## **BQ77307**

## Technical Reference Manual



Literature Number: SLUUCY8 DECEMBER 2023

## **Table of Contents**



| Read This First                                              | 5  |
|--------------------------------------------------------------|----|
| About This Manual                                            | 5  |
| Battery Notational Conventions                               | 5  |
| Trademarks                                                   | 5  |
| Glossary                                                     | 5  |
| 1 Introduction                                               |    |
| 2 Device Description                                         | 9  |
| 2.1 Overview                                                 |    |
| 2.2 Functional Block Diagram                                 |    |
| 3 Device Configuration                                       |    |
| 3.1 Direct Commands and Subcommands                          |    |
| 3.2 Configuration Using OTP or Registers                     | 12 |
| 3.3 Data Formats                                             |    |
| 3.3.1 Unsigned Integer                                       |    |
| 3.3.2 Integer                                                |    |
| 3.3.3 Hex                                                    |    |
| 4 Device Security                                            | 15 |
| 5 Protection Subsystem                                       | 17 |
| 5.1 Protections Overview                                     | 17 |
| 5.2 Protection Evaluation and Detection                      | 19 |
| 5.3 Protection FET Drivers                                   | 19 |
| 5.4 Cell Overvoltage Protection                              |    |
| 5.5 Cell Undervoltage Protection                             | 21 |
| 5.6 Short Circuit in Discharge Protection                    | 22 |
| 5.7 Overcurrent in Charge Protection                         |    |
| 5.8 Overcurrent in Discharge 1 and 2 Protections             |    |
| 5.9 Current Protection Latch                                 | 25 |
| 5.10 CHG Detector                                            | 26 |
| 5.11 Overtemperature in Charge Protection                    | 26 |
| 5.12 Overtemperature in Discharge Protection                 |    |
| 5.13 Internal Overtemperature Protection                     |    |
| 5.14 Undertemperature in Charge Protection                   |    |
| 5.15 Undertemperature in Discharge Protection                |    |
| 5.16 Cell Open Wire Detection                                |    |
| 5.17 Voltage Reference Diagnostic Protection                 | 31 |
| 5.18 VSS Diagnostic Protection                               |    |
| 5.19 REGOUT Diagnostic Protection                            |    |
| 5.20 LFO Oscillator Integrity Diagnostic Protection          |    |
| 5.21 Internal Factory Trim Diagnostic Protection             |    |
| 6 Device Status and Controls                                 |    |
| 6.1 0x00 Control Status() and 0x12 Battery Status() Commands | 33 |
| 6.2 Unused VC Cell Input Pins                                | 34 |
| 6.3 LDOs                                                     |    |
| 6.4 ALERT Pin Operation                                      |    |
| 6.5 TS Pin Operation                                         |    |
| 6.6 Device Event Timing                                      |    |
| 7 Operational Modes                                          |    |
| 7.1 Overview of Operational Modes                            |    |
| 7.2 NORMAL Mode                                              | 39 |

Table of Contents www.ti.com

| 7.3 SHUTDOWN Mode                                    | 40 |
|------------------------------------------------------|----|
| 7.4 CONFIG UPDATE Mode                               |    |
| 8 I <sup>2</sup> C Serial Communications             |    |
| 8.1 I <sup>2</sup> C Serial Communications Interface |    |
| 9 Commands and Subcommands                           |    |
| 9.1 Direct Commands.                                 |    |
| 9.2 Bit Field Definitions for Direct Commands        | 45 |
| 9.2.1 Safety Alert A Register                        |    |
| 9.2.2 Safety Status A Register                       | 46 |
| 9.2.3 Safety Alert B Register                        | 47 |
| 9.2.4 Safety Status B Register                       | 47 |
| 9.2.5 Battery Status Register                        | 48 |
| 9.2.6 Alarm Status Register                          | 49 |
| 9.2.7 Alarm Raw Status Register                      |    |
| 9.2.8 Alarm Enable Register                          | 52 |
| 9.2.9 FET CONTROL Register                           |    |
| 9.2.10 REGOUT CONTROL Register                       |    |
| 9.3 Command-only Subcommands                         |    |
| 9.4 Subcommands with Data                            |    |
| 9.5 Bitfield Definitions for Subcommands             |    |
| 9.5.1 DEVICE NUMBER Register                         |    |
| 9.5.2 FW VERSION Register                            |    |
| 9.5.3 HW VERSION Register                            |    |
| 9.5.4 SECURITY KEYS Register                         |    |
| 9.5.5 PROT RECOVERY Register                         |    |
| 10 Data Memory                                       |    |
| 10.1 Settings                                        |    |
| 10.1.1 Settings:Configuration                        |    |
| 10.1.2 Settings:Protection                           |    |
| 10.2 Protections                                     |    |
| 10.2.1 Protections:Cell Voltage                      |    |
| 10.2.2 Protections:Current                           |    |
| 10.2.3 Protections:Temperature                       |    |
| 10.3 Power                                           |    |
| 10.3.1 Power:Configuration                           |    |
| 10.3.2 Power:Shutdown                                |    |
| 10.4 Security                                        |    |
| 10.4.1 Security.Settings                             |    |
| 10.4.2 Data Memory Summary                           |    |
|                                                      |    |



#### **About This Manual**

This technical reference manual (TRM) discusses the modules and peripherals of the BQ77307 device, and how each is used to build a complete battery pack monitor and protection solution. For details on the hardware device features and electrical specifications, see the BQ77307 2-Series to 7-Series High Accuracy Battery Primary or Secondary Protector for Li-Ion, Li-Polymer, LiFePO<sub>4</sub> (LFP), and LTO Battery Packs data sheet.

#### **Battery Notational Conventions**

The following notation is used if commands, subcommands, and data memory values are mentioned within a text block:

- Commands and subcommands: italics with parentheses and no breaking spaces; for example, Battery Status()
- Data memory: italics, bold, and breaking spaces; for example, Power Config
- Register bits and flags: italics and brackets; for example, [SCD]
- Data memory bits: italics and bold; for example, [FET EN]
- · Modes and states: ALL CAPITALS; for example, DEEPSLEEP

#### **Trademarks**

All trademarks are the property of their respective owners.

#### **Glossary**

TI Glossary This glossary lists and explains terms, acronyms, and definitions.



Read This First www.ti.com

This page intentionally left blank.

# Chapter 1 Introduction



The Texas Instruments BQ77307 provides a highly integrated, high accuracy battery primary and secondary protector for 2-series to 7-series Li-lon, Li-Polymer, LiFePO<sub>4</sub> (LFP), and LTO battery packs. Each device includes a high accuracy voltage, current, and temperature protection subsystem, with integrated low-side protection NFET drivers, and a programmable LDO for external system use. The BQ77307 provides an interrupt to a host processor and integrates an I<sup>2</sup>C host communication interface supporting up to 400-kHz operation with optional CRC to read status information. Device features include:

- Primary or secondary voltage, current, and temperature protection for 2-series to 7-series cells with autonomous recovery option
- Integrated low-side drivers for NFET protection with optional autonomous recovery
- Low power operation
  - NORMAL mode with both FET drivers enabled: 8 μA
  - NORMAL mode with FET drivers disabled: 6 μA
  - SHUTDOWN Mode: < 1 μA
- · High voltage tolerance of 45 V on cell connect and select additional pins
- · Support for temperature protections using internal sensor and external thermistor
- Integrated one-time-programmable (OTP) memory for device settings, programmed by TI
- 400-kHz I<sup>2</sup>C serial communications with optional CRC support
- Programmable LDO for external system usage



*Introduction* www.ti.com

This page intentionally left blank.



#### 2.1 Overview

The BQ77307 product is a highly integrated, accurate battery primary or secondary protector for 2-series to 7-series Li-Ion, Li-Polymer, LiFePO<sub>4</sub> (LFP), and LTO battery packs. A feature-rich and highly configurable protection subsystem provides a wide set of protections which can be triggered and recovered completely autonomously by the device or under full control of a host processor. Integrated FET drivers drive low-side charge and discharge protection NFETs. A programmable LDO is included for external system use, with voltage programmable to 1.8 V, 2.5 V, 3.0 V, 3.3 V, or 5.0 V, capable of providing up to 20 mA.

The BQ77307 device includes one-time-programmable (OTP) memory which TI programs to configure default device operation settings, for systems where a host processor is not available to configure the device. Alternatively, a host processor can be connected to the device I<sup>2</sup>C interface and configure settings in the field, depending on customer preference. A 400-kHz I<sup>2</sup>C communication interface and ALERT interrupt output enable communication with a host processor. The device supports protections using an external thermistor as well as the internal die temperature. Figure 2-1 shows the BQ77307 block diagram.

#### 2.2 Functional Block Diagram

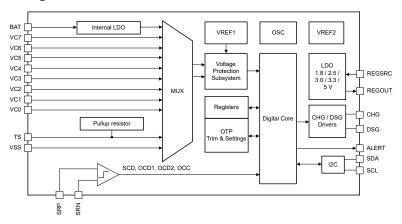



Figure 2-1. BQ77307 Block Diagram



Device Description www.ti.com

This page intentionally left blank.



#### 3.1 Direct Commands and Subcommands

The BQ77307 device includes support for direct commands and subcommands. The direct commands are accessed using a 7-bit command address that is sent from a host through the device serial communications interface and either triggers an action, or provides a data value to be written to the device, or instructs the device to report data back to the host. Subcommands are additional commands that are accessed indirectly using the 7-bit command address space and provide the capability for block data transfers.

When a subcommand is initiated, a 16-bit subcommand address is first written to the 7-bit command addresses 0x3E (lower byte) and 0x3F (upper byte). The device initially assumes a read-back of data is needed, and auto-populates existing data into the 32-byte transfer buffer (which uses 7-bit command addresses 0x40–0x5F), and writes the checksum for this data into address 0x60. If the host instead intends to write data into the device, the host overwrites the new data into the transfer buffer, a checksum for the data into address 0x60, and the data length into address 0x61.

As soon as address 0x61 is written, the device checks the checksum written into 0x60 with the data written into 0x40-0x5F, and if this is correct, it proceeds to transfer the data from the transfer buffer into the device's memory. The checksum is the 8-bit modulo-256 sum of the subcommand bytes (0x3E and 0x3F) and the bytes used in the transfer buffer, then the result is bit-wise inverted. The verification cannot take place until the data length is written, so the device realizes how many bytes in the transfer buffer are included. Write the data length last, after the checksum has been written (they do not need to be written together as a word). The data length includes the two bytes in 0x3E and 0x3F, the two bytes in 0x60 and 0x61, and the length of data in the transfer buffer. Therefore, if the entire 32-byte transfer buffer is used, the data length is 0x24.

When the data length in 0x61 is read, the device automatically increments the address presently in 0x3E and 0x3F by 0x0020, and populates the transfer buffer with new readback data. This allows large portions of data memory to be read by continuous reading of the address space 0x40 to 0x61. If the host attempts to read the transfer buffer data starting at 0x40 while the device is still loading the data into the transfer buffer, the device clock stretches the I2C read transaction until the data is available.

Some subcommands are only used to initiate an action and do not involve sending or receiving data. In these cases, the host can simply write the subcommand into 0x3E and 0x3F, and it is not necessary to write the length and checksum or any further data. Note that if an auto-incremented address corresponds to a subcommand that does not involve data, the auto-incrementing does not cause that subcommand to be initiated.

The commands supported in the device are described in Commands and Subcommands. Single-byte commands are direct commands, while two-byte commands are subcommands. Data formats are described in Data Formats.

The most efficient approach to read the data from a subcommand (to minimize bus traffic) is shown below:

- Write lower byte of subcommand to 0x3E.
- 2. Write upper byte of subcommand to 0x3F.
- 3. Read back the subcommand from 0x3E and 0x3F, which echoes back the subcommand address sent in steps 1 and 2 (or the auto-incremented address from step 6).
- 4. Read buffer starting at 0x40 for the expected length (reading the full 32 bytes is also acceptable).
- 5. Read the checksum at 0x60 and verify it matches the data read over the length specified by the subcommand.



Device Configuration www.ti.com

6. If auto-incrementing is desired, read the data length at 0x61, at which point the device increments the address in 0x3E and 0x3F by 32 and repopulates the buffer with the next 32 bytes of data, then go to step 2.

#### **Note**

0x61 provides the length of the buffer data plus 4 (that is, length of the buffer data plus the length of 0x3E and 0x3F plus the length of 0x60 and 0x61).

The checksum is calculated over 0x3E, 0x3F, and the length of buffer data specified by the subcommand, and it does not include the checksum or length in 0x60 and 0x61.

Write only 0 to command or subcommand bits denoted RSVD 0. Write only 1 to bits denoted RSVD 1.

#### 3.2 Configuration Using OTP or Registers

The BQ77307 device includes Data Memory registers with values stored in digital logic, as well as one-time programmable (OTP) memory, which holds device trim information and default settings for registers. At initial power-up or after a reset, the device loads the OTP settings into registers, which are used by the device logic during operation. If the device is unsealed, it can also perform a reset on demand if the *0x0012 RESET()* subcommand is sent. Register values are preserved while the device is in NORMAL mode. If the device enters SHUTDOWN mode or a reset occurs, all register memory is cleared, and the device returns to the programmed OTP parameters when powered again.

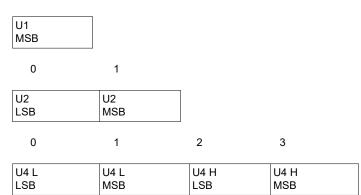
The OTP memory is written by TI during device manufacturing and cannot be modified by the customer. A customized OTP configuration can be developed and programmed into a custom device by TI, depending on business terms.

The device supports several different potential use cases:

- **Standalone operation** a customized OTP configuration is programmed into a custom device by Tl. At each powerup of the device, it loads settings from OTP and operate autonomously without needing any host processor interaction. The I<sup>2</sup>C bus on the device is not connected. If interested in this option, please contact Tl for further discussion.
- Autonomous operation with status information as above, the device is configured using a customized OTP programmed by TI. While the device does not *require* host interaction, a host processor can receive an interrupt whenever a protection alert or fault occurs and can query the device over I<sup>2</sup>C to determine what event initiated the interrupt. In this case, the host processor is not involved in configuring protection settings, so is not necessarily involved in safety critical functionality. The OTP configuration can optionally allow the host processor to control the FET drivers over I<sup>2</sup>C, or they can be set for only autonomous operation by the device itself.
- Autonomous operation with configuration/status access as in Autonomous operation with status information, the device OTP is programmed by TI into a custom device, and the host processor can receive interrupts and check status information over I<sup>2</sup>C. In addition, the host can use a security key to unseal the device and modify settings in registers from their preprogrammed values loaded from OTP.
- Programmable operation with configuration/status access if a custom device from TI with OTP preprogrammed with settings is not desired or practical, then the device can be configured by a host processor over I<sup>2</sup>C, either in the field or on the customer production line. In the field, any time the device is powered from SHUTDOWN mode, the host can configure the desired settings before the FETs are enabled. If a host processor is not included in the pack, then the customer can program the device on the production line, then leave it powered continuously thereafter in field operation. Status information is also available over I<sup>2</sup>C during operation, even if the settings have been locked with the security key.

The OTP memory also includes a digital signature, which is stored in OTP. When the device is first powered or after a reset, it reads the OTP settings and check that the signature matches that stored, to provide robustness against bit errors in reading or corruption of the memory. If a signature error is detected, the device enters SHUTDOWN mode.




www.ti.com Device Configuration

#### 3.3 Data Formats

#### 3.3.1 Unsigned Integer

Unsigned integers are stored without changes as 1-byte, 2-byte, or 4-byte values in little endian byte order.

0



#### 3.3.2 Integer

Integer values are stored in 2's-complement format in 1-byte, 2-byte, or 4-byte values in little endian byte order.

0



0

| 12  | 12  |
|-----|-----|
| LSB | MSB |

#### 3.3.3 Hex

Bit register definitions are stored in unsigned integer format.



Device Configuration www.ti.com

This page intentionally left blank.



The BQ77307 device includes two security modes: SEALED and FULLACCESS, which can be used to limit the ability to view or change settings.

In SEALED mode, most data and status can be read using commands and subcommands, but only selected settings can be changed. Data memory settings cannot be read or changed directly.

FULLACCESS mode includes SEALED mode functionality, adds the ability to execute additional subcommands, and provides capability to read and modify all device settings.

Selected settings in the device can be modified while the device is in operation through supported commands and subcommands, but in order to modify all settings, the device must enter CONFIG\_UPDATE mode, which stops device operation while settings are being updated. After the update is completed, device operation is restarted using the new settings. CONFIG\_UPDATE mode is only available in FULLACCESS mode.

The BQ77307 device implements a key-access scheme to move from SEALED to FULLACCESS mode. A unique set of keys must be sent to the device through the subcommand address (0x3E and 0x3F). The keys must be sent consecutively to 0x3E and 0x3F, with no other data written between the keys. Do not set the two keys to identical values, and it is recommended to not use keys which are identical to subcommand addresses. When in SEALED mode, the 0x12 Battery Status()[SEC1, SEC0] bits are set to [1, 1]. When the FULLACCESS keys are correctly received by the device, the bits are set to [0, 1]. The state [0, 0] is not valid and only indicates that the state has not yet been loaded. The state [1, 0] is also not valid.

The FULLACCESS keys are stored in data memory in **Security:Full Access Key Step 1** and **Security:Keys:Full Access Key Step 2**. The access keys are changed during operation using the *0x0035 SECURITY\_KEYS()* subcommand. This subcommand enables a R/W of the 2 key words (4 bytes). Each word is sent in little endian order using this subcommand.

When using the codes by writing them to 0x3E and 0x3F, they must be sent in little endian order; therefore, if 0x1234 and 0x5678 are written as the FULLACCESS codes to 0x0035 SECURITY\_KEYS(), then to unseal requires writing 0x34 and 0x12 to 0x3E and 0x3F, followed by writing 0x78 and 0x56 to 0x3E and 0x3F. The two codes must be written within 5 s of each other to succeed.

To read the keys (only available in FULLACCESS mode, assume for example the keys are 0x1234 0x5678):

- 1. Write 0x35 and 0x00 to 0x3E and 0x3F
- 2. Read back 4 bytes from the transfer buffer at 0x40–0x43 (for example, 0x34 0x12 0x78 0x56).

To write the keys (only available in FULLACCESS mode):

- 1. Write 0x35 and 0x00 to 0x3E and 0x3F.
- 2. Write the data in little endian format to the transfer buffer at 0x40-0x43 (for example, 0x34 0x12 0x78 0x56).
- 3. Write the checksum to 0x60. The checksum is calculated by inverting the modulo-256 sum of the data and command bytes (for example, 0xB6).
- 4. Write the length of 0x08 to 0x61. The length includes the command, data, checksum, and length bytes.

To set the device into SEALED mode when initially powering up, the **Security:Security Settings[SEAL]** configuration bit must be programmed into OTP. During operation, a device in FULLACCESS mode can be put into SEALED mode by sending the *0x0030 SEAL()* subcommand.



Device Security www.ti.com

The BQ77307 device includes additional means to limit further modification of device settings. If the **Security:Security Settings[LOCK\_CFG]** configuration bit is set, the data memory settings can no longer be modified when the device exits CONFIG\_UPDATE mode. If the **Security:Security Settings[PERM\_SEAL]** bit is set, the device cannot be unsealed after it has been sealed. If these bits are not set in OTP, the settings are lost on a full reset and the device is again able to unseal and modify data memory.

The catalog, uncustomized BQ77307 device is by default in FULLACCESS mode, so all settings can be configured in registers by the customer. If a customized, preprogrammed device is developed by TI, and the device is intended to only be used in standalone mode, then it can be preprogrammed with the **Security:Security Settings[PERM\_SEAL]** bit set, such that settings can never be changed. If instead the customer wants the option to change settings on their production line or in the field, then the customer can use custom preprogrammed security keys to unseal the device and make changes, then can reseal the device again.

### **Protection Subsystem**



#### 5.1 Protections Overview

The BQ77307 integrates an extensive protection subsystem which can monitor a variety of parameters, initiate protective actions, and autonomously recover based on conditions. The device also includes a wide range of flexibility, such that the device can be configured to monitor and initiate protective action, but with recovery controlled by a host processor, or such that the device only monitors and alerts the host processor whenever conditions warrant protective action, but with action and recovery fully controlled by the host processor. The protection subsystem includes a suite of individual protections that can be individually enabled and configured, as shown in Table 5-1. Some protection checks are primarily for diagnostic purposes, so the device can be autonomously disabled if a malfunction is detected. The device integrates NFET drivers for low-side CHG and DSG protection FETs, which can be configured in a series or parallel configuration.

Table 5-1. BQ77307 Protections

| Protection                                                                                                                   | Description                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Cell Undervoltage                                                                                                            | Detects individual cell voltage below programmed threshold                                               |
| Cell Overvoltage                                                                                                             | Detects individual cell voltage above programmed threshold                                               |
| Overcurrent in Charge                                                                                                        | Detects charging current above programmed threshold                                                      |
| Overcurrent in Discharge 1 / 2                                                                                               | Two levels of detection for discharging current beyond programmed thresholds                             |
| Short Circuit in Discharge                                                                                                   | Detects discharging current above programmed threshold                                                   |
| Undertemperature in Charge                                                                                                   | Detects thermistor voltage below programmed threshold limit for charging operation                       |
| Overtemperature in Charge                                                                                                    | Detects thermistor voltage above programmed threshold limit for charging operation                       |
| Undertemperature in Discharge                                                                                                | Detects thermistor voltage below programmed threshold limit for discharging operation                    |
| Overtemperature in Discharge                                                                                                 | Detects thermistor voltage above programmed threshold limit for discharging operation                    |
| Internal Overtemperature                                                                                                     | Detects internal device temperature above programmed threshold                                           |
| REGOUT LDO Check                                                                                                             | Diagnostic check - detects voltage or temperature fault on REGOUT regulator when enabled                 |
| Voltage Reference Check                                                                                                      | Diagnostic check which compares VREF1 and VREF2, to detect if one varies significantly versus the other. |
| VSS Check  Diagnostic check on internal mux - device periodically somute to VSS and detects if the level exceeds an expected |                                                                                                          |

The individual protections are enabled by setting the related **Settings:Protection:Enabled Protections A** – **B** data memory configuration registers. Most protections include a programmable threshold, and when the monitored parameter first exceeds the programmed threshold, a protection alert is asserted. After the parameter remains beyond the threshold for a programmable delay period, a protection status fault is asserted (and the alert is deasserted). The protection alerts are provided by the 0x02 Safety Alert A() and 0x04 Safety Alert B() commands, while the protection status faults are provided by the 0x03 Safety Status A() and 0x05 Safety Status



*B()* commands, as shown below. Most protections also include a programmable recovery criteria, such that if the parameter no longer exceeds the threshold by some margin, the protection status fault is deasserted. Protection alert and status faults can be mapped to provide an interrupt to the host processor on the ALERT pin, using the 0x62 Alarm Status(), 0x64 Alarm Raw Status(), and 0x66 Alarm Enable() commands.

Table 5-2. Format for 0x02 Safety Alert A()

| Bit | Name  | Description                             |
|-----|-------|-----------------------------------------|
| 7   | COV   | Cell Overvoltage Safety Alert           |
| 6   | CUV   | Cell Undervoltage Safety Alert          |
| 5   | SCD   | Short Circuit in Discharge Safety Alert |
| 4   | OCD1  | Overcurrent in Discharge 1 Safety Alert |
| 3   | OCD2  | Overcurrent in Discharge 2 Safety Alert |
| 2   | OCC   | Overcurrent in Charge Safety Alert      |
| 1-0 | RSVD0 | Reserved                                |

Table 5-3. Format for 0x03 Safety Status A()

| Bit | Name     | Description                             |
|-----|----------|-----------------------------------------|
| 7   | COV      | Cell Overvoltage Safety Fault           |
| 6   | CUV      | Cell Undervoltage Safety Fault          |
| 5   | SCD      | Short Circuit in Discharge Safety Fault |
| 4   | OCD1     | Overcurrent in Discharge 1 Safety Fault |
| 3   | OCD2     | Overcurrent in Discharge 2 Safety Fault |
| 2   | OCC      | Overcurrent in Charge Safety Fault      |
| 1   | CURLATCH | Current Protection Latch Safety Fault   |
| 0   | REGOUT   | REGOUT Safety Fault                     |

Table 5-4. Format for 0x04 Safety Alert B()

| Bit | Name  | Description                                |
|-----|-------|--------------------------------------------|
| 7   | OTD   | Overtemperature in Discharge Safety Alert  |
| 6   | OTC   | Overtemperature in Charge Safety Alert     |
| 5   | UTD   | Undertemperature in Discharge Safety Alert |
| 4   | UTC   | Undertemperature in Charge Safety Alert    |
| 3   | OTINT | Internal Overtemperature Safety Alert      |
| 2   | RSVD0 | Reserved                                   |
| 1   | VREF  | VREF Diagnostic Alert                      |
| 0   | VSS   | VSS Diagnostic Alert                       |

Table 5-5. Format for 0x05 Safety Status B()

| Bit | Name  | Description                                |
|-----|-------|--------------------------------------------|
| 7   | OTD   | Overtemperature in Discharge Safety Fault  |
| 6   | OTC   | Overtemperature in Charge Safety Fault     |
| 5   | UTD   | Undertemperature in Discharge Safety Fault |
| 4   | UTC   | Undertemperature in Charge Safety Fault    |
| 3   | OTINT | Internal Overtemperature Safety Fault      |
| 2   | RSVD0 | Reserved                                   |
| 1   | VREF  | VREF Diagnostic Fault                      |
| 0   | VSS   | VSS Diagnostic Fault                       |



The thresholds, delays, and recovery criteria are controlled by individual data memory settings in the **Protections** class. For example, the Cell Undervoltage Protection is configured using the **Protections:Cell Voltage:Cell Undervoltage Protection Threshold**, **Protections:Cell Voltage:Cell Undervoltage Protection Delay**, and **Protections:Cell Voltage:Cell Undervoltage Protection Recovery Hysteresis** data memory settings.

The control of the protection FETs in response to a detected protection event is also configurable, with the device able to operate in a fully autonomous mode, a completely manual mode (controlled through host commands over the serial communications bus), or a combination of the two. Autonomous mode is enabled by setting the Settings: Configuration: FET Options [FET\_EN] data memory configuration bit or sending the 0x0022 FET Enable() subcommand, which toggles the [FET EN] bit. The device can operate in a combined autonomous/manual mode, such that the device can operate autonomously when the host processor does not intervene, but still allows the host to override the autonomous decisions and force FETs on or off based on serial communications. This can be useful in cases where the host needs autonomous reaction to selected faults. such as a short circuit in discharge event, to provide the fastest protection response, but needs manual control for other faults, such as cell overtemperature or overvoltage faults. The 0x29 FET Control() command provides manual FET control capability by the host. If the user is concerned about unauthorized or inadvertent manual FET control by a host, these selected commands can be disabled using the Settings: Configuration: FET Options[HOST FETOFF EN] and [HOST FETON EN] data memory configuration settings. Each protection can be configured to autonomously disable the pertinent protection FET using the Settings:Protection:CHG FET Protections A, Settings:Protection:DSG FET Protections A, and Settings:Protection:Both FET Protections C settings.

#### 5.2 Protection Evaluation and Detection

The BQ77307 device includes protections for cell voltage, pack current, and cell temperature, as well as integrated diagnostics. The timing for the evaluation of these protections is different for current versus the other protections. The cell voltages, internal and thermistor temperature, and the VREF and VSS diagnostics are evaluated at periodic intervals set by *Power:Configuration:Voltage CHECK Time*, which can be set from 250 ms to 255 seconds. The Short Circuit in Discharge (SCD) protection evaluates the differential voltage across the sense resistor (connected to the SRP and SRN pins) continuously, while the sense resistor voltage is evaluated every 305 µs to implement the Overcurrent in Charge (OCC) and Overcurrent in Discharge 1 and 2 (OCD1, OCD2) protections.

The BQ77307 device includes the capability to evaluate the internal die temperature versus selected thresholds using the difference between two internal transistor base-emitter voltages. This voltage difference is periodically compared to various thresholds, such as the Internal Overtemperature (OTINT) Protection based on *Protections:Temperature:Internal Overtemperature Protection Threshold*, and the internal overtemperature shutdown (based on *Power:Shutdown:Shutdown Temperature*).

The BQ77307 device also includes an evaluation of the voltage of an external thermistor on the TS pin to implement several temperature protections (OTC, OTD, UTC, UTD) described in later sections. The device uses an internal, factory trimmed 20-k $\Omega$  pullup resistor to bias an external thermistor during each evaluation. The TS pin is configured for thermistor evaluation using the **Settings:Configuration:Eval Config[TSMODE]** data memory setting. If the pin is not selected for thermistor evaluation, the pullup resistor is not enabled.

To provide a high precision result, the device uses the same 1.8-V internal LDO voltage for the detection threshold as is used for biasing the thermistor pullup resistor, thereby implementing a ratiometric evaluation that removes the error contribution from the LDO voltage level. Because the pullup resistor is only enabled during the periodic pin threshold evaluation, it is recommended to limit the capacitance at this node to less than 4 nF to reduce the effect of incomplete settling when the pullup resistor is biased.

#### **5.3 Protection FET Drivers**

The BQ77307 integrates low-side CHG and DSG FET drivers, which can directly drive low-side protection NFET transistors. The state of the drivers is reported by the *0x12 Battery Status()[CHG]* and *[DSG]* bits. The device supports both series and parallel FET configurations, providing FET body diode protection when configured for a



series FET configuration, if one FET driver is on, and the other FET driver is off. In this case, the DSG driver can be turned on to prevent FET damage if the battery pack is charging while the DSG FET is disabled. Similarly, the CHG driver can be turned on if the pack is discharging while the CHG FET is disabled.

The device can be configured for fully autonomous operation, in which case the device autonomously enables the protection FETs if no enabled protection status fault is present which has been configured to control the FETs, and no host command has been issued to force the FET off. Autonomous mode is enabled by setting the **Settings:Configuration:FET Options[FET\_EN]** or sending the **0x0022 FET Enable()** subcommand, which toggles the **[FET\_EN]** bit. If **[FET\_EN]** = 0, the FETs remain disabled until they are manually enabled by command.

Manual FET control is available using the 0x29 FET Control() command independent of the setting of [FET\_EN]. The format of the 0x29 FET Control() command is shown below. The bits that force the FETs to be enabled are only available if the Settings:Configuration:FET Options[HOST\_FETON\_EN] is set, while the bits that force the FETs to be disabled are only available if the Settings:Configuration:FET Options[HOST\_FETOFF\_EN] is set.

Table 5-6. Format for 0x29 FET Control() Command

Description

| Bit | Name    | Description                                                                                                                                                                                                          |
|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-4 | RSVD    | Reserved                                                                                                                                                                                                             |
| 3   | CHG_OFF | CHG FET driver control. This bit only operates if the <b>[HOST_FETOFF_EN]</b> bit in data memory is set. 0x0 = CHG FET driver is allowed to turn on if other conditions are met. 0x1 = CHG FET driver is forced off. |
| 2   | DSG_OFF | DSG FET driver control. This bit only operates if the <b>[HOST_FETOFF_EN]</b> bit in data memory is set. 0x0 = DSG FET driver is allowed to turn on if other conditions are met. 0x1 = DSG FET driver is forced off. |
| 1   | CHG_ON  | CHG FET driver control. This bit only operates if the <b>[HOST_FETON_EN]</b> bit in data memory is set.  0x0 = CHG FET driver is allowed to turn on if other conditions are met.  0x1 = CHG FET driver is forced on. |
| 0   | DSG_ON  | DSG FET driver control. This bit only operates if the <b>[HOST_FETON_EN]</b> bit in data memory is set. 0x0 = DSG FET driver is allowed to turn on if other conditions are met. 0x1 = DSG FET driver is forced on.   |

Note that body diode protection takes priority over the manual FET commands. If the user does not want body diode protection to take effect in this case, it can be disabled by clearing the **Settings:Configuration:FET Options[SFET]** data memory configuration bit.

The BQ77307 provides an option for the device to autonomously disable the CHG FET when current is detected below the body diode threshold. The DSG FET can remain enabled in this mode (based on configuration), but the CHG FET can be disabled to reduce the power flowing through the gate-source resistor around the CHG FET when current is low. When a significant charging or discharging current is detected, the body diode protection then causes the CHG FET to be re-enabled unless other conditions prevent it. The state of the CHG FET in this low current mode is set by the **Settings:Configuration:FET Options[CHGOFF]** data memory configuration bit.

#### 5.4 Cell Overvoltage Protection

The BQ77307 integrates Cell Overvoltage Protection (COV), periodically monitoring the voltage of every cell, and triggering a COV alert or fault when a cell voltage exceeds the COV threshold. The COV threshold is programmable from 0.0 V to 5.5 V in 1 mV steps and is set by the *Protections:Cell Voltage:Cell Overvoltage Protection Threshold* configuration register. The COV protection is enabled using the *Settings:Protection:Enabled Protections A:[COV]* configuration bit.

The COV circuitry triggers an alert signal when an overvoltage event is first detected, then triggers a fault after the voltage is detected above the threshold steadily for a programmable number of CHECK intervals. The



number of CHECK intervals required before the fault is triggered is set by the *Protections:Cell Voltage:Cell Overvoltage Protection Delay* configuration register, which ranges from 1 to 255. The time until a fault is triggered is based on the settings for the *Power:Configuration:Voltage CHECK Time* parameter, which sets the timing for each CHECK voltage evaluation interval.

When a COV fault is triggered, it recovers if the maximum cell voltage drops below the COV threshold by a COV\_HYS hysteresis level, which is programmable as 50 mV, 100 mV, or 200 mV, or autonomous recovery can be disabled. The COV\_HYS hysteresis level is set by the *Protections:Cell Voltage:Cell Overvoltage Protection Recovery Hysteresis* configuration register. If autonomous recovery is disabled, the fault can be recovered manually by the host sending the *0x009B PROT\_RECOVERY()* subcommand with the *[VOLTREC]* bit set.

When a COV fault is triggered, the device turns off the CHG FET if configured for autonomous FET control based on setting in **Settings:Protection:CHG FET Protections A[COV]** (the DSG FET remains enabled if already enabled). The device recovers (if configured for autonomous FET control) based on all cell voltages being below COV threshold – COV\_HYS.

| Status   | Condition                                                                                                         | Action                                                                                                 |
|----------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Normal   | Max cell voltage ≤ <i>Protections:COV:Threshold</i>                                                               | Safety Alert A()[COV] = 0                                                                              |
| Alert    | Max cell voltage > Protections:COV:Threshold                                                                      | Safety Alert A()[COV] = 1                                                                              |
| Trip     | Max cell voltage > <b>Protections:COV:Threshold</b> for <b>Protections:COV:Delay</b> duration                     | Safety Alert A()[COV] = 0 Safety Status A()[COV] = 1 and CHG FET can be disabled depending on settings |
| Recovery | Safety Status A()[COV] = 1 and Max cell voltage ≤ Protections:COV:Threshold - Protections:COV:Recovery Hysteresis | Safety Status A()[COV] = 0<br>and CHG FET can be re-enabled<br>based on settings                       |

Table 5-7. Overvoltage Protection Operation

#### 5.5 Cell Undervoltage Protection

The BQ77307 integrates Cell Undervoltage Protection (CUV), periodically monitoring the voltage of every cell, and triggering a CUV alert or fault when a cell voltage falls below the CUV threshold. The CUV threshold is programmable from 0.0 V to 5.5 V in 1 mV steps and is set by the *Protections:Cell Voltage:Cell Undervoltage Protection Threshold* configuration register. The CUV protection is enabled using the *Settings:Protection:Enabled Protections A:[CUV]* configuration bit.

The CUV circuitry triggers an alert signal when an undervoltage event is first detected, then triggers a fault after the voltage is detected below the threshold steadily for a programmable number of CHECK intervals. The number of CHECK intervals required before the fault is triggered is set by the *Protections:Cell Voltage:Cell Undervoltage Protection Delay* configuration register, which ranges from 1 to 255. The time until a fault is triggered is based on the settings for the *Power:Configuration:Voltage CHECK Time* parameter, which sets the timing for each CHECK voltage evaluation interval..

When a CUV fault is triggered, it recovers if the minimum cell voltage rises above the CUV threshold by a CUV\_HYS hysteresis level, which is programmable as 50 mV, 100mV, or 200 mV, or autonomous recovery can be disabled. The CUV\_HYS hysteresis level is set by the *Protections:Cell Voltage:Cell Undervoltage Protection Recovery Hysteresis* configuration register. If autonomous recovery is disabled, the fault can be recovered manually by the host sending the *0x009B PROT\_RECOVERY()* subcommand with the *[VOLTREC]* bit set.

When a CUV fault is triggered, the device turns off the DSG FET if configured for autonomous FET control based on setting in **Settings:Protection:DSG FET Protections A[CUV]** (the CHG FET remains enabled if already enabled). The device recovers (if configured for autonomous FET control) based on all cell voltages being above CUV threshold + CUV\_HYS.



**Table 5-8. Undervoltage Protection Operation** 

| Status   | Condition                                                                                                         | Action                                                                                                 |
|----------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Normal   | Min cell voltage ≥ <i>Protections:CUV:Threshold</i>                                                               | Safety Alert A()[CUV] = 0                                                                              |
| Alert    | Min cell voltage < Protections: CUV: Threshold                                                                    | Safety Alert A()[CUV] = 1                                                                              |
| Trip     | Min cell voltage < <b>Protections:CUV:Threshold</b> for <b>Protections:CUV:Delay</b> duration                     | Safety Alert A()[CUV] = 0 Safety Status A()[CUV] = 1 and DSG FET can be disabled depending on settings |
| Recovery | Safety Status A()[CUV] = 1 and Min cell voltage ≥ Protections:CUV:Threshold + Protections:CUV:Recovery Hysteresis | Safety Status A()[CUV] = 0<br>and DSG FET can be re-enabled<br>based on settings                       |

#### 5.6 Short Circuit in Discharge Protection

The BQ77307 integrates Short Circuit in Discharge Protection (SCD) using a dedicated comparator that monitors the differential voltage across the SRN - SRP pins and triggers an SCD alert or fault when the voltage exceeds a programmable threshold VSCD. The VSCD threshold is programmable using the *Protections:Current:Short Circuit in Discharge Protection Threshold* configuration register, with available settings shown in Table 5-9. The SCD protection is enabled using the *Settings:Protection:Enabled Protections A:[SCD]* configuration bit.

Table 5-9. Short Circuit in Discharge Threshold Settings

| Setting | Threshold |  |
|---------|-----------|--|
| 0       | 10 mV     |  |
| 1       | 20 mV     |  |
| 2       | 40 mV     |  |
| 3       | 60 mV     |  |
| 4       | 80 mV     |  |
| 5       | 100 mV    |  |
| 6       | 125 mV    |  |
| 7       | 150 mV    |  |
| 8       | 175 mV    |  |
| 9       | 200 mV    |  |
| 10      | 250 mV    |  |
| 11      | 300 mV    |  |
| 12      | 350 mV    |  |
| 13      | 400 mV    |  |
| 14      | 450 mV    |  |
| 15      | 500 mV    |  |

The SCD circuitry triggers an alert signal when a short circuit event is first detected and triggers a fault after a programmable detection delay, SCD\_DLY, which is set by the *Protections:Current:Short Circuit in Discharge Protection Delay* configuration register. The fastest setting can result in detection of a short circuit with only comparator delay, which can be <1 µs depending on the overdrive of the threshold. The delay settings are shown in Table 5-10.

Table 5-10. Short Circuit in Discharge Delay Setting

| Setting | Nominal Delay |
|---------|---------------|
| 0       | Fastest       |
| 1       | 0 to 15 μs    |
| 2       | 15 to 30 µs   |
| 3       | 45 to 60 μs   |



Table 5-10. Short Circuit in Discharge Delay Setting (continued)

| Setting                                         | Nominal Delay |                   |  |
|-------------------------------------------------|---------------|-------------------|--|
| 4 105 to 120 μs                                 |               |                   |  |
| 5 225 to 240 μs 6 465 to 480 μs 7 945 to 960 μs |               |                   |  |
|                                                 |               | 8 1905 to 1920 μs |  |
|                                                 |               | 9 3825 to 3840 μs |  |
| 10 7665 to 7680 μs                              |               |                   |  |

When an SCD fault is triggered, the device turns off the DSG FET if configured for autonomous FET control in **Settings:Protection:DSG FET Protections A[SCD]**. The CHG FET can also be disabled autonomously based on setting in **Settings:Protection:CHG FET Protections A[SCD]**. The device recovers after a programmable delay given by **Protections:Current:Recovery Time**, which can be set from 1-sec to 255-sec in 1-sec steps. A delay setting of 0 disables autonomous recovery based on time. Continual retrying of time-based recovery can be avoided by using the Current Protection Latch feature.

The SCD safety alert is set in user readable registers up to 50 µs after the event occurs, even though it was detected and the delay timer already started. When the SCD protection delay is set very short, such as the first three settings, the SCD safety status can trigger before the alert becomes visible in the *Alarm Raw Status()* or *Safety Alert A()* registers, and then the alert is cleared by the SCD safety status. When the SCD delay is set to a longer setting, the SCD safety alert is then generally visible.

If autonomous recovery has been disabled, then recovery can occur when the 0x009B PROT\_RECOVERY() command is sent from the host with the [SCDREC] bit set.

Table 5-11. Short Circuit in Discharge Protection Operation

| Status      | Condition                                                                                                                                                                                                                                 | Action                                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Normal      | V <sub>SRN</sub> -V <sub>SRP</sub> ≤ setting selected by <i>Protections:Current:Short Circuit</i> in <i>Discharge Protection Threshold</i>                                                                                                | Safety Alert A()[SCD] = 0.<br>Clear current latch counter if no<br>current protection fault occurs for<br>5 seconds. |
| Alert       | V <sub>SRN</sub> -V <sub>SRP</sub> > setting selected by <i>Protections:Current:Short Circuit in Discharge Protection Threshold</i>                                                                                                       | Safety Alert A()[SCD] = 1                                                                                            |
| Trip        | V <sub>SRN</sub> -V <sub>SRP</sub> > setting selected by <b>Protections:Current:Short Circuit</b> in <b>Discharge Protection Threshold</b> for <b>Protections:Current:Short Circuit</b> in <b>Discharge Protection Delay</b> duration.    |                                                                                                                      |
| Recovery    | Safety Status A()[SCD] = 1 and<br>V <sub>SRN</sub> -V <sub>SRP</sub> ≤ setting selected by <b>Protections:Current:Short</b><br><b>Circuit in Discharge Protection Threshold</b> for<br><b>Protections:Current:Recovery Time</b> duration. | Safety Status A()[SCD] = 0<br>FETs can be re-enabled if<br>conditions allow and not latched<br>off.                  |
| Latch Limit | Current latch counter ≥ <b>Protections:Current:Latch Limit</b>                                                                                                                                                                            | Safety Status A()[CURLATCH] = 1 FETs are latched off and not autonomously re-enabled.                                |

#### 5.7 Overcurrent in Charge Protection

The BQ77307 integrates Overcurrent in Charge Protection (OCC) using a comparator that monitors the differential voltage across the SRP - SRN pins and triggers an OCC alert or fault when the voltage exceeds a programmable threshold VOCC. The VOCC threshold is programmable from 3 mV to 123 mV in 2-mV steps using the *Protections:Current:Overcurrent in Charge Protection Threshold* configuration register (threshold = 2 mV × register value - 1 mV). The OCC protection is enabled using the *Settings:Protection:Enabled Protections A:[OCC]* configuration bit.



The OCC circuitry triggers an alert signal when an overcurrent in charge event is first detected, then triggers a fault if it persists for a programmable detection delay, OCC DLY, which can be set as shown below.

| Setting    | Nominal Delay (ms)                            |
|------------|-----------------------------------------------|
| 0          | Fastest (approximately 0.46 ms)               |
| 1 to 64    | 1.22 ms to 20.435 ms in steps of 0.305 ms     |
| 65 to 128  | 22.875 ms to 176.595 ms in steps of 2.44 ms   |
| 129 to 192 | 181.475 ms to 488.915 ms in steps of 4.88 ms  |
| 193 to 255 | 498.675 ms to 1103.795 ms in steps of 9.77 ms |

The delay is set by the **Protections:Current:Overcurrent in Charge Protection Delay** configuration register.

When an OCC fault is triggered, the device turns off the CHG FET if configured for autonomous FET control when **Settings:Protection:CHG FET Protections A[OCC]** is set. The device recovers after a programmable delay given by **Protections:Current:Recovery Time**, which can be set from 1 to 255 seconds in 1-second steps. A recovery time setting of 0 disables autonomous recovery, in which case recovery only occurs when the **PROT\_RECOVERY()** subcommand is sent from the host with the **[OCCREC]** bit set. Continual retrying of time-based recovery can be avoided by using the **Current Protection Latch** feature.

**Table 5-12. Overcurrent in Charge Protection Operation** 

| Status      | Condition                                                                                                                                                                                                                  | Action                                                                                                      |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Normal      | V <sub>SRP</sub> –V <sub>SRN</sub> ≤ setting selected by <i>Protections:Current:Overcurrent</i> in Charge Protection Threshold                                                                                             | Safety Alert A()[OCC] = 0. Clear current latch counter if no current protection fault occurs for 5 seconds. |  |
| Alert       | V <sub>SRP</sub> -V <sub>SRN</sub> > setting selected by <i>Protections:Current:Overcurrent</i> in Charge Protection Threshold                                                                                             | Safety Alert A()[OCC] = 1                                                                                   |  |
| Trip        | V <sub>SRP</sub> -V <sub>SRN</sub> > setting selected by <i>Protections:Current:Overcurrent</i> in Charge Protection Threshold for Protections:Current:Overcurrent in Charge Protection Delay duration.                    | Safety Alert A()[OCC] = 0 Safety Status A()[OCC] = 1 Increment current latch counter.                       |  |
| Recovery    | Safety Status A()[OCC] = 1 and<br>V <sub>SRP</sub> -V <sub>SRN</sub> ≤ setting selected by <b>Protections:Current:Overcurrent</b> in Charge Protection Threshold for<br><b>Protections:Current:Recovery Time</b> duration. | Safety Status A()[OCC] = 0 CHG FET can be re-enabled if conditions allow and it is not latched off.         |  |
| Latch Limit | Current latch counter ≥ <b>Protections:Current:Latch Limit</b>                                                                                                                                                             | Safety Status A()[CURLATCH] = 1 CHG FET is latched off and not autonomously re-enabled.                     |  |

#### 5.8 Overcurrent in Discharge 1 and 2 Protections

The BQ77307 integrates two Overcurrent in Discharge Protections (OCD1, OCD2) using a comparator that monitors the differential voltage across the SRN - SRP pins and triggers an OCD1 or OCD2 alert or fault when the voltage exceeds a programmable threshold VOCD1 and VOCD2, respectively. The VOCD1/2 thresholds are programmable from 4 mV to 200 mV in 2 mV steps using the *Protections:Current:Overcurrent in Discharge 1 Protection Threshold* and *Protections:Current:Overcurrent in Discharge 2 Protection Threshold* configuration registers. These two protections operate identically, but can have independent threshold and delay settings. The OCD1 and OCD2 protections are enabled using the *Settings:Protection:Enabled Protections A:[OCD1]* and *[OCD2]* configuration bits.

The OCD1/2 circuitry triggers an alert signal when an overcurrent in discharge event is first detected, then triggers a fault if it persists for a programmable detection delay, OCD1\_DLY or OCD2\_DLY, which can be set as shown below.

| Setting | Nominal Delay (ms)                        |
|---------|-------------------------------------------|
| 0       | Fastest (approximately 0.46 ms)           |
| 1 to 64 | 1.22 ms to 20.435 ms in steps of 0.305 ms |



| Setting    | Nominal Delay (ms)                            |
|------------|-----------------------------------------------|
| 65 to 128  | 22.875 ms to 176.595 ms in steps of 2.44 ms   |
| 129 to 192 | 181.475 ms to 488.915 ms in steps of 4.88 ms  |
| 193 to 255 | 498.675 ms to 1103.795 ms in steps of 9.77 ms |

The delay is set by the *Protections:Current:Overcurrent in Discharge 1 Protection Delay* and *Protections:Current:Overcurrent in Discharge 2 Protection Delay* configuration registers.

When an OCD fault is triggered, the device turns off the DSG FET if configured for autonomous FET control in **Settings:Protection:DSG FET Protections A[OCD1, OCD2]**. The device recovers after a programmable delay given by **Protections:Current:Recovery Time**, which can be set from 1 second to 255 second in 1-second steps. A recovery time setting of 0 disables autonomous recovery, in which case recovery only occurs when the **PROT\_RECOVERY()** command is sent from the host with the appropriate **[OCD1REC]** or **[OCD2REC]** bit set. Continual retrying of time-based recovery can be avoided by using the **Current Protection Latch** feature.

Table 5-13. Overcurrent in Discharge Protection Operation

| Status      | Condition                                                                                                                                                                                                                         | Action                                                                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Normal      | V <sub>SRN</sub> –V <sub>SRP</sub> ≤ setting selected by <i>Protections:Current:Overcurrent</i> in <i>Discharge 1 Protection Threshold</i>                                                                                        | Safety Alert A()[OCD1] = 0.<br>Clear current latch counter if no current<br>protection fault occurs for 5 seconds. |
| Normal      | V <sub>SRN</sub> –V <sub>SRP</sub> ≤ setting selected by <i>Protections:Current:Overcurrent</i> in <i>Discharge 2 Protection Threshold</i>                                                                                        | Safety Alert A()[OCD2] = 0.<br>Clear current latch counter if no current<br>protection fault occurs for 5 seconds. |
| Alert       | V <sub>SRN</sub> –V <sub>SRP</sub> > setting selected by <i>Protections:Current:Overcurrent</i> in <i>Discharge 1 Protection Threshold</i>                                                                                        | Safety Alert A()[OCD1] = 1                                                                                         |
| Alert       | V <sub>SRN</sub> –V <sub>SRP</sub> > setting selected by <i>Protections:Current:Overcurrent</i> in <i>Discharge 2 Protection Threshold</i>                                                                                        | Safety Alert A()[OCD2] = 1                                                                                         |
| Trip        | V <sub>SRP</sub> -V <sub>SRN</sub> > setting selected by <b>Protections:Current:Overcurrent</b> in <b>Discharge 1 Protection Threshold</b> for <b>Protections:Current:Overcurrent in Discharge 1 Protection Delay</b> duration.   | Safety Alert A()[OCD1] = 0 Safety Status A()[OCD1] = 1 Increment current latch counter.                            |
| Trip        | V <sub>SRP</sub> -V <sub>SRN</sub> > setting selected by <i>Protections:Current:Overcurrent</i> in <i>Discharge 2 Protection Threshold</i> for <i>Protections:Current:Overcurrent in Discharge 2 Protection Delay</i> duration.   | Safety Alert A()[OCD2] = 0 Safety Status A()[OCD2] = 1 Increment current latch counter.                            |
| Recovery    | Safety Status A()[OCD1] = 1 and V <sub>SRN</sub> -V <sub>SRP</sub> ≤ setting selected by <b>Protections:Current:Overcurrent</b> in <b>Discharge 1 Protection Threshold</b> for <b>Protections:Current:Recovery Time</b> duration. | Safety Status A()[OCD1] = 0 DSG FET can be re-enabled if conditions allow and it is not latched off.               |
| Recovery    | Safety Status A()[OCD2] = 1 and V <sub>SRN</sub> -V <sub>SRP</sub> ≤ setting selected by <b>Protections:Current:Overcurrent</b> in <b>Discharge 2 Protection Threshold</b> for <b>Protections:Current:Recovery Time</b> duration. | Safety Status A()[OCD2] = 0 DSG FET can be re-enabled if conditions allow and it is not latched off.               |
| Latch Limit | Current latch counter ≥ <b>Protections:Current:Latch Limit</b>                                                                                                                                                                    | Safety Status A()[CURLATCH] = 1 DSG FET is latched off and not autonomously re-enabled.                            |

#### 5.9 Current Protection Latch

The BQ77307 also includes a current protection latch, which prevents the device from continually attempting time-based recovery indefinitely if a short circuit or overcurrent condition persists. Each time an SCD or OCD1 or OCD2 or OCC fault occurs, a latch counter is incremented. If a current protection fault does not occur for 5-sec after re-enabling the pertinent FET, the counter is cleared. If the counter reaches a level of **Protections:Current:Latch Limit** (settings of 0, 2, 4, 8, 16, 32, 48, 96, with setting=0 disabling the latch feature), the device disables further autonomous recovery attempts based on time, and the **Safety Status A()** [CURLATCH] bit is set. Recovery can be restarted by the host sending a **PROT\_RECOVERY()** command with



any of the current protection bits set, which clears the latch counter value, so the device can again attempt recovery.

#### 5.10 CHG Detector

The BQ77307 provides a signal that indicates if the CHG pin voltage is above a level of approximately 2 V. The raw value of this flag can be read through the communications interface, and an alarm can be generated on the ALERT pin whenever the debounced version of this flag changes state, based on device settings. This flag can be used by the system to assist in recovery from a current fault condition.

The CHG Detector signal is enabled and evaluated by logic within the device if **Settings:Configuration:FET Options[CHGDETEN]** = 1. The value of the raw CHG Detector output can be read over the serial communications interface at *Alarm Raw Status()[CDRAW]*. If the CHG Detector output is stable for a time interval in excess of **Settings:Configuration:CHG Detector Time**, its value is latched into **Battery Status()**[CHGDETFLAG], which is a debounced version of the CHG Detector signal. The *Alarm Status()[CDTOGGLE]* is set whenever the debounced signal (CHGDETFLAG) changes from its previous debounced state. The value of **Settings:Configuration:CHG Detector Time** is programmable from 100 ms to 25.5 s in steps of 100 ms.

The host can use the *Alarm Enable()[CDTOGGLE]* bit to mask the alarm. When *Alarm Status()[CDTOGGLE]* is set, the host can write a 1 to *Alarm Status()[CDTOGGLE]* to clear the alarm.

When a current fault occurs in a system, such as a short circuit event, the device generally disables the DSG FET, the CHG FET, or possibly both, depending on settings. The device can be configured to wait a programmed delay then reenable the FETs. If the current fault condition is still present, then a new fault is triggered, and the FETs disabled again. If a fault persists, this cycle of periodically recovering and retriggering a fault can continue indefinitely, which is generally not acceptable.

An alternative is to only allow a limited number of retries, then to disable further retries after that limit is reached. This capability is supported using the Current Protection Latch. This avoids the indefinite cycle of retries, but can render the pack unusable after a limited number of retries.

If the pack is removable, such as in a power tool, then another option is to keep the FETs disabled until the pack has been removed from the system. In this case, if the CHG driver is disabled and a charger is not connected, then the CHG pin is pulled up to the PACK+ voltage while a load is connected, resulting in the CHG Detector signal being asserted. When the pack is removed from the system (and the charger is still not connected), then the CHG pin generally falls to near the BAT- voltage level, resulting in the CHG Detector signal being deasserted. A host processor within the battery pack can then use this signal to trigger recovery of the pack.

Note that the use of this CHG Detector for load removal depends on the system configuration and is not usable in all cases. Thus, it is important for the pack designer to evaluate whether it is applicable to the system or not.

#### 5.11 Overtemperature in Charge Protection

The BQ77307 device integrates an Overtemperature in Charge (OTC) Protection that compares the voltage of an external negative temperature coefficient (NTC) thermistor on the TS pin to a programmable threshold VOTC, and triggers an alert or fault when the voltage is less than the threshold. The thermistor is biased using an on-chip 20-k $\Omega$  pullup resistor (which is trimmed in TI factory), which is biased by the internal 1.8 V LDO (V<sub>REG18</sub>) rail only when the thermistor voltage is being evaluated (which is the default recommended setting). Alternatively, the pullup resistor can be biased continuously by sending the 0x69  $REGOUT\_CONTROL()$  command with the  $[TS\_ON]$  bit set. The detection circuitry uses this same internal 1.8 V LDO rail to generate the detection threshold, thereby implementing a ratiometric comparison.

The VOTC threshold is programmable in units of V<sub>REG18</sub> / 359, with settings from 0 to 255 using the **Protections:Temperature:Overtemperature in Charge Protection Threshold** configuration register. The OTC protection is enabled using the **Settings:Protection:Enabled Protections B:[OTC]** configuration bit.

The OTC protection triggers an alert signal when an overtemperature in charge event is first detected, then triggers a fault if this persists after a programmable number of CHECK intervals, OTC\_DLY, which can be set



from 0 to 255. The delay is set by the *Protections:Temperature:Overtemperature in Charge Protection Delay* configuration register.

When an OTC fault is triggered, the device turns off the CHG FET if configured for autonomous FET control, based on the setting in *Settings:Protection:CHG FET Protections A[OTC]*. The device recovers when the thermistor voltage is detected greater than or equal to the threshold set by *Protections:Temperature:Overtemperature in Charge Protection Recovery* (which has the same threshold range from 0 to 255 in steps of V<sub>REG18</sub> / 359). If the *Protections:Temperature:Overtemperature in Charge Protection Recovery* is set to zero, autonomous recovery is disabled, and recovery must be initiated by the host sending the *PROT RECOVERY()* subcommand with the *[TEMPREC]* bit set.

| rable 3-14. Overtemperature in Charge Protection Operation |                                                                                                                                                                         |                                                                                                        |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Status                                                     | Condition                                                                                                                                                               | Action                                                                                                 |
| Normal                                                     | TS pin voltage ≥ <b>Protections:Temperature:Overtemperature in Charge Protection Threshold</b>                                                                          | Safety Alert B()[OTC] = 0                                                                              |
| Alert                                                      | TS pin voltage < <b>Protections:Temperature:Overtemperature in Charge Protection Threshold</b>                                                                          | Safety Alert B()[OTC] = 1                                                                              |
| Trip                                                       | TS pin voltage < Protections:Temperature:Overtemperature in Charge Protection Threshold for Protections:Temperature:Overtemperature in Charge Protection Delay duration | Safety Alert B()[OTC] = 0 Safety Status B()[OTC] = 1 and CHG FET can be disabled depending on settings |
| Recovery                                                   | Safety Status B()[OTC] = 1 and TS pin voltage ≥ Protections:Temperature:Overtemperature in Charge Protection Recovery                                                   | Safety Status B()[OTC] = 0<br>and CHG FET can be re-enabled<br>based on settings                       |

Table 5-14. Overtemperature in Charge Protection Operation

#### 5.12 Overtemperature in Discharge Protection

The BQ77307 device integrates an Overtemperature in Discharge (OTD) Protection that compares the voltage of an external negative temperature coefficient (NTC) thermistor on the TS pin to a programmable threshold VOTD, and triggers an alert or fault if the voltage is less than the threshold. The thermistor is biased using an on-chip 20-k $\Omega$  pullup resistor (which is trimmed in TI factory), which is biased by the internal 1.8 V LDO (V<sub>REG18</sub>) rail only when the thermistor is being evaluated (which is the default recommended setting). Alternatively, the pullup resistor can be biased continuously by sending the 0x69 REGOUT\_CONTROL() command with the [TS\_ON] bit set. The detection circuitry uses this same internal 1.8 V LDO rail to generate the detection threshold, thereby implementing a ratiometric comparison.

The VOTD threshold is programmable in units of V<sub>REG18</sub> / 359, with settings from 0 to 255 using the **Protections:Temperature:Overtemperature in Discharge Protection Threshold** configuration register. The OTD protection is enabled using the **Settings:Protection:Enabled Protections B:[OTD]** configuration bit.

The OTD protection triggers an alert signal when an overtemperature in charge event is first detected, then triggers a fault if this persists after a programmable number of CHECK intervals, OTD\_DLY, which can be set from 0 to 255. The delay is set by the *Protections:Temperature:Overtemperature in Discharge Protection Delay* configuration register.

When an OTD fault is triggered, the device turns off the DSG FET if configured for autonomous FET control, based on the setting in *Settings:Protection:DSG FET Protections A[OTD]*. The device recovers when the thermistor voltage is detected greater than or equal to the threshold set by *Protections:Temperature:Overtemperature in Discharge Protection Recovery* (which has the same threshold range from 0 to 255 in steps of V<sub>REG18</sub> / 359). If the *Protections:Temperature:Overtemperature in Discharge Protection Recovery* is set to zero, autonomous recovery is disabled, and recovery must be initiated by the host sending the *PROT\_RECOVERY()* subcommand with the *[TEMPREC]* bit set.

Table 5-15. Overtemperature in Discharge Protection Operation

| Status | Condition                                                                                  | Action                    |
|--------|--------------------------------------------------------------------------------------------|---------------------------|
| Normal | TS pin voltage ≥ Protections:Temperature:Overtemperature in Discharge Protection Threshold | Safety Alert B()[OTD] = 0 |



Table 5-15. Overtemperature in Discharge Protection Operation (continued)

| Status   | Condition                                                                                                                                                                     | Action                                                                                                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Alert    | TS pin voltage < <b>Protections:Temperature:Overtemperature in Discharge Protection Threshold</b>                                                                             | Safety Alert B()[OTD] = 1                                                                              |
| Trip     | TS pin voltage < Protections:Temperature:Overtemperature in Discharge Protection Threshold for Protections:Temperature:Overtemperature in Discharge Protection Delay duration | Safety Alert B()[OTD] = 0 Safety Status B()[OTD] = 1 and DSG FET can be disabled depending on settings |
| Recovery | Safety Status B()[OTD] = 1 and TS pin voltage ≥ Protections:Temperature:Overtemperature in Discharge Protection Recovery                                                      | Safety Status B()[OTD] = 0<br>and DSG FET can be re-enabled<br>based on settings                       |

#### 5.13 Internal Overtemperature Protection

The BQ77307 device integrates an Internal Overtemperature Protection (OTINT) that compares the internal die temperature to a programmable threshold VOTINT, and triggers an alert or fault when the internal temperature is greater than the threshold.

The VOTINT threshold is programmable from 25°C to 150°C in 1°C steps using the **Protections:Temperature:Internal Overtemperature Protection Threshold** configuration register. The OTINT protection is enabled using the **Settings:Protection:Enabled Protections B:[OTINT]** configuration bit.

The OTINT protection triggers an alert signal when an internal overtemperature event is first detected, then triggers a fault after a programmable number of CHECK intervals, OTINT\_DLY, which can be set from 0 to 255. The delay is set by the *Protections:Temperature:Internal Overtemperature Protection Delay* configuration register.

When an OTINT fault is triggered, the device turns off the DSG and CHG FETs if configured for autonomous FET control, based on the setting in **Settings:Protection:DSG FET Protections A[OTINT]** and **Settings:Protection:CHG FET Protections A[OTINT]**. The device recovers when the temperature is equal or below **Protections:Temperature:Internal Overtemperature Protection Recovery**. If the **Protections:Temperature:Internal Overtemperature Protection Recovery** is set to zero, autonomous recovery is disabled, and recovery must be initiated by the host sending the **PROT\_RECOVERY()** subcommand with the [TEMPREC] bit set.

**Table 5-16. Internal Overtemperature Protection Operation** 

| Status   | Condition                                                                                                                                                                       | Action                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Normal   | Internal die temperature ≤ Protections:Temperature:Internal Overtemperature Protection Threshold                                                                                | Safety Alert B()[OTINT] = 0                                                                                         |
| Alert    | Internal die temperature > Protections:Temperature:Internal Overtemperature Protection Threshold                                                                                | Safety Alert B()[OTINT] = 1                                                                                         |
| Trip     | Internal die temperature > Protections:Temperature:Internal Overtemperature Protection Threshold for Protections:Temperature:Internal Overtemperature Protection Delay duration | Safety Alert B()[OTINT] = 0 Safety Status B()[OTINT] = 1 and CHG and DSG FETs can be disabled depending on settings |
| Recovery | Safety Status B()[OTINT] = 1 and<br>Internal die temperature ≤ Protections:Temperature:Internal<br>Overtemperature Protection Threshold                                         | Safety Status B()[OTINT] = 0<br>and CHG and DSG FETs can be<br>re-enabled based on settings                         |

#### 5.14 Undertemperature in Charge Protection

The BQ77307 device integrates an Undertemperature in Charge (UTC) Protection that compares the voltage of an external negative temperature coefficient (NTC) thermistor on the TS pin to a programmable threshold VUTC, and triggers an alert or fault when the voltage at the thermistor is greater than the threshold. The thermistor is biased using an on-chip 20-k $\Omega$  pullup resistor (which is trimmed in TI factory), which is biased by the internal 1.8-V LDO (V<sub>REG18</sub>) rail only when the thermistor is being evaluated (which is the default recommended setting). Alternatively, the pullup resistor can be biased continuously by sending the 0x69 REGOUT\_CONTROL()



command with the *[TS\_ON]* bit set. The detection circuitry uses this same internal 1.8-V LDO rail to generate the detection threshold, thereby implementing a ratiometric comparison.

The VUTC threshold is programmable in units of V<sub>REG18</sub> / 252, with settings from 0 to 255 using the **Protections:Temperature:Undertemperature in Charge Protection Threshold** configuration register. The UTC protection is enabled using the **Settings:Protection:Enabled Protections B:[UTC]** configuration bit.

The UTC protection triggers an alert signal when an undertemperature in charge event is first detected, then triggers a fault after a programmable number of CHECK intervals, UTC\_DLY, which can be set from 0 to 255. The delay is set by the *Protections:Temperature:Undertemperature in Charge Protection Delay* configuration register.

When a UTC fault is triggered, the device turns off the CHG FET if configured for autonomous FET control, based on the setting in *Settings:Protection:CHG FET Protections A[UTC]*. The device recovers when the thermistor voltage is detected less than or equal to the threshold set by *Protections:Temperature:Undertemperature in Charge Protection Recovery* (which has the same threshold range from 0 to 255 in steps of V<sub>REG18</sub> / 252). If the *Protections:Temperature:Undertemperature in Charge Protection Recovery* is set to zero, autonomous recovery is disabled, and recovery must be initiated by the host sending the *PROT RECOVERY()* subcommand with the *[TEMPREC]* bit set.

| Table 5-17. Undertemperature in Charge Protection Operation |                                                                                                                                                                           |                                                                                                        |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Status                                                      | Condition                                                                                                                                                                 | Action                                                                                                 |
| Normal                                                      | TS pin voltage ≤ Protections:Temperature:Undertemperature in Charge Protection Threshold                                                                                  | Safety Alert B()[UTC] = 0                                                                              |
| Alert                                                       | TS pin voltage > Protections:Temperature:Undertemperature in Charge Protection Threshold                                                                                  | Safety Alert B()[UTC] = 1                                                                              |
| Trip                                                        | TS pin voltage > Protections:Temperature:Undertemperature in Charge Protection Threshold for Protections:Temperature:Undertemperature in Charge Protection Delay duration | Safety Alert B()[UTC] = 0 Safety Status B()[UTC] = 1 and CHG FET can be disabled depending on settings |
| Recovery                                                    | Safety Status B()[UTC] = 1 and TS pin voltage ≤ Protections:Temperature:Undertemperature in Charge Protection Recovery                                                    | Safety Status B()[UTC] = 0<br>and CHG FET can be re-enabled<br>based on settings                       |

Table 5-17. Undertemperature in Charge Protection Operation

#### 5.15 Undertemperature in Discharge Protection

The BQ77307 device integrates an Undertemperature in Discharge (UTD) Protection that compares the voltage of an external negative temperature coefficient (NTC) thermistor on the TS pin to a programmable threshold VUTD, and triggers an alert or fault when the voltage is greater than the threshold. The thermistor is biased using an on-chip 20-k $\Omega$  pullup resistor (which is trimmed in TI factory), which is biased by the internal 1.8 V LDO (V<sub>REG18</sub>) rail only when the thermistor is being evaluated (which is the default recommended setting). Alternatively, the pullup resistor can be biased continuously by sending the 0x69 REGOUT\_CONTROL() command with the [TS\_ON] bit set. The detection circuitry uses this same internal 1.8 V LDO rail to generate the detection threshold, thereby implementing a ratiometric comparison.

The VUTD threshold is programmable in units of V<sub>REG18</sub> / 252, with settings from 0 to 255 using the **Protections:Temperature:Undertemperature in Discharge Protection Threshold** configuration register. The UTD protection is enabled using the **Settings:Protection:Enabled Protections B:[UTD]** configuration bit.

The UTD protection triggers an alert signal when an undertemperature in discharge event is first detected, then triggers a fault after a programmable number of CHECK intervals, UTD\_DLY, which can be set from 0 to 255. The delay is set by the *Protections:Temperature:Undertemperature in Discharge Protection Delay* configuration register.

When a UTD fault is triggered, the device turns off the DSG FET if configured for autonomous FET control, based on the setting in **Settings:Protection:DSG FET Protections A[UTD]**. The device recovers when the thermistor voltage is detected less than or equal to the threshold set by **Protections:Temperature:Undertemperature in Discharge Protection Recovery** (which has the same



threshold range from 0 to 255 in steps of V<sub>REG18</sub> / 252). If the *Protections:Temperature:Undertemperature in Discharge Protection Recovery* is set to zero, autonomous recovery is disabled, and recovery must be initiated by the host sending the *PROT\_RECOVERY()* subcommand with the *[TEMPREC]* bit set.

| Table 5-18. Undertem | perature in Discharge | Protection Operation |
|----------------------|-----------------------|----------------------|
|                      |                       |                      |

| Status   | Condition                                                                                                                                                                       | Action                                                                                                 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Normal   | TS pin voltage ≤ <b>Protections:Temperature:Undertemperature in Discharge Protection Threshold</b>                                                                              | Safety Alert B()[UTD] = 0                                                                              |
| Alert    | TS pin voltage > Protections:Temperature:Undertemperature in Discharge Protection Threshold                                                                                     | Safety Alert B()[UTD] = 1                                                                              |
| Trip     | TS pin voltage > Protections:Temperature:Undertemperature in Discharge Protection Threshold for Protections:Temperature:Undertemperature in Discharge Protection Delay duration | Safety Alert B()[UTD] = 0 Safety Status B()[UTD] = 1 and DSG FET can be disabled depending on settings |
| Recovery | Safety Status B()[UTD] = 1 and TS pin voltage ≤ Protections:Temperature:Undertemperature in Discharge Protection Recovery                                                       | Safety Status B()[UTD] = 0<br>and DSG FET can be re-enabled<br>based on settings                       |

#### 5.16 Cell Open Wire Detection

The BQ77307 device supports detecting a disconnection between a cell in the pack and the cell attachment to the PCB containing BQ77307. Without this check, the voltage at the cell input pin of the BQ77307 device can persist for some time on the board-level capacitor, leading to incorrect protection decisions. The Cell Open Wire detection in the BQ77307 device operates by enabling a small current source from each cell to VSS at programmable intervals. If a cell input pin is floating due to an open wire condition, this current discharges the capacitance, causing the voltage at the pin to slowly drop. This drop in voltage can eventually trigger a Cell Undervoltage protection fault on that particular cell, as well as a Cell Overvoltage protection fault on the cell above it. It is important that the cell undervoltage and overvoltage protections be enabled with appropriate threshold settings for the open wire condition to be detected and the desired reaction initiated.

The cell open wire protection can be enabled or disabled using the **Settings:Protection:Cell Open Wire Check Time[COWEN]** configuration bit. If this feature is enabled, the cell open wire current is enabled on each cell, one cell at a time, for approximately 2.93 ms at a rate set by the **Settings:Protection:Cell Open Wire Check Time[COWTIME2:0]** configuration register. This provides programmability in the average current drawn from ≈79 pA to ≈5 µA, based on the typical current source value of 55 µA.

Table 5-19. Cell Open-Wire Check Time Settings

| Bit Setting<br>COWTIME[2:<br>0] | Description                                                   |
|---------------------------------|---------------------------------------------------------------|
| 0x0                             | Current sources are activated once every 8 CHECK intervals    |
| 0x1                             | Current sources are activated once every 4 CHECK intervals    |
| 0x2                             | Current sources are activated once every 2 CHECK intervals    |
| 0x3                             | Current sources are activated once every CHECK interval       |
| 0x4                             | Current sources are activated twice every CHECK interval      |
| 0x5                             | Current sources are activated four times every CHECK interval |
| 0x6                             | Current sources are activated 8 times every CHECK interval    |
| 0x7                             | Current sources are activated 16 times every CHECK interval   |

#### Note

The cell open wire check can create a cell imbalance, so select the settings appropriately.



#### 5.17 Voltage Reference Diagnostic Protection

The BQ77307 device integrates a diagnostic check on the voltage references used by the device. A regular check is made of the ratio between the two reference voltages every CHECK interval. Thus, if one of the two references malfunctions and deviates significantly from its expected value, the resulting ratio result changes and allows detection of this condition. When detected, the device triggers a Voltage Reference Diagnostic Fault and sets 0x03 Safety Status B()[VREF], if enabled, and the device can disable FETs based on settings in Settings:Protection:Both FET Protections B[VREF]. The fault can be recovered by the host sending the 0x009B PROT\_RECOVERY()[DIAGREC] subcommand. The diagnostic protection alert is triggered whenever the deviates from the expected value by approximately 25%. The diagnostic protection status fault is triggered when this occurs for two consecutive CHECK intervals.

