open stderr as a MYDEVICE file                                     */
    /*-----------------------------------------------------------------------*/
    if (!freopen("mydevice:stderrfile", "w", stderr))
    { 
        puts("Failed to freopen stderr"); 
        exit(EXIT_FAILURE); 
    }
    /*-----------------------------------------------------------------------*/
    /* stderr should not be fully buffered; we want errors to be seen as     */
    /* soon as possible.  Normally stderr is line-buffered, but this example */
    /* doesn't buffer stderr at all.  This means that there will be one call */
    /* to write() for each character in the message.                         */
    /*-----------------------------------------------------------------------*/
    if (setvbuf(stderr, NULL, _IONBF, 0))
    { 
        puts("Failed to setvbuf stderr"); 
        exit(EXIT_FAILURE); 
    }
    /*-----------------------------------------------------------------------*/
    /* Try it out!                                                           */
    /*-----------------------------------------------------------------------*/
    printf("This goes to stdout\n");
    fprintf(stderr, "This goes to stderr\n"); }
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7.2.5 The device Prefix

A file can be opened to a user-defined device driver by using a device prefix in the pathname. The device prefix
is the device name used in the call to add_device followed by a colon. For example:

FILE *fptr = fopen("mydevice:file1", "r");
int fd = open("mydevice:file2, O_RDONLY, 0);

If no device prefix is used, the HOST device will be used to open the file.

 

 

add_device

Add Device to Device Table

Syntax for C #include <file.h>

int add_device(char * name,
unsigned flags ,
int (* dopen )(const char * path , unsigned flags , int llv_fd),
int (* dclose )( int dev_fd),
int (* dread )(int dev_fd , char * buf , unsigned count ),
int (* dwrite )(int dev_fd , const char * buf , unsigned count ),
off_t (* dlseek )(int dev_fd, off_t ioffset , int origin ),
int (* dunlink )(const char * path ),
int (* drename )(const char * old_name , const char * new_name ));

Defined in lowlev.c (in the lib/src subdirectory of the compiler installation)

Description The add_device function adds a device record to the device table allowing that device to
be used for I/O from C. The first entry in the device table is predefined to be the HOST
device on which the debugger is running. The function add_device() finds the first empty
position in the device table and initializes the fields of the structure that represent a
device.

To open a stream on a newly added device use fopen( ) with a string of the format
devicename : filename as the first argument.

• The name is a character string denoting the device name. The name is limited to 8
characters.

• The flags are device characteristics. The flags are as follows:

_SSA Denotes that the device supports only one open stream at a time

_MSA Denotes that the device supports multiple open streams

More flags can be added by defining them in file.h.
• The dopen, dclose, dread, dwrite, dlseek, dunlink, and drename specifiers are function

pointers to the functions in the device driver that are called by the low-level functions to
perform I/O on the specified device. You must declare these functions with the
interface specified in Section 7.2.2. The device driver for the HOST that the MSP430
debugger is run on are included in the C I/O library.

Return Value The function returns one of the following values:

0 if successful
-1 on failure
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Example Example 7-2 does the following:

• Adds the device mydevice to the device table
• Opens a file named test on that device and associates it with the FILE pointer fid
• Writes the string Hello, world into the file
• Closes the file

Example 7-2 illustrates adding and using a device for C I/O:

Example 7-2. Program for C I/O Device

#include <file.h>
#include <stdio.h>
/****************************************************************************/
/* Declarations of the user-defined device drivers                          */
/****************************************************************************/
extern int   MYDEVICE_open(const char *path, unsigned flags, int fno);
extern int   MYDEVICE_close(int fno);
extern int   MYDEVICE_read(int fno, char *buffer, unsigned count);
extern int   MYDEVICE_write(int fno, const char *buffer, unsigned count);
extern off_t MYDEVICE_lseek(int fno, off_t offset, int origin);
extern int   MYDEVICE_unlink(const char *path);
extern int   MYDEVICE_rename(const char *old_name, char *new_name);
main()
{
   FILE *fid;
   add_device("mydevice", _MSA, MYDEVICE_open, MYDEVICE_close, MYDEVICE_read, 
               MYDEVICE_write, MYDEVICE_lseek, MYDEVICE_unlink, MYDEVICE_rename);
   fid = fopen("mydevice:test","w");
   fprintf(fid,"Hello, world\n");
  
   fclose(fid);
}
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7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)
The C standard assumes only one thread of execution, with the only exception being extremely narrow support
for signal handlers. The issue of reentrancy is avoided by not allowing you to do much of anything in a signal
handler. However, SYS/BIOS applications have multiple threads which need to modify the same global program
state, such as the CIO buffer, so reentrancy is a concern.

Part of the problem of reentrancy remains your responsibility, but the run-time-support environment does provide
rudimentary support for multi-threaded reentrancy by providing support for critical sections. This implementation
does not protect you from reentrancy issues such as calling run-time-support functions from inside interrupts;
this remains your responsibility.

The run-time-support environment provides hooks to install critical section primitives. By default, a single-
threaded model is assumed, and the critical section primitives are not employed. In a multi-threaded system
such as SYS/BIOS, the kernel arranges to install semaphore lock primitive functions in these hooks, which are
then called when the run-time-support enters code that needs to be protected by a critical section.

Throughout the run-time-support environment where a global state is accessed, and thus needs to be protected
with a critical section, there are calls to the function _lock(). This calls the provided primitive, if installed, and
acquires the semaphore before proceeding. Once the critical section is finished, _unlock() is called to release the
semaphore.

Usually SYS/BIOS is responsible for creating and installing the primitives, so you do not need to take any action.
However, this mechanism can be used in multi-threaded applications that do not use the SYS/BIOS locking
mechanism.

You should not define the functions _lock() and _unlock() functions directly; instead, the installation functions are
called to instruct the run-time-support environment to use these new primitives:

void _register_lock  (void (  *lock)());
void _register_unlock(void (*unlock)());

The arguments to _register_lock() and _register_unlock() should be functions which take no arguments and
return no values, and which implement some sort of global semaphore locking:

    extern volatile sig_atomic_t *sema = SHARED_SEMAPHORE_LOCATION;
    static int sema_depth = 0;
    static void my_lock(void) 
    { 
        while (ATOMIC_TEST_AND_SET(sema, MY_UNIQUE_ID) != MY_UNIQUE_ID); 
        sema_depth++;
    }
    static void my_unlock(void) 
    { 
        if (!--sema_depth) ATOMIC_CLEAR(sema); 
    }

The run-time-support nests calls to _lock(), so the primitives must keep track of the nesting level.
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7.4 Library-Build Process
When using the C/C++ compiler, you can compile your code under a large number of different configurations and
options that are not necessarily compatible with one another. Because it would be infeasible to include all
possible run-time-support library variants, compiler releases pre-build only a small number of very commonly-
used libraries such as rts430_eabi.lib .

To provide maximum flexibility, the run-time-support source code is provided as part of each compiler release.
You can build the missing libraries as desired. The linker can also automatically build missing libraries. This is
accomplished with a new library build process, the core of which is the executable mklib, which is available
beginning with CCS 5.1.

7.4.1 Required Non-Texas Instruments Software

To use the self-contained run-time-support build process to rebuild a library with custom options, the following
are required:

• sh (Bourne shell)
• gmake (GNU make 3.81 or later)

More information is available from GNU at http://www.gnu.org/software/make. GNU make (gmake) is also
available in earlier versions of Code Composer Studio. GNU make is also included in some UNIX support
packages for Windows, such as the MKS Toolkit, Cygwin, and Interix. The GNU make used on Windows
platforms should explicitly report "This program build for Windows32" when the following is executed from the
Command Prompt window:

    gmake -h

All three of these programs are provided as a non-optional feature of CCS 5.1. They are also available as part of
the optional XDC Tools feature if you are using an earlier version of CCS.

The mklib program looks for these executables in the following order:
1. in your PATH
2. in the directory getenv("CCS_UTILS_DIR")/cygwin
3. in the directory getenv("CCS_UTILS_DIR")/bin
4. in the directory getenv("XDCROOT")
5. in the directory getenv("XDCROOT")/bin

If you are invoking mklib from the command line, and these executables are not in your path, you must set the
environment variable CCS_UTILS_DIR such that getenv("CCS_UTILS_DIR")/bin contains the correct programs.

7.4.2 Using the Library-Build Process

You should normally let the linker automatically rebuild libraries as needed. If necessary, you can run mklib
directly to populate libraries. See Section 7.4.2.2 for situations when you might want to do this.

7.4.2.1 Automatic Standard Library Rebuilding by the Linker

The linker looks for run-time-support libraries primarily through the MSP430_C_DIR environment variable.
Typically, one of the pathnames in MSP430_C_DIR is your install directory/lib, which contains all of the pre-built
libraries, as well as the index library libc.a. The linker looks in MSP430_C_DIR to find a library that is the best
match for the build attributes of the application. The build attributes are set indirectly according to the command-
line options used to build the application. Build attributes include things like CPU revision. If the library name is
explicitly specified (e.g. -library=rts430_eabi.lib), run-time support looks for that library exactly. If the library name
is not specified, the linker uses the index library libc.a to pick an appropriate library. If the library is specified by
path (e.g. –library=/foo/rts430_eabi.lib), it is assumed the library already exists and it will not be built
automatically.

The index library describes a set of libraries with different build attributes. The linker will compare the build
attributes for each potential library with the build attributes of the application and will pick the best fit. For details
on the index library, see the archiver chapter in the MSP430 Assembly Language Tools User's Guide .
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Now that the linker has decided which library to use, it checks whether the run-time-support library is present in
MSP430_C_DIR . The library must be in exactly the same directory as the index library libc.a. If the library is not
present, the linker invokes mklib to build it. This happens when the library is missing, regardless of whether the
user specified the name of the library directly or allowed the linker to pick the best library from the index library.

The mklib program builds the requested library and places it in 'lib' directory part of MSP430_C_DIR in the same
directory as the index library, so it is available for subsequent compilations.

Things to watch out for:
• The linker invokes mklib and waits for it to finish before finishing the link, so you will experience a one-time

delay when an uncommonly-used library is built for the first time. Build times of 1-5 minutes have been
observed. This depends on the power of the host (number of CPUs, etc).

• In a shared installation, where an installation of the compiler is shared among more than one user, it is
possible that two users might cause the linker to rebuild the same library at the same time. The mklib
program tries to minimize the race condition, but it is possible one build will corrupt the other. In a shared
environment, all libraries which might be needed should be built at install time; see Section 7.4.2.2 for
instructions on invoking mklib directly to avoid this problem.

• The index library must exist, or the linker is unable to rebuild libraries automatically.
• The index library must be in a user-writable directory, or the library is not built. If the compiler installation must

be installed read-only (a good practice for shared installation), any missing libraries must be built at
installation time by invoking mklib directly.

• The mklib program is specific to a certain version of a certain library; you cannot use one compiler version's
run-time support's mklib to build a different compiler version's run-time support library.

7.4.2.2 Invoking mklib Manually

You may need to invoke mklib directly in special circumstances:
• The compiler installation directory is read-only or shared.
• You want to build a variant of the run-time-support library that is not pre-configured in the index library libc.a

or known to mklib. (e.g. a variant with source-level debugging turned on.)

7.4.2.2.1 Building Standard Libraries

You can invoke mklib directly to build any or all of the libraries indexed in the index library libc.a. The libraries
are built with the standard options for that library; the library names and the appropriate standard option sets are
known to mklib.

This is most easily done by changing the working directory to be the compiler run-time-support library directory
'lib' and invoking the mklib executable there:

mklib --pattern=rts430_eabi.lib

7.4.2.2.2 Shared or Read-Only Library Directory

If the compiler tools are to be installed in shared or read-only directory, mklib cannot build the standard libraries
at link time; the libraries must be built before the library directory is made shared or read-only.

At installation time, the installing user must build all of the libraries which will be used by any user. To build all
possible libraries, change the working directory to be the compiler RTS library directory 'lib' and invoke the mklib
executable there:

mklib --all

Some targets have many libraries, so this step can take a long time. To build a subset of the libraries, invoke
mklib individually for each desired library.

7.4.2.2.3 Building Libraries With Custom Options

You can build a library with any extra custom options desired. This is useful for building a version of the library
with silicon exception workarounds enabled. The generated library is not a standard library, and must not be
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placed in the 'lib' directory. It should be placed in a directory local to the project which needs it. To build a
debugging version of the library rts430_eabi.lib, change the working directory to the 'lib' directory and run the
command:

mklib --pattern=rts430_eabi.lib --name=rts430_dbg.lib --install_to=$Project/Debug --extra_options="-
g"

7.4.2.2.4 The mklib Program Option Summary

Run the following command to see the full list of options. These are described in Table 7-1.

mklib --help

Table 7-1. The mklib Program Options
Option Effect
--index= filename The index library (libc.a) for this release. Used to find a template library for custom builds, and to find the source

files (in the lib/src subdirectory of the compiler installation). REQUIRED.
--pattern= filename Pattern for building a library. If neither --extra_options nor --options are specified, the library will be the standard

library with the standard options for that library. If either --extra_options or --options are specified, the library is a
custom library with custom options. REQUIRED unless --all is used.

--all Build all standard libraries at once.
--install_to= directory The directory into which to write the library. For a standard library, this defaults to the same directory as the

index library (libc.a). For a custom library, this option is REQUIRED.
--compiler_bin_dir=
    directory

The directory where the compiler executables are. When invoking mklib directly, the executables should be in
the path, but if they are not, this option must be used to tell mklib where they are. This option is primarily for use
when mklib is invoked by the linker.

--name= filename File name for the library with no directory part. Only useful for custom libraries.
--options=' str ' Options to use when building the library. The default options (see below) are replaced by this string. If this

option is used, the library will be a custom library.
--extra_options=' str ' Options to use when building the library. The default options (see below) are also used. If this option is used,

the library will be a custom library.
--list_libraries List the libraries this script is capable of building and exit. ordinary system-specific directory.
--log= filename Save the build log as filename.
--tmpdir= directory Use directory for scratch space instead of the ordinary system-specific directory.
--gmake= filename Gmake-compatible program to invoke instead of "gmake"
--parallel= N Compile N files at once ("gmake -j N").
--query= filename Does this script know how to build FILENAME?
--help or --h Display this help.
--quiet or --q Operate silently.
--verbose or --v Extra information to debug this executable.

Examples:

To build all standard libraries and place them in the compiler's library directory:

mklib --all --index=$C_DIR/lib

To build one standard library and place it in the compiler's library directory:

mklib --pattern=rts430_eabi.lib --index=$C_DIR/lib

To build a custom library that is just like rts430_eabi.lib, but has symbolic debugging support enabled:

mklib --pattern=rts430_eabi.lib --extra_options="-g" --index=$C_DIR/lib --install_to=$Project/Debug 
--name=rts430_debug.lib 
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7.4.3 Extending mklib

The mklib API is a uniform interface that allows Code Composer Studio to build libraries without needing to
know exactly what underlying mechanism is used to build it. Each library vendor (e.g. the TI compiler) provides a
library-specific copy of 'mklib' in the library directory that can be invoked, which understands a standardized set
of options, and understands how to build the library. This allows the linker to automatically build application-
compatible versions of any vendor's library without needing to register the library in advance, as long as the
vendor supports mklib.

7.4.3.1 Underlying Mechanism

The underlying mechanism can be anything the vendor desires. For the compiler run-time-support libraries,
mklib is just a wrapper that knows how to use the files in the lib/src subdirectory of the compiler installation and
invoke gmake with the appropriate options to build each library. If necessary, mklib can be bypassed and the
Makefile used directly, but this mode of operation is not supported by TI, and you are responsible for any
changes to the Makefile. The format of the Makefile and the interface between mklib and the Makefile is subject
to change without notice. The mklib program is the forward-compatible path.

7.4.3.2 Libraries From Other Vendors

Any vendor who wishes to distribute a library that can be rebuilt automatically by the linker must provide:
• An index library (like 'libc.a', but with a different name)
• A copy of mklib specific to that library
• A copy of the library source code (in whatever format is convenient)

These things must be placed together in one directory that is part of the linker's library search path (specified
either in MSP430_C_DIR or with the linker --search_path option).

If mklib needs extra information that is not possible to pass as command-line options to the compiler, the vendor
will need to provide some other means of discovering the information (such as a configuration file written by a
wizard run from inside CCS).

The vendor-supplied mklib must at least accept all of the options listed in Table 7-1 without error, even if they do
not do anything.
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The C++ compiler implements function overloading, operator overloading, and type-safe linking by encoding a
function's prototype and namespace in its link-level name. The process of encoding the prototype into the
linkname is often referred to as name mangling. When you inspect mangled names, such as in assembly files,
disassembler output, or compiler or linker diagnostic messages, it can be difficult to associate a mangled name
with its corresponding name in the C++ source code. The C++ name demangler is a debugging aid that
translates each mangled name it detects to its original name found in the C++ source code.

These topics tell you how to invoke and use the C++ name demangler. The C++ name demangler reads in input,
looking for mangled names. All unmangled text is copied to output unaltered. All mangled names are demangled
before being copied to output.

8.1 Invoking the C++ Name Demangler........................................................................................................................ 168
8.2 Sample Usage of the C++ Name Demangler.......................................................................................................... 168
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8.1 Invoking the C++ Name Demangler
The syntax for invoking the C++ name demangler is:
dem430 [options ] [filenames]

dem430 Command that invokes the C++ name demangler.
options Options affect how the name demangler behaves. Options can appear anywhere on the command line.
filenames Text input files, such as the assembly file output by the compiler, the assembler listing file, the disassembly file, and the

linker map file. If no filenames are specified on the command line, dem430 uses standard input.

By default, the C++ name demangler outputs to standard output. You can use the -o file option if you want to
output to a file.

The following options apply only to the C++ name demangler:

--debug (--d) Prints debug messages.
--diag_wrap[=on,off] Sets diagnostic messages to wrap at 79 columns (on, which is the default) or not (off).
--help (-h) Prints a help screen that provides an online summary of the C++ name demangler options.
--output= file (-o) Outputs to the specified file rather than to standard out.
--quiet (-q) Reduces the number of messages generated during execution.
-u Specifies that external names do not have a C++ prefix. (deprecated)

8.2 Sample Usage of the C++ Name Demangler
The examples in this section illustrate the demangling process.

This example shows a sample C++ program. In this example, the linknames of all the functions are mangled;
that is, their signature information is encoded into their names.

class banana {
public:
   int calories(void);
   banana();
   ~banana();
};
int calories_in_a_banana(void)
{
   banana x;
   return x.calories();
}
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The resulting assembly that is output by the compiler is as follows.

        PUSH.W    r10                   
        SUB.W     #2,SP                 
        MOV.W     SP,r12                
        CALL      #_ZN6bananaC1Ev       
                                          
        MOV.W     SP,r12                
        CALL      #_ZN6banana8caloriesEv 
                                          
        MOV.W     r12,r10               
        MOV.W     SP,r12                
        CALL      #_ZN6bananaD1Ev       
                                          
        MOV.W     r10,r12               
        ADD.W     #2,SP                 
        POP       r10                   
        RET 

Executing the C++ name demangler will demangle all names that it believes to be mangled. Enter:

dem430 calories_in_a_banana.asm

The result after running the C++ name demangler is as follows. The linknames in _ZN6bananaC1Ev,
_ZN6banana8caloriesEv, and _ZN6bananaD1Ev are demangled.

calories_in_a_banana():
;* ----------------------------------------------------------------------------*
        PUSH.W    r10                   
        SUB.W     #2,SP                 
        MOV.W     SP,r12                
        CALL      #banana::banana()       
                                          
        MOV.W     SP,r12                
        CALL      #banana::calories() 
                                          
        MOV.W     r12,r10               
        MOV.W     SP,r12                
        CALL      #banana::~banana()       
                                          
        MOV.W     r10,r12               
        ADD.W     #2,SP                 
        POP       r10                   
        RET       
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A.1 Terminology

absolute lister A debugging tool that allows you to create assembler listings that contain absolute
addresses.

alias disambiguation A technique that determines when two pointer expressions cannot point to the same
location, allowing the compiler to freely optimize such expressions.

aliasing The ability for a single object to be accessed in more than one way, such as when two
pointers point to a single object. It can disrupt optimization, because any indirect
reference could refer to any other object.

allocation A process in which the linker calculates the final memory addresses of output
sections.

ANSI American National Standards Institute; an organization that establishes standards
voluntarily followed by industries.

Application Binary
Interface (ABI)

A standard that specifies the interface between two object modules. An ABI specifies
how functions are called and how information is passed from one program component
to another.

archive library A collection of individual files grouped into a single file by the archiver.

archiver A software program that collects several individual files into a single file called an
archive library. With the archiver, you can add, delete, extract, or replace members of
the archive library.

assembler A software program that creates a machine-language program from a source file that
contains assembly language instructions, directives, and macro definitions. The
assembler substitutes absolute operation codes for symbolic operation codes and
absolute or relocatable addresses for symbolic addresses.

assignment statement A statement that initializes a variable with a value.

autoinitialization The process of initializing global C variables (contained in the .cinit section) before
program execution begins.

autoinitialization at
run time

An autoinitialization method used by the linker when linking C code. The linker uses
this method when you invoke it with the --rom_model link option. The linker loads
the .cinit section of data tables into memory, and variables are initialized at run time.
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big endian An addressing protocol in which bytes are numbered from left to right within a word.
More significant bytes in a word have lower numbered addresses. Endian ordering is
hardware-specific and is determined at reset. See also little endian

BIS Bit instruction set.

block A set of statements that are grouped together within braces and treated as an entity.

.bss section One of the default object file sections. You use the assembler .bss directive to reserve
a specified amount of space in the memory map that you can use later for storing
data. The .bss section is uninitialized.

byte Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler A software program that translates C source statements into assembly language
source statements.

code generator A compiler tool that takes the file produced by the parser or the optimizer and
produces an assembly language source file.

COFF Common object file format; a system of object files configured according to a standard
developed by AT&T. This ABI is no longer supported.

command file A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

comment A source statement (or portion of a source statement) that documents or improves
readability of a source file. Comments are not compiled, assembled, or linked; they
have no effect on the object file.

compiler program A utility that lets you compile, assemble, and optionally link in one step. The compiler
runs one or more source modules through the compiler (including the parser,
optimizer, and code generator), the assembler, and the linker.

configured memory Memory that the linker has specified for allocation.

constant A type whose value cannot change.

cross-reference listing An output file created by the assembler that lists the symbols that were defined, what
line they were defined on, which lines referenced them, and their final values.

.data section One of the default object file sections. The .data section is an initialized section that
contains initialized data. You can use the .data directive to assemble code into
the .data section.

direct call A function call where one function calls another using the function's name.

directives Special-purpose commands that control the actions and functions of a software tool
(as opposed to assembly language instructions, which control the actions of a device).

disambiguation See alias disambiguation

dynamic memory
allocation

A technique used by several functions (such as malloc, calloc, and realloc) to
dynamically allocate memory for variables at run time. This is accomplished by
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defining a large memory pool (heap) and using the functions to allocate memory from
the heap.

ELF Executable and Linkable Format; a system of object files configured according to the
System V Application Binary Interface specification.

emulator A hardware development system that duplicates the MSP430 operation.

entry point A point in target memory where execution starts.

environment variable A system symbol that you define and assign to a string. Environmental variables are
often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

epilog The portion of code in a function that restores the stack and returns.

executable object file A linked, executable object file that is downloaded and executed on a target system.

expression A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

external symbol A symbol that is used in the current program module but defined or declared in a
different program module.

file-level optimization A level of optimization where the compiler uses the information that it has about the
entire file to optimize your code (as opposed to program-level optimization, where the
compiler uses information that it has about the entire program to optimize your code).

function inlining The process of inserting code for a function at the point of call. This saves the
overhead of a function call and allows the optimizer to optimize the function in the
context of the surrounding code.

global symbol A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

high-level language
debugging

The ability of a compiler to retain symbolic and high-level language information (such
as type and function definitions) so that a debugging tool can use this information.

indirect call A function call where one function calls another function by giving the address of the
called function.

initialization at load
time

An autoinitialization method used by the linker when linking C/C++ code. The linker
uses this method when you invoke it with the --ram_model link option. This method
initializes variables at load time instead of run time.

initialized section A section from an object file that will be linked into an executable object file.

input section A section from an object file that will be linked into an executable object file.

integrated
preprocessor

A C/C++ preprocessor that is merged with the parser, allowing for faster compilation.
Stand-alone preprocessing or preprocessed listing is also available.

interlist feature A feature that inserts as comments your original C/C++ source statements into the
assembly language output from the assembler. The C/C++ statements are inserted
next to the equivalent assembly instructions.
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intrinsics Operators that are used like functions and produce assembly language code that
would otherwise be inexpressible in C, or would take greater time and effort to code.

ISO International Organization for Standardization; a worldwide federation of national
standards bodies, which establishes international standards voluntarily followed by
industries.

K&R C Kernighan and Ritchie C, the de facto standard as defined in the first edition of The C
Programming Language (K&R). Most K&R C programs written for earlier, non-ISO C
compilers should correctly compile and run without modification.

label A symbol that begins in column 1 of an assembler source statement and corresponds
to the address of that statement. A label is the only assembler statement that can
begin in column 1.

linker A software program that combines object files to form an executable object file that
can be allocated into system memory and executed by the device.

listing file An output file, created by the assembler, which lists source statements, their line
numbers, and their effects on the section program counter (SPC).

little endian An addressing protocol in which bytes are numbered from right to left within a word.
More significant bytes in a word have higher numbered addresses. Endian ordering is
hardware-specific and is determined at reset. See also big endian

loader A device that places an executable object file into system memory.

loop unrolling An optimization that expands small loops so that each iteration of the loop appears in
your code. Although loop unrolling increases code size, it can improve the
performance of your code.

macro A user-defined routine that can be used as an instruction.

macro call The process of invoking a macro.

macro definition A block of source statements that define the name and the code that make up a
macro.

macro expansion The process of inserting source statements into your code in place of a macro call.

map file An output file, created by the linker, which shows the memory configuration, section
composition, section allocation, symbol definitions and the addresses at which the
symbols were defined for your program.

memory map A map of target system memory space that is partitioned into functional blocks.

name mangling A compiler-specific feature that encodes a function name with information regarding
the function's arguments return types.

object file An assembled or linked file that contains machine-language object code.

object library An archive library made up of individual object files.
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operand An argument of an assembly language instruction, assembler directive, or macro
directive that supplies information to the operation performed by the instruction or
directive.

optimizer A software tool that improves the execution speed and reduces the size of C
programs.

options Command-line parameters that allow you to request additional or specific functions
when you invoke a software tool.

output section A final, allocated section in a linked, executable module.

parser A software tool that reads the source file, performs preprocessing functions, checks
the syntax, and produces an intermediate file used as input for the optimizer or code
generator.

partitioning The process of assigning a data path to each instruction.

pop An operation that retrieves a data object from a stack.

pragma A preprocessor directive that provides directions to the compiler about how to treat a
particular statement.

preprocessor A software tool that interprets macro definitions, expands macros, interprets header
files, interprets conditional compilation, and acts upon preprocessor directives.

program-level
optimization

An aggressive level of optimization where all of the source files are compiled into one
intermediate file. Because the compiler can see the entire program, several
optimizations are performed with program-level optimization that are rarely applied
during file-level optimization.

prolog The portion of code in a function that sets up the stack.

push An operation that places a data object on a stack for temporary storage.

quiet run An option that suppresses the normal banner and the progress information.

raw data Executable code or initialized data in an output section.

relocation A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

run-time environment The run time parameters in which your program must function. These parameters are
defined by the memory and register conventions, stack organization, function call
conventions, and system initialization.

run-time-support
functions

Standard ISO functions that perform tasks that are not part of the C language (such as
memory allocation, string conversion, and string searches).

run-time-support
library

A library file, rts.src, which contains the source for the run time-support functions.

section A relocatable block of code or data that ultimately will be contiguous with other
sections in the memory map.
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sign extend A process that fills the unused MSBs of a value with the value's sign bit.

simulator A software development system that simulates MSP430 operation.

source file A file that contains C/C++ code or assembly language code that is compiled or
assembled to form an object file.

stand-alone
preprocessor

A software tool that expands macros, #include files, and conditional compilation as an
independent program. It also performs integrated preprocessing, which includes
parsing of instructions.

static variable A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous
value is resumed when the function or program is reentered.

storage class An entry in the symbol table that indicates how to access a symbol.

string table A table that stores symbol names that are longer than eight characters (symbol names
of eight characters or longer cannot be stored in the symbol table; instead they are
stored in the string table). The name portion of the symbol's entry points to the
location of the string in the string table.

structure A collection of one or more variables grouped together under a single name.

subsection A relocatable block of code or data that ultimately will occupy continuous space in the
memory map. Subsections are smaller sections within larger sections. Subsections
give you tighter control of the memory map.

symbol A string of alphanumeric characters that represents an address or a value.

symbolic debugging The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as an emulator or simulator.

target system The system on which the object code you have developed is executed.

.text section One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text
section.

trigraph sequence A 3-character sequence that has a meaning (as defined by the ISO 646-1983
Invariant Code Set). These characters cannot be represented in the C character set
and are expanded to one character. For example, the trigraph ??' is expanded to ^.

unconfigured memory Memory that is not defined as part of the memory map and cannot be loaded with
code or data.

uninitialized section A object file section that reserves space in the memory map but that has no actual
contents. These sections are built with the .bss and .usect directives.

unsigned value A value that is treated as a nonnegative number, regardless of its actual sign.

variable A symbol representing a quantity that can assume any of a set of values.

word A 16-bit addressable location in target memory
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Revision History

Changes from August 31, 2020 to December 15, 2020 (from Revision W (August 2020) to
Revision X (December 2020)) Page
• MISRA-C checking is no longer supported.......................................................................................................19
• MISRA-C checking is no longer supported.......................................................................................................28
• Clarified that --opt_level=4 must be placed before --run_linker option............................................................. 56
• Pragmas for MISRA-C checking are no longer supported................................................................................90

The following table lists changes made to this document prior to changes to the document numbering format.
The left column identifies the first version of this document in which that particular change appeared.

Earlier Revisions
Version Added Chapter Location Additions / Modifications / Deletions

SLAU132V Linking Section 4.3.7
Clarified that either --rom_model or --ram_model is required if only the
linker is being run, but --rom_model is the default if the compiler runs on
C/C++ files on the same command line.

SLAU132V C/C++ Language Section 5.11.24 The #pragma once is now documented for use in header files.

SLAU132V Run-Time
Environment Section 6.9.3.1 Clarified that zero initialization takes place only if the --rom_model linker

option is used, not if the --ram_model option is used.

SLAU132U -- throughout --

The default file extensions for object files created by the compiler have
been changed in order to prevent conflicts when C and C++ files have the
same names. Object files generated from C source files have the .c.obj
extension. Object files generated from C++ source files have the .cpp.obj
extension.

SLAU132U Using the Compile Section 2.3 and
Section 2.3.2 The --gen_func_info_listing compiler option is now documented.

SLAU132T Using the Compiler Section 2.3.1 Added the --emit_references:file linker option.

SLAU132T Using the Compiler Section 2.5.1 Documented that C standard macros such as __STDC_VERSION__ are
supported.

SLAU132T C/C++ Language Section 5.11.4 Added documentation for the CODE_ALIGN pragma.

SLAU132T C/C++ Language Section 5.11.21 Clarify section placement for the NOINIT and PERSISTENT pragmas.

SLAU132T C/C++ Language Section 5.11.30 Added documentation for the WEAK pragma.

SLAU132T C/C++ Language Section 5.15.1 Updated list of C99 non-supported run-time functions.

SLAU132T C/C++ Language Section 5.16.2 Added documentation for the aligned, calls, naked, and weak function
attributes.

SLAU132T C/C++ Language Section 5.16.3 Added documentation for the location and packed variable attributes.

SLAU132T Run-Time Support
Functions DEV_lseek topic Corrected syntax documented for DEV_lseek function.

SLAU132S
Introduction,
Using the Compiler,
C/C++ Language

Section 1.3, Section
2.3, Section 5.1, and
Section 5.15.2

Added support for C11.

SLAU132S Using the Compiler Section 2.3.1 Added the --ecc=on linker option, which enables ECC generation. Note that
ECC generation is now off by default.
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Earlier Revisions (continued)
Version Added Chapter Location Additions / Modifications / Deletions

SLAU132S Using the Compiler Section 2.5.1 The __TI_STRICT_ANSI_MODE__ and __TI_STRICT_FP_MODE__
macros are defined as 0 if their conditions are false.

SLAU132S Using the Compiler,
C/C++ Language

Section 2.11 and
Section 5.11

Revised the section on inline function expansion and its subsections to
include new pragmas and changes to the compilers decision-making about
what functions to inline. The FORCEINLINE, FORCEINLINE_RECURSIVE,
and NOINLINE pragmas have been added.

SLAU132S C/C++ Language Section 5.2
C++11 features related to atomics are now supported. In addition, removed
several C++ features from the exception list because they have been
supported for several releases.

SLAU132S C/C++ Language Section 5.6 Added information about character sets and file encoding.

SLAU132S C/C++ Language Section 5.16.2 and
Section 5.16.3 Added "retain" as a function attribute and variable attribute.

SLAU132R Using the Compiler,
C/C++ Language

Section 2.3 and
Section 5.2 The compiler now follows the C++14 standard.

SLAU132R C/C++ Language Section 5.16 The compiler now supports several Clang __has_ macro extensions.

SLAU132R C/C++ Language Section 5.16.1 The wrapper header file GCC extension (#include_next) is now supported.

SLAU132Q C/C++ Language Section 5.2
Preliminary changes have been made in order to support C++14 in a future
release. These changes may cause linktime errors. Recompile object files
to resolve these errors.

SLAU132Q C/C++ Language Section 5.7.1 Clarified exceptions to const data storage set by the const keyword.

SLAU132P Optimization Section 3.7.1.4 Corrected error in command to process the profile data.

SLAU132O Using the Compiler,
C/C++ Language Section 2.3.3 Revised to state that --check_misra option is required even if the

CHECK_MISRA pragma is used.

SLAU132O Using the Compiler Section 2.10 Corrected the document to describe the ---gen_preprocessor_listing option.
The name --gen_parser_listing was incorrect.

SLAU132O Run-Time
Environment Section 6.1.3 State that certain MSP430 devices do have writeable memory above the

64K boundary.

SLAU132N Optimization Section 3.7.3 Corrected function names for _TI_start_pprof_collection() and
_TI_stop_pprof_collection().

SLAU132N C/C++ Language Section 5.16.2 Added the call_conv function attribute to allow IAR and TI compilers to link
against the same ROM image.

SLAU132M Using the Compiler Section 2.3 The --align_for_power option has been added.

SLAU132M Using the Compiler Section 2.3 The default for --cinit_compression and --copy_compression has been
changed from RLE to LZSS.

SLAU132M Using the Compiler Section 2.3 Settings available for use with the --silicon_errata option are now
documented.

SLAU132M Using the Compiler --
Several compiler options have been deprecated, removed, or renamed.
The compiler continues to accept some of the deprecated options, but they
are not recommended for use.

SLAU132L Using the Compiler Section 2.3 and
Section 4.2.2 The --gen_data_subsections option has been added.

SLAU132L Using the Compiler Section 2.3.5 The --symdebug:dwarf_version compiler option has been added. This
option sets the DWARF debugging format version used.

SLAU132L Optimization Section 3.7 and
Section 3.8

Feedback directed optimization is described. This technique can be used
for code coverage analysis.

SLAU132L C/C++ Language Section 5.11.2

A CALLS pragma has been added to specify a set of functions that can be
called indirectly from a specified calling function. Using this pragma allows
such indirect calls to be included in the calculation of a functions' inclusive
stack size.

SLAU132L Run-Time
Environment Section 6.8 Intrinsics have been added for saturated addition and subtraction of shorts

and longs.

SLAU132L Run-Time
Environment Section 6.9.1 Additional boot hook functions are available. These can be customized for

use during system initialization.
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Earlier Revisions (continued)
Version Added Chapter Location Additions / Modifications / Deletions

SLAU132K Introduction Section 1.4

The COFF object file format is no longer supported. The MSP430 Code
Generation Tools now support only the Embedded Application Binary
Interface (EABI) ABI, which works only with object files that use the ELF
object file format and the DWARF debug format. Sections of this document
that referred to the COFF format have been removed or simplified. If you
would like to produce COFF output files, please use v4.4 of the MSP430
Code Generation Tools and refer to SLAU132J for documentation.
The --abi=coff, --symdebug:profile_coff, --no_sym_merge, and --
diable_clink options have been deprecated.

SLAU132K Using the Compiler Section 2.3.4 The --ramfunc option has been added. If set, this option places all functions
in RAM.

SLAU132K C/C++ Language Section 5.16.2 The ramfunc function attribute has been added. It specifies that a function
should be placed in RAM.

SLAU132K Run-Time
Environment Section 6.1.5 Corrected documentation to state that R1 is the stack pointer.

SLAU132I Introduction Section 1.3 Added support for C99 and C++03.

SLAU132I Using the Compiler Table 2-7 and
Section 5.4

Added --advice:hw_config option for ULP Advisor checking of device
configuration.

SLAU132I Using the Compiler Table 2-9 Added support for C99 and C++03. The -gcc option has been deprecated.
The --relaxed_ansi option is now the default.

SLAU132I Using the Compiler Table 2-9 Removed documentation of precompiled headers, which are not supported
for MSP430.

SLAU132I Using the Compiler Table 2-12 and
Section 2.7.1 Added --section_sizes option for diagnostic reporting of section sizes.

SLAU132J Using the Compiler Table 2-14 and
Section 2.3.4 Added --disable_interrupts_around_hw_mpy option.

SLAU132J Using the Compiler Table 2-14 and
Section 2.3.4

The --use_hw_mpy option is now a compiler option and performs additional
actions at compile time.

SLAU132J Using the Compiler Section 2.5.3 Documented that the #warning and #warn preprocessor directives are
supported.

SLAU132J Using the Compiler Section 2.6 Added section on techniques for passing arguments to main().

SLAU132I Using the Compiler Section 2.11 Documented that the inline keyword is now enabled in all modes except
C89 strict ANSI mode.

SLAU132J C/C++ Language Section 5.1.1 Added section documenting implementation-defined behavior.

SLAU132I C/C++ Language
Section 5.3, Section
5.11.3, and Section
5.11.26

Added pragmas for enabling/resetting ULP Advisor rule checks.

SLAU132J C/C++ Language Section 5.5.1 Added documentation on the size of enum types.

SLAU132J C/C++ Language
Section 5.11.19,
Section 5.11.27, and
Section 5.16.2

Added C++ syntax for the INTERRUPT and RETAIN pragmas. Also
removed unnecessary semicolons from #pragma syntax specifications.
Also the GCC interrupt and alias function attributes are now supported.

SLAU132J C/C++ Language Section 5.11.8 Added the diag_push and diag_pop diagnostic message pragmas.

SLAU132I C/C++ Language
Section 5.15, Section
5.15.1, and Section
5.15.3

Added support for C99 and C++03. The --relaxed_ansi option is now the
default and --strict_ansi is the other option; "normal mode" for standards
violation strictness is no longer available.

SLAU132J Run-Time
Environment Section 6.5 Added reference to section on accessing linker symbols in C and C++ in

the Assembly Language Tools User's Guide.

SLAU132I Run-Time
Environment

Section 6.8.1 and
Section 6.8.4 Corrected: __never_executed intrinsic has two underscores as the prefix.

SLAU132J Run-Time Support
Functions Section 7.1.3

RTS source code is no longer provided in a rtssrc.zip file. Instead, it is
located in separate files in the lib/src subdirectory of the compiler
installation.

SLAU132J C++ Name
Demangler Section 8.1 Corrected information about name demangler options.
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