Burr-Brown Products

from Texas Instruments Application Report
SBAAO75 — March 2002

Windows CE Touch and Keypad Device Drivers
for the TSC2200

Bob Green and Rick Downs Data Acquisition Products

ABSTRACT

This application report describes the development and usage of device drivers for the
TSC2200 PDA Analog Interface Circuit for use in Windows™ CE platforms on the Intel™
StrongARM™ SA-1110 microprocessor and derivatives. The methods described are only
some of the possible implementations and are intended only to serve as a guideline for
hardware and software developers in developing their own solutions.

Contents
LYo Yo 11 o1 o o 2
[oo Yo g O] KT o [T = Lo I TR 2
Yo N AT TR N o] o VL= o3 U] = RSP 3
(LYo Ao T = 1 BT od] o 4o o P 4
3T (=T 1 0 IR (1 o PP 4
TSC2200 Touch Driver FUNCHONAIILY OVEIVIEWuutiiiiiiiiiiiiiiiiiie ettt e e 4
TSC2200 Keypad Driver FUNCHONAITY OVEIVIEW..........uiiiiiiiiiiiiiiiiiiieeee et e e e e e e e e 7
TS @ YT V=S 8
Y0 1B o =T @ Yo RSP 9
INdividual FUNCION DESCIIPTIONS. ...ttt et et e e e e e e e e e e e e e e e e e aaaaaeaeaeaeaseeaaeees 10
Figures
Figure 1. Integration of Monolithic Device Drivers Within the Windows CE System.................. 3
Figure 2. Driver Operation FIOWCNAIto 6
Tables
Table 1. Hardware CONNECTIONS ...t e ettt e e e e e e e e e et e e e e e e e eeeeennna e eens 3
Table 2. (G2 o F=To IV =T o 11 o Yo T 7

*5‘ TEXAS

SBAA075 INSTRUMENTS

Introduction

The Intel SA-1110 StrongARM processor and its derivatives are a popular platform for
development of PDAs and other hand-held computing devices. The human interface for these
devices is generally a touch screen.

A popular operating system for these devices is Windows CE. Drivers for both the touch screen
and keypad are presented in this document, since the TSC2200 supports both interfaces. The
touch screen driver alone will work well with the TSC2000 PDA Analog Interface circuit, since
this device does not support a keypad.

The methods described herein are only some of the possible implementations and are only
intended to serve as a guideline for hardware and software developers in developing their own
solutions. The sample setup and drivers provided only demonstrate the basic functionality of
using the TSC2200 with the SA-1110, but have not been extensively tested, and are not
intended for use “as is” in production systems.

The document assumes the reader is familiar with hardware, touch screen, and keyboard device
driver development in general, and specifically with the Windows CE Platform Builder 3.0
development environment, the Texas Instruments TSC2200 PDA Analog Interface Circuit, and
the Intel StrongARM SA-1110 Microprocessor and Development Board.

Hardware Considerations

2

The development system developed for this project consisted of a Texas Instruments
TSC2200EVM evaluation board and a modified Intel SA-1110 development board, which
includes a touch screen. The SA-1110 development board is modified to allow connecting the
TSC2200 in place of its touch screen controller. A full description of the modifications required to
the Intel SA-1110 board is beyond the scope of this document. However, a brief summary of the
necessary signal connections is described below.

In order to connect the TSC2200 to the Intel SA-1110 StrongArm processor, this project started
with the same modifications used for the ADS7846 development system (please refer to
Application Report SBAA070, “Using the ADS7846 Touch Screen Controller with the Intel
SA-1110 StrongArm Processor” located at www.ti.com).

Following the ADS7846 solution, the TSC2200 is connected to the SA-1110’s serial port 4
through GPIO lines 10 to 13. This allows the use of the SA-1110’s built-in Motorola SPI™
communications interface.

The DAV signal from the TSC2200 is connected to the SA-1110's GPIO line 23. This line is
normally connected to the UCB1300 on the Intel SA-1110 development board.

The lack of unused GPIO lines on the SA-1110 development board means that something must
be disabled in order to hook up the TSC2200’s KBIRQ. The KBIRQ signal is connected to the
SA-1110’s GPIO line 1 through the SW2 connection. Please note that since the boot loader
and other Intel development tools also use SW2, this signal should not be connected until
after the Windows CE image has been loaded on the SA-1110. If the TSC2200 pulls this
signal high during startup, the boot loader will not reset the device or download an
image.

Windows CE Touch and Keypad Device Drivers

for the TSC2200

‘"f TeExXAS
INSTRUMENTS SBAA075

Table 1 summarizes the connections required to duplicate this development system.

Table1. Hardware Connections

TSC2200 SA-1110
DAV GP1023
KBIRQ GPIO01
SS GPIO13
SCLK GPIO12
MOSI GPIO10
MISO GPIO11

Software Architecture

Both the touch screen and keypad drivers have been developed as “layered” drivers using the
Microsoft sample drivers as starting points. In addition, the touch panel driver relies upon the
ADS7846 (another touch screen controller from Texas Instruments) driver design. This approach
helped reduce overall project risk since the Model Device Driver (MDD) layer (supplied by
Microsoft in the sample drivers) did not require any change. Only the DDSI functions in the PDD
(Platform-Dependent Driver) layer were modified. Figure 1 shows the integration theory.

GWE Subsystem Device Manager
DDI Functions DDI Functions Stream Interface
l & Functions
Device Driver Device Driver
MDD Layer Monolithic MDD Layer
Device
DDSI Functions Driver DDSI Functions
PDD Layer PDD Layer
[] 1
| !
Hardware
Figure 1. Integration of Monolithic Device Drivers Within the Windows CE System. [1]

Windows CE Touch and Keypad Device Drivers
for the TSC2200 3

*5‘ TeExXAS
SBAA075 INSTRUMENTS

Functional Description
System Setup

1. Setup the SA-1110 Development Board in stand-alone configuration (not using the
SA-1111) according to the manufacturer's documentation.

2. Update the platform files (this assumes you have already installed the Platform Builder
system and the Intel SA-1110 files).

Update the SA11x0BD platform files by unzipping sal1X0bd_TSC2200 WCE300.zip to
C:\, where C:\\WINCE300 is the directory in which you have Platform Builder installed.

Rebuild the SA11x0BD platform (see Microsoft documentation).
Connect the TSC2200EVM to the SA-1110 development board.
Ensure that the KBIRQ line is NOT connected.

Download image to target (see Microsoft documentation).

o o kM w

Once the calibration program has started, connect the KBIRQ line. Please note that since
KBIRQ is connected after system startup, a spurious interrupt may have occurred when it
was connected. Due to this, the first keystroke may not be recognized, but all subsequent
ones should.

7. Calibrate the touch screen (will run automatically at boot). Once finished with calibration,
press the ‘F’ (mapped to ENTER) on the TSC2200 keypad to accept the new calibration
data.

TSC2200 Touch Driver Functionality Overview

The TSC2200 is setup to perform automatic X and Y conversions when the screen is pressed.
Therefore, when the screen is pressed on the development board, the TSC2200 performs its X
and Y conversions and asserts (active low) the DAV line. This line stays low until the X and Y
values are read from the appropriate data registers at which point the DAV line goes back high.
At this point, if the TSC2200 were to stay in continuous scan mode, the next conversion would
start immediately after the first was finished. Then, after the X and Y data was read, the DAV line
would stay high only until the next conversion was finished, and then it would be re-asserted.
This caused some problems for the driver because the DAV line goes high as soon as the
TSC2200 interprets the command to read the X and Y data, not waiting until the data has been
clocked out. What occasionally occurred was that the part would be mostly through with a
conversion when the driver requested the X and Y data. DAV would then go high, and the
conversion would finish. However, DAV would go low again before the processor had time to
clock the X and Y data in and re-enable the falling edge interrupt for DAV. This would result in
disabling the driver, since DAV would not go high until the data is read, and since the processor
missed the falling edge, it would never know data was available.

4 Windows CE Touch and Keypad Device Drivers
for the TSC2200

*5‘ TeExXAS
INSTRUMENTS SBAA075

Therefore, to avoid this issue, one of the first things done in the interrupt routine is to command
the TSC2200 to stop conversions. After reading the data and all other processing, conversions
are restarted on the TSC2200. This prevents the aforementioned problem.

Another issue that has to be dealt with is the fact that there is no single query to the TSC2200
that tells the host whether the pen is still down or not. PENIRQ and its sister register can partially
tell this, but since PENIRQ (and, therefore, its mirror bit) pulses when each new conversion is
started, it may indicate that the pen is lifted when in fact it is still down. This caused the driver
difficulty in recognizing an actual pen up. To get around this issue, the interrupt is enabled only
on a falling edge of DAV. Then a timer interrupt is set to go off after a sufficient time to allow the
TSC2200 to complete a conversion and assert DAV again, if the pen is still down. If a new DAV
falling edge interrupt is triggered before the timer fires, the timer is reset and the routine
continues. If the timer fires before another DAV interrupt is received, the processor checks to
see if the pen is up. If so, it assumes the pen as actually been lifted and passes a pen up
command to the system.

Figure 2 is a flowchart that summarizes the order of events.

Windows CE Touch and Keypad Device Drivers
for the TSC2200 5

‘";‘ TEXAS

SBAAO75 INSTRUMENTS
Oerecoves
Timer Interrupt
Configures TSC2200 *
for Continuous Scans, Driver Disables GPIO23
Sets Up GPIO23 and Timer Interrupt
for Falling Edge
Interrupts #
- Driver Stops Conversions
\ on TSC2200
N0 fe Screen Touched? Driver Verifes TSC2200
Indicates Pen is Lifted
Driver Re-Enables
PIO23 Interrupt
Host Writes AD Griozs
Converter ‘
Control Register
Driver Starts Conversion
on TSC2200
TSC2200 !
Pmmm{,sm Driver Returns Pen Up
Info to System
| Driver Receives Interrupt |
Driver Diasables GPIO23
and Timer Interrupts
Driver Stops Conversions
on TSC2200
Driver Reads X and Y Data
on TSC2200
Driver Sets Up
Timer Inferrupt to Fire Later,
Re-Enables GP1023 Interrupt
Driver Starts Conversion
on TSC2200
Driver Returns Pen Down
Info to System
Is Screen Still
Touched?
Figure 2. Driver Operation Flowchart
6 Windows CE Touch and Keypad Device Drivers

for the TSC2200

*5‘ TeExXAS
INSTRUMENTS SBAA075

TSC2200 Keypad Driver Functionality Overview

The keypad driver actually works very similarly to the touch driver. KBIRQ is asserted (low)
when a key is pressed. As with the touch driver’'s DAV line, KBIRQ also pulses high and then
low again as the TSC2200 continues scanning the keypad while a button is still down. Again,
this caused problems with recognizing the actual button up event. The keypad driver uses an
approach similar to that used in the touch driver. When the KBIRQ interrupt fires, a timer is set
long enough to allow the TSC2200 to complete at least one more keypad scan. When a timer
interrupt is received before the next KBIRQ interrupt and the TSC2200 says that no keys are
pressed, the driver assumes an actual button release occurred and acts accordingly. This timer
is set in the KeybdlstLoop function in KB_DIST.CPP and it has been found that setting it to 1.5
times the TSC2200’s debounce time works well.

The standard Windows AutoRepeat key functionality will not currently work with this driver. This
is due to the fact that since the KBIRQ pulses high between each scan of the keypad. This pulse
causes another KBIRQ falling edge interrupt to occur before the autorepeat minimum timeout
can occur. Therefore, no autorepeating occurs in this driver.

There are two arrays (arrVkeys and arrScanCodes) at the top of TSC_KEYPD.CPP that are
used to map the keypad keys to Windows Virtual Keys. Entry 0 in these arrays matches to Bit O
in the KEYDATA register of the TSC2200. The current mapping of the keypad keys is shown in
Table 2.

Table 2. Keypad Mapping

TSC2200 Key | Windows Virtual Key
0 .

G|B|N|@|d KBNS

VK_LEFT
VK_UP
VK_RIGHT
VK_DOWN
VK_ESCAPE
VK_RETURN

MIMO|O|W[(>|lo|lo|N|OoOj|D[W|IN]|F

There are also two #defines (KEYREG_SETUP_VALUE and KEYMASKREG_SETUP_VALUE)
in TSC_SSP.H that are used to setup the TSC2200 KEY and KPMASK registers.

Windows CE Touch and Keypad Device Drivers
for the TSC2200 7

*5‘ TEXAS

SBAA075 INSTRUMENTS

SSP Overview

8

In order to share the single SPI connection with the TSC2200 between both the keypad and the
touch drivers, a new module (tsc_ssp.cpp) was added to the DRVLIB library in the SA11x0bd
platform. This module sets up, configures, and uses the SA-1110's SPI interface to
communicate with the TSC2200 and uses a named Mutex to prevent collision between the two
drivers. Additionally, since the Keyboard driver loads first, it is allowed to initially reset and
configure the TSC2200, with the touch driver making any additional configuration changes it
requires when it loads.

The SA-1110's SSP port is configured to use the Motorola SPI format with the SPH and SPO
registers configured to match the requirements of the TSC2200 as follows:

- dss, DSS 16 BIT

- frf, FRF_MOTOROLA

- scr, SCR_600_KHZ

- rie, RIE_DISABLE

- tie, TIE_DISABLE

- Ibm, LBM_DISABLE

- spo, SPO_IDLE_LOW

- sp, SPH_HALF_DELAY

- ecs, ECS_INTERNAL

- spr, SPR_USE_GPIO

- gafr, gp10, GAFR_ALTERNATE

- gafr, gpll, GAFR_ALTERNATE

- gafr, gpl12, GAFR_ALTERNATE

- gafr, gpl13, GAFR_ALTERNATE

- gpdr, gpl0, GPDR_OUTPUT (SSP_TXD)
- gpdr, gpll, GPDR_INPUT (SSP_RXD)
- gpdr, gpl2, GPDR_OUTPUT (SSP_SCLK)
- gpdr, gpl3, GPDR_OUTPUT (SSP_SFRM)

Refer to the SA-1110 Developer's Manual, section 11.12.10.5, for more information on these
registers.

One issue arises when using the SSP interface on the SA-1110 with the TSC2200. This relates
to the TSC2200’s command interface. Only the first word, after SFRM goes low, is interpreted as
a command (refer to the TSC2200 data sheet). Therefore, if more than one command is to be
sent, the driver must ensure that SFRM goes high in between the two commands. There is no
direct way to control this while the SA-1110 is controlling the clocking in and clocking out of data.
This is resolved in this driver by waiting a certain amount of time, based upon the SPI serial
clock rate setup (see the SA-1110 Developer’'s Manual, section 11.12.9.4, for more info). This
allows SFRM to go high before sending the next command.

Windows CE Touch and Keypad Device Drivers

for the TSC2200

*5‘ TeExXAS
INSTRUMENTS SBAA075

SOURCE CODE

The following list represents those files either added or modified during this project with a short
summary of what was done.

1. C:\WINCE300\PLATFORM\SA11x0bd\

sallx0bd.bat—changed the define to include a keyboard even without the SA-1111
companion board.

2. C:\WINCE300\PLATFORM\SA11x0bd\inc\

TSC_SSP.H—new file contains prototypes and config defines for TSC2200 and SSP
communications.

Sal1X0BD.h—changed the TRACKPADRX interrupt macros to use GPIOO1.
sal1X0.h—removed a duplicate definition of armRegisterStruct.

3. C:\WINCE300\PLATFORM\SA11x0bd\drivers\TOUCHP\
Tchpdd.cpp—major rewrite to work with TSC2200.

4. C:\WINCE300\PLATFORM\SA11x0bd\drivers\Kbdmouse\KBDMSCOMMON\
KBDIST.CPP—rewrote isr routine.
TSC_KEYPD.CPP—major changes for TSC2200.
KBDMOUSE.CPP—change DLLMAIN for TSC2200.
SOURCES—removed references to PS2 stuff, added TSC_KEYPD.

5. C:\WINCE300\PLATFORM\SA11x0bd\drivers\DRVLIB\
TSC_SSP.cpp—new file to handle SSP and TSC communications.
SOURCES—added TSC_SSP.

6. C:\WINCE300\PLATFORM\SA11x0Obd\KERNEL\hal\
Cfwsarm.c—changed interrupt config routines for keypad and touch.

7. C:\WINCE300\PLATFORM\SA11x0bd\KERNEL\hal\arm\
int11x0.c—changed ISR function for keypad and touch.

Windows CE Touch and Keypad Device Drivers
for the TSC2200 9

*5‘ TEXAS

SBAA075 INSTRUMENTS

Individual Function Descriptions

Descriptions of the individual functions used in these drivers are given below. This document
assumes the reader understands Windows CE touch and keyboard drivers in general and will
not cover every function needed for a working driver. Those functions that required modification
in order to work with the TSC2200 are listed. Functions not listed below were not modified and
worked as they were, either from the Microsoft, Intel, or ADS7846 code.

TSC _SSP Interface

10

(All the SSP functions are new for this driver.)

INitSSP—This function initialized the SSP interface, and should be the first SSP function that
drivers should call.

voi d | nit SSP(voi d)
{

/1 setup the structures and pointers to the SSP registers

Set upSSPRegi sters();

/1 configure the SSP registers
set upSSP() ;

Windows CE Touch and Keypad Device Drivers

for the TSC2200

‘"f TeExXAS
INSTRUMENTS SBAA075

SetupSSPRegisters—Internal function called from within InitSSP to initialize the structures that
point to the SSP registers.

voi d Set upSSPRegi st er s(voi d)

{
//copied directly fromthe ADS7825 version driver

/1 check to ensure we don't do this nore than once per thread
/1 but we don't use the start nutex, because each thread needs a copy.
if (v_pSSPreg == NULL)
{
v_pSSPreg = (volatile struct sspreg *) Virtual All ocCopy(sizeof (struct sspreg),
(char *) TEXT(" TouchPanel Enabl e: SSP_BASE_VI RTUAL"), (PVA D) SSP_BASE VI RTUAL) ;
if (v_pSSPreg)
{
if (v_pPPCReg == NULL)
{

v_pPPCReg = (volatile struct ppcreg *)
Vi rtual Al'l ocCopy(si zeof (struct ppcreg),

(char *) TEXT(" TouchPanel Enabl e: PPC_BASE VI RTUAL"),
(PVA D) PPC_BASE_VI RTUAL) ;

}

Windows CE Touch and Keypad Device Drivers
for the TSC2200 11

*’;‘ TEXAS

SBAA075 INSTRUMENTS

12

SetupSSP—Internal function called from within InitSSP to setup the SSP registers to work with
the TSC2200.

voi d set upSSP()
{

volatile struct icreg *v_plCReg = (volatile struct icreg *)IC_BASE VI RTUAL;
vol atile struct gpioreg *v_pGPIOReg = (volatile struct gpioreg *)GPl O BASE VI RTUAL;

/1 Bg 19FEB02 - changing to using naned nutex for protection
if (CreateQurMitex())

{
if (G abQurMitex())

{
/1 Disable SSP

| OWREG FI ELD (struct sscrOBits, & _pSSPreg->sscr0, sse, SSE DI SABLE);

/] Data size select = 16
| OWREG FI ELD (struct sscrOBits, & _pSSPreg->sscr0, dss, DSS 16 BIT);

/! Frame format = Mbtorola franme fornmat

| OWREG FI ELD (struct sscrOBits, &v_pSSPreg->sscr0, frf, FRF_MOTORCLA);

/1 Serial clock rate = 614. 4KHz
| OWREG FI ELD (struct sscrOBits, &v_pSSPreg->sscr0, scr, SCR 600_KHZ);

/1 Program SSP control register 1

/'l Receive interrupt disabled

| OW REG FI ELD (struct sscrilBits, & _pSSPreg->sscrl, rie, R E_D SABLE);

Windows CE Touch and Keypad Device Drivers

for the TSC2200

‘"f TeExXAS
INSTRUMENTS SBAA075

/1 Transnmit interrupt disabled

| OWREG FI ELD (struct sscrlBits, &v_pSSPreg->sscrl, tie, TIE_D SABLE);

/1 Loopback node disabl ed
| OWREG FI ELD (struct sscrlBits, &v_pSSPreg->sscrl, |bm LBM D SABLE);

/1 Serial clock polarity = inactive |ow

| OWREG FI ELD (struct sscrlBits, &v_pSSPreg->sscrl, spo, SPO |IDLE_LOW;

/1 Serial clock phase (SCLK wait hal f SCLK period after SFRM assert ed)
| OWREG FI ELD (struct sscrlBits, & _pSSPreg->sscrl, sp, SPH HALF_DELAY);

/1l Internal clock select

| OWREG FI ELD (struct sscrlBits, & _pSSPreg->sscrl, ecs, ECS_| NTERNAL);

/1 Program PPC Pin Assignnent Register (PPAR)

/1 SSP pin reassi gnnent

| OWREG FI ELD (struct pparBits, & _pPPCReg->ppar, spr, SPR USE GPIO;

/1 Program GPl O alternate function regi ster (GAFR)

WRI TE_BI TFI ELD (struct gpioregBits, & _pGPl OReg->gafr, gplo0,
GAFR_ALTERNATE) ;

WRI TE_BI TFI ELD (struct gpioregBits, & _pGPl OReg->gafr, gpll,
GAFR_ALTERNATE) ;

WRI TE_BI TFI ELD (struct gpioregBits, & _pGPl OReg->gafr, gpl2,
GAFR_ALTERNATE) ;

WRI TE_BI TFI ELD (struct gpioregBits, & _pGPl OReg->gafr, gpl3,
GAFR_ALTERNATE) ;

Windows CE Touch and Keypad Device Drivers
for the TSC2200 13

*’;‘ TEXAS

SBAA075 INSTRUMENTS

/1 Program GPI O pin direction register (GPDR)

/| SSP_TXD

WRI TE_BI TFI ELD (struct gpioregBits, & _pGPl OReg->gpdr, gplo,
GPDR_QUTPUT) ;

/| SSP_RXD

WRI TE_BI TFI ELD (struct gpioregBits, & _pGPl OReg->gpdr, gpll,
GPDR_I NPUT) ;

/] SSP_SCLK

WRI TE_BI TFI ELD (struct gpioregBits, & _pGPl OReg->gpdr, gpl2,
GPDR_QUTPUT) ;

/| SSP_SFRM

WRI TE_BI TFI ELD (struct gpioregBits, & _pGPl OReg->gpdr, gpl3,
GPDR_QUTPUT) ;

} else

/1 Synchronous serial port enable (SET LAST!)
| OWREG FI ELD (struct sscrOBits, & _pSSPreg->sscr0, sse, SSE _ENABLE);

/1 Bg 19FEBO2
Rel easeQur Mut ex() ;

/1 GrabQur Mut ex

RETAI LMSGE 1, (TEXT("setupSSP - Failed to grab our nutex\r\n")));

} else /] CreateQur Mit ex

{
RETAI LM5GE(1, (TEXT("setupSSP - Failed to grab our nutex\r\n")));
}
}
14 Windows CE Touch and Keypad Device Drivers

for the TSC2200

‘"f TeExXAS
INSTRUMENTS SBAA075

DisableSSP—Called to shut off SSP operation when configuring the SSP interface or when
powering down.

voi d Di sabl eSSP(voi d)
{
if (G abQurMitex())

{
/1 disable SPP operation using the SSCR/ SSE regi ster

| OWREG FI ELD (struct sscrOBits, &v_pSSPreg->sscr0, sse, 0);

Rel easeQur Mut ex() ;

} else /] G abQurMitex

{
RETAI LM5GE 1, (TEXT("Di sabl eSSP - Failed to grab our mutex\r\n")));

EnableSSP—Internal function called to restart SSP after configuration is done.

voi d Enabl eSSP(voi d)
{
if (G abQurMitex())

{
/1 enabl e SPP operation using the SSCR/ SSE regi ster

| OWREG FI ELD (struct sscrOBits, &v_pSSPreg->sscr0, sse, 1);

Rel easeQur Mut ex() ;

} else /] G abQurMitex

{
RETAI LMBG 1, (TEXT("Enabl eSSP - Failed to grab our nutex\r\n")));

Windows CE Touch and Keypad Device Drivers
for the TSC2200 15

*5‘ TEXAS

SBAA075 INSTRUMENTS

16

The following functions send commands to the TSC2200 to either write or read registers. Their
names imply what registers they read or write. Only two need additional discussion:
TSC2200WriteKeyReg and TSC2200WriteKeyMaskReg. In order to avoid the problem (in Rev B
of the TSC2200) where the internal clock must be running for new values to be properly written
to the KEY and KPMASK registers, a slow Port Scan is first started by writing to the ADC
register, then the driver writes to the KEY or KPMASK register. Then to avoid a problem with
DAV going low and confusing the touch driver, the port scan conversion is stopped. As these
two registers (KEY and KPMask) are only written to during initialization of the keypad driver, this
does not unduly affect performance.

unsigned __int1l6 TSC2200ReadADCReg(voi d)

voi d TSC2200W it eADCReg(unsi gned __int16 newVal ue)
BOOL TSC2200ReadXY(unsigned __int1l6 *pXdata, unsigned __intl6 *pYdata)
voi d TSC2200Reset (voi d)

unsi gned __int1l6 TSC2200ReadKPDat aReg(voi d)

unsigned __int1l6 TSC2200ReadKeyReg(voi d)

voi d TSC2200W it eKeyReg(unsi gned __int16 newVal ue)

voi d TSC2200W it eKeyMaskReg(unsi gned __int16 newVal ue)
unsigned __int1l6 TSC2200ReadKeyMaskReg(voi d)

unsigned __int1l6 TSC2200ReadCFGReg(voi d)

voi d TSC2200W it eCFGReg(unsi gned __int16 newVal ue)
unsigned __int1l6 TSC2200ReadREFReg(voi d)

voi d TSC2200W it eREFReg(unsi gned __int 16 newVal ue)
unsigned __int1l6 TSC2200ReadDACReg(voi d)

voi d TSC2200W i t eDACReg(unsi gned __int16 newVal ue)

voi d TSC2200St opConver si ons(voi d)

voi d TSC2200St art Conver si ons(voi d)

Windows CE Touch and Keypad Device Drivers

for the TSC2200

*’:‘ TeExXAS
INSTRUMENTS SBAA075

Touch Interface
These functions have been modified from the ADS7846 touch screen driver.

DdsiTouchPanelEnable—Added code to setup the SSP interface, GP1023 falling edge
interrupts, and the TSC2200 itself.

BOCOL Ddsi TouchPanel Enabl e()
{

/'l setup all the structures needed to store pointers to various system pointers

Set upTouchDri ver Structs();

/1 Set up mutex for access to shared registers

if (!'v_hTchAudMutex || !'v_pOSTReg || !'v_pGPlOReq| |
lv_plCReg || !'v_pDriverdobals || !'v_pMCPReg) ({
PddpTouchPanel Deal | ocat eV() ;

DEBUGVEG(ZONE_ERROR, (TEXT(" Ddsi TouchPanel Enabl e(): Error
%u\r\n"), GetLastError()));

return (FALSE);

/'l Setup pen down interrupts, but |eave ints disabled until InterruptEnable().

/1 Bg 20FEBO2
UCB1X00_TOUCH_PI N_DI RECTI ON(0) ;
UCB1X00_TOUCH_ALTERNATE(0) ;

/1 setup the GPIO Ilines for the IRQ

UCB1X00_TOUCH_RI SI NG_EDGE_CLR; /1 Make FS falling edge triggered
UCB1X00_TOUCH_FALLI NG_EDCE_SET;

UCB1X00_TOUCH_| NT_SET(1); /1 clear interrupt just generated

GPI O_GRP11_27_ | NT_MASK(1);

Windows CE Touch and Keypad Device Drivers
for the TSC2200 17

‘"f TeExXAS
SBAA075 INSTRUMENTS

v_pDriverd obal s->t ch. t ouchl r g=0;
v_pDriverd obal s->tch. tinerlrqg=0;
v_pDriverd obal s- >t ch. penUpM ssed=0;
v_pDriverd obal s->t ch. penUpFake=0;

next Expect edl nt er r upt =PEN_DOWN;

/1 B&OFEBO2 - setup the SSP system

I nit SSP();

/1 Bg 20FEB02 - setup the main ADC REG
TSC2200W i t eADCReg(ADC_SETUP_VALUE) ;

return(TRUE) ; /1 we always succeed!!!!!!

18 Windows CE Touch and Keypad Device Drivers
for the TSC2200

*5‘ TeExXAS
INSTRUMENTS SBAA075

SampleTouchScreenADS7846—As the name implies, this function was originally taken from
the ADS7846 touch driver. However, it has been completely rewritten and simplified greatly for
the TSC2200. It merely reads the X and Y data, checks to see that they are within proper
bounds, and returns appropriate values.

TOUCH _PANEL_SAMPLE_FLAGS Sanpl eTouchScr eenADS7846(1 NT *x, | NT *y)

{
unsigned __intl1l6 i ReadX;

unsigned __intl1l6 i Ready;

unsigned __intl16 i ADC,

TOUCH_PANEL_SAMPLE_FLAGS TnpSt at eFl ags = TouchSanpl eDownFl ag;
/1 Bg 12/28/01

/1 read X and Y coord.

TSC2200ReadXY(& ReadX, & Ready);

/1 check to ensure that the point is within 12 bit bounds

if (((i ReadX < 4095) && (iReadX > 0)) && ((iReadY < 4095) && (iReadY > 0)))

{
*x = (INT) (i ReadX);
*y = (INT) (i ReadY);
TnpSt at eFl ags | = TouchSanpl eVal i dFl ag;
}
el se
{
TrpSt at eFl ags | = TouchSanpl el gnor e;
}

return(TnpSt at eFl ags) ;

Windows CE Touch and Keypad Device Drivers
for the TSC2200 19

*’;‘ TEXAS

SBAA075 INSTRUMENTS

20

DdsiTouchPanelGetPoint—This is the main workhorse of the touch driver. It gets called
whenever the DAV interrupt fires, as well as when the timer interrupt fires. It disables and re-
enables interrupts, stops and starts TSC2200 conversions, and calls
SampleTouchScreenADS7846 to get X and Y data.

VO D Ddsi TouchPanel Get Poi nt (TOUCH _PANEL_SAMPLE_FLAGS *pTi pSt at eFl ags, | NT *pUncal X, | NT
*
pUncal Y)

{
static TOUCH_PANEL_SAMPLE_FLAGS PrevSt at eFl ags = TouchSanpl el gnor e;
static | NT i PrevX=0;
static I NT i PrevY=0;
unsi gned | nterrupt Type=SYSI NTR_TOUCH,;
int i PenDown = 0;

unsigned __intl1l6 iData = 0;
unsigned __int16 i TenpData = 0;
unsigned __int16 i KeyData = 0;

/1 set default state flag

*pTi pSt at eFl ags = TouchSanpl el gnor e;

/1 read the ADC reg
i TenpDat a = TSC2200ReadADCReg() ;

/] record whether pen is down or not

if (i TenpData & 0x8000) // pen is down
i PenDown = 1;

el se

i PenDown

I
L

/1 an actual falling edge on DAV or PENIRQ not the timer interrupt
i f(v_pDriverd obal s->tch.touchlraq)
{

v_pDriverd obal s->t ch. t ouchl r g=0;

v_pDriverd obal s->tch. tinerlrqg=0;

I nt errupt Type=SYSI NTR_TOUCH_CHANGED;

Windows CE Touch and Keypad Device Drivers

for the TSC2200

*’;‘ TEXAS

INSTRUMENTS

SBAAO75

system

i f (i PenDown)

{

} else

/1 turn off conversions so that we don’t miss a DAV down trigger while

we are in here.

TSC2200St opConver si ons() ;

/1 take sanple
*pTi pSt at eFl ags=Sanpl eTouchScr eenADS7846(pUncal X, pUncal Y) ;

if (PrevStateFl ags & TouchSanpl eVval i dFl ag)

*pTi pSt at eFl ags | = TouchSanpl ePr evi ousDownFl ag;

i PrevX = *pUncal X;

i PrevY = *pUncal Y;

Pr evSt at eFl ags=*pTi pSt at eFl ags;

next Expect edl nt er rupt =PEN_UP_OR_TI MER;

/1 reset interrupt for falling edge

UCB1X00_TOUCH_FALLI NG EDGE_SET:;

UCB1X00_TOUCH_RI SI NG_EDGE_CLR;

UCB1X00_TOUCH_ I NT_SET(1); /1 clear interrupt just generated

I nt errupt Done(| nterrupt Type);

// don't enable timer INT until done

enabl eTouchTi ner | nt errupt (TOUCH_TI MER_| NCREMENT) ;

// turn conversions back on.

TSC2200St art Conver si ons() ;

/1l Rising Edge Trigger on DAV

/1 we shoul d never get here — but just in case sonmething else in the

/l sets the GPIOto trigger on rising edge, we'll handle it.

Windows CE Touch and Keypad Device Drivers
for the TSC2200 21

*’;‘ TEXAS

SBAAO75 INSTRUMENTS
/1 turn off timer, since we are done
di sabl eTouchTi nerInterrupt();
/1 turn off conversions
TSC2200St opConver si ons() ;
/1 Need to read data to ensure that DAV goes high for next tine.
Sanpl eTouchScr eenADS7846(pUncal X, pUncal Y) ;
/'l set the stateflags ourself to ensure the pen up is handl ed
*pTi pSt at eFl ags = TouchSanpl eVal i dFl ag;
/1 record if the pen was down |ast tine
if (PrevStateFlags & TouchSanpl eVal i dFl ag)
*pTi pSt at eFl ags | = TouchSanpl ePr evi ousDownFl ag;
/1 use the previous down X Y location
*pUncal X = i PrevX;
*pUncal Y = i PrevY;
PrevSt at eFl ags = TouchSanpl el gnor e;
next Expect edl nt er r upt =PEN_DOWN;
/1 reset interrupt for falling edge
UCB1X00_TOUCH_FALLI NG_EDGE_SET;
UCB1X00_TOUCH_RI SI NG_EDGE_CLR;
UCB1X00_TOUCH_ I NT_SET(1); /1 clear interrupt just generated
I nt errupt Done(| nterrupt Type);
/1 turn on conversions
TSC2200St art Conver si ons() ;
}
22 Windows CE Touch and Keypad Device Drivers

for the TSC2200

‘"f TeExXAS
INSTRUMENTS

SBAAO75

{

{

el se

else if(v_pDriverd obal s->tch.tinmerlrq)

/1 Timer interrupt

v_pDriverd obal s->tch. tinerlrqg=0;

i f (i PenDown)

// turn off conversions

TSC2200St opConver si ons() ;

*pTi pSt at eFl ags=Sanpl eTouchScr eenADS7846(pUncal X, pUncal Y) ;

/1 Save location for when we get a pen up
i PrevX = *pUncal X;

i PrevY = *pUncal Y;

Pr evSt at eFl ags=*pTi pSt at eFl ags;

next Expect edl nt er rupt =PEN_UP_OR_TI MER;

I nt errupt Done(| nterrupt Type);
enabl eTouchTi ner | nt errupt (TOUCH_TI MER_| NCREMENT) ;

// turn on conversions

TSC2200St art Conver si ons() ;

/1 if we get the timer and the TSC2200 says the pen is up,

/1 that nmeans the pen really has been lifted.

// turn off tiner, since we are done

di sabl eTouchTi mer I nterrupt();

Windows CE Touch and Keypad Device Drivers
for the TSC2200 23

SBAAO75

‘"f TeExXAS
INSTRUMENTS

el se

/! turn off conversions

TSC2200St opConver si ons() ;

/1 Need to read data to ensure that DAV goes high for next tine.
Sanpl eTouchScr eenADS7846(pUncal X, pUncal Y) ;

/1 act like this is a pen up

*pTi pSt at eFl ags = TouchSanpl eVal i dFl ag;

if (PrevStateFlags & TouchSanpl eVal i dFl ag)

*pTi pSt at eFl ags | = TouchSanpl ePr evi ousDownFl ag;

*pUncal X = i PrevX;

*pUncal Y = i Prevy;

PrevSt at eFl ags = TouchSanpl el gnor e;
next Expect edl nt er r upt =PEN_DOWN;

/1 reset interrupt for falling edge

UCB1X00_TOUCH_FALLI NG _EDGE_SET;

UCB1X00_TOUCH_RI SI NG_EDGE_CLR;

UCB1X00_TOUCH_ I NT_SET(1); /1 clear interrupt just generated
I nt errupt Done(I nterrupt Type);

/! turn on conversions

TSC2200St art Conver si ons();

*pTi pSt at eFl ags = TouchSanpl el gnor e;
PrevSt at eFl ags = TouchSanpl el gnor e;

I nt errupt Done(I nterrupt Type);

24 Windows CE Touch and Keypad Device Drivers

for the TSC2200

*’:‘ TeExXAS
INSTRUMENTS

SBAAO75

DdsiTouchPanelPowerHandler—Calls DisableSPP() upon power down and InitSSP upon
power up.

{

/1

voi d Ddsi TouchPanel Power Handl er (BOOL bOf f)

unsigned __intl1l6 iData = 0;

unsigned __intl1l6 i TenpData = O;

/1l Set flag so we know to avoid systemcalls

bl nPower Handl er = TRUE;
if (bOff)
/1 Bg 1/10/02

/1 Disable SSP before going to sleep
Di sabl eSSP() ;

TouchPanel Power OF f () ;

} else

/1 when waking up, re-initilize both SSP and the TSC2200 itself.

/1 B&OFEBO2 - setup the SSP system and reset the part
I nitSSP();

reset the flag

bl nPower Handl er = FALSE;

Windows CE Touch and Keypad Device Drivers

for the TSC2200 25

*’;‘ TEXAS

SBAA075 INSTRUMENTS

Keypad Interface

26

These functions have been modified from the standard Microsoft sample PS2 keyboard driver.

KeybdPdd_InitializeDriverEx—Initializes SPP, resets, and configures the TSC2200.

BOOL W NAPI KeybdPdd_I nitializeDriver Ex(PFN_KEYBD_EVENT_CALLBACK_EX
pf nKeybdEvent Cal | backEx)

{
/1 Init SSP operations

I nitSSP();

/1 Bg 20FEBO2 - since the keyboard driver loads first, we'll reset and setup the part
here TSC2200Reset () ;

TSC2200W i t eDACReg(0x0000) ;
TSC2200W i t eREFReg((REF_I NT_INTERNAL | REF DL_1 MS | REF_PDN OFF | REF_RFV_250));
TSC2200W i t eCFGReg(CFG_SNS_96) ;

/1 setup the KeyReg
TSC2200W i t eKeyReg(KEYREG _SETUP_VALUE) ;

/1 and the KeyMaskReg
TSC2200W i t eKeyMaskReg(KEYMASKREG SETUP_VALUE) ;

/1 and finally the ADC Register
TSC2200W i t eDACReg(ADC_SETUP_VALUE) ;

return TRUE;
}

Windows CE Touch and Keypad Device Drivers

for the TSC2200

*5‘ TeExXAS
INSTRUMENTS SBAA075

KeybdlstLoop—Main thread for the keypad driver. Waits on KBIRQ and timer interrupts, and
calls KeybdPdd_GetEventEx() to gather keypad data.

BOOL Keybdl st Loop(HANDLE hevl nt er rupt)

{
Ul NT32 VKeyBuf [16] ; /1 har dcoded w PDD.
Ul NT32 ScanCodeBuf [16] ; /1 har dcoded w PDD.
KEY_STATE_FLAGS KeySt at eFl agsBuf [16] ; /1 hardcoded w PDD.
i nt cKeyEvents;
i nt i KeyEvent | dx;

| ong Aut oRepeat Ti neout ;

Set ThreadPriority(Get Current Thread(), THREAD PRI ORI TY_H GHEST);

Aut oRepeat Ti meout = | NFI NI TE;

while (1)
{
/1 Bgl4FEBO2 - wait for event either GPIO interrupt or tineout

Wi t For Si ngl eObj ect (hevl nterrupt, AutoRepeat Ti meout);

/1 since the interrupt handler eats the up transitions, this can only be a
keydown

cKeyEvents = KeybdPdd_Get Event Ex(VKeyBuf, ScanCodeBuf, KeyStateFl agsBuf);

if (cKeyEvents > 0)
{
/1l set the timer, so we can tell if the key goes up.

Aut oRepeat Ti neout = 25;

Windows CE Touch and Keypad Device Drivers
for the TSC2200 27

*’;‘ TEXAS

SBAA075 INSTRUMENTS
} else
{
/1 if now KEY event, reset for next key down
Aut oRepeat Ti meout = | NFI NI TE;
}
/1 send the events to the system call back function
for (iKeyEventldx = 0; iKeyEventldx < cKeyEvents; iKeyEvent| dx++
(*v_pf nKeybdEvent Cal | backEx) (VKeyBuf [i KeyEvent | dx],
ScanCodeBuf [i KeyEvent | dx], KeySt at eFl agsBuf [i KeyEvent | dx]);
/1 Ack the interrupt.
I nt er rupt Done(SYSI NTR_KEYBQOARD) ;
}
/1 shoul d never get here
ERRORMSG(1, (TEXT("Keyboard driver thread termnating.\r\n")));
return O;
}
28 Windows CE Touch and Keypad Device Drivers

for the TSC2200

*5‘ TeExXAS
INSTRUMENTS SBAA075

KeybdPdd_GetEventEx—Reads the KPData register, interprets the keys that are down, and
returns the appropriate virtual keys and scan codes from static array in module.

int WNAPl KeybdPdd_Get Event Ex(U NT32 VKeyBuf [16], Ul NT32
ScanCodeBuf [16] , KEY_STATE _FLAGS KeySt at eFl agsBuf [16])

{
| NT cEvents = 0;

/1 Static variable so we can know if the
/1l pen was down the last tinme we were called

static BOOL bPrevKeyDown = FALSE;

unsigned __intl16 iKeyDat a;
BOOL bKeyDown = FALSE;

/1 variable needed to check the state of the GPIOline to ensure we have a pen down

vol atile struct gpioreg *v_pGPIOReg = (volatile struct gpioreg *)GPl O BASE VI RTUAL;

/1 KPI'RQ from TSC2200 is reversed logic, active |ow
bKeyDown = (v_pGPl OReg->gpl r.gp0l == 0);

i KeyDat a = TSC2200ReadKPDat aReg() ;

if (!bKeyDown && !bPrevKeyDown)

{
/1 if the pen is not down and wasn’'t down previously, just return
/1 because we shouldn’t have gotten the interrupt the in first place
return O;

}

/!l need to fill up the key data arrays

/1 go through the data fromthe KEYdata register
/1 and for each bit that is on, fill in the return arrays

/1 fromthe arrVKeys and arrScanCodes arrays

Windows CE Touch and Keypad Device Drivers
for the TSC2200 29

*’;‘ TEXAS

SBAA075 INSTRUMENTS
for (int i=0;i<16;i++)
{
if (iKeyData & (0x0001<<i))
{
VKeyBuf [cEvents] = arrVkeys[i];
ScanCodeBuf [cEvent s] = arr ScanCodes[i];
i f (bKeyDown)
{
/1 set the appropriate state flags for the system
i f (bPrevKeyDown)
KeySt at eFl agsBuf [cEvent s] = KeySt at ePr evDownFl ag;
el se
KeySt at eFl agsBuf [cEvent s] = KeySt at eDownFl ag;
} else
{
/1 zero for the key up flag
KeySt at eFl agsBuf [cEvents] = O;
}
cEvent s++;
}
}
/1 setup bPrevKeyDown for next tine;
bPrevKeyDown = bKeyDown;
return cEvents;
}
30 Windows CE Touch and Keypad Device Drivers

for the TSC2200

*’:‘ TeExXAS
INSTRUMENTS SBAA075

Kernel Functions

The following kernel functions were modified to use GPIOO01 for the keyboard. The touch
portions of these files where not changed from the ADS7846 version.

OEMiInterruptHandler—The main interrupt handler for the whole system. The case was
modified for GPIOO01 to return SYSINTR_KEYBOARD. Additionally, since the system uses the
same GPIO pin as SW2, the driver must ensure that even if some other code (that hasn’t been
encountered yet) resets the IRQ for rising edge, it won't impact the keypad processing.
Therefore, the rising edge is ignored if it is received.

i nt OEM nt erruptHandl er (unsi gned int ra)
{

/1 other systemcode that we didn't touch

el se if(my_sallO0_intreg. gpi ol)

{
TRACKPADRX | NT_CLR(1); /1 clear the interrupt

/1 we want to eat the rising_edge interrupts

if (v_pGPl OReg->gplr.gp0l == 1)

{ /1l if the GPIOpin is high, this nmust have been rising edge
return SYSI NTR_NOP;

TRACKPADRX | NT_NMASK(0) ; /1 mask interrupts
return SYSI NTR_KEYBOARD;

/1 Bg - what used to be here
!/ GPI O1l_I NT_CLR(1);
/1 return SYSI NTR_NOP;

/1 other systemcode that we didn't touch

}

Windows CE Touch and Keypad Device Drivers
for the TSC2200 31

‘"f TeExXAS
SBAA075 INSTRUMENTS

OEMinterruptEnable—Modified the SYSINTR_KEYBOARD not to deal with the keyboard on
the daughter card, but to handle the interrupts as needed. Here, the driver must mask rising
edge interrupts, set falling edge interrupts, clear any currently pending interrupts, and then set
the mask so that GPIOO01 interrupts are enabled.

BOCL OEM nterrupt Enable (DWORD idlint, LPVO D pvData, DWORD chDat a)
{

/1 other systemcode that we didn't touch

case SYSI NTR_KEYBOARD:

/1 Bg 14FEB02 changes to get the KEYPAD to work
TRACKPADRX_| NT_RI SI NG EDGE_CLR
TRACKPADRX_| NT_FALLI NG_EDGE;
TRACKPADRX | NT_CLR (1); /1 initial clear to irgs
TRACKPADRX | NT_MASK(1) ; /1 interrupts will be active

/1 Bg 14FEBO2 - renoving to get the TSC2200 keypad to work correctly
/1 DAUGHTER_CARD | NT_MASK (1); /1 enabl e SA1101CB interrupts

br eak;

32 Windows CE Touch and Keypad Device Drivers
for the TSC2200

‘"f TeExXAS
INSTRUMENTS SBAA075

OEMinterruptDisable—Modified the SYSINTR_KEYBOARD case to only deal with falling edge
interrupts. Here, the driver clears the interrupt and then sets the mask register to disable
GPIOO0L1 interrupts.

voi d OEM nt err upt Di sabl e(DWORD i dI nt)
{

/1l other systemcode that we didn't touch

case SYSI NTR_KEYBOARD:

/1 Bg 14FEBO2 clearing the falling edge interrupts
TRACKPADRX_| NT_FALLI NG EDGE_CLR;

TRACKPADRX | NT_NMASK(0) ; /1 interrupts will not be active
br eak;

/1 other systemcode that we didn't touch

OEMinterruptDone—Modified the SYSINTR_KEYBOARD case to only deal with falling edge
interrupts.

voi d OEM nt err upt Done(DWORD i dl nt)
{

/'l other systemcode that we didn't touch
case SYSI NTR_KEYBOARD:
/1 Bg 14FEB02
TRACKPADRX_| NT_FALLI NG_EDCE;
TRACKPADRX_| NT_MASK (1) ;
br eak;

/1 other systemcode that we didn't touch

Windows CE Touch and Keypad Device Drivers
for the TSC2200 33

*5‘ TeExXAS
SBAA075 INSTRUMENTS

References

1. “Writing Device Drivers for Microsoft Windows CE 3.0”, Microsoft
TSC2200 Datasheet, Texas Instruments (SBAS191A)

“Using the ADS7846 Touch Screen Controller with the Intel SA-1110 StrongArm
Processor”, Texas Instruments, (SBAA070)

w

StrongARM SA-1110 Microprocessor - Advanced Developer's Manual, Intel
StrongARM SA-1110 Microprocessor Development Board — Schematics, Intel
StrongARM SA-1110 Microprocessor Development Board - User's Guide, Intel

N S O A

StrongARM SA-1110 Microprocessor Development Platform - Windows CE Software
User's Guide, Intel

8. Related documentation for Windows CE Platform Builder 3.0.

Many of these documents as well as other related documentation can be downloaded from their
respective websites, or found on manufacturer’s provided CDs.

http://www.ti.com
http://developer.intel.com/design/strong/

http://www.microsoft.com/windows/embedded/ce/tools/default.asp

Windows is a trademark of Microsoft Corporation.
ARM and StrongARM are trademarks of ARM, Ltd.
Intel is a trademark of Intel Corporation.

SPI is a trademark of Motorola.

34 Windows CE Touch and Keypad Device Drivers
for the TSC2200

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subjectto TI's terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third—party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2002, Texas Instruments Incorporated