#### 5.18 VSS Diagnostic Protection

The BQ77307 device includes an evaluation of the VSS voltage during each CHECK interval, comparing the resulting value to a threshold, to implement the VSS Diagnostic Protection. If the internal detection mux were to malfunction and remain fixed on one particular input, whether that being a cell voltage input, a thermistor, or a diagnostic check, this check of VSS helps make sure this condition is detected. When detected, the device triggers the VSS Diagnostic Protection Fault and sets 0x03 Safety Status B()[VSS], if enabled, and the device can disable FETs based on Settings:Protection:Both FET Protections B[VSS]. The fault can be recovered by the host sending the 0x009B PROT\_RECOVERY()[DIAGREC] subcommand. The diagnostic protection alert is triggered whenever the VSS voltage is detected above approximately 100 mV. The diagnostic protection status fault is triggered when this occurs for two consecutive CHECK intervals.

#### 5.19 REGOUT Diagnostic Protection

The REGOUT LDO integrated in the BQ77307 device includes circuitry to detect an error condition, such as the regulator is in short circuit current limit, or if the die temperature exceeds approximately 120°C. When an error condition is detected, the device disables the REGOUT LDO, triggers the REGOUT Diagnostic Protection Fault, and sets 0x05 Safety Status A()[REGOUT], if enabled. The device can disable FETs based on the setting of Settings:Protection:Both FET Protections B[REGOUT]. When an overtemperature condition is detected, the device can transition to SHUTDOWN mode if Settings:Configuration:Power Config[OTSD] is set. The fault is recovered if the cause of the error is removed (such as the short circuit is removed or the regulator temperature falls below the overtemperature threshold).

#### 5.20 LFO Oscillator Integrity Diagnostic Protection

The BQ77307 device integrates a special hardware block that monitors if the LFO stops oscillating or deviates significantly in frequency versus its expected value. If this is detected, the device immediately transitions into SHUTDOWN mode if **Settings:Configuration:Power Config[LFOWD]** is set.

#### 5.21 Internal Factory Trim Diagnostic Protection

The BQ77307 device performs a check of the digital trim information within the device at initial power up or after any full reset. If an error is detected during this check, the device immediately transitions to SHUTDOWN mode.



This page intentionally left blank.

## **Device Status and Controls**



#### 6.1 0x00 Control Status() and 0x12 Battery Status() Commands

The BQ77307 device includes a *0x00 Control Status()* command, which is primarily intended for legacy bqStudio auto-detection and is not recommended for customer usage. The *0x00 Control Status()* command behaves similarly to 0x3E and 0x3F when written, accepting subcommand addresses. When this command is read back immediately after it has been written, it returns 0xFFA5 once.

The device also includes the *0x12 Battery Status()* command, which reports various status information on the pack, as shown below.

Table 6-1. 0x12 Battery Status() Bit Definitions

| Bit   | Name      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | RSVD0     | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14    | RSVD0     | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13    | SA        | This flag asserts if an enabled safety alert is present.  0x0 = Indicates an enabled safety alert is not present  0x1 = Indicates an enabled safety alert is present                                                                                                                                                                                                                                                                                                                                                         |
| 12    | SS        | This flag asserts if an enabled safety fault is present.  0x0 = Indicates an enabled safety fault is not present  0x1 = Indicates an enabled safety fault is present                                                                                                                                                                                                                                                                                                                                                         |
| 11-10 | SEC1:SEC0 | SEC1:0 indicate the present security state of the device.  When in SEALED mode, device configuration cannot be read or written and some commands are restricted.  When in FULLACCESS mode, unrestricted read and write access is allowed and all commands are accepted.  0x0 = 0: Device has not initialized yet.  0x1 = 1: Device is in FULLACCESS mode.  0x2 = 2: Unused.  0x3 = 3: Device is in SEALED mode.                                                                                                              |
| 9     | RSVD0     | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8     | FET_EN    | This bit is set when the device is in autonomous FET control mode. The default value of this bit is set by the Settings:FET Options[FET_EN] bit in Data Memory upon exit of CONFIG_UPDATE mode. Its value can be modified during operation using the FET_ENABLE() subcommand.  0x0 = Device is not in autonomous FET control mode, FETs are only enabled through manual command.  0x1 = Device is in autonomous FET control mode, FETs can be enabled by the device if no conditions or commands prevent them being enabled. |
| 7     | POR       | This bit is set when the device fully resets. It is cleared upon exit of CONFIG_UPDATE mode. It can be used by the host to determine if any register configuration changes were lost due to a reset.  0x0 = Full reset has not occurred since last exit of CONFIG_UPDATE mode.  0x1 = Full reset has occurred since last exit of CONFIG_UPDATE and reconfiguration of any register settings is required.                                                                                                                     |
| 6     | RSVD0     | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5     | CFGUPDATE | This bit indicates whether or not the device is in CONFIG_UPDATE mode. It is set after the SET_CFGUPDATE() subcommand is received and fully processed. Configuration settings can be changed only while this bit is set. 0x0 = Device is not in CONFIG_UPDATE mode.  0x1 = Device is in CONFIG_UPDATE mode.                                                                                                                                                                                                                  |
| 4     | ALERTPIN  | This bit indicates whether the ALERT pin is asserted (pulled low).  0x0 = ALERT pin is not asserted (stays in hi-Z mode).  0x1 = ALERT pin is asserted (pulled low).                                                                                                                                                                                                                                                                                                                                                         |



Device Status and Controls www.ti.com

Table 6-1. 0x12 Battery Status() Bit Definitions (continued)

| rance of the contract of the c |       |                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Name  | Description                                                                                                                                                   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHG   | This bit indicates whether the CHG driver is enabled.  0x0 = CHG driver is disabled.  0x1 = CHG driver is enabled.                                            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DSG   | This bit indicates whether the DSG driver is enabled.  0x0 = DSG driver is disabled.  0x1 = DSG driver is enabled.                                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | This bit indicates the value of the debounced CHG Detector signal.  0x0 = CHG Detector debounced signal is low.  0x1 = CHG Detector debounced signal is high. |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RSVD0 | Reserved                                                                                                                                                      |

#### 6.2 Unused VC Cell Input Pins

If the BQ77307 device is used in a system with fewer than 7 series cells, specific cells must be used for connection to real cells, as shown in Table 6-2. Short out the unused cell inputs on the circuit board. The device only evaluates protections associated with those cells designated as real cells.

Table 6-2. Cell Usage

| Number of Cell Used (Vcell Mode setting) | Cell Connections                                              | Shorted Cells                               |
|------------------------------------------|---------------------------------------------------------------|---------------------------------------------|
| 0, 1, or 7                               | VC7–VC6, VC6–VC5, VC5–VC4, VC4–VC3, VC3–VC2, VC2–VC1, VC1–VC0 | none                                        |
| 6                                        | VC7-VC6, VC6-VC5, VC5-VC4, VC3-VC2, VC2-VC1, VC1-VC0          | VC4-VC3                                     |
| 5                                        | VC7–VC6, VC5–VC4, VC3–VC2, VC2–VC1, VC1–VC0                   | VC6–VC5, VC4–VC3                            |
| 4                                        | VC7-VC6, VC5-VC4, VC3-VC2, VC1-VC0                            | VC6-VC5, VC4-VC3, VC2-VC1                   |
| 3                                        | VC7–VC6, VC5–VC4, VC1–VC0                                     | VC6-VC5, VC4-VC3, VC3-VC2, VC2-VC1          |
| 2                                        | VC7–VC6, VC1–VC0                                              | VC6–VC5, VC5–VC4, VC4–VC3, VC3–VC2, VC2–VC1 |

#### Note

It is important that the differential input for each cell input not fall below -0.3 V (the Absolute Maximum data sheet limit), with the recommended minimum voltage of -0.2 V. Therefore, it is important that the I·R voltage drop across the interconnect resistance does not cause a violation of this requirement.

Short the unused cell input pins to adjacent cell input pins, as shown in Figure 6-1.

It is also important to note that the range of voltages supported by the different VC pins differs depending on the pin. For example, pins VC7, VC6, and VC5 can only support cell protections if their pin voltage is greater than or equal to 2 V. Thus if implementing a 2s system using the top and bottom cell input pins, the upper cell voltage protections are not evaluated correctly if the bottom cell voltage drops below 2 V, because VC6 is below 2 V.



www.ti.com Device Status and Controls

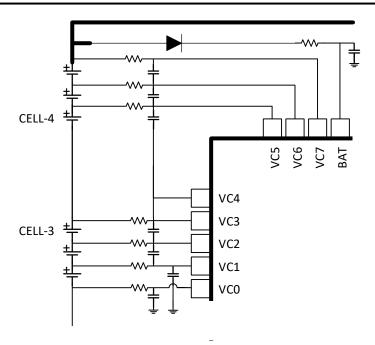



Figure 6-1. Connecting an Unused Cell Input Pin

The **Settings:Configuration:Vcell Mode** data memory setting is used to specify which cell inputs are used for actual cells. The device uses this information to disable cell voltage protections associated with inputs which are not used.

#### 6.3 LDOs

The BQ77307 contains an integrated 1.8 V LDO (REG18) that provides a regulated 1.8 V supply voltage for the device's internal circuitry and digital logic. The supply current for this LDO is drawn from the BAT pin.

The device also integrates a programmable LDO (REGOUT) for external circuitry, such as a host processor or external transceiver circuitry. The REGOUT LDO takes its input from the REGSRC pin, which is generally expected to be connected to the top-of-stack, or can be generated by a separate DC/DC converter in the system. The REGOUT LDO output voltage can be programmed to 1.8 V, 2.5 V, 3.0 V, 3.3 V, or 5.0 V, and it can provide an output current of up to 20 mA if thermal conditions permit.

The REGOUT LDO voltage level is selected using the **Settings:Configuration:REGOUT Config[REGCTL\_2:0]** configuration bits as shown below. The LDO is enabled using the **Settings:Configuration:REGOUT Config[REG\_EN]** configuration bit, and its setting can be modified during operation using the *0x69 REGOUT* **Control()** command.

The REGOUT LDO can be programmed to either remain disabled or power up automatically whenever the device exits SHUTDOWN mode, depending on OTP configuration. When the REGOUT LDO is disabled, its output is pulled to VSS with an internal resistance of approximately 2.5-k $\Omega$  while the device is in NORMAL mode. If the LDO is configured based on OTP settings to be powered, then at each later power-up the device autonomously loads the OTP settings and enable the LDO as configured, without requiring communications first.

The BQ77307 is designed to operate properly with a die temperature up to 110°C. Therefore the system design must avoid drawing excessive current from the REGOUT LDO if it could result in the die temperature exceeding this level. For example, with an ambient temperature of 60°C, a stack voltage of 31.5 V, and LDO programmed to an output voltage of 2.5 V, the device dissipates approximately 580 mW when supplying 20 mA of load current. The package thermal impedance can be used to calculate the resulting die temperature. If this exceeds the device's specified temperature range, the load current must be limited in the system. The BQ77307 REGOUT LDO includes an overtemperature detector, which detects if the die temperature exceeds a level of



Device Status and Controls www.ti.com

approximately 120°C and automatically causes the LDO to shutdown, and if the **Settings:Configuration:Power Config[OTSD]** bit is set, the entire device also enters SHUTDOWN mode.

Table 6-3. REGOUT LDO Voltage Settings from Settings:Configuration:REGOUT Config and 0x69

REGOUT Control()

| REGCTL[2:0] or REGOUTV[2:0] | REGOUT Voltage (V) |
|-----------------------------|--------------------|
| 0x0 - 0x3                   | 1.8                |
| 0x4                         | 2.5                |
| 0x5                         | 3.0                |
| 0x6 (default)               | 3.3                |
| 0x7                         | 5.0                |

#### 6.4 ALERT Pin Operation

The BQ77307 includes functionality to generate an alarm signal at the ALERT pin, which can be used as an interrupt to a host processor. The ALERT pin is an open-drain pin that is pulled low by the device whenever an alarm signal is generated. The alarm signal is an OR of all bits in the 0x62 Alarm Status() result. The alarm function includes a programmable mask (set using 0x66 Alarm Enable()), to allow the customer to decide which flags or events can trigger an alarm. The instantaneous, unlatched bits available to trigger an alarm can be read from the 0x64 Alarm Raw Status() command, these bits are described in the table below.

**Table 6-4. Alarm Options** 

| Name             | Description                                                                                                                                                                                                                                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SSA              | This bit is set when a bit in 0x03 Safety Status A() is set                                                                                                                                                                                                                                                                   |
| SSB              | This bit is set when a bit in 0x05 Safety Status B() is set                                                                                                                                                                                                                                                                   |
| SAA              | This bit is set when a bit in 0x02 Safety Alert A() is set                                                                                                                                                                                                                                                                    |
| SAB              | This bit is set when a bit in 0x04 Safety Alert B() is set                                                                                                                                                                                                                                                                    |
| XCHG             | This bit is set when the CHG FET is off.                                                                                                                                                                                                                                                                                      |
| XDSG             | This bit is set when the DSG FET is off.                                                                                                                                                                                                                                                                                      |
| SHUTV            | Stack voltage is below <i>Power:Shutdown:Shutdown Stack Voltage</i> or a cell voltage is below <i>Power:Shutdown:Shutdown Cell Voltage</i> .                                                                                                                                                                                  |
| INITCOMP         | This bit in <i>0x64 Alarm Raw Status()</i> pulses momentarily when the device completes the startup evaluation sequence (which occurs at initial power up, reset, and exit of CONFIG_UPDATE mode).                                                                                                                            |
| CDRAW / CDTOGGLE | This bit in 0x64 Alarm Raw Status() is CDRAW, the value of the CHG Detector output. The corresponding bit in 0x62 Alarm Status() is CDTOGGLE, which is set whenever the debounced version of CDRAW changes state from the previous latched state.                                                                             |
| POR              | This bit reflects the POR bit in 0x12 Battery Status(). It is set when the device is first powered up, and is cleared when CONFIG_UPDATE mode is exited. If the host initializes settings at each device power up, monitoring this bit can alert the host that a reset has occurred and the device needs to be reinitialized. |

The 0x64 Alarm Raw Status() command provides the unlatched instantaneous value of each signal listed above. For each signal that is specified by the masking to be included in the alarm, when the bit in 0x64 Alarm Raw Status() is asserted, the bit is latched into the 0x62 Alarm Status() register, and the ALERT pin is asserted (pulled low) if any bit in 0x62 Alarm Status() is asserted. When the host receives the interrupt from the ALERT pin pulled low, the host can read the 0x62 Alarm Status() register to determine which flag has caused the alarm. The host can then write to the 0x62 Alarm Status() command with the corresponding bits set, and the corresponding flags are unlatched.



www.ti.com Device Status and Controls

The default alarm mask is set by the **Settings:Configuration:Default Alarm Mask** data memory value. This mask can be changed during operation using the *0x66 Alarm Enable()* command, to mask or unmask individual bits from generating an alarm signal.

The [INITCOMP] bit in Alarm Raw Status() only pulses momentarily when an event occurs, so is not intended to be monitored by reading 0x64 Alarm Raw Status(). If this bit is included by mask setting in the 0x62 Alarm Status(), then the corresponding bit in 0x62 Alarm Status() latches and remains asserted until cleared by the host.

#### 6.5 TS Pin Operation

The TS pin on the BQ77307 device can be used to implement cell temperature protections with a thermistor connected from the TS pin to VSS, if the **Settings:Configuration:TS Mode[TSMODE]** bit is set. In this mode, the pin is internally connected to a 20-k $\Omega$  trimmed pullup resistor, which is biased by the internal 1.8V LDO (REG18) voltage. The voltage at the TS pin is compared to a programmed threshold which is also based on the same 1.8 V LDO voltage used for the pullup resistor, thereby implementing a ratiometric evaluation.

When the TS pin is configured for thermistor temperature protection, the device enables the internal pullup resistor only while the pin voltage is being evaluated during each CHECK interval (which is the default recommended setting). Alternatively, the pullup resistor can be biased continuously by sending the 0x69 REGOUT\_CONTROL() command with the [TS\_ON] bit set.

# 6.6 Device Event Timing

The timing of events in the BQ77307 device varies based on the specific event. Several events and their associated timing are described below. Timings described below do not include the delays related to individual protections, as described in their respective sections.

Table 6-5. Timing of Events

| Event Description                                             | Timing |
|---------------------------------------------------------------|--------|
| TS or VC0 pin raised to wake device from SHUTDOWN mode        | 0 ms   |
| REGOUT LDO enabled                                            | 2.6 ms |
| I <sup>2</sup> C communications active after initial power-up | 3.2 ms |
| 0x64 Alarm Raw Status()[INITCOMP] is asserted (7s)            | 9.4 ms |
| Protections evaluated and FETs enabled (7s)                   | 9.4 ms |



Device Status and Controls www.ti.com

This page intentionally left blank.



### 7.1 Overview of Operational Modes

This device supports two operational modes, one for normal operation, and one used for host configuration.

- NORMAL mode: In this mode, the device evaluates system current, cell voltages, internal and thermistor temperature, and various diagnostic checks, operates protections as configured, and provides interrupt and status updates. Battery protections are enabled, and the FET drivers are typically enabled (in the absence of any protection fault).
- SHUTDOWN mode: The device is completely disabled (including the internal 1.8 V and REGOUT LDOs), the CHG and DSG FETs are both disabled, all battery protections are disabled, and no protections are evaluated. This is the lowest power state of the device, which can be used for shipment or long-term storage. All register settings (other than settings programmed into OTP by TI) are lost when in SHUTDOWN mode.

The device also includes a CONFIG\_UPDATE mode, which is used for parameter updates. Transitioning between operational modes is shown in BQ77307 Operational Power Modes.

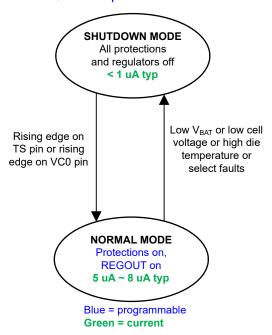



Figure 7-1. BQ77307 Operational Power Modes

#### 7.2 NORMAL Mode

When in NORMAL mode, the BQ77307 regularly evaluates cell voltage, pack current, and thermistor and internal die temperature, implementing all enabled battery protections, and controlling FET drivers based on programmed settings.



Operational Modes www.ti.com

The device remains in this mode unless it autonomously enters SHUTDOWN mode if the stack voltage or the minimum cell voltage drops below programmable thresholds, or the TS pin thermistor temperature is detected above a programmable threshold, or an excessive die temperature is detected.

#### 7.3 SHUTDOWN Mode

SHUTDOWN mode is the lowest power mode of the BQ77307, which can be used for shipping or long term storage. In this mode, the device loses all register state information (except for what has been programmed into OTP by TI), the internal logic is powered down, the protection FETs are all disabled, so no voltage is provided at the battery pack terminals. All protections are disabled, all voltage, current, and temperature measurements are disabled, and no communications are supported. When the device exits SHUTDOWN mode, it reads any parameters stored in OTP. If the OTP has not been programmed (this is only supported by TI), the device powers up with default settings, and then settings can be changed by the host writing device registers.

The device can be configured to enter SHUTDOWN mode automatically based on the minimum top of stack voltage, the minimum cell voltage, or an excessive die temperature. If the top-of-stack voltage falls below *Power:Shutdown:Shutdown Stack Voltage* or if the minimum cell voltage falls below *Power:Shutdown:Shutdown Cell Voltage*, or if the internal die temperature exceeds *Power:Shutdown:Shutdown Temperature*, the SHUTDOWN mode sequence is automatically initiated. The shutdown based on cell voltage only applies to cell input pins being used for actual cells, based on settings in *Settings:Configuration:Vcell Mode*.

The BQ77307 integrates a hardware overtemperature detection circuit, which determines when the die temperature passes an excessive temperature of approximately 120°C. If this detector triggers, the device automatically begins the sequence to enter SHUTDOWN, based on the configuration setting.

When the device is wakened from SHUTDOWN, it requires approximately 10 ms for the internal circuitry to power up, load settings from OTP memory, perform initial evaluation of conditions relative to enabled protections, then to enable FETs if conditions and settings allow.

The BQ77307 wakes from SHUTDOWN if a voltage is applied at the TS or VC0 pins above a level of approximately 1.2 V. If the shutdown sequence has been initiated, but the device detects the wakeup criteria (either the TS or VCO pin voltage detected high) is present, then the device stays in a "soft shutdown" state until the wakeup criteria has been removed (meaning both the TS and VCO pin voltages must be detected low). While in "soft shutdown", FETs and protections are disabled. The device exits "soft shutdown" when conditions allow the device to continue into SHUTDOWN mode. If the host wants to abort the entry into SHUTDOWN mode, the 0x0012 RESET()command can be written, and the device restarts operation as if returning from a POR.

When the SHUTDOWN mode sequence has been initiated by the stack voltage detected below **Power:Shutdown:Shutdown Stack Voltage** or a cell voltage detected below **Power:Shutdown:Shutdown Cell Voltage**, the device asserts the **Alarm Raw Status()[SHUTV]** bit and wait for 10 seconds to disable the protection FETs, then proceed toward SHUTDOWN mode. During this 10 second shutdown delay, the device does not abort entering SHUTDOWN if the voltages rise back above the shutdown thresholds. If the host prefers to abort the SHUTDOWN entry, it can send the **0x0012 RESET()** command, and the device restarts with settings loaded from OTP.

When the device is wakened from SHUTDOWN, it requires < 10 ms for the internal circuitry to power up, load settings from OTP memory, evaluate conditions relative to enabled protections, then enable FETs if conditions allow.

# 7.4 CONFIG\_UPDATE Mode

The BQ77307 uses a special CONFIG\_UPDATE mode to make changes to the data memory settings. Note that this mode is not available for device versions programmed **and sealed** by TI. Changes made to the data memory settings while the normal protection evaluations are in operation can result in unexpected operation or consequences if settings used by the logic changed in the midst of operation. When changes to the data



www.ti.com Operational Modes

memory settings are needed (which generally is done only on the customer manufacturing line or in an offline condition), the host must:

- 1. Send a command (such as FET\_CONTROL()) to disable the protection FETs if they are enabled.
- 2. Place the device into CONFIG\_UPDATE mode by sending the 0x0090 SET\_CFGUPDATE() subcommand.
- 3. Wait for the 0x12 Battery Status()[CFGUPDATE] flag to set.
- 4. Modify settings as needed by writing updated data memory settings.
- 5. Send the 0x0092 EXIT\_CFGUPDATE() command to resume normal operation.

When in CONFIG\_UPDATE mode, the device stops normal operation and stops all protections (the protection subsystem is disabled). The host can then make changes to data memory settings. After changes are complete, the host then sends the *0x0092 EXIT\_CFGUPDATE()* command, at which point the device restarts normal operation using the new data memory settings. As soon as the device enters CONFIG\_UPDATE mode, all protection alerts and status faults are cleared. When the device exits CONFIG\_UDPATE mode, it evaluates whether or not any protection faults are present, based on the new settings.



Operational Modes www.ti.com

This page intentionally left blank.



### 8.1 I<sup>2</sup>C Serial Communications Interface

The I<sup>2</sup>C serial communications interface in the BQ77307 device acts as a target device and supports rates up to 400 kHz with an optional CRC check. The BQ77307 initially powers up by default with CRC disabled, which is determined by the OTP settings factory programmed by TI. The host can change the CRC mode setting while in CONFIG UPDATE mode, then the new setting takes effect upon exit of CONFIG UPDATE mode.

The  $I^2C$  device address (as an 8-bit value including target address and R/W bit) is set by default as 0x10 (write), 0x11 (read), which can be changed by the **Settings:Configuration:12C Address** configuration setting.

The communications interface includes programmable timeout capability, with the internal I<sup>2</sup>C bus logic reset when an enabled timeout occurs:

- SCL Short Low Timeout triggers if SCL stays low for approximately 25 ms. Enabled when **Settings:Configuration:12C Config[I2CCSLTO]** is set.
- SCL Long Low Timeout triggers if SCL stays low for a duration given by TLLO. TLLO is programmable using **Settings:Configuration:I2C Config[I2CLLTOT2:0]** as 0x0 = timeout is disabled, 0x1 = 0.5 sec, 0x2 = 1 sec, 0x3 = 1.5 sec, 0x4 = 2 sec, 0x5 = 2.5 sec, 0x6 = 3 sec, 0x7 = 3.5 sec. To use this timeout, **Settings:Configuration:I2C Config[I2CLLTO]** must be cleared.

An I<sup>2</sup>C write transaction is shown in I<sup>2</sup>C Write. Block writes are allowed by sending additional data bytes before the Stop. The I<sup>2</sup>C logic auto-increments the register address after each data byte. The shaded regions show when the device can clock stretch.

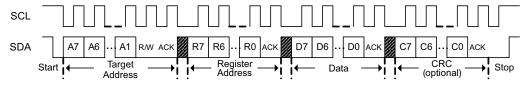



Figure 8-1. I<sup>2</sup>C Write

The CRC check is enabled by setting the **Settings:Configuration:I2C Config[CRC]** data memory bit. When enabled, the CRC is calculated as follows:

- The CRC is reset after each data byte and after each stop.
- In a single-byte write transaction, the CRC is calculated over the target address, register address, and data.
- In a block write transaction, the CRC for the first data byte is calculated over the target address, register address, and data. The CRC for subsequent data bytes is calculated over the data byte only.

The CRC polynomial is  $x^8 + x^2 + x + 1$ , and the initial value is 0.

When the target detects an invalid CRC, the I<sup>2</sup>C target NACKs the CRC, which causes the I<sup>2</sup>C target to go to an idle state.

I<sup>2</sup>C Read with Repeated Start shows a read transaction using a Repeated Start. The shaded regions show when the device can clock stretch.



I<sup>2</sup>C Serial Communications www.ti.com

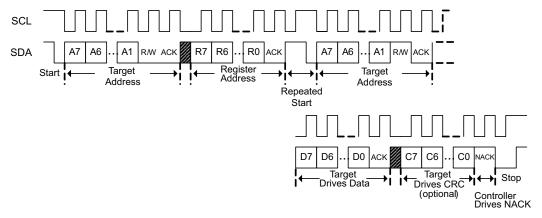



Figure 8-2. I<sup>2</sup>C Read with Repeated Start

I<sup>2</sup>C Read without Repeated Start shows a read transaction where a Repeated Start is not used, for example if not available in hardware. For a block read, the controller ACKs each data byte except the last and continues to clock the interface. The I<sup>2</sup>C block auto-increments the register address after each data byte. The shaded regions show when the device can clock stretch.

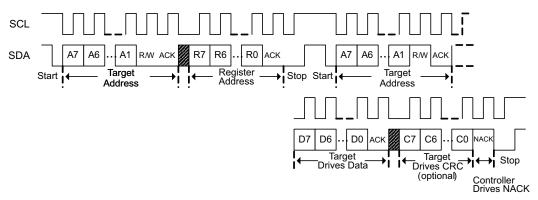



Figure 8-3. I<sup>2</sup>C Read without Repeated Start

When enabled, the CRC for a read transaction is calculated as follows:

- The CRC is reset after each data byte and after each stop.
- In a single-byte read transaction using a repeated start, the CRC is calculated beginning at the first start, so includes the target address, the register address, then the target address with read bit set, then the data byte.
- In a single-byte read transaction using a stop after the initial register address, the CRC is reset after the stop, so only includes the target address with read bit set and the data byte.
- In a block read transaction using repeated starts, the CRC for the first data byte is calculated beginning at the first start and includes the target address, the register address, then the target address with read bit set, then the data byte. The CRC for subsequent data bytes is calculated over the data byte only.
- In a block read transaction using a stop after the initial register address, the CRC is reset after the stop, so only includes the target address with read bit set and the first data byte. The CRC for subsequent data bytes is calculated over the data byte only.

The CRC polynomial is  $x^8 + x^2 + x + 1$ , and the initial value is 0.

When the controller detects an invalid CRC, the I<sup>2</sup>C controller NACKs the CRC, which causes the I<sup>2</sup>C target to go to an idle state.

# **Commands and Subcommands**



# 9.1 Direct Commands

#### 9.1.1 Direct Commands Table

| Command | Name             | Units | Туре | Access                          | Description                                                                                                                                                                                                                                                     |  |  |
|---------|------------------|-------|------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0x02    | Safety Alert A   | Hex   | H1   | Sealed: R<br>Full Access: R     | Provides individual alert signals when enabled safety alerts have triggered. Bit descriptions can be found in Safety Alert A Register.                                                                                                                          |  |  |
| 0x03    | Safety Status A  | Hex   | H1   | Sealed: R<br>Full Access: R     | Provides individual fault signals when enabled safety faults have triggered.  Bit descriptions can be found in Safety Status A Register.                                                                                                                        |  |  |
| 0x04    | Safety Alert B   | Hex   | H1   | Sealed: R<br>Full Access: R     | Provides individual alert signals when enabled safety alerts have triggered.  Bit descriptions can be found in Safety Alert B Register.                                                                                                                         |  |  |
| 0x05    | Safety Status B  | Hex   | H1   | Sealed: R<br>Full Access: R     | Provides individual fault signals when enabled safety faults have triggered.  Bit descriptions can be found in Safety Status B Register.                                                                                                                        |  |  |
| 0x12    | Battery Status   | Hex   | H2   | Sealed: R<br>Full Access: R     | Provides flags related to battery status.  Bit descriptions can be found in Battery Status Register.                                                                                                                                                            |  |  |
| 0x62    | Alarm Status     | Hex   | H2   | Sealed: R/W<br>Full Access: R/W | Latched signal used to assert the ALERT pin. Write a bit high to clear the latched bit.  Bit descriptions can be found in Alarm Status Register.                                                                                                                |  |  |
| 0x64    | Alarm Raw Status | Hex   | H2   | Sealed: R<br>Full Access: R     | Unlatched value of flags which can be selected to be latched (using Alarm Enable()) and used to assert the ALERT pin.  Bit descriptions can be found in Alarm Raw Status Register.                                                                              |  |  |
| 0x66    | Alarm Enable     | Hex   | H2   | Sealed: R/W<br>Full Access: R/W | Mask for Alarm Status(). Can be written to change during operation to change which alarm sources are enabled. The default value of this parameter is set by Settings:Configuration:Default Alarm Mask.  Bit descriptions can be found in Alarm Enable Register. |  |  |
| 0x68    | FET CONTROL      | Hex   | H1   | Sealed: R/W<br>Full Access: R/W | FET Control: Allows host control of individual FET drivers. Bit descriptions can be found in FET CONTROL Register.                                                                                                                                              |  |  |
| 0x69    | REGOUT CONTROL   | Hex   | H1   | Sealed: R/W<br>Full Access: R/W | REGOUT Control: Changes voltage regulator settings. Bit descriptions can be found in REGOUT CONTROL Register.                                                                                                                                                   |  |  |

### 9.2 Bit Field Definitions for Direct Commands

# 9.2.1 Safety Alert A Register

| 7   | 6   | 5   | 4    | 3    | 2   | 1       | 0       |
|-----|-----|-----|------|------|-----|---------|---------|
| COV | CUV | SCD | OCD1 | OCD2 | occ | RSVD0_1 | RSVD0_0 |

**Description**: Provides individual alert signals when enabled safety alerts have triggered.

# Table 9-1. Safety Alert A Register Field Descriptions

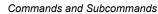
| Bit | Field | Description                                      |
|-----|-------|--------------------------------------------------|
| 7   |       | Cell Overvoltage Safety Alert                    |
|     |       | 0 = Indicates protection alert has not triggered |
|     |       | 1 = indicates protection alert has triggered     |



Commands and Subcommands www.ti.com

Table 9-1. Safety Alert A Register Field Descriptions (continued)

| Bit | Field | Description                                                                                                                           |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------|
| 6   | CUV   | Cell Undervoltage Safety Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered          |
| 5   | SCD   | Short Circuit in Discharge Safety Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered |
| 4   | OCD1  | Overcurrent in Discharge 1 Safety Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered |
| 3   | OCD2  | Overcurrent in Discharge 2 Safety Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered |
| 2   | occ   | Overcurrent in Charge Safety Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered      |


# 9.2.2 Safety Status A Register

| /   | 6   | 5   | 4    | 3    | 2   | 1        | 0      |
|-----|-----|-----|------|------|-----|----------|--------|
| COV | CUV | SCD | OCD1 | OCD2 | OCC | CURLATCH | REGOUT |

**Description**: Provides individual fault signals when enabled safety faults have triggered.

Table 9-2. Safety Status A Register Field Descriptions

| Bit | Field    | Description                                                                                                                                                                                                                                                                                   |
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | cov      | Cell Overvoltage Safety Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered                                                                                                                                                                   |
| 6   | CUV      | Cell Undervoltage Safety Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered                                                                                                                                                                  |
| 5   | SCD      | Short Circuit in Discharge Safety Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered                                                                                                                                                         |
| 4   | OCD1     | Overcurrent in Discharge 1 Safety Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered                                                                                                                                                         |
| 3   | OCD2     | Overcurrent in Discharge 2 Safety Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered                                                                                                                                                         |
| 2   | occ      | Overcurrent in Charge Safety Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered                                                                                                                                                              |
| 1   | CURLATCH | Current Protection Latch Safety Fault 0 = Indicates the number of attempted current protection recoveries has not yet exceeded the latch count. 1 = Indicates the number of attempted current protection recoveries has exceeded the latch count, and autorecovery based on time is disabled. |





www.ti.com

Table 9-2. Safety Status A Register Field Descriptions (continued)

| Bit | Field  | Description                                      |
|-----|--------|--------------------------------------------------|
| 0   | REGOUT | REGOUT Safety Fault                              |
|     |        | 0 = Indicates protection fault has not triggered |
|     |        | 1 = indicates protection fault has triggered     |

# 9.2.3 Safety Alert B Register

| 7   | 6   | 5   | 4   | 3     | 2     | 1    | 0   |
|-----|-----|-----|-----|-------|-------|------|-----|
| OTD | ОТС | UTD | UTC | OTINT | RSVD0 | VREF | VSS |

**Description**: Provides individual alert signals when enabled safety alerts have triggered.

### Table 9-3. Safety Alert B Register Field Descriptions

| Bit | Field | Description                                                                                                                              |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | OTD   | Overtemperature in Discharge Safety Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered  |
| 6   | отс   | Overtemperature in Charge Safety Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered     |
| 5   | UTD   | Undertemperature in Discharge Safety Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered |
| 4   | итс   | Undertemperature in Charge Safety Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered    |
| 3   | OTINT | Internal Overtemperature Safety Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered      |
| 2   | RSVD0 | Reserved                                                                                                                                 |
| 1   | VREF  | VREF Diagnostic Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered                      |
| 0   | vss   | VSS Diagnostic Alert 0 = Indicates protection alert has not triggered 1 = indicates protection alert has triggered                       |

# 9.2.4 Safety Status B Register

| 7   | 6   | 5   | 4   | 3     | 2     | 1    | 0   |
|-----|-----|-----|-----|-------|-------|------|-----|
| OTD | ОТС | UTD | UTC | OTINT | RSVD0 | VREF | VSS |

**Description**: Provides individual fault signals when enabled safety faults have triggered.

# Table 9-4. Safety Status B Register Field Descriptions

| Bit | Field | Description                                      |
|-----|-------|--------------------------------------------------|
| 7   |       | Overtemperature in Discharge Safety Fault        |
|     |       | 0 = Indicates protection fault has not triggered |
|     |       | 1 = indicates protection fault has triggered     |



Commands and Subcommands www.ti.com

Table 9-4. Safety Status B Register Field Descriptions (continued)

| Bit | Field | Description                                                                                                                              |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------|
| 6   | отс   | Overtemperature in Charge Safety Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered     |
| 5   | UTD   | Undertemperature in Discharge Safety Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered |
| 4   | итс   | Undertemperature in Charge Safety Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered    |
| 3   | OTINT | Internal Overtemperature Safety Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered      |
| 2   | RSVD0 | Reserved                                                                                                                                 |
| 1   | VREF  | VREF Diagnostic Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered                      |
| 0   | vss   | VSS Diagnostic Fault 0 = Indicates protection fault has not triggered 1 = indicates protection fault has triggered                       |

# 9.2.5 Battery Status Register

| 15     | 14    | 13        | 12       | 11    | 10    | 9          | 8      |
|--------|-------|-----------|----------|-------|-------|------------|--------|
| NORMAL | RSVD0 | SA        | SS       | SEC_1 | SEC_0 | RSVD0      | FET_EN |
| 7      | 6     | 5         | 4        | 3     | 2     | 1          | 0      |
| POR    | RSVD0 | CFGUPDATE | ALERTPIN | CHG   | DSG   | CHGDETFLAG | RSVD0  |

**Description**: Provides flags related to battery status.

**Table 9-5. Battery Status Register Field Descriptions** 

| Bit | Field  | Description                                                                                                                                                      |
|-----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15  | NORMAL | This flag asserts when the device is in NORMAL mode.  0 = Indicates the device is not in NORMAL mode.  1 = Indicates the device is in NORMAL mode.               |
| 13  | SA     | This flag asserts if an enabled safety alert is present.  0 = Indicates an enabled safety alert is not present  1 = Indicates an enabled safety alert is present |
| 12  | ss     | This flag asserts if an enabled safety fault is present.  0 = Indicates an enabled safety fault is not present  1 = Indicates an enabled safety fault is present |





www.ti.com Commands and Subcommands

# **Table 9-5. Battery Status Register Field Descriptions (continued)**

| Bit   | Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11–10 | SEC_1-SEC_0 | SEC1:0 indicate the present security state of the device.  When in SEALED mode, device configuration cannot be read or written and some commands are restricted.  When in FULLACCESS mode, unrestricted read and write access is allowed and all commands are accepted.  0 = 0: Device has not initialized yet.  1 = 1: Device is in FULLACCESS mode.  2 = 2: Unused.  3 = 3: Device is in SEALED mode.                                                                                                                  |
| 8     | FET_EN      | This bit is set when the device is in autonomous FET control mode. The default value of this bit is set by the Settings:FET Options[FET_EN] bit in Data Memory upon exit of CONFIG_UPDATE mode. Its value can be modified during operation using the FET_ENABLE() subcommand.  0 = Device is not in autonomous FET control mode, FETs are only enabled through manual command.  1 = Device is in autonomous FET control mode, FETs can be enabled by the device if no conditions or commands prevent them being enabled. |
| 7     | POR         | This bit is set when the device fully resets. It is cleared upon exit of CONFIG_UPDATE mode. It can be used by the host to determine if any RAM configuration changes were lost due to a reset.  0 = Full reset has not occurred since last exit of CONFIG_UPDATE mode.  1 = Full reset has occurred since last exit of CONFIG_UPDATE and reconfiguration of any RAM settings is required.                                                                                                                               |
| 5     | CFGUPDATE   | This bit indicates whether or not the device is in CONFIG_UPDATE mode. It is set after the SET_CFGUPDATE() subcommand is received and fully processed. Configuration settings can be changed only while this bit is set.  0 = Device is not in CONFIG_UPDATE mode.  1 = Device is in CONFIG_UPDATE mode.                                                                                                                                                                                                                 |
| 4     | ALERTPIN    | This bit indicates whether the ALERT pin is asserted (pulled low).  0 = ALERT pin is not asserted (stays in hi-Z mode).  1 = ALERT pin is asserted (pulled low).                                                                                                                                                                                                                                                                                                                                                         |
| 3     | снв         | This bit indicates whether the CHG driver is enabled.  0 = CHG driver is disabled.  1 = CHG driver is enabled.                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2     | DSG         | This bit indicates whether the DSG driver is enabled.  0 = DSG driver is disabled.  1 = DSG driver is enabled.                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1     | CHGDETFLAG  | This bit indicates the value of the debounced CHG Detector signal.  0 = CHG Detector debounced signal is low.  1 = CHG Detector debounced signal is high.                                                                                                                                                                                                                                                                                                                                                                |

# 9.2.6 Alarm Status Register

| 15    | 14    | 13    | 12    | 11    | 10       | 9        | 8     |
|-------|-------|-------|-------|-------|----------|----------|-------|
| SSA   | SSB   | SAA   | SAB   | XCHG  | XDSG     | SHUTV    | RSVD0 |
| 7     | 6     | 5     | 4     | 3     | 2        | 1        | 0     |
| CHECK | CHECK | RSVD0 | RSVD0 | RSVD0 | INITCOMP | CDTOGGLE | POR   |

**Description**: Latched signal used to assert the ALERT pin. Write a bit high to clear the latched bit.



Commands and Subcommands www.ti.com

# Table 9-6. Alarm Status Register Field Descriptions

| D'4 |          | 6. Alarm Status Register Field Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit | Field    | Description Trial and the second seco |
| 15  | SSA      | This bit is latched when a bit in Safety Status A() is set, and the bit is included in the mask. The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14  | SSB      | This bit is latched when a bit in Safety Status B() is set, and the bit is included in the mask. The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13  | SAA      | This bit is latched when a bit in Safety Alert A() is set, and the bit is included in the mask.  The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12  | SAB      | This bit is latched when a bit in Safety Alert B() is set, and the bit is included in the mask. The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11  | XCHG     | This bit is latched when the CHG driver is disabled, and the bit is included in the mask. The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10  | XDSG     | This bit is latched when the DSG driver is disabled, and the bit is included in the mask. The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9   | SHUTV    | This bit is latched when either a cell voltage has been detected below Shutdown Cell Voltage, or the stack voltage has been detected below Shutdown Stack Voltage. The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low. 0 = Flag is not set 1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7   | CHECK    | This bit is latched when the device completes a CHECK interval while in NORMAL mode, and the bit is included in the mask. The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6   | CHECK    | This bit is latched when the device completes a CHECK interval while in NORMAL mode, and the bit is included in the mask. The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2   | INITCOMP | This bit is latched when the device first powers up or exits CONFIG_UPDATE mode, loads settings, and completes first evaluation of conditions related to enabled protections, and the bit is included in the mask. The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1   | CDTOGGLE | This bit is latched when the debounced CHG Detector signal is different from the last debounced value.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



# **Table 9-6. Alarm Status Register Field Descriptions (continued)**

| Bit | Field | Description                                                         |
|-----|-------|---------------------------------------------------------------------|
| 0   | POR   | This bit is latched when the POR bit in Battery Status is asserted. |
|     |       | 0 = Flag is not set                                                 |
|     |       | 1 = Flag is set                                                     |

# 9.2.7 Alarm Raw Status Register

| 15    | 14    | 13    | 12    | 11    | 10       | 9     | 8     |
|-------|-------|-------|-------|-------|----------|-------|-------|
| SSA   | SSB   | SAA   | SAB   | XCHG  | XDSG     | SHUTV | RSVD0 |
| 7     | 6     | 5     | 4     | 3     | 2        | 1     | 0     |
| CHECK | CHECK | RSVD0 | RSVD0 | RSVD0 | INITCOMP | CDRAW | POR   |

**Description**: Unlatched value of flags which can be selected to be latched (using Alarm Enable()) and used to assert the ALERT pin.

Table 9-7. Alarm Raw Status Register Field Descriptions

| Bit | Field    | Description                                                                                                                                                                                                                                                                                              |
|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15  | SSA      | This bit is set when a bit in Safety Status A() is set.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                            |
| 14  | SSB      | This bit is set when a bit in Safety Status B() is set.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                            |
| 13  | SAA      | This bit is set when a bit in Safety Alert A() is set.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                             |
| 12  | SAB      | This bit is set when a bit in Safety Alert B() is set.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                             |
| 11  | XCHG     | This bit is set when the CHG driver is disabled.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                   |
| 10  | XDSG     | This bit is set when the DSG driver is disabled.  0 = Flag is not set  1 = Flag is set                                                                                                                                                                                                                   |
| 9   | SHUTV    | This bit is set when either a cell voltage has been detected below Shutdown Cell Voltage, or the stack voltage has been detected below Shutdown Stack Voltage. The bit is cleared when written with a "1". A bit set here causes the ALERT pin to be asserted low.  0 = Flag is not set  1 = Flag is set |
| 7   | CHECK    | Bits 6 and 7 pulse high briefly every CHECK interval when the device is in NORMAL mode.                                                                                                                                                                                                                  |
| 6   | CHECK    | Bits 6 and 7 pulse high briefly every CHECK interval when the device is in NORMAL mode.                                                                                                                                                                                                                  |
| 2   | INITCOMP | This bit pulses high briefly when the device first powers up or exits CONFIG_UPDATE mode, loads settings, and completes the first evaluation of conditions related to enabled protections.                                                                                                               |
| 1   | CDRAW    | This bit is set when the CHG Detector output is set, indicating that the CHG pin has been detected above a level of approximately 2 V.  0 = CHG Detector output is not set  1 = CHG Detector output is set                                                                                               |



Commands and Subcommands www.ti.com

# **Table 9-7. Alarm Raw Status Register Field Descriptions (continued)**

| Bit | Field | Description                                                   |
|-----|-------|---------------------------------------------------------------|
| 0   | POR   | This bit is set if the POR bit in Battery Status is asserted. |
|     |       | 0 = Flag is not set                                           |
|     |       | 1 = Flag is set                                               |

# 9.2.8 Alarm Enable Register

| 15    | 14    | 13    | 12    | 11    | 10       | 9        | 8     |
|-------|-------|-------|-------|-------|----------|----------|-------|
| SSA   | SSB   | SAA   | SAB   | XCHG  | XDSG     | SHUTV    | RSVD0 |
| 7     | 6     | 5     | 4     | 3     | 2        | 1        | 0     |
| CHECK | CHECK | RSVD0 | RSVD0 | RSVD0 | INITCOMP | CDTOGGLE | POR   |

**Description**: Mask for Alarm Status(). Can be written to change during operation to change which alarm sources are enabled. The default value of this parameter is set by Settings:Configuration:Default Alarm Mask.

# Table 9-8. Alarm Enable Register Field Descriptions

| Bit | Field | Description                                                                                                                                                                                                                                                                                       |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15  | SSA   | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status() |
| 14  | SSB   | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status() |
| 13  | SAA   | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status() |
| 12  | SAB   | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status() |
| 11  | XCHG  | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status() |
| 10  | XDSG  | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status() |
| 9   | SHUTV | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status() |
| 7   | CHECK | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status() |





www.ti.com Commands and Subcommands

# **Table 9-8. Alarm Enable Register Field Descriptions (continued)**

| Bit | Field    | Description                                                                                                                                                                                                                                                                                                                                                                        |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6   | CHECK    | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()                                                                                                                                                    |
|     |          | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                                                                                                                                                                                                                                                   |
| 2   | INITCOMP | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                  |
| 1   | CDTOGGLE | Setting this bit allows the internally determined value of CDTOGGLE to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin. This flag is set whenever the debounced CHG Detector signal differs from the previous debounced value.  0 = The CDTOGGLE signal is not included in Alarm Status()  1 = The CDTOGGLE signal is included in Alarm Status() |
| 0   | POR      | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                  |

# 9.2.9 FET CONTROL Register

| 7       | 6       | 5       | 4       | 3       | 2       | 1      | 0      |
|---------|---------|---------|---------|---------|---------|--------|--------|
| RSVD0_3 | RSVD0_2 | RSVD0_1 | RSVD0_0 | CHG_OFF | DSG_OFF | CHG_ON | DSG_ON |

**Description**: FET Control: Allows host control of individual FET drivers.

# Table 9-9. FET CONTROL Register Field Descriptions

| Bit | Field   | Description                                                                                                                                                                                               |
|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | CHG_OFF | CHG FET driver control. This bit only operates if the HOST_FETOFF_EN bit in data memory is set.  0 = CHG FET driver is allowed to turn on if other conditions are met.  1 = CHG FET driver is forced off. |
| 2   | DSG_OFF | DSG FET driver control. This bit only operates if the HOST_FETOFF_EN bit in data memory is set.  0 = DSG FET driver is allowed to turn on if other conditions are met.  1 = DSG FET driver is forced off. |
| 1   | CHG_ON  | CHG FET driver control. This bit only operates if the HOST_FETON_EN bit in data memory is set.  0 = CHG FET driver is allowed to turn on if other conditions are met.  1 = CHG FET driver is forced on.   |
| 0   | DSG_ON  | DSG FET driver control. This bit only operates if the HOST_FETON_EN bit in data memory is set.  0 = DSG FET driver is allowed to turn on if other conditions are met.  1 = DSG FET driver is forced on.   |

# 9.2.10 REGOUT CONTROL Register

| 7       | 6       | 5       | 4     | 3      | 2         | 1         | 0         |
|---------|---------|---------|-------|--------|-----------|-----------|-----------|
| RSVD0_2 | RSVD0_1 | RSVD0_0 | TS_ON | REG_EN | REGOUTV_2 | REGOUTV_1 | REGOUTV_0 |



Commands and Subcommands www.ti.com

**Description**: REGOUT Control: Changes voltage regulator settings.

# Table 9-10. REGOUT CONTROL Register Field Descriptions

| Bit | Field               | Description                                           |
|-----|---------------------|-------------------------------------------------------|
| 4   | TS_ON               | Control for TS pullup to stay biased continuously.    |
|     |                     | 0 = TS pullup resistor is not continuously connected. |
|     |                     | 1 = TS pullup resistor is continuously connected.     |
| 3   | REG_EN              | REGOUT LDO enable.                                    |
|     |                     | 0 = REGOUT LDO is disabled                            |
|     |                     | 1 = REGOUT LDO is enabled                             |
| 2–0 | REGOUTV_2-REGOUTV_0 | REGOUT LDO voltage control.                           |
|     |                     | 0 = REGOUT LDO is set to 1.8V                         |
|     |                     | 1 = REGOUT LDO is set to 1.8V                         |
|     |                     | 2 = REGOUT LDO is set to 1.8V                         |
|     |                     | 3 = REGOUT LDO is set to 1.8V                         |
|     |                     | 4 = REGOUT LDO is set to 2.5 V                        |
|     |                     | 5 = REGOUT LDO is set to 3.0 V                        |
|     |                     | 6 = REGOUT LDO is set to 3.3 V                        |
|     |                     | 7 = REGOUT LDO is set to 5 V                          |

# 9.3 Command-only Subcommands

### **Table of Command-only Subcommands**

| Command | Name           | Access                      | Description                                                                                                                                        |
|---------|----------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0012  | RESET          | Sealed: —<br>Full Access: W | This command is sent to reset the device                                                                                                           |
| 0x0022  | FET_ENABLE     | Sealed: —<br>Full Access: W | This command is sent to toggle the FET_EN bit in Battery Status(). FET_EN=0 means manual FET control. FET_EN=1 means autonomous device FET control |
| 0x0030  | SEAL           | Sealed: —<br>Full Access: W | This command is sent to place the device in SEALED mode                                                                                            |
| 0x0090  | SET_CFGUPDATE  | Sealed: —<br>Full Access: W | This command is sent to place the device in CONFIG_UPDATE mode                                                                                     |
| 0x0092  | EXIT_CFGUPDATE | Sealed: —<br>Full Access: W | This command is sent to exit CONFIG_UPDATE mode                                                                                                    |

# 9.4 Subcommands with Data

### **Subcommands Table**

| Command | Name          | Access                      | Offset | Data          | Units | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|---------------|-----------------------------|--------|---------------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0001  | DEVICE_NUMBER | Sealed: R<br>Full Access: R | 0      | DEVICE NUMBER | Hex   | H2   | The DEVICE_NUMBER subcommand reports the device number that identifies the product. The data is returned in little-endian format Bit descriptions can be found in DEVICE NUMBER Register.                                                                                                                                                                                                                                                                                                |
| 0x0002  | FW_VERSION    | Sealed: R<br>Full Access: R | 0      | FW VERSION    | Hex   | H6   | The FW_VERSION subcommand returns three 16-bit word values. Bytes 0-1: Device Number (Big-Endian): Device number in big-endian format for compatibility with legacy products. Bytes 3-2: Firmware Version (Big-Endian): Device firmware major and minor version number (Big-Endian). Bytes 5-4: Build Number (Big-Endian): Firmware build number in big-endian, binary coded decimal format for compatibility with legacy products Bit descriptions can be found in FW VERSION Register. |



| Command | Name          | Access                        | Offset | Data          | Units | Туре | Description                                                                                                                                                                    |
|---------|---------------|-------------------------------|--------|---------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0003  | HW_VERSION    | Sealed: R<br>Full Access: R   | 0      | HW VERSION    | Hex   | H2   | Hardware Version: Reports the device hardware version number Bit descriptions can be found in HW VERSION Register.                                                             |
| 0x0035  | SECURITY_KEYS | Sealed: —<br>Full Access: W   | 0      | SECURITY KEYS | Hex   | H4   | Security key that must be sent to transition from SEALED to FULLACCESS mode. The subcommand includes two 16-bit words Bit descriptions can be found in SECURITY KEYS Register. |
| 0x009b  | PROT_RECOVERY | Sealed: R<br>Full Access: R/W | 0      | PROT RECOVERY | Hex   | H1   | This command enables the host to allow recovery of selected protection faults Bit descriptions can be found in PROT RECOVERY Register.                                         |

# 9.5 Bitfield Definitions for Subcommands

# 9.5.1 DEVICE NUMBER Register

| 15        | 14        | 13        | 12        | 11        | 10        | 9        | 8        |
|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|
| DEVNUM_15 | DEVNUM_14 | DEVNUM_13 | DEVNUM_12 | DEVNUM_11 | DEVNUM_10 | DEVNUM_9 | DEVNUM_8 |
| 7         | 6         | 5         | 4         | 3         | 2         | 1        | 0        |
| DEVNUM_7  | DEVNUM_6  | DEVNUM_5  | DEVNUM_4  | DEVNUM_3  | DEVNUM_2  | DEVNUM_1 | DEVNUM_0 |

**Description**: The DEVICE\_NUMBER subcommand reports the device number that identifies the product. The data is returned in little-endian format

Table 9-11. DEVICE NUMBER Register Field Descriptions

| Bit  | Field              | Description                                                                                          |
|------|--------------------|------------------------------------------------------------------------------------------------------|
| 15–0 | DEVNUM_15-DEVNUM_0 | Reports the device number that identifies the product. The data is returned in little-endian format. |

# 9.5.2 FW VERSION Register

| 47          | 46          | 45          | 44          | 43          | 42          | 41         | 40         |
|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|
| FVBLDNUM_15 | FVBLDNUM_14 | FVBLDNUM_13 | FVBLDNUM_12 | FVBLDNUM_11 | FVBLDNUM_10 | FVBLDNUM_9 | FVBLDNUM_8 |
| 39          | 38          | 37          | 36          | 35          | 34          | 33         | 32         |
| FVBLDNUM_7  | FVBLDNUM_6  | FVBLDNUM_5  | FVBLDNUM_4  | FVBLDNUM_3  | FVBLDNUM_2  | FVBLDNUM_1 | FVBLDNUM_0 |
| 31          | 30          | 29          | 28          | 27          | 26          | 25         | 24         |
| FVFWVER_15  | FVFWVER_14  | FVFWVER_13  | FVFWVER_12  | FVFWVER_11  | FVFWVER_10  | FVFWVER_9  | FVFWVER_8  |
| 23          | 22          | 21          | 20          | 19          | 18          | 17         | 16         |
| FVFWVER_7   | FVFWVER_6   | FVFWVER_5   | FVFWVER_4   | FVFWVER_3   | FVFWVER_2   | FVFWVER_1  | FVFWVER_0  |
| 15          | 14          | 13          | 12          | 11          | 10          | 9          | 8          |



Commands and Subcommands www.ti.com

| FVDEVNUM_1<br>5 | FVDEVNUM_1<br>4 | FVDEVNUM_1 | FVDEVNUM_1<br>2 | FVDEVNUM_11 | FVDEVNUM_1<br>0 | FVDEVNUM_9 | FVDEVNUM_8 |
|-----------------|-----------------|------------|-----------------|-------------|-----------------|------------|------------|
| 7               | 6               | 5          | 4               | 3           | 2               | 1          | 0          |
| FVDEVNUM_7      | FVDEVNUM_6      | FVDEVNUM_5 | FVDEVNUM_4      | FVDEVNUM_3  | FVDEVNUM_2      | FVDEVNUM_1 | FVDEVNUM_0 |

**Description**: The FW\_VERSION subcommand returns three 16-bit word values. Bytes 0-1: Device Number (Big-Endian): Device number in big-endian format for compatibility with legacy products. Bytes 3-2: Firmware Version (Big-Endian): Device firmware major and minor version number (Big-Endian). Bytes 5-4: Build Number (Big-Endian): Firmware build number in big-endian, binary coded decimal format for compatibility with legacy products

Table 9-12. FW VERSION Register Field Descriptions

| Bit   | Field                  | Description                                                                                                                        |
|-------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 47–32 | FVBLDNUM_15-FVBLDNUM_0 | Build Number (Big-Endian): Firmware build number in big-endian, binary coded decimal format for compatibility with legacy products |
| 31–16 | FVFWVER_15-FVFWVER_0   | Firmware Version (Big-Endian): Device firmware major and minor version number (Big-Endian)                                         |
| 15–0  | FVDEVNUM_15-FVDEVNUM_0 | Device Number (Big-Endian): Device number in big-endian format for compatibility with legacy products                              |

# 9.5.3 HW VERSION Register

| 15       | 14       | 13       | 12       | 11       | 10       | 9       | 8       |
|----------|----------|----------|----------|----------|----------|---------|---------|
| HWVER_15 | HWVER_14 | HWVER_13 | HWVER_12 | HWVER_11 | HWVER_10 | HWVER_9 | HWVER_8 |
| 7        | 6        | 5        | 4        | 3        | 2        | 1       | 0       |
| HWVER_7  | HWVER_6  | HWVER_5  | HWVER_4  | HWVER_3  | HWVER_2  | HWVER_1 | HWVER_0 |

**Description**: Hardware Version: Reports the device hardware version number

# Table 9-13. HW VERSION Register Field Descriptions

| Bit  | Field            | Description                                                   |
|------|------------------|---------------------------------------------------------------|
| 15–0 | HWVER_15-HWVER_0 | Hardware Version: Reports the device hardware version number. |

### 9.5.4 SECURITY KEYS Register

| 31          | 30          | 29          | 28          | 27          | 26          | 25         | 24         |
|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|
| FAKEY2_6_15 | FAKEY2_6_14 | FAKEY2_6_13 | FAKEY2_6_12 | FAKEY2_6_11 | FAKEY2_6_10 | FAKEY2_6_9 | FAKEY2_6_8 |
| 23          | 22          | 21          | 20          | 19          | 18          | 17         | 16         |
| FAKEY2_6_7  | FAKEY2_6_6  | FAKEY2_6_5  | FAKEY2_6_4  | FAKEY2_6_3  | FAKEY2_6_2  | FAKEY2_6_1 | FAKEY2_6_0 |
| 15          | 14          | 13          | 12          | 11          | 10          | 9          | 8          |
| FAKEY115    | FAKEY114    | FAKEY113    | FAKEY112    | FAKEY111    | FAKEY110    | FAKEY19    | FAKEY18    |
| 7           | 6           | 5           | 4           | 3           | 2           | 1          | 0          |





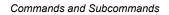
www.ti.com Commands and Subcommands

| FAKEY17 | FAKEY16 | FAKEY15 | FAKEY14 | FAKEY13 | FAKEY12 | FAKEY11 | FAKEY10 |
|---------|---------|---------|---------|---------|---------|---------|---------|
|---------|---------|---------|---------|---------|---------|---------|---------|

Description: Security key that must be sent to transition from SEALED to FULLACCESS mode. The subcommand includes two 16-bit words

Table 9-14. SECURITY KEYS Register Field Descriptions

| Bit   | Field                  | Description                                                                                                                                                                                                                                                                                                                                   |
|-------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31–16 | FAKEY2_6_15-FAKEY2_6_0 | Full Access Key Step 2: This is the second word of the security key that must be sent to transition from SEALED to FULLACCESS mode. Do not choose a word that is identical to a subcommand address or the same as the first word. This word must be sent within 5 seconds of the first word of the key and with no other commands in between. |
| 15–0  | FAKEY115_FAKEY10       | Full Access Key Step 1: This is the first word of the security key that must be sent to transition from SEALED to FULLACCESS mode. Do not choose a word that is identical to a subcommand address.                                                                                                                                            |


# 9.5.5 PROT RECOVERY Register



**Description**: This command enables the host to allow recovery of selected protection faults

# Table 9-15. PROT RECOVERY Register Field Descriptions

| Bit | Field   | Description                                                                                                                                                    |
|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | VOLTREC | Cell Overvoltage or Cell Undervoltage fault recovery  0 = Recovery of an COV/CUV fault is not triggered  1 = Recovery of an COV/CUV fault is triggered.        |
| 6   | DIAGREC | Recovery for a VSS or VREF fault from Safety Status B() 0 = Recovery of a VSS or VREF fault is not triggered 1 = Recovery of a VSS or VREF fault is triggered. |
| 5   | SCDREC  | Short Circuit in Discharge fault recovery  0 = Recovery of an SCD fault is not triggered  1 = Recovery of an SCD fault is triggered.                           |
| 4   | OCD1REC | Overcurrent in Discharge 1 fault recovery  0 = Recovery of an OCD1 fault is not triggered  1 = Recovery of an OCD1 fault is triggered.                         |
| 3   | OCD2REC | Overcurrent in Discharge 2 fault recovery  0 = Recovery of an OCD2 fault is not triggered  1 = Recovery of an OCD2 fault is triggered.                         |
| 2   | OCCREC  | Overcurrent in Charge fault recovery  0 = Recovery of an OCC fault is not triggered  1 = Recovery of an OCC fault is triggered.                                |
| 1   | TEMPREC | Temperature fault recovery 0 = Recovery of a temperature fault is not triggered 1 = Recovery of a temperature fault is triggered.                              |





www.ti.com

This page intentionally left blank.



# 10.1 Settings

# 10.1.1 Settings:Configuration

# 10.1.1.1 Settings: Configuration: Reserved

| Class    | Subclass      | Name | Name     |     | Min    |             | Max | Default | Unit |
|----------|---------------|------|----------|-----|--------|-------------|-----|---------|------|
| Settings | Configuration | Res  | Reserved |     | 0x0000 | 0000 0xFFFF |     | -       | Hex  |
| 7        | 6             | 5    | 4        | 3   |        | 2           |     | 1       | 0    |
| RSVD     | RSVD          | RSVD | RSVD     | RSV | 'D     | RS\         | /D  | RSVD    | RSVD |

**Description**: This register is reserved, do not write to this register.

# 10.1.1.2 Settings: Configuration: Power Config

| Class    | Subclass      | Name  | Name         |     | Min  | Max   | Defaul | t Unit |
|----------|---------------|-------|--------------|-----|------|-------|--------|--------|
| Settings | Configuration | Powe  | Power Config |     | 0x00 | 0xFf  | 0x01   | Hex    |
| 7        | 6             | 5     | 4            | 3   |      | 2     | 1      | 0      |
| RSVD0    | RSVD0         | RSVD0 | RSVD0        | OTS | SD   | LFOWD | RSVD0  | RSVD1  |

**Description**: This register contains settings that affect the power control of the device

# **Table 10-1. Power Config Register Field Descriptions**

| Bit | Field | Default | Description                                                                                              |
|-----|-------|---------|----------------------------------------------------------------------------------------------------------|
| 3   | OTSD  | 0       | Determines whether or not the device shuts down if the die HW overtemperature detector triggers a fault. |
|     |       |         | 0 = Do not shutdown when the HW OT triggers                                                              |
|     |       |         | 1 = Device enters shutdown when the HW OT triggers                                                       |
| 2   | LFOWD | 0       | Determines whether or not the device shuts down if the LFO watchdog triggers a fault.                    |
|     |       |         | 0 = Do not shutdown the device when an LFO watchdog fault occurs.                                        |
|     |       |         | 1 = Shutdown the device when an LFO watchdog fault occurs.                                               |

# 10.1.1.3 Settings: Configuration: REGOUT Config

| Class    | Subclass      | Name    | Name          |      | Min    | Max   | Default  | Unit     |
|----------|---------------|---------|---------------|------|--------|-------|----------|----------|
| Settings | Configuration | REGOL   | REGOUT Config |      | 0x00   | 0xFF  | 0x08     | Hex      |
| 7        | 6             | 5       | 4             | 3    |        | 2     | 1        | 0        |
| RSVD0_   | _3 RSVD0_2    | RSVD0_1 | RSVD0_0       | REG_ | EN REG | CTL_2 | REGCTL_1 | REGCTL_0 |

**Description**: This register contains settings to control the REGOUT voltage regulator



Table 10-2. REGOUT Config Register Field Descriptions

| Bit | Field             | Default | Description                                                                                                                                                                                                                                                                                                             |
|-----|-------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | REG_EN            | 1       | Default value of enable for REG_EN. This value is used upon exit of CONFIG_UPDATE mode, but can be modified during operation using the REGOUT Control() command.  0 = REGOUT is not enabled (default)  1 = REGOUT is enabled                                                                                            |
| 2-0 | REGCTL_2-REGCTL_0 | 0       | Default value for the REGOUT LDO settings. This value is used upon exit of CONFIG_UPDATE mode, but can be modified during operation using the REGOUT Control() command.  0 = Set to 1.8V  1 = Set to 1.8V  2 = Set to 1.8V  3 = Set to 1.8V  4 = Set to 2.5V  5 = Set to 3.0V  6 = Set to 3.3V (default)  7 = Set to 5V |

# 10.1.1.4 Settings:Configuration:I2C Address

| Class    | Subclass      | Name      | Name        |        | Min       | Max   | Default   | Unit      |
|----------|---------------|-----------|-------------|--------|-----------|-------|-----------|-----------|
| Settings | Configuration | I2C A     | I2C Address |        | 0x00      | 0x7F  | 80x0      | Hex       |
| 7        | 6             | 5         | 4           | 3      |           | 2     | 1         | 0         |
| RSVD0    | I2CADDR_6     | I2CADDR_5 | I2CADDR_4   | I2CADI | DR_3 I2CA | DDR_2 | I2CADDR_1 | I2CADDR_0 |

**Description**: This register sets the I<sup>2</sup>C address for the serial communications interface

# Table 10-3. I2C Address Register Field Descriptions

| Bit | Field               | Default | Description                                                                |
|-----|---------------------|---------|----------------------------------------------------------------------------|
| 6–0 | I2CADDR_6-I2CADDR_0 | 8       | 7-bit I <sup>2</sup> C Address.                                            |
|     |                     |         | 0 = The device uses address 0x08. All other values are used as the address |
|     |                     |         | directly.                                                                  |

# 10.1.1.5 Settings:Configuration:I2C Config

| Class    | Subclass              | Name        |            | Туре    | Min    |         | Max        | Default  | Un      | nit |
|----------|-----------------------|-------------|------------|---------|--------|---------|------------|----------|---------|-----|
| Settings | ettings Configuration |             | Config H2  |         | 0x0000 |         | 0xFFFF     | 0x3400   | He      | ЭX  |
| 15       | 14                    | 13          | 12         | 11      |        | 10      |            | 9        | 8       |     |
| I2CCSLT  | O I2CCSHTO            | I2CCSHTOT_1 | I2CCSHTOT_ | 0 I2CLL | .TO    | I2CLLT( | OT_2   120 | CLLTOT_1 | I2CLLTO | T_0 |
| 7        | 6                     | 5           | 4          | 3       |        | 2       |            | 1        | 0       |     |
| RSVD0_   | 5 RSVD0_4             | RSVD0_3     | RSVD0_2    | RSVD    | 0_1    | RSVD    | 0_0 I      | 2CBBTO   | CRC     |     |

**Description**: This register includes configuration settings for the I<sup>2</sup>C address for the serial communications interface



# Table 10-4. I2C Config Register Field Descriptions

| Bit   | Field                   | Default | Description                                                                                                                                                                                                                                                                                                                      |
|-------|-------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | I2CCSLTO                | 0       | SCL Short Low Timeout, times out I <sup>2</sup> C logic if SCL is detected low for approximately 25ms 0 = Timeout is not enabled (default) 1 = Timeout is enabled                                                                                                                                                                |
| 14    | I2CCSHTO                | 0       | SCL Short High Timeout, times out I <sup>2</sup> C logic if SCL is detected high for duration given by I <sup>2</sup> CCSHTOT1:0 0 = Timeout is not enabled (default) 1 = Timeout is enabled                                                                                                                                     |
| 13–12 | I2CCSHTOT_1-I2CCSHTOT_0 | 3       | SCL Short High Timeout Duration 0 = Timeout occurs after 64 ms 1 = Timeout occurs after 512 ms 2 = Timeout occurs after 1 ms 3 = Timeout occurs after 15 ms (default)                                                                                                                                                            |
| 11    | I2CLLTO                 | 0       | Long Low Timeout, times out I <sup>2</sup> C logic if SCL or SCL and SDA are detected low for duration given by I <sup>2</sup> CLLTOT  0 = Timeout occurs if SCL is detected low for duration I <sup>2</sup> CLLTOT (default)  1 = Timeout occurs if both SCL and SDA are detected low for duration I <sup>2</sup> CLLTOT        |
| 10–8  | I2CLLTOT_2-I2CLLTOT_0   | 4       | Long Low Timeout Duration  0 = Timeout is disabled  1 = Timeout occurs after 0.5 seconds  2 = Timeout occurs after 1 seconds  3 = Timeout occurs after 1.5 seconds  4 = Timeout occurs after 2 seconds (default)  5 = Timeout occurs after 2.5 seconds  6 = Timeout occurs after 3 seconds  7 = Timeout occurs after 3.5 seconds |
| 1     | I2CBBTO                 | 0       | I <sup>2</sup> C Bus Busy Timeout, times out I <sup>2</sup> C logic if a transaction is detected longer than the duration given by I <sup>2</sup> CLLTOT2:0 0 = Timeout is not enabled (default) 1 = Timeout is enabled                                                                                                          |
| 0     | CRC                     | 0       | Controls whether the I <sup>2</sup> C serial communications interface uses CRC.  0 = CRC is not used (default)  1 = CRC is enabled                                                                                                                                                                                               |

# 10.1.1.6 Settings:Configuration:TS Mode

| Class    | Subclass      | Name  |         | Туре | Min  |     | Max  |   | Default |     | Unit |
|----------|---------------|-------|---------|------|------|-----|------|---|---------|-----|------|
| Settings | Configuration | TS    | TS Mode |      | 0x00 | )   | 0x01 |   | 0x00    |     | Hex  |
| 7        | 6             | 5     | 4       | 3    |      | 2   | 2    |   | 1       |     | 0    |
| RSVD     | RSVD0         | RSVD0 | RSVD0   | RSV  | D0   | RS\ | VD0  | R | SVD0    | TSI | MODE |

**Description**: This register includes a configuration setting related to the TS pin operation.

# **Table 10-5. TS Mode Register Field Descriptions**

| Bit | Field  | Default | Description                                                                                  |
|-----|--------|---------|----------------------------------------------------------------------------------------------|
| 0   | TSMODE | 0       | This bit controls whether the TS pin is used for external thermistor temperature protection. |
|     |        |         | 0 = TS pin is used for external thermistor temperature protection, with the internal         |
|     |        |         | pullup resistor enabled during each evaluation.                                              |
|     |        |         | 1 = TS pin is not used for external thermistor temperature protection.                       |



### 10.1.1.7 Settings: Configuration: Vcell Mode

| Class    | Subclass      | Name    | Name       |      | Min  |       | Max  | Default | Unit    |
|----------|---------------|---------|------------|------|------|-------|------|---------|---------|
| Settings | Configuration | Vcel    | Vcell Mode |      | 0x00 |       | 0x07 | 0x0     | Hex     |
| 7        | 6             | 5       | 4          | 3    |      | 2     |      | 1       | 0       |
| RSVD0_   | _4 RSVD0_3    | RSVD0_2 | RSVD0_1    | RSVD | 0_0  | VCELI | L_2  | VCELL_1 | VCELL_0 |

**Description**: Not every system uses all of the cell input pins. If the system has fewer cells than the device supports, some VC input pins must be shorted together. To prevent action being taken for cell under-voltage conditions on pins that are shorted, set these bits appropriately

Table 10-6. Vcell Mode Register Field Descriptions

| Bit | Field           | Default | Description                                                                                                                                                                                                                                                                                                                    |
|-----|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2–0 | VCELL_2-VCELL_0 | 0       | Not every system uses all of the cell input pins. If the system has fewer cells than the device supports, some VC input pins must be shorted together. To prevent action being taken for cell under-voltage conditions on pins that are shorted, set these bits appropriately.  0 = All cell inputs are used for actual cells. |
|     |                 |         | 1 = All cell inputs are used for actual cells.                                                                                                                                                                                                                                                                                 |
|     |                 |         | 2 = Two actual cells are in use (VC7-VC6, VC1-VC0), short unused cell pins to an                                                                                                                                                                                                                                               |
|     |                 |         | adjacent cell pin at the device.                                                                                                                                                                                                                                                                                               |
|     |                 |         | 3 = Three actual cells are in use (VC7-VC6, VC5-VC4, VC1-VC0), short unused                                                                                                                                                                                                                                                    |
|     |                 |         | cell pins to an adjacent cell pin at the device.                                                                                                                                                                                                                                                                               |
|     |                 |         | 4 = Four actual cells are in use (VC7-VC6, VC5-VC4, VC3-VC2, VC1-VC0), short unused cell pins to an adjacent cell pin at the device.                                                                                                                                                                                           |
|     |                 |         | 5 = Five actual cells are in use (VC7-VC6, VC5-VC4, VC3-VC2, VC2-VC1, VC1-                                                                                                                                                                                                                                                     |
|     |                 |         | VC0), short unused cell pins to an adjacent cell pin at the device.                                                                                                                                                                                                                                                            |
|     |                 |         | 6 = Six actual cells are in use (all except VC4-VC3), short pins VC4 and VC3                                                                                                                                                                                                                                                   |
|     |                 |         | together at the device.                                                                                                                                                                                                                                                                                                        |
|     |                 |         | 7 = All cell inputs are used for actual cells.                                                                                                                                                                                                                                                                                 |

### 10.1.1.8 Settings:Configuration:Default Alarm Mask

| Class    | Subclass      | Name      |            | Туре | Min    | Max   | Default  | Unit  |
|----------|---------------|-----------|------------|------|--------|-------|----------|-------|
| Settings | Configuration | Default / | Alarm Mask | H2   | 0x0000 | 0xFFF | F 0xC200 | Hex   |
| 15       | 14            | 13        | 12         | 11   |        | 10    | 9        | 8     |
| SSA      | SSB           | SAA       | SAB        | XCF  | IG 2   | KDSG  | SHUTV    | RSVD0 |
| 7        | 6             | 5         | 4          | 3    |        | 2     | 1        | 0     |
| CHEC     | CHECK         | RSVD0     | RSVD0      | RSV  | D0 INI | TCOMP | CDTOGGLE | POR   |

**Description**: This parameter sets the default value of the AlarmEnable() register. The default value is reloaded at reset (if programmed into OTP) and at exit of CONFIG\_UPDATE mode

Table 10-7. Default Alarm Mask Register Field Descriptions

| Bit | Field | Default | Description                                                                                                                                                                                                                                                                                       |
|-----|-------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15  | SSA   |         | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()  1 = This bit in Alarm Raw Status() is included in Alarm Status() |



# Table 10-7. Default Alarm Mask Register Field Descriptions (continued)

| Bit | Field    | Default | Description                                                                                                                                               |
|-----|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14  | SSB      | 1       | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped                                                                          |
| '-  |          | '       | to the corresponding bit in Alarm Status() and to control the ALERT pin.                                                                                  |
|     |          |         | 0 = This bit in Alarm Raw Status() is not included in Alarm Status()                                                                                      |
|     |          |         | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                          |
| 13  | SAA      | 0       | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped                                                                          |
|     |          |         | to the corresponding bit in Alarm Status() and to control the ALERT pin.                                                                                  |
|     |          |         | 0 = This bit in Alarm Raw Status() is not included in Alarm Status()                                                                                      |
|     |          |         | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                          |
| 12  | SAB      | 0       | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped                                                                          |
|     |          |         | to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()            |
|     |          |         | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                          |
| 44  | VOLIO    |         | V V                                                                                                                                                       |
| 11  | XCHG     | 0       | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped to the corresponding bit in Alarm Status() and to control the ALERT pin. |
|     |          |         | 0 = This bit in Alarm Raw Status() is not included in Alarm Status()                                                                                      |
|     |          |         | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                          |
| 10  | XDSG     | 0       | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped                                                                          |
|     |          |         | to the corresponding bit in Alarm Status() and to control the ALERT pin.                                                                                  |
|     |          |         | 0 = This bit in Alarm Raw Status() is not included in Alarm Status()                                                                                      |
|     |          |         | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                          |
| 9   | SHUTV    | 1       | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped                                                                          |
|     |          |         | to the corresponding bit in Alarm Status() and to control the ALERT pin.                                                                                  |
|     |          |         | 0 = This bit in Alarm Raw Status() is not included in Alarm Status()                                                                                      |
|     |          |         | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                          |
| 7   | CHECK    | 0       | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped                                                                          |
|     |          |         | to the corresponding bit in Alarm Status() and to control the ALERT pin.  0 = This bit in Alarm Raw Status() is not included in Alarm Status()            |
|     |          |         | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                          |
| 6   | CHECK    | 0       | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped                                                                          |
| 0   | CHECK    | 0       | to the corresponding bit in Alarm Status() and to control the ALERT pin.                                                                                  |
|     |          |         | 0 = This bit in Alarm Raw Status() is not included in Alarm Status()                                                                                      |
|     |          |         | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                          |
| 2   | INITCOMP | 0       | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped                                                                          |
|     |          |         | to the corresponding bit in Alarm Status() and to control the ALERT pin.                                                                                  |
|     |          |         | 0 = This bit in Alarm Raw Status() is not included in Alarm Status()                                                                                      |
|     |          |         | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                          |
| 1   | CDTOGGLE | 0       | Setting this bit allows the internally determined value of CDTOGGLE to be                                                                                 |
|     |          |         | mapped to the corresponding bit in Alarm Status() and to control the ALERT pin. This flag is set whenever the debounced CHG Detector signal differs from  |
|     |          |         | the previous debounced value.                                                                                                                             |
|     |          |         | 0 = The CDTOGGLE signal is not included in Alarm Status()                                                                                                 |
|     |          |         | 1 = The CDTOGGLE signal is included in Alarm Status()                                                                                                     |
| 0   | POR      | 0       | Setting this bit allows the corresponding bit in Alarm Raw Status() to be mapped                                                                          |
|     |          |         | to the corresponding bit in Alarm Status() and to control the ALERT pin.                                                                                  |
|     |          |         | 0 = This bit in Alarm Raw Status() is not included in Alarm Status()                                                                                      |
|     |          |         | 1 = This bit in Alarm Raw Status() is included in Alarm Status()                                                                                          |

# 10.1.1.9 Settings: Configuration: FET Options

| Class    | Subclass      | Name        | Туре | Min  | Max  | Default | Unit |
|----------|---------------|-------------|------|------|------|---------|------|
| Settings | Configuration | FET Options | H1   | 0x00 | 0xFF | 0x18    | Hex  |
|          |               |             |      |      |      |         |      |

0



| CHGDETEN HOST_FETOFF HOST_FETON _EN _EN | CHGOFF | SFET | FET_EN | RSVD0 | PROTRCVR |  |
|-----------------------------------------|--------|------|--------|-------|----------|--|
|-----------------------------------------|--------|------|--------|-------|----------|--|

**Description**: This bit field includes settings related to the FET driver operation

**Table 10-8. FET Options Register Field Descriptions** 

| Bit | Field          | Default | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|----------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   |                | 0       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| '   | CHGDETEN       | 0       | The CHG Detector block is enabled and provides an output signal to the Alarm logic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                |         | 0 = CHG Detector block is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                |         | 1 = CHG Detector block is enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6   | HOST_FETOFF_EN | 0       | Some systems need the ability to override the device's FET control and force the FETs to turn off through commands. If that functionality is not needed, it can be disabled to prevent commands from turning the FETs off.  0 = Host FET turnoff control commands are ignored  1 = Host FET turnoff control commands are allowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5   | HOST_FETON_EN  | 0       | Some systems need the ability to override the device's FET control and force the FETs to turn on through commands. If that functionality is not needed, it can be disabled to prevent commands from turning the FETs on.  0 = Host FET turn-on control commands are ignored  1 = Host FET turn-on control commands are allowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4   | CHGOFF         | 1       | The CHG FET can be disabled to conserve power while discharge current is low (body diode protection can enable it when discharge current rises). This bit configures whether or not to disable the CHG FET while current is low.  0 = CHG FET is turned off when current is low.  1 = CHG FET can remain enabled with current is low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3   | SFET           | 1       | The device supports both series and parallel FET configurations. When the CHG and DSG FETs are in series, current can flow through the body diode of one of the FETs when the other is enabled. In this configuration, body diode protection is used to turn the FET on when current above a threshold is detected to be flowing through that FET. When the system has separate DSG and CHG paths and parallel FETs, body diode protection is not needed and can be disabled.  0 = Parallel FET mode: Body diode protection is disabled  1 = Series FET mode: Body diode protection is enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2   | FET_EN         | 0       | This is the default value of the bit which enables or disables device autonomous control of the FET drivers. If autonomous FET control is disabled, the device is in FET Test mode, in which the FET states are entirely controlled by the FET Control command. This is typically used during manufacturing to test FET circuitry or manual host control. Note that the FETs can still be enabled for body diode protection in FET Test mode.  This bit is loaded into the active state upon exit of CONFIG_UPDATE mode. The active state in use is provided by BatteryStatus( [FET_EN]) and can be toggled during operation using the FET_ENABLE() subcommand.  0 = Autonomous FET control is disabled by default upon exit of CONFIG_UPDATE mode. FET Test mode is enabled. Device does not turn on FETs unless FET Control command instructs it to do so.  1 = Autonomous FET control is enabled by default upon exit of CONFIG_UPDATE mode. FET Test mode is disabled. FET Control commands can still be used, based on the settings of HOST_FETOFF_EN and HOST_FETON_EN. |
| 0   | PROTRCVR       | 0       | This bit enables or disables the capability to manually recover faults using the PROT_RECOVERY() subcommand.  0 = PROT_RECOVERY() subcommand cannot be used in SEALED mode.  1 = PROT_RECOVERY() subcommand can be used in SEALED mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



# 10.1.1.10 Settings:Configuration:Charge Detector Time

| Class    | Subclass      | bclass Name          |    | Min | Max | Default | Unit  |
|----------|---------------|----------------------|----|-----|-----|---------|-------|
| Settings | Configuration | Charge Detector Time | U1 | 0   | 255 | 1       | 100ms |

**Description**: This value sets the debounce timing used for the Charge Detect signal. The debounce delay is programmable in units of 100 ms, from 0 to 25.5 seconds

### 10.1.2 Settings:Protection

# 10.1.2.1 Settings:Protection:Enabled Protections A

| Class    | Subclass   | Name      | Name                  |     | Min  | Max  | C Default | Unit   |
|----------|------------|-----------|-----------------------|-----|------|------|-----------|--------|
| Settings | Protection | Enabled F | Enabled Protections A |     | 0x00 | 0xFI | 0xA1      | Hex    |
| 7        | 6          | 5         | 4                     | 3   |      | 2    | 1         | 0      |
| COV      | CUV        | SCD       | OCD1                  | OCE | )2   | OCC  | CURLATCH  | REGOUT |

**Description**: This bit field enables or disables various protections. Protections that are enabled set their corresponding Safety Status flags when a fault is detected.

Note that Settings:Protection:CHG FET Protections A, Settings:Protection:DSG FET Protections A, and Settings:Protection:Both FET Protections B must be appropriately configured to control the FET action taken when these faults are detected.

Table 10-9. Enabled Protections A Register Field Descriptions

|     | Table 10-9. Enabled Protections A Register Field Descriptions |         |                                                                |  |  |  |  |
|-----|---------------------------------------------------------------|---------|----------------------------------------------------------------|--|--|--|--|
| Bit | Field                                                         | Default | Description                                                    |  |  |  |  |
| 7   | COV                                                           | 1       | Cell Overvoltage Protection 0 = Disabled 1 = Enabled           |  |  |  |  |
| 6   | CUV                                                           | 0       | Cell Undervoltage Protection 0 = Disabled 1 = Enabled          |  |  |  |  |
| 5   | SCD                                                           | 1       | Short circuit in discharge protection 0 = Disabled 1 = Enabled |  |  |  |  |
| 4   | OCD1                                                          | 0       | Overcurrent in discharge protection 1 0 = Disabled 1 = Enabled |  |  |  |  |
| 3   | OCD2                                                          | 0       | Overcurrent in discharge protection 2 0 = Disabled 1 = Enabled |  |  |  |  |
| 2   | осс                                                           | 0       | Overcurrent in charge protection 0 = Disabled 1 = Enabled      |  |  |  |  |
| 1   | CURLATCH                                                      | 0       | Current latch protection 0 = Disabled 1 = Enabled              |  |  |  |  |
| 0   | REGOUT                                                        | 1       | REGOUT safety check 0 = Disabled 1 = Enabled                   |  |  |  |  |



# 10.1.2.2 Settings:Protection:Enabled Protections B

| Class    | Subclass   | Name      | Name                  |    | Min | 1         | Max | Default | Unit  |
|----------|------------|-----------|-----------------------|----|-----|-----------|-----|---------|-------|
| Settings | Protection | Enabled F | Enabled Protections B |    | 0x0 | 0x00 0xFF |     | 0x00    | Hex   |
| 7        | 6          | 5         | 4                     | 3  |     | 2         |     | 1       | 0     |
| RSVD0_   | _1 RSVD0_0 | OTD       | OTC                   | UT | D   | UTC       |     | OTINT   | RSVD0 |

**Description**: This bit field enables or disables various protections. Protections that are enabled set their corresponding Safety Status flags when a fault is detected. Note that Settings:Protection:CHG FET Protections A, Settings:Protection:DSG FET Protections A, and Settings:Protection:Both FET Protections B must be appropriately configured to control the FET action taken when these faults are detected

Table 10-10. Enabled Protections B Register Field Descriptions

| D:4 |       |         | Productions B Register Field Descriptions |
|-----|-------|---------|-------------------------------------------|
| Bit | Field | Default | Description                               |
| 5   | OTD   | 0       | Overtemperature in Discharge Protection   |
|     |       |         | 0 = Disabled                              |
|     |       |         | 1 = Enabled                               |
| 4   | отс   | 0       | Overtemperature in Charge Protection      |
|     |       |         | 0 = Disabled                              |
|     |       |         | 1 = Enabled                               |
| 3   | UTD   | 0       | Undertemperature in Discharge Protection  |
|     |       |         | 0 = Disabled                              |
|     |       |         | 1 = Enabled                               |
| 2   | UTC   | 0       | Undertemperature in Charge Protection     |
|     |       |         | 0 = Disabled                              |
|     |       |         | 1 = Enabled                               |
| 1   | OTINT | 0       | Internal Overtemperature Protection       |
|     |       |         | 0 = Disabled                              |
|     |       |         | 1 = Enabled                               |

### 10.1.2.3 Settings:Protection:DSG FET Protections A

| Class    | Subclass   | Name    | Name                  |     | Min          | Max | Default | Unit  |
|----------|------------|---------|-----------------------|-----|--------------|-----|---------|-------|
| Settings | Protection | DSG FET | DSG FET Protections A |     | H1 0x00 0xFF |     | 0xFF    | Hex   |
| 7        | 6          | 5       | 4                     | 3   |              | 2   | 1       | 0     |
| CUV      | SCD        | OCD1    | OCD2                  | RSV | D0 C         | OTD | UTD     | OTINT |

**Description**: This bit field configures which protections disable the DSG FET.

# Table 10-11. DSG FET Protections A Register Field Descriptions

| Bit | Field | Default | Description                                                                                                                                             |
|-----|-------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | CUV   | 1       | Cell Undervoltage Protection  0 = DSG FET is not disabled when protection is triggered.  1 = DSG FET is disabled when protection is triggered.          |
| 6   | SCD   | 1       | Short circuit in discharge protection  0 = DSG FET is not disabled when protection is triggered.  1 = DSG FET is disabled when protection is triggered. |
| 5   | OCD1  | 1       | Overcurrent in discharge protection 1 0 = DSG FET is not disabled when protection is triggered. 1 = DSG FET is disabled when protection is triggered.   |



# **Table 10-11. DSG FET Protections A Register Field Descriptions (continued)**

| Bit | Field | Default | Description                                                                                                                                                |
|-----|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   | OCD2  | 1       | Overcurrent in discharge protection 2 0 = DSG FET is not disabled when protection is triggered. 1 = DSG FET is disabled when protection is triggered.      |
| 2   | OTD   | 1       | Overtemperature in Discharge Protection  0 = DSG FET is not disabled when protection is triggered.  1 = DSG FET is disabled when protection is triggered.  |
| 1   | UTD   | 1       | Undertemperature in Discharge Protection  0 = DSG FET is not disabled when protection is triggered.  1 = DSG FET is disabled when protection is triggered. |
| 0   | OTINT | 1       | Internal Overtemperature Protection  0 = DSG FET is not disabled when protection is triggered.  1 = DSG FET is disabled when protection is triggered.      |

# 10.1.2.4 Settings:Protection:CHG FET Protections A

| Class    | Subclass   | Name    | Name                  |     | Min  | Max  | Default | Unit  |
|----------|------------|---------|-----------------------|-----|------|------|---------|-------|
| Settings | Protection | CHG FET | CHG FET Protections A |     | 0x00 | 0xFF | 0xEF    | Hex   |
| 7        | 6          | 5       | 4                     | 3   |      | 2    | 1       | 0     |
| COV      | SCD        | OCC     | RSVD0                 | RSV | D0 ( | OTC  | UTC     | OTINT |

**Description**: This bit field configures which protections disable the CHG FET.

# **Table 10-12. CHG FET Protections A Register Field Descriptions**

| Bit | Field | Default | Description                                                                                                                                           |
|-----|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | cov   | 1       | Cell Overvoltage Protection  0 = CHG FET is not disabled when protection is triggered.  1 = CHG FET is disabled when protection is triggered.         |
| 6   | SCD   | 1       | Short Circuit in Discharge Protection 0 = CHG FET is not disabled when protection is triggered. 1 = CHG FET is disabled when protection is triggered. |
| 5   | осс   | 1       | Overcurrent in Charge Protection 0 = CHG FET is not disabled when protection is triggered. 1 = CHG FET is disabled when protection is triggered.      |
| 2   | отс   | 1       | Overtemperature in Charge Protection 0 = CHG FET is not disabled when protection is triggered. 1 = CHG FET is disabled when protection is triggered.  |
| 1   | итс   | 1       | Undertemperature in Charge Protection 0 = CHG FET is not disabled when protection is triggered. 1 = CHG FET is disabled when protection is triggered. |
| 0   | OTINT | 1       | Internal Overtemperature Protection  0 = CHG FET is not disabled when protection is triggered.  1 = CHG FET is disabled when protection is triggered. |

# 10.1.2.5 Settings:Protection:Both FET Protections B

| Class    | Subclass   | Name                   | Type | Min  | Max  | Default | Unit |
|----------|------------|------------------------|------|------|------|---------|------|
| Settings | Protection | Both FET Protections B | H1   | 0x00 | 0xFF | 0x06    | Hex  |
| 7        | 6          | 5 4                    | 3    |      | 2    | 1       | 0    |



| RSVD0_4 | RSVD0_3 | RSVD0_2 | RSVD0_1 | RSVD0_0 | VREF | VSS | REGOUT |
|---------|---------|---------|---------|---------|------|-----|--------|

**Description**: This bit field configures which protections disable Both FETs.

### Table 10-13. Both FET Protections B Register Field Descriptions

| Bit | Field  | Default | Description                                                                                                                                 |
|-----|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2   | VREF   | 1       | VREF Diagnostic Check 0 = Both FETs are not disabled when protection is triggered. 1 = Both FETs are disabled when protection is triggered. |
| 1   | VSS    | 1       | VSS Diagnostic Check 0 = Both FETs are not disabled when protection is triggered. 1 = Both FETs are disabled when protection is triggered.  |
| 0   | REGOUT | 0       | REGOUT flag 0 = Both FETs are not disabled when protection is triggered. 1 = Both FETs are disabled when protection is triggered.           |

# 10.1.2.6 Settings:Protection:Cell Open Wire Check Time

| Class    | Subclass   | Name        |                | Туре | Min    | Max       | Default  | Unit      |
|----------|------------|-------------|----------------|------|--------|-----------|----------|-----------|
| Settings | Protection | Cell Open W | ire Check Time | H1   | 0x10   | 0x1F      | 0x10     | Hex       |
| 7        | 6          | 5           | 4              | 3    |        | 2         | 1        | 0         |
| RSVD0    | RSVD0      | RSVD0       | RSVD1          | COW  | EN COW | TIME_2 CO | OWTIME_1 | COWTIME_0 |

**Description**: This register sets the timing for the cell open wire checks. Note that if [COWTIME2:0] is set to 0x7 while **Voltage CHECK Time** = 250 ms, then the actual CHECK interval is extended approximately 50%.

# Table 10-14. Cell Open Wire Check Time Register Field Descriptions

| Bit | Field               | Default | Description                                                                                                                                                    |
|-----|---------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | COWEN               | 0       | Enable cell open wire checks.                                                                                                                                  |
|     |                     |         | 0 = Cell open wire checks are disabled.                                                                                                                        |
|     |                     |         | 1 = Cell open wire checks are enabled.                                                                                                                         |
| 2–0 | COWTIME_2-COWTIME_0 | 0       | In order to detect a broken connection between a cell in the stack and the PCB, the device periodically enables a current from each enabled cell input to VSS. |
|     |                     |         | 0 = Current sources are activated once every 8 CHECK intervals.                                                                                                |
|     |                     |         | 1 = Current sources are activated once every 4 CHECK intervals.                                                                                                |
|     |                     |         | 2 = Current sources are activated once every 2 CHECK intervals.                                                                                                |
|     |                     |         | 3 = Current sources are activated once every CHECK interval.                                                                                                   |
|     |                     |         | 4 = Current sources are activated twice every CHECK interval.                                                                                                  |
|     |                     |         | 5 = Current sources are activated 4 times every CHECK interval.                                                                                                |
|     |                     |         | 6 = Current sources are activated 8 times every CHECK interval.                                                                                                |
|     |                     |         | 7 = Current sources are activated 16 times every CHECK interval.                                                                                               |

#### 10.2 Protections

# 10.2.1 Protections: Cell Voltage

# 10.2.1.1 Protections: Cell Voltage: Cell Undervoltage Protection Threshold

| Class       | Subclass     | Name                                      | Туре | Min | Max  | Default | Unit |
|-------------|--------------|-------------------------------------------|------|-----|------|---------|------|
| Protections | Cell Voltage | Cell Undervoltage Protection<br>Threshold | 12   | 0   | 5500 | 2500    | mV   |

**Description**: This parameter sets the Cell Undervoltage Protection threshold in units of mV.



Minimum value = 0 (setting for 0 V)

Maximum value = 5500 (setting for 5.5 V)

### 10.2.1.2 Protections: Cell Voltage: Cell Undervoltage Protection Delay

| Class       | Subclass     | Name                                  | Туре | Min | Max | Default | Unit            |
|-------------|--------------|---------------------------------------|------|-----|-----|---------|-----------------|
| Protections | Cell Voltage | Cell Undervoltage Protection<br>Delay | U1   | 0   | 255 | 10      | CHECK intervals |

**Description**: This parameter sets the Cell Undervoltage Protection delay. Units are the number of CHECK intervals and can range from 1 to 255

### 10.2.1.3 Protections: Cell Voltage: Cell Undervoltage Protection Recovery Hysteresis

| Class       | Subclass     | Name                                                |       | Туре | Min     | Max      | Default   | Unit     |
|-------------|--------------|-----------------------------------------------------|-------|------|---------|----------|-----------|----------|
| Protections | Cell Voltage | Cell Undervoltage Protection<br>Recovery Hysteresis |       | H1   | 0x00    | 0x03     | 0x02      | Hex      |
| 7           | 6            | 5                                                   | 4     | 3    |         | 2        | 1         | 0        |
| RSVD0_      | 5 RSVD0_4    | RSVD0_3 RS                                          | VD0_2 | RSVD | )_1 RS\ | /D0_0 CU | VRCVR_1 C | UVRCVR_0 |

**Description**: This parameter sets the Cell Undervoltage Protection recovery hysteresis threshold. The minimum cell voltage must be greater than or equal to the CUV threshold plus this hysteresis to recover from a CUV condition

Table 10-15. Cell Undervoltage Protection Recovery Hysteresis Register Field Descriptions

| Bit | Field               | Default | Description                                                                                                                                                                                                                                                                       |
|-----|---------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1–0 | CUVRCVR_1-CUVRCVR_0 |         | This parameter sets the Cell Undervoltage Protection recovery hysteresis threshold. The minimum cell voltage must be greater than or equal to the CUV threshold plus this hysteresis to recover from a CUV condition.  0 = no autonomous recovery  1 = 50mV  2 = 100mV  3 = 200mV |

#### 10.2.1.4 Protections: Cell Voltage: Cell Overvoltage Protection Threshold

| Class       | Subclass     | Name                                     | Туре | Min | Max  | Default | Unit |
|-------------|--------------|------------------------------------------|------|-----|------|---------|------|
| Protections | Cell Voltage | Cell Overvoltage Protection<br>Threshold | 12   | 0   | 5500 | 4200    | mV   |

Description: This parameter sets the Cell Overvoltage Protection threshold in units of mV.

Minimum value = 0 (setting for 0 V)

Maximum value = 5500 (setting for 5.5 V)

# 10.2.1.5 Protections: Cell Voltage: Cell Overvoltage Protection Delay

| Class       | Subclass     | Name                              | Туре | Min | Max | Default | Unit            |
|-------------|--------------|-----------------------------------|------|-----|-----|---------|-----------------|
| Protections | Cell Voltage | Cell Overvoltage Protection Delay | U1   | 0   | 255 | 10      | CHECK intervals |

**Description**: This parameter sets the Cell Overvoltage Protection delay. Units are the number of CHECK intervals and can range from 1 to 255.



### 10.2.1.6 Protections: Cell Voltage: Cell Overvoltage Protection Recovery Hysteresis

| Class       | Subclass     | Name    |                                                    | Туре | Min   | Max    | Defau     | lt Unit   |
|-------------|--------------|---------|----------------------------------------------------|------|-------|--------|-----------|-----------|
| Protections | Cell Voltage |         | Cell Overvoltage Protection<br>Recovery Hysteresis |      | 0x00  | 0x03   | 3 0x02    | Hex       |
| 7           | 6            | 5       | 4                                                  | 3    |       | 2      | 1         | 0         |
| RSVD0_      | 5 RSVD0_4    | RSVD0_3 | RSVD0_2                                            | RSVD | 0_1 R | SVD0_0 | COVRCVR_1 | COVRCVR_0 |

**Description**: This parameter sets the Cell Overvoltage Protection recovery hysteresis threshold. The maximum cell voltage must be less than or equal to the COV threshold minus this hysteresis to recover from a COV condition

Table 10-16. Cell Overvoltage Protection Recovery Hysteresis Register Field Descriptions

| Bit | Field               | Default | Description                                                                                                                                                                                                                                                                    |
|-----|---------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1–0 | COVRCVR_1-COVRCVR_0 |         | This parameter sets the Cell Overvoltage Protection recovery hysteresis threshold. The maximum cell voltage must be less than or equal to the COV threshold minus this hysteresis to recover from a COV condition.  0 = no autonomous recovery  1 = 50mV  2 = 100mV  3 = 200mV |

#### 10.2.2 Protections: Current

### 10.2.2.1 Protections: Current: Overcurrent in Charge Protection Threshold

| Class       | Subclass | Name                                          | Туре | Min | Max | Default | Unit |
|-------------|----------|-----------------------------------------------|------|-----|-----|---------|------|
| Protections | Current  | Overcurrent in Charge<br>Protection Threshold | U1   | 2   | 62  | 2       | 2 mV |

**Description**: This parameter sets the Overcurrent in Charge Protection threshold in units of 2 mV, with an offset of -1 mV.

Minimum value = 2 (setting for 3 mV)

Maximum value = 62 (setting for 123 mV)

#### 10.2.2.2 Protections: Current: Overcurrent in Charge Protection Delay

| Class       | Subclass | Name                                      | Type | Min | Max | Default | Unit    |
|-------------|----------|-------------------------------------------|------|-----|-----|---------|---------|
| Protections | Current  | Overcurrent in Charge<br>Protection Delay | U1   | 0   | 255 | 58      | Varying |

**Description**: This parameter sets the Overcurrent in Charge Protection delay.

0x00 = Fastest delay (approximately 0.46 ms)

0x01 - 0x40 = 1.22 ms to 20.435 ms in steps of 0.305 ms

0x41 - 0x80 = 22.875 ms to 176.595 ms in steps of 2.44 ms

0x81 - 0xC0 = 181.475 ms to 488.915 ms in steps of 4.88 ms

0xC1 - 0xFF = 498.675 ms to 1103.795 ms in steps of 9.77 ms

70



# 10.2.2.3 Protections: Current: Overcurrent in Discharge 1 Protection Threshold

| Class       | Subclass | Name                                            | Туре | Min | Max | Default | Unit |
|-------------|----------|-------------------------------------------------|------|-----|-----|---------|------|
| Protections | Current  | Overcurrent in Discharge 1 Protection Threshold | U1   | 2   | 100 | 4       | 2mV  |

Description: This parameter sets the Overcurrent in Discharge 1 Protection threshold in units of 2mV.

Minimum value = 2 (setting for 4 mV)

Maximum value = 100 (setting for 200 mV)

#### 10.2.2.4 Protections: Current: Overcurrent in Discharge 1 Protection Delay

| Class       | Subclass | ubclass Name                                   |    | Min | Max | Default | Unit    |
|-------------|----------|------------------------------------------------|----|-----|-----|---------|---------|
| Protections | Current  | Overcurrent in Discharge 1<br>Protection Delay | U1 | 0   | 255 | 6       | Varying |

**Description**: This parameter sets the Overcurrent in Discharge 1 Protection delay.

0x00 = Fastest delay (approximately 0.46 ms)

0x01 - 0x40 = 1.22 ms to 20.435 ms in steps of 0.305 ms

0x41 - 0x80 = 22.875 ms to 176.595 ms in steps of 2.44 ms

0x81 - 0xC0 = 181.475 ms to 488.915 ms in steps of 4.88 ms

0xC1 - 0xFF = 498.675 ms to 1103.795 ms in steps of 9.77 ms

### 10.2.2.5 Protections: Current: Overcurrent in Discharge 2 Protection Threshold

| Class       | Subclass | Name                                               | Туре | Min | Max | Default | Unit |
|-------------|----------|----------------------------------------------------|------|-----|-----|---------|------|
| Protections | Current  | Overcurrent in Discharge 2<br>Protection Threshold | U1   | 2   | 100 | 3       | 2mV  |

Description: This parameter sets the Overcurrent in Discharge 2 Protection threshold in units of 2mV.

Minimum value = 2 (setting for 4 mV)

Maximum value = 100 (setting for 200 mV)

### 10.2.2.6 Protections: Current: Overcurrent in Discharge 2 Protection Delay

| Class       | Subclass | Name                                           | Туре | Min | Max | Default | Unit    |
|-------------|----------|------------------------------------------------|------|-----|-----|---------|---------|
| Protections | Current  | Overcurrent in Discharge 2<br>Protection Delay | U1   | 0   | 255 | 19      | Varying |

**Description**: This parameter sets the Overcurrent in Discharge 2 Protection delay.

0x00 = Fastest delay (approximately 0.46 ms)

0x01 - 0x40 = 1.22 ms to 20.435 ms in steps of 0.305 ms

0x41 - 0x80 = 22.875 ms to 176.595 ms in steps of 2.44 ms

0x81 - 0xC0 = 181.475 ms to 488.915 ms in steps of 4.88 ms

0xC1 - 0xFF = 498.675 ms to 1103.795 ms in steps of 9.77 ms

#### 10.2.2.7 Protections: Current: Short Circuit in Discharge Protection Threshold

| Class       | Subclass | Name                                               | Туре | Min  | Max  | Default | Unit    |
|-------------|----------|----------------------------------------------------|------|------|------|---------|---------|
| Protections | Current  | Short Circuit in Discharge<br>Protection Threshold | H1   | 0x00 | 0xFF | 0x0     | Varying |



| 7       | 6       | 5       | 4       | 3        | 2        | 1        | 0        |
|---------|---------|---------|---------|----------|----------|----------|----------|
| RSVD0_3 | RSVD0_2 | RSVD0_1 | RSVD0_0 | SCDTHR_3 | SCDTHR_2 | SCDTHR_1 | SCDTHR_0 |

**Description**: This parameter sets the Short Circuit in Discharge Protection threshold for the sense resistor voltage

Table 10-17. Short Circuit in Discharge Protection Threshold Register Field Descriptions

| Bit | Field             | Default | Description Description                                                                                 |
|-----|-------------------|---------|---------------------------------------------------------------------------------------------------------|
| 3–0 | SCDTHR_3-SCDTHR_0 | 0       | This parameter sets the Short Circuit in Discharge Protection threshold for the sense resistor voltage. |
|     |                   |         | 0 = 10 mV                                                                                               |
|     |                   |         | 1 = 20 mV                                                                                               |
|     |                   |         | 2 = 40 mV                                                                                               |
|     |                   |         | 3 = 60 mV                                                                                               |
|     |                   |         | 4 = 80 mV                                                                                               |
|     |                   |         | 5 = 100 mV                                                                                              |
|     |                   |         | 6 = 125 mV                                                                                              |
|     |                   |         | 7 = 150 mV                                                                                              |
|     |                   |         | 8 = 175 mV                                                                                              |
|     |                   |         | 9 = 200 mV                                                                                              |
|     |                   |         | 10 = 250 mV                                                                                             |
|     |                   |         | 11 = 300 mV                                                                                             |
|     |                   |         | 12 = 350 mV                                                                                             |
|     |                   |         | 13 = 400 mV                                                                                             |
|     |                   |         | 14 = 450 mV                                                                                             |
|     |                   |         | 15 = 500 mV                                                                                             |

# 10.2.2.8 Protections: Current: Short Circuit in Discharge Protection Delay

| Class       | Subclass  | Name                                           | Name    |       | Min      | Max    | Default  | Unit     |
|-------------|-----------|------------------------------------------------|---------|-------|----------|--------|----------|----------|
| Protections | Current   | Short Circuit in Discharge<br>Protection Delay |         | H1    | 0x00     | 0x0A   | 0x01     | Varying  |
| 7           | 6         | 5                                              | 4       | 3     |          | 2      | 1        | 0        |
| RSVD0_      | 3 RSVD0_2 | RSVD0_1                                        | RSVD0_0 | SCDDI | LY_3 SCE | DDLY_2 | SCDDLY_1 | SCDDLY_0 |

**Description**: This parameter sets the Short Circuit in Discharge Protection delay

Table 10-18. Short Circuit in Discharge Protection Delay Register Field Descriptions

| Bit | Field             | Default | Description                                                  |
|-----|-------------------|---------|--------------------------------------------------------------|
| 3–0 | SCDDLY_3-SCDDLY_0 | 1       | This parameter sets the delay before the fault is triggered. |
|     |                   |         | 0 = Fastest                                                  |
|     |                   |         | 1 = 15 μs                                                    |
|     |                   |         | 2 = 31 μs                                                    |
|     |                   |         | 3 = 61 μs                                                    |
|     |                   |         | 4 = 122 μs                                                   |
|     |                   |         | 5 = 244 μs                                                   |
|     |                   |         | 6 = 488 μs                                                   |
|     |                   |         | 7 = 977 μs                                                   |
|     |                   |         | 8 = 1953 μs                                                  |
|     |                   |         | 9 = 3906 µs                                                  |
|     |                   |         | 10 = 7797 μs                                                 |



#### 10.2.2.9 Protections: Current: Latch Limit

| Class       | Subclass  | Name    |         | Туре | Min     | Max    | Default   | Unit      |
|-------------|-----------|---------|---------|------|---------|--------|-----------|-----------|
| Protections | Current   | Latc    | h Limit | H1   | 0x00    | 0x07   | 0x0       | Varying   |
| 7           | 6         | 5       | 4       | 3    |         | 2      | 1         | 0         |
| RSVD0_      | 4 RSVD0_3 | RSVD0_2 | RSVD0_1 | RSVD | 0_0 CUR | RLAT_2 | CURRLAT_1 | CURRLAT_0 |

**Description**: This parameter configures the number of retries for recovery of the SCD, OCD1, OCD2, or OCC before the FETs are latched as disabled.

Table 10-19. Latch Limit Register Field Descriptions

| Bit | Field               | Default | Description                                                                                                                                                                                                                                                       |
|-----|---------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2–0 | CURRLAT_2-CURRLAT_0 | 0       | This parameter configures the number of retries for recovery of the SCD, OCD1, OCD2, or OCC before the FETs are latched as disabled. If the protection does not retrigger within 5 seconds after a recovery, the counter is reset to 0.  0 = Latching is disabled |
|     |                     |         | 1 = 2 retries before FETs are latched disabled                                                                                                                                                                                                                    |
|     |                     |         | 2 = 4 retries before FETs are latched disabled                                                                                                                                                                                                                    |
|     |                     |         | 3 = 8 retries before FETs are latched disabled                                                                                                                                                                                                                    |
|     |                     |         | 4 = 16 retries before FETs are latched disabled                                                                                                                                                                                                                   |
|     |                     |         | 5 = 32 retries before FETs are latched disabled                                                                                                                                                                                                                   |
|     |                     |         | 6 = 48 retries before FETs are latched disabled                                                                                                                                                                                                                   |
|     |                     |         | 7 = 96 retries before FETs are latched disabled                                                                                                                                                                                                                   |

### 10.2.2.10 Protections: Current: Recovery Time

| Class       | Subclass | Name          | Туре | Min | Max | Default | Unit    |
|-------------|----------|---------------|------|-----|-----|---------|---------|
| Protections | Current  | Recovery Time | U1   | 0   | 255 | 5       | Seconds |

Description: This parameter configures the delay after which current protections recover.

Programmable from 1 second to 255 seconds in 1-second steps.

0x0 = Disable auto recovery

### 10.2.3 Protections:Temperature

### 10.2.3.1 Protections: Temperature: Overtemperature in Charge Protection Threshold

| Class       | Subclass    | Name                                              | Туре | Min | Max | Default | Unit                     |
|-------------|-------------|---------------------------------------------------|------|-----|-----|---------|--------------------------|
| Protections | Temperature | Overtemperature in Charge<br>Protection Threshold | U1   | 0   | 255 | 55      | V <sub>REG18</sub> / 359 |

**Description**: This parameter configures the threshold for the Overtemperature in Charge Protection. The protection is triggered when the TS pin voltage is detected below this threshold.

This sets the threshold detected at the TS pin from 0 to 255 in units of  $V_{REG18}$  / 359.

### 10.2.3.2 Protections: Temperature: Overtemperature in Charge Protection Delay

| Class       | Subclass    | Name                                          | Туре | Min | Max | Default | Unit               |
|-------------|-------------|-----------------------------------------------|------|-----|-----|---------|--------------------|
| Protections | Temperature | Overtemperature in Charge<br>Protection Delay | U1   | 0   | 255 | 15      | CHECK<br>Intervals |

**Description**: This parameter configures the delay for the Overtemperature in Charge Protection in units of numbers of CHECK intervals.



The settings are from 0 (fastest) to 255 CHECK intervals.

#### 10.2.3.3 Protections: Temperature: Overtemperature in Charge Protection Recovery

| Class       | Subclass    | Name                                             | Туре | Min | Max | Default | Unit                     |
|-------------|-------------|--------------------------------------------------|------|-----|-----|---------|--------------------------|
| Protections | Temperature | Overtemperature in Charge<br>Protection Recovery | U1   | 0   | 255 | 63      | V <sub>REG18</sub> / 359 |

**Description**: This parameter configures the recovery threshold for the Overtemperature in Charge Protection. The protection recovers when the TS pin voltage is detected above this threshold.

This sets the threshold detected at the TS pin from 0 to 255 in units of V<sub>REG18</sub> / 359.

### 10.2.3.4 Protections: Temperature: Undertemperature in Charge Protection Threshold

| Class       | Subclass    | Name                                               | Туре | Min | Max | Default | Unit                     |
|-------------|-------------|----------------------------------------------------|------|-----|-----|---------|--------------------------|
| Protections | Temperature | Undertemperature in Charge<br>Protection Threshold | U1   | 0   | 255 | 147     | V <sub>REG18</sub> / 252 |

**Description**: This parameter configures the threshold for the Undertemperature in Charge Protection. The protection is triggered when the TS pin voltage is detected above this threshold.

This sets the threshold detected at the TS pin from 0 to 255 in units of  $V_{REG18}$  / 252.

#### 10.2.3.5 Protections: Temperature: Undertemperature in Charge Protection Delay

| Class       | Subclass    | Name                                           | Туре | Min | Max | Default | Unit            |
|-------------|-------------|------------------------------------------------|------|-----|-----|---------|-----------------|
| Protections | Temperature | Undertemperature in Charge<br>Protection Delay | U1   | 0   | 255 | 15      | CHECK intervals |

**Description**: This parameter configures the delay for the Undertemperature in Charge Protection in units of numbers of CHECK intervals.

The settings are from 0 (fastest) to 255 CHECK intervals.

#### 10.2.3.6 Protections: Temperature: Undertemperature in Charge Protection Recovery

| Class       | Subclass    | Name                                              | Туре | Min | Max | Default | Unit                     |
|-------------|-------------|---------------------------------------------------|------|-----|-----|---------|--------------------------|
| Protections | Temperature | Undertemperature in Charge<br>Protection Recovery | U1   | 0   | 255 | 134     | V <sub>REG18</sub> / 252 |

**Description**: This parameter configures the recovery threshold for the Undertemperature in Charge Protection. The protection recovers when the TS pin voltage falls below this threshold.

This sets the threshold detected at the TS pin from 0 to 255 in units of  $V_{REG18}$  / 252.

### 10.2.3.7 Protections: Temperature: Overtemperature in Discharge Protection Threshold

| Class       | Subclass    | Name                                                    | Туре | Min | Max | Default | Unit                     |
|-------------|-------------|---------------------------------------------------------|------|-----|-----|---------|--------------------------|
| Protections | Temperature | Overtemperature in<br>Discharge Protection<br>Threshold | U1   | 0   | 255 | 48      | V <sub>REG18</sub> / 359 |

**Description**: This parameter configures the threshold for the Overtemperature in Discharge Protection. The protection is triggered when the TS pin voltage is detected below this threshold.

This sets the threshold detected at the TS pin from 0 to 255 in units of  $V_{REG18}$  / 359.



### 10.2.3.8 Protections:Temperature:Overtemperature in Discharge Protection Delay

| Class       | Subclass    | Name                                             | Туре | Min | Max | Default | Unit            |
|-------------|-------------|--------------------------------------------------|------|-----|-----|---------|-----------------|
| Protections | Temperature | Overtemperature in<br>Discharge Protection Delay | U1   | 0   | 255 | 15      | CHECK intervals |

**Description**: This parameter configures the delay for the Overtemperature in Discharge Protection in units of numbers of CHECK intervals.

The settings are from 0 (fastest) to 255 CHECK intervals.

#### 10.2.3.9 Protections: Temperature: Overtemperature in Discharge Protection Recovery

| Class       | Subclass    | Name                                                   | Туре | Min | Max | Default | Unit                     |
|-------------|-------------|--------------------------------------------------------|------|-----|-----|---------|--------------------------|
| Protections | Temperature | Overtemperature in<br>Discharge Protection<br>Recovery | U1   | 0   | 255 | 55      | V <sub>REG18</sub> / 359 |

**Description**: This parameter configures the recovery threshold for the Overtemperature in Discharge Protection. The protection recovers when the TS pin voltage is detected above this threshold.

This sets the threshold detected at the TS pin from 0 to 255 in units of V<sub>RFG18</sub> / 359.

#### 10.2.3.10 Protections: Temperature: Undertemperature in Discharge Protection Threshold

| Class       | Subclass    | Name                                                     | Туре | Min | Max | Default | Unit                     |
|-------------|-------------|----------------------------------------------------------|------|-----|-----|---------|--------------------------|
| Protections | Temperature | Undertemperature in<br>Discharge Protection<br>Threshold | U1   | 0   | 255 | 147     | V <sub>REG18</sub> / 252 |

**Description**: This parameter configures the threshold for the Undertemperature in Discharge Protection. The protection is triggered when the TS pin voltage is detected above this threshold.

This sets the threshold detected at the TS pin from 0 to 255 in units of V<sub>REG18</sub> / 252.

#### 10.2.3.11 Protections: Temperature: Undertemperature in Discharge Protection Delay

| Class       | Subclass Name |                                                   | Туре | Min | Max | Default | Unit            |
|-------------|---------------|---------------------------------------------------|------|-----|-----|---------|-----------------|
| Protections | Temperature   | Undertemperature in<br>Discharge Protection Delay | U1   | 0   | 255 | 15      | CHECK intervals |

**Description**: This parameter configures the delay for the Undertemperature in Discharge Protection in units of numbers of CHECK intervals.

The settings are from 0 (fastest) to 255 CHECK intervals.

#### 10.2.3.12 Protections: Temperature: Undertemperature in Discharge Protection Recovery

| Class       | Subclass Name |                                                         | Type | Min | Max | Default | Unit                     |
|-------------|---------------|---------------------------------------------------------|------|-----|-----|---------|--------------------------|
| Protections | Temperature   | Undertemperature in<br>Discharge Protection<br>Recovery | U1   | 0   | 255 | 134     | V <sub>REG18</sub> / 252 |

**Description**: This parameter configures the recovery threshold for the Undertemperature in Discharge Protection. The protection recovers when the TS pin voltage falls below this threshold.

This sets the threshold detected at the TS pin from 0 to 255 in units of  $V_{RFG18}$  / 252.



### 10.2.3.13 Protections: Temperature: Internal Overtemperature Protection Threshold

| Class       | Subclass    | Name                                             |    | Min | Max | Default | Unit |
|-------------|-------------|--------------------------------------------------|----|-----|-----|---------|------|
| Protections | Temperature | Internal Overtemperature<br>Protection Threshold | U1 | 25  | 150 | 105     | °C   |

**Description**: This parameter configures the threshold for the Internal Overtemperature Protection.

The settings set the temperature threshold from 25°C to 150°C in 1°C steps.

#### 10.2.3.14 Protections: Temperature: Internal Overtemperature Protection Delay

| Class       | Subclass Name |                                              | Туре | Min | Max | Default | Unit            |
|-------------|---------------|----------------------------------------------|------|-----|-----|---------|-----------------|
| Protections | Temperature   | Internal Overtemperature<br>Protection Delay | U1   | 0   | 255 | 15      | CHECK intervals |

**Description**: This parameter configures the delay for the Internal Overtemperature Protection in units of numbers of CHECK intervals.

The settings are from 0 (fastest) to 255 CHECK intervals.

#### 10.2.3.15 Protections: Temperature: Internal Overtemperature Protection Recovery

| Class       | Subclass Name |                                                 | Туре | Min | Max | Default | Unit |
|-------------|---------------|-------------------------------------------------|------|-----|-----|---------|------|
| Protections | Temperature   | Internal Overtemperature<br>Protection Recovery | U1   | 25  | 150 | 100     | °C   |

**Description**: This parameter configures the recovery threshold for the Internal Overtemperature Protection.

The settings set the temperature recovery threshold from 25°C to 150°C in 1°C steps.

### 10.3 Power

#### 10.3.1 Power:Configuration

### 10.3.1.1 Power: Configuration: Voltage CHECK Time

| Class | Subclass      | Name               | Туре | Min | Max | Default | Unit    |
|-------|---------------|--------------------|------|-----|-----|---------|---------|
| Power | Configuration | Voltage CHECK Time | U1   | 0   | 255 | 5       | Seconds |

**Description**: This parameter sets how often the device checks voltages and temperatures while in NORMAL mode.

Units in seconds (unsigned), except a setting of 0 results in checks every 250 ms.

### 10.3.1.2 Power: Configuration: Body Diode Threshold

| Class | Subclass      | Name                 | Туре | Min | Max | Default | Unit   |
|-------|---------------|----------------------|------|-----|-----|---------|--------|
| Power | Configuration | Body Diode Threshold | U1   | 1   | 10  | 1       | 500 μV |

**Description**: This register sets the threshold at which the device enables the FET driver to protect the body diode.

To minimize power dissipation in the FET body diode, the FET is turned on when reverse current is detected and the other FET is on. Current is detected by comparing the sense resistor voltage to the voltage threshold.

When discharge current is detected greater in magnitude than **Power:Configuration:Body Diode Threshold** and the DSG FET is on, the CHG FET is turned on.

When charge current is detected greater than *Power:Configuration:Body Diode Threshold* and the CHG FET is on, the DSG FET is turned on.

76



When in parallel FET mode (**Settings:FET:FET Options[SFET] = 0**), body diode protection is disabled and a FET is not turned on in response to reverse current.

Threshold =  $500 \mu V \times (setting)$ 

#### Note

The minimum setting is 1 (500  $\mu$ V), meaning 500 mA across 1 m $\Omega$ . The maximum setting is 10 (5 mV).

#### 10.3.2 Power:Shutdown

### 10.3.2.1 Power: Shutdown: Shutdown Cell Voltage

| Class | Subclass | Name                  | Туре | Min | Max  | Default | Unit |
|-------|----------|-----------------------|------|-----|------|---------|------|
| Power | Shutdown | Shutