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Peter Forstner Standard Linear & Logic

ABSTRACT

This application report describes IEEE Std 1149.1 test-bus controller (TBC) SN74ACT8990
from Texas Instruments (TI ). The first part explains the architecture and operation of the
TBC; the second part uses examples to explain the programming procedure.
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1 Introduction

There has been a dramatic increase in the complexity of electronic systems as a result of
advances in the integration of semiconductors, the introduction of new packaging techniques
[surface-mount device (SMD)], and the consequent use of double-sided circuit boards. However,
increased component density on circuit boards presents challenges to testability because the
number of necessary test vectors increases out of proportion with complexity. By using nail-bed
adapters, it is possible to partition the system to be tested, thereby reducing significantly the
number of test vectors, although high SMD component density on double-sided boards reduces
the number of possible contact areas for nail-bed adapters. Therefore, the escalating problems
of testability can be solved only with a completely new concept.

In 1985, leading electronic manufacturers founded the Joint Test Action Group (JTAG) to
develop a new and cost-effective test concept. The result of this was IEEE Std 1149.1. This
standard requires the use of special test circuits at the inputs and outputs of selected
semiconductor components, together with logic to control such test circuits. A 4-wire serial test
bus combines the test circuits into a complete test group that is controlled via the test bus. In this
way, with only four lines, the complete system can be partitioned and tested.

TI application report EB193 describes these test methods in detail, and presents
IEEE Std 1149.1-compatible system controllability observability partitioning environment
(SCOPE ) bus drivers from TI. Application report EB203 assumes an understanding of test
methods compliant to IEEE Std 1149.1.

The control of an IEEE Std 1149.1-compatible test system usually is performed by a computer.
TBC SN74ACT8990, which can be connected to a computer like a normal interface circuit,
completely controls the IEEE Std 1149.1 test bus (see Figure 1). The computer first configures
the TBC, then loads in parallel the test commands and test vectors. The TBC transfers these
commands and vectors to the system, thereby generating the signal sequence required by
IEEE Std 1149.1. The processor can read the result in parallel from the TBC, after the test data
has addressed the logic to be tested. This application report describes the operation of the TBC,
and explains the programming procedure with examples.

Figure 1. Test System With TBC SN74ACT8990

SCOPE is a trademark of Texas Instruments.
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To reduce the applications work by the user needed to control IEEE Std 1149.1-compatible test
systems, TI offers the computer program Advanced Support System for Emulation and Test
(ASSET ) together with a plug-in computer board. TBC SN74ACT8990 is used on this board.
ASSET allows easy development of test programs for which the user needs no understanding of
the function of the TBC. First, a library with the IEEE Std 1149.1-compatible circuits that are to
be used must be assembled. A library with all standard TI components is supplied. Then, the
complete system to be tested must be described with components from the library. After the
system description, ASSET needs only the test vectors before testing can begin. This system
also is suited ideally to supporting the circuit designer during the test phase.

If built-in self-test (BIST) is to be incorporated into an electronic system, TBC SN74ACT8990, in
combination with the scan-path selector SN74ACT8999 and a microprocessor, provides an ideal
basis (see Figure 2). The main computer can give the microprocessor the signal to start BIST
via the IEEE Std 1149.1 test bus. The result of the self-test is communicated from the
microprocessor to the main computer.

Figure 2. System With Built-In Self-Test (BIST)

If a large system is composed of several subsystems, it is advantageous to have BIST in each
subsystem. The self-test then can be implemented simultaneously in all subsystems, resulting in
significant reduction of test time.

This is one of the cases in which direct programming of the TBC is necessary, and in which this
application report is intended to give assistance.

ASSET is a trademark of Texas Instruments.
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2 Hardware

TBC SN74ACT8990 provides the interface between a processor and the IEEE Std 1149.1 test
bus. Both interfaces can be operated asynchronously, that is, the clock of the computer does not
need to be synchronized with the test clock TCK.

2.1 Processor Interface

The processor interface consists of the following:

• 5-bit address bus (A0–A4)
• 16-bit data bus (D0–D15)
• Read line (RD)
• Write line (WR)
• Status line (RDY)
• Interrupt line (INT)

The TBC is connected to the processor like a normal interface circuit, whereby the address
decoder can be implemented as PAL (see Figure 3). Clock signal TCLK is buffered in the TBC,
then transferred to the test system as the TCK signal, which can be derived from an
independent clock generator or the processor clock, or be provided from the test system.

Figure 3. Connection of the TBC to a Microprocessor
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Five address lines can be used to address 24 internal registers:

• Ten control registers
• Two command registers
• Six registers to control internal counters
• Four status registers
• One register for transmit data
• One register for receive data

Sixteen registers can be read and overwritten, seven are readable only, and one register can
only be written to. The remaining eight potential registers are not occupied. Section 3,
Programming, gives details of the registers. The timing of a write cycle is shown in Figure 4, and
a read cycle is shown in Figure 5.

Figure 4. Timing Diagram of Processor Interface When Writing

Figure 5. Timing Diagram of Processor Interface When Reading
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2.2 Test Bus Interface

According to IEEE Std 1149.1, the test bus interface consists of:

• One test pulse input (TCKI)

• One test pulse output (TCKO)

• One test data output (TDO)

• Two test data inputs (TDI0, TDI1)

• Two test mode select outputs (TMS0, TMS1)

• Four lines, which can be used as further TMS outputs (TMS2–TMS5), or can be
programmed as event inputs/outputs (EVENT0–EVENT3)

• One line, test bus off (TOFF), to reset all test outputs to a high-resistance state

• One input, test bus reset (TRST), to reset the TBC and all test circuits. The use of this input
is optional because the TBC and the test systems have a software reset.

Figure 6 shows the connection of an IEEE Std 1149.1 test system to the TBC. Here, only one
TMS signal is needed so that ,in this case, all four event inputs/outputs (EVENT0–EVENT3) are
available. Because signals TMS2–TMS5 use the same lines as event inputs/outputs, the
number of available event inputs/outputs is reduced if more than two test systems are connected
to the TBC (see Figure 7).

Figure 6. Connection of a IEEE Std 1149.1 Test Bus to the TBC
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Figure 7. Connection of Two IEEE Std 1149.1 Test Buses to the TBC
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The TDO of several test systems can be connected in parallel and to a TDI input of the TBCs
because they are active only during the shift operation (SHIFT-DR, SHIFT-IR) and are otherwise
in a high-impedance state. If the test bus signals must be buffered (see Figure 8), the TDO
output of the test system can no longer be in the high-impedance state. For this eventuality, two
test data inputs (TDI0, TDI1) are available.

Figure 8. Connection of Several IEEE Std 1149.1 Test Buses to the TBC,
With Buffering of the Test Bus Signal
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2.3 Architecture

Figure 9 shows the block diagram of the TBC, consisting of six functional blocks:

• Sequence block
• Serial block
• Event block
• Counter block
• Command block
• Host block

Figure 9. Block Diagram of TBC SN74ACT8990
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2.3.1 Sequence Block

The sequence block (see Figure 10) traces the test system through the status diagram (see
Figure 21). During this process, the actual status of the test system is always known. The
signals TMS, TDO, and TDI are generated by the sequence block according to IEEE Std 1149.1.
During the SHIFT-DR and SHIFT-IR states, it uses the serial data out (SDO) data from the serial
block to generate the TDO signal. Additionally, the sequence block transfers the TDI received
data over the serial data in (SDI) line to the serial block.

Figure 10. Sequence Block

These programming possibilities are important for the user:

• Choice of the TMS line to be used (TMS0–TMS5)
• Switching of all test bus lines into a high-resistance state
• Choice of the TDI line to be used
• Programmed delay of the test bus signals (link delay)
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The link-delay logic allows a simple way to account for flip-flop chains that are switched in the
signals TDO, TDI, and TMS between the TBC and the test board (see Figure 11). These
flip-flops can be used, for example, to synchronize signals coming from long lines from the TBC
SN74ACT8990 to test boards.

Figure 11. Link-Delay Logic
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2.3.2 Serial Block

An understanding of the operation of the serial block is an important requirement for the
application of the TBC (see Figure 12). The serial block supplies the commands and data that
are sent to the IEEE Std 1149.1-compatible test boards in the SHIFT-IR and SHIFT-DR states.
In the same way, it collects the bits that are read back from the TDO output of the test board.

Figure 12. Serial Block

The SDO passes through the following sequence block to reach the test board as the TDO
signal. The SDO signal can be chosen from the following via the multiplexer MUX2:

• SDO data derives from the WRITE BUFFER.
• Die SDO data derives from the SHIFTER-FIFO.
• SDO data consists only of ones.
• SDO data consists only of zeros.

The microprocessor writes data and commands into the WRITE BUFFER, which are sent to the
test board via the SDO output. This WRITE BUFFER consists of two 16-bit registers. If the
computer writes a 16-bit word into the first register, this register can be shifted out immediately
via SDO. In the meantime, it is possible to write the next 16-bit word into the second register.
The functional control of the register – that is, which register is transferring data and which can
be addressed by the computer – is automatically performed by the TBC. The user must only
request, via a status register, how many registers of the WRITE BUFFER are empty.

The write transfer function allows the user to choose whether the WRITE BUFFER should be
shifted to the right, i.e., starting with the least significant bit (LSB), or to the left, i.e., beginning
with the most significant bit (MSB).
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The TDI receiver data from the test board first pass through the sequence block, and then are
shifted over the SDI into the SHIFTER-FIFO. The SHIFTER-FIFO is a shift register, whose
length can be programmed to 16 bits or 32 bits with the help of the multiplexer MUX1. After
reset, the SHIFTER-FIFO is loaded with 1s. All bits that leave the SHIFTER FIFO during a shift
process are stored in the READ BUFFER.

The READ BUFFER, like the WRITE BUFFER, consists of two 16-bit registers. The operation is
similar to that of the WRITE BUFFER; the only difference is that the data flow is in the reverse
direction, i.e., the processor reads the data. The processor can determine via a register how
many registers of the READ BUFFERs contain data. Because, as explained previously, the
SHIFTER-FIFO is loaded with 1s on reset, the first bits that the computer reads from the READ
BUFFER are 16 or 32 1s, depending on length to which the SHIFTER-FIFOs have been
programmed. Only then will the first bits arrive from the TDI input.

The bit-by-bit transfer of data from the SHIFTER-FIFO to the READ BUFFER is performed by
the read transfer function. It allows the user the following programs:

• Bits are transferred from the right into the WRITE BUFFER, with the first transmitted bit as
LSB in the WRITE BUFFER.

• Bits are transmitted from the right into the WRITE BUFFER, with the last transmitted bit as
LSB in the WRITE BUFFER.

2.3.3 Event Block

With the help of the event block, external events can be used to influence the test program, or
transferred to the control computer from the event block as an interrupt. The operation of the
event block is only of interest to those users who want to control the test program in accordance
with events. If no such control is required, the following section can be skipped.

Figure 13 shows the block diagram of the event block inputs. Each input has its own event
detector, which reacts on recognizing predetermined events. In addition, the two 16-bit backward
counters (COUNTER20 and COUNTER21) are available to count events (see Figure 15). These
counters also can be configured as two combined 16-bit counters (see Figure 16) and as a
32-bit counter (see Figure 17). The multiplexers of the event blocks allow the programming of a
variety of different functions.



SCAA044

15 Test-Bus Controller SN74ACT8990

Figure 13. Inputs of the Event Block

For example, the EVENT0 input can be switched directly to the event detector by use of the
multiplexer MUX 0. The EVENT DETECTOR 0 is programmed to recognize a particular event,
e.g., the arrival of a rising pulse edge. It is, however, also possible to count events that occur at
the EVENT0 input only with COUNTER20. After the counter of the COUNTER UPDATE register
of the counter blocks (see Figure 18) has been loaded with the required value, on arrival of an
event at the EVENT0 input it will be decremented by one. At the zero crossing of COUNTER20,
the event detector activates its output.

The control computer has no direct access to COUNTER20 and COUNTER21; however, the
COUNTER2 UPDATE register can be written to from the control computer. If COUNTER20 and
COUNTER21 are loaded in parallel, this always takes place with the value in the COUNTER2
UPDATE register.

The output circuit of the event block is shown in Figure 14. For each output, two latches are
available. One latch stores the required output level, the second latch allows the driver to switch
into a high-resistance state and, therefore, to configure the connection as an input.
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Figure 14. Outputs of the Event Block

COUNTER20 and COUNTER21 can be configured as follows:

• COUNTER20 and COUNTER21 work as separate 16-bit counters.

• COUNTER20 and COUNTER21 work as combined 16-bit counters. In this case, both
counters are implemented as separate 16-bit counters, but COUNTER20 is loaded from the
COUNTER UPDATE register until COUNTER21 has the first zero crossing. In this case, two
events control the event recognition. For example, it can be programmed so that the first
event must occur 55 times, and then the second event 12,345 times, before the event
detector responds.

• Both counters are connected together to make a 32-bit counter (COUNTER2).
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Figure 15. COUNTER20 and COUNTER21 Configured as Separate 16-Bit Counters

Figure 16. COUNTER20 and COUNTER21 Configured as Combined 16-Bit Counters
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Figure 17. COUNTER20 and COUNTER21 Configured as One 32-Bit Counter (COUNTER2)

2.3.4 Counter Block

The part of the counter block (see Figure 18) that is relevant for the user consists of:

• COUNTER1 UPDATE register
• 32-bit backwards counter (COUNTER1)
• COUNTER1 CAPTURE register

Figure 18. Counter Block
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COUNTER1 is used to count the SHIFT-DR, SHIFT-IR, and RUN-TEST/IDLE states. Also, it is
possible to use it to count events. For this purpose, however, COUNTER20 and COUNTER21
are primarily available.

The control computer has no direct access to COUNTER1; it can only write into the
COUNTER1 UPDATE register and read the COUNTER1 CAPTURE register. If COUNTER1 is
loaded in parallel, this always is done with the value of the COUNTER1 UPDATE register. The
actual count state of COUNTER1 can be copied parallel into the COUNTER1 CAPTURE
register. From there, the actual count state can pass to the controlling computer.

2.3.5 Command Block

The command block contains two command registers (MAJOR COMMAND and
MINOR COMMAND) (see Figure 19). In addition, all status registers are part of this block. The
command block, with the command decode logic, controls the command process, with no
intervention required by the user.

Figure 19. Command Block
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2.3.6 Host Block

The tasks of the host block include data-bus signal conditioning, decoding addresses and
control lines, and conditioning interrupts for the control computer. In addition, the host block
includes the reset logic and the buffering of the test pulse TCK. This block also performs its
functions with no intervention required by the user.

Figure 20. Host Block
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3 Programming

The control computer has access to the functions of the TBC using 24 registers, which are listed
in Table 1. The ten control registers configure the TBC. The 32-bit command register is made up
of a combination of the MAJOR COMMAND and MINOR COMMAND registers. With the
MAJOR COMMAND register, presets of the commands are implemented, while the MINOR
COMMAND register controls the execution; the commands are started, interrupted, or
terminated. With the four COUNTER UPDATE and two CAPTURE registers, the counters of the
event block and the counter block are controlled. The internal state of the TBC can be
ascertained over three STATUS registers. The READ BUFFER and WRITE BUFFER are used
to exchange data between the test board and the controlling computer.

Table 1. Registers of TBC SN74ACT8990



SCAA044

22 Test-Bus Controller SN74ACT8990

3.1 Registers

In this section, the individual bits of all registers of the TBC are presented in tables. The table
heading includes the register name and a short description of the register function. Within the
tables, all bits are described individually. The bit numbers are assembled in groups of four bits
each to simplify the presentation in hexadecimal form.



SCAA044

23 Test-Bus Controller SN74ACT8990

CONTROL0
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CONTROL1

When using the SN74ACT8990 as controller of a test bus according to IEEE Std 1149.1, all bits
of these registers must be set to zero by the user. With the help of these registers, the
manufacturer can switch various parts of the component into test operation during production
test. This allows a comprehensive, but simple, functional examination of the internal circuitry.

CONTROL2

The component generates a TMS signal internally. This signal can be extracted at the pins
TMS0–TMS5. All TMS pins that are not connected to the internal TMS source remain in a static
state.
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CONTROL3
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CONTROL4
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CONTROL5
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CONTROL6
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CONTROL6 (Continued)
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CONTROL7



SCAA044

31 Test-Bus Controller SN74ACT8990

CONTROL7 (Continued)

CONTROL8
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CONTROL9
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MINOR COMMAND



SCAA044

34 Test-Bus Controller SN74ACT8990



SCAA044

35 Test-Bus Controller SN74ACT8990

MAJOR COMMAND

The STATE command is used to set the test board into a new state. There is no other activity
during that command:

• Event recognition, and all counters, are ignored.

• COUNTER1 is ignored and does not count, even if the RUN-TEST/IDLE state occurs.

• Data buffer is ignored and remains unchanged, even if a SHIFT-DR state or a SHIFT-IR
state occurs.

• SHIFTER-FIFO is ignored and remains unchanged, even if a SHIFT-DR state or a SHIFT-IR
state occurs.

• Execution of the command cannot be suspended.

• To reach the new state, only the temporary states SELECT-DR-SCAN, CAPTURE-DR,
EXIT1-DR, UPDATE-DR, SELECT-IR-SCAN, CAPTURE-IR, EXIT1-IR, and UPDATE-IR are
used. The sole exception is the start of the TEST-LOGIC-RESET state. In this case, first
change to RUN-TEST/IDLE state. Only then will this procedure lead, exclusively, via
temporary states, to the new state.
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Using the EXECUTE command, a defined number of RUN-TEST/IDLE cycles can be executed.
The execution of this command can be suspended and resumed.
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Using the SCAN command, a defined number of SHIFT-DR cycles or SHIFT-IR cycles can be
executed. The execution of this command can be suspended and resumed.

COUNTER1 UPDATE0

COUNTER1 UPDATE1

The 32-bit COUNTER1 is used for counting the numbers of shift operations with the SCAN
command in the SHIFT-DR state and the SHIFT-IR state. Additionally, it is used for counting the
RUN-TEST/IDLE cycles during an EXECUTE command. COUNTER1 also is able to count
events.
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COUNTER2 UPDATE0

COUNTER2 UPDATE1

Both COUNTER20 and COUNTER21 can be used as two independent 16-bit counters (see
Figure 15), two combined 16-bit counters (see Figure 16), or as one 32-bit counter
(COUNTER2) (see Figure 17). In both cases, they can be used for counting events that occur at
the EVENT0–EVENT3 inputs.
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STATUS0
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STATUS1
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STATUS2

STATUS3

CAPTURE0

CAPTURE1

The actual value of COUNTER1 can be loaded into the CAPTURE0 and CAPTURE1 registers.
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READ BUFFER

WRITE BUFFER

3.2 Typical Programming Procedure

Using a test board according to IEEE Std 1149.1, the commands typically are sent first to the
test components with IR-SCAN, and the necessary test vectors communicated with subsequent
DR-SCANs. Simultaneously, a DR-SCAN reads the system answer from the previous test
vector. For a test of the connecting lines, the following procedure is typical:

1. IR-SCAN: command EXTEST for all test components

2. DR-SCAN: shift first test vector in all test components

3. DR-SCAN: read system reply to the first test vector and shift second test vector to all test
components

4. DR-SCAN: read system reply to the second test vector and shift third test vector to all test
components.

5. Etc.

An IR-SCAN approximates in programming to a DR-SCAN. Only bit 3 in the
MAJOR COMMAND register must be programmed to 1 for an IR-SCAN, or to 0 for a DR-SCAN.
To implement an IR-SCAN or DR-SCAN under the control of the TBC, the following
programming steps are necessary:

1. First, the TBC must be configured using the ten control registers. If this already has been
done, only some necessary changes to the configuration might need to be made.

2. The COUNTER1 UPDATE register must be programmed according to the length of the
shift register.

3. Using the MAJOR COMMAND, IR-SCAN or DR-SCAN is selected and, subsequently, the
MINOR COMMAND starts the execution of the commands.
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4. a) The STATUS register allows control of the status of the WRITE BUFFER. If one of the
two buffers is empty, 16 command bits or 16 bits of the test vector must be written into the
WRITE BUFFER. These bits are shifted from the TBC, over the TDO line, into the test
board. Simultaneously, the TBC collects the bits from the TDI input into the SHIFTER
FIFO. During this shifting operation, bits inevitably fall out at the other end of the shift
register; these are read into the READ BUFFER via the READ TRANSFER FUNCTION.

b) If the STATUS register shows that data in the READ BUFFER is available, this data must
be read from the READ BUFFER.

c) Steps 4a and 4b should be continued until all bits in the test board have been written. For
the final iteration, usually less than 16 bits need to be shifted. Unneeded bits of the WRITE
BUFFER will be ignored by the TBC; excess bits from the READ BUFFER are filled by the
TBC with zeros.

5. The last data bits read from the TDI input are now in the SHIFTER-FIFO, and must be
transferred into the READ BUFFER in order to proceed from there to the control computer.

Since the TBC continually sends the clock signal TCK to the test board, movement through the
status diagram (see Figure 21) can be halted in only one of the six static states:

• TEST-LOGIC-RESET
• RUN-TEST/IDLE
• SHIFT-DR
• PAUSE-DR
• SHIFT-IR
• PAUSE-IR

If an interrupt in the shift cycle is necessary (e.g., the control computer has not yet written the
next data in the WRITE BUFFER, or because both READ BUFFERs are full), the TBC changes
to the PAUSE-DR or PAUSE-IR state. It remains there until the shift cycle can again proceed.
The state in which the test board should wait after executing a command is chosen with the
MAJOR COMMAND. In most cases, the RUN-TEST/IDLE state is used. If the PAUSE-DR or
PAUSE-IR states are chosen, the fact should be noted that, after ending a command, the
UPDATE-DR or UPDATE-IR phases would not proceed.
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Figure 21. IEEE Std 1149.1 Test Access Port (TAP) Status Diagram

4 Examples

The programming of TBC SN74BCT8244N is demonstrated in the following examples. All
examples assume the use of the same test board with two SN74BCT8244N SCOPE octals.

4.1 Example Test Board

All examples in this section are based on the same test board. To simplify an understanding of
the examples, this test board consists of two SN74BCT8244N SCOPE octals from TI (see
Figure 22). The programming methods used with more complex test boards are basically the
same.
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Figure 22. Hardware Example: Two SCOPE Octals SN74BCT8244N

The shift registers of the test boards are in the following states:

• SHIFT-IR state

– 16-bit INSTRUCTION register (IR)

• SHIFT-DR state

– 36 boundary scan cells (BSCs)
– 4-bit BOUNDARY CONTROL register (BCR)
– 2-bit BYPASS register

4.2 Software Examples

The first examples show the programming of three basic functions:

• Load commands in the test board
• Load test vectors in the test board
• Copy SHIFTER-FIFO in the READ BUFFER

The next example essentially is a combination of the three basic functions:

• EXTEST

Finally, the pseudo-random pattern generation/parallel signature analysis (PRPG/PSA) is
demonstrated with examples, with and without event control:

• PRPG/PSA without event control
• Event-controlled PRPG/PSA
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Each software example commences with a table, giving an overview of the basic functions that
are used.

The programming of the registers is explained in detail in the tables. The tables show the
register name and the direction of data flow, i.e., whether the register is being written into or
read. In addition, descriptions of the individual bits and the resulting bit combinations are
included, whether binary or hexadecimal.

4.2.1 Load Commands in Test Board

At the beginning of a test, the TBC always should be reset.
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After reset of the whole TBC, it should be configured with the ten control registers:

• TDI0 as test data input

• TMS0 as TEST MODE SELECT output

• No interrupt transferred to the control computer

• The TMS2–TMS5/EVENT0–EVENT3 inputs/outputs are made TMS outputs, but are not
used, so that the event logic remains unchanged.
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After configuration of the TBC with the ten control registers, the full length of the shift register
should be loaded into COUNTER1.

With the MAJOR COMMAND, presets are chosen and the MINOR COMMAND starts the shift
operation.
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The TBC now is ready to send commands to the test board via TDO, and to receive the status of
the test board via TDI.

Before the WRITE BUFFER is written, the status of the WRITE BUFFER must be interrogated.
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The STATUS2 register now contains the following bit combination:

As soon as the WRITE BUFFER has been loaded, the TBC begins to shift the data. Since the
16 bits of the WRITE BUFFER exactly match the length of the shift register, the WRITE
BUFFER needs no further data. The next step is the reading of the READ BUFFER. For this, the
status must be interrogated first, and only when the READ BUFFER is filled with data can it be
read out.

The READ BUFFER can be read out if the STATUS3 register contains the following bit
combination:
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The following value now can be read out from the READ BUFFER:

The status information of the two SCOPE octals is now in the SHIFTER-FIFO. If a test vector is
shifted into the test board, the next 16 bits of the READ BUFFER will contain the status
information of the two SCOPE octals. If it is required to receive the status information
immediately, the contents of the SHIFTER-FIFO must be copied into the READ BUFFER. An
example of this is given in section 4.2.3.

4.2.2 Load Test Vector in Test Board

Loading a test vector into the test board differs from loading commands in the following
respects:

• Length of the shift register is 36 bits.
• DR-SCAN must be chosen to shift the test vector.

The control registers should be programmed only if they differ from a previous program. Since
the DR-SCAN usually follows an IR-SCAN, the control registers do not need to be programmed
again. A detailed description of the control register programming is given in section 4.2.1.
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COUNTER1 now must be programmed to the length of the shift register: 36 – 1 = 35 = 0x23.

With the MAJOR COMMAND, now the DR-SCAN is chosen. The MINOR COMMAND then
starts the shifting operation again.

The WRITE BUFFER now can be fed with data again, and the READ BUFFER read out.
Reading out STATUS2 register again ensures that the buffer is ready.
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If both WRITE BUFFERs are empty, 2 × 16 bits can be entered immediately.

If the TBC has shifted out the 32 bits of the WRITE BUFFER via TDO, it reads also 32 bits at the
TDI input into the SHIFTER-FIFO, and from there into the READ BUFFER. To be able to shift
further data into the test board, at least one 16-bit word from the READ BUFFER must be read
next. Via the STATUS2 register, it also must be determined if data is already available.

If this DR-SCAN example occurred before the example from section 4.2.1, the following values
can be read from the READ BUFFER:
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If the READ BUFFER has been read, then at least 16 bits were shifted through the test board,
and, as a result, at least one register of the WRITE BUFFER must be empty. To be safe, the
status also can be ascertained before addressing the WRITE BUFFER. Since the shift register is
36 bits long and 32 bits have already been written into the WRITE BUFFER, only 4 bits from the
test vector are missing. The remaining 12 bits of the WRITE BUFFER can be occupied with any
desired words, because they will not be shifted out into the test board.

Finally, the last data from the READ BUFFER must be read out. Status interrogation again
ensures that data is available.

Because only four bits have been shifted at the last shift operation, only four bits arrived from the
SHIFTER-FIFO to the READ BUFFER.

The following 16 bits are still in the SHIFTER-FIFO:

• Six bits: 1Y3–1Y4, 2Y1–2Y4 (test sample of SCOPE octal U1)
• Eight bits: 1A1–1Y4, 2Y1–2Y4 (test sample of SCOPE octal U1)
• Two bits: 1G, 2G (test sample of SCOPE octal U1)

The example in section 4.2.3 shows how these 16 bits can be copied into the READ BUFFER.
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4.2.3 Copy SHIFTER-FIFO Into the Read Buffer

To copy the contents of the SHIFTER-FIFO into the READ BUFFER, the component must be
configured in such a way that the output data of the SHIFTER-FIFO serves as the source for the
input data of the SHIFTER-FIFO. Therefore, the FIFO must be connected as a circular memory.
Then, the SHIFTER-FIFO will be shifted, according to the program, 16 or 32 times. Because
each bit that leaves the SHIFTER-FIFO is copied into the READ BUFFER, the READ BUFFER
contains a copy of the SHIFTER-FIFO after this operation.
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The contents of SHIFTER-FIFO can be removed from the READ BUFFER. If this is done as
shown in the example in section 4.2.2, the READ BUFFER contains the following bit sample:

With this operation, the contents of the SHIFTER-FIFO remain unchanged, and the state of the
test board also remains unchanged.

4.2.4 EXTEST

With the three basic functions for the preceding section, an EXTEST for the test board used can
be made very easily. The following shifting actions are necessary for this:

The following tables show the test vectors used and the system reply to this vector that results.

The necessary program steps for this already have been explained in detail in previous
examples, and are summarized here:

First, the TBC is reset and subsequently configured, with the help of the control register.
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1. Load command in test board

Both SCOPE octals are loaded with the command EXTEST. The value to be read from the
READ BUFFER is the 1s from the reset SHIFTER-FIFO.
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2. Load first test vector

The first test vector is shifted into the two SCOPE octals. The first 16-bit word of the READ
BUFFER contains the status information, which the SCOPE octals produce on writing in a
command. Subsequently, bitmaps are read that were present in the SCOPE octals before
the beginning of the test.
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3. Read system reply to first test vector and load second test vector

The next test vector now is shifted into the SCOPE octals. From the READ BUFFER, the
rest of the previous bitmap of the SCOPE octals can be read first, and then the system reply
of the SCOPE octals to the first test vector.
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4. Read SHIFTER-FIFO

The missing 16 bits of the system reply still are in the SHIFTER-FIFO. To receive these bits,
the contents of the SHIFTER-FIFO must be copied into the READ BUFFER.

The EXTEST has been completed. The test vector was written with three shift operations
into the test board. In the same way, reading the system reply to the test vector of the READ
BUFFER is done in three steps:

The result is coded into the two SCOPE octals as follows:

4.2.5 PRPG/PSA

This example shows how, with the three basic functions, IR-SCAN, DR-SCAN, and read
SHIFTER-FIFO, and an additional EXECUTE RUN-TEST/IDLE block, a PRPG/PSA test can be
built up. New in this example is the command EXECUTE from the TBC, which can generate a
defined number of RUN-TEST/IDLE cycles.
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The example hardware uses the bit combination 01011101 as the input signal for the component
U1. The signature at the inputs of U1 is determined from the bit combination and the initial value
used.

The signature at the inputs of U2 is based on the output signal from U1 and the initial value.
Only the initial value is decisive for the bit sequence of the PRPG. Now the PRPG and the PSA
of both SN74BCT8244N generate the following bit sequences:
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The following tables show the test vector used as an initial value and the expected system reply
to this vector after ten PRPG/PSA cycles:

First, the TBC must be reset.

1. Load initial values: IR-SCAN sample
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2. Load initial values: DR-SCAN test vector
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3. Load BCR with PRPG/PSA: IR-SCAN SCANCT
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4. Load BCR: DR-SCAN 8-bit PRPG/PSA
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5. Load RUNT command in COMMAND register
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6. Implement PRPG/PSA

Before the PRPG/PSA implementation can begin, the configuration of the TBC must be
changed. The COUNTER1 is used to count the TCK edges during the RUN-TEST/IDLE states.

COUNTER1 is loaded now with the number of RUN-TEST/IDLE cycles. In this case, ten cycles
should be made. The register must be programmed with the value (10 – 1) = 9.

MINOR COMMAND and MAJOR COMMAND start the PRPG/PSA implementation.
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7. Read result vector: IR-SCAN READBT

To read the result vectors, one of the two commands, READBT or READBN, must be used.
Other commands, such as EXTEST or SAMPLE, are written over during the UPIDATE-IR phase,
with the result of the PRPG/PSA.
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8. Read result vector: DR-SCAN
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9. Read SHIFTER-FIFO

The system reply to the test vector is read by the READ BUFFER in three steps:

The result, coded in the two SCOPE octals, is given below:

4.2.6 Event-Controlled PRPG/PSA

This example is a further development of the previous PRPG/PSA example. In this case,
however, the PRPG/PSA will start only when a rising edge has arrived five times at the event
input EVENT2.

The programming of the TBC is nearly identical with that of the PRPG/PSA example. Only the
sixth step, the execution of the PRPG/PSA, is somewhat changed. Therefore, only this sixth
step will be explained in detail; all other steps should be taken from the PRPG/PSA example.
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4.2.7 Implement PRPG/PSA

Before execution of the PRPG/PSA can begin, the configuration of the TBC must be changed.
COUNTER1 is used to count the TCK edges during the RUN-TEST/IDLE state. COUNTER20
counts the events occurring at the EVENT2 input.
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COUNTER1 now is loaded with the number of RUN-TEST/IDLE cycles.

COUNTER20 now is loaded with the number of events. For five events, the value (5 – 1) = 4 is
to be programmed.

MINOR COMMAND and MAJOR COMMAND start the execution of the PRPG/PSA.
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The TBC now waits for five leading edges at the event input of EVENT2. Only then does
PRPG/PSA execution begin. After PRPG/PSA has been completed, the control registers must
be reset into the standard state.

The result now can be read out, as given in example PRPG/PSA.
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5 Summary

JTAG has developed a coordinated test concept based on boundary-scan techniques, whose
specification is embodied in IEEE Std 1149.1. This allows cost-effective testing of complex
electronic systems.

When using boundary-scan test methods according to IEEE Std 1149.1, it is necessary to
control this test bus with a computer. For this purpose, TI has made available a suitable
peripheral component, the TBC SN74ACT8990. If the ASSET development system from TI is
used to develop a test program, the computer program supplied programs the TBC.

BIST systems require direct programming of the TBC. Also in this case, the ASSET system and
additional translation programs offer easy and flexible programming solutions.

However, if the register of the TBC must be programmed directly, a detailed understanding of
this component and methods of programming it are necessary. The examples in this application
report make it easier for the user to undertake direct programming of the TBC.
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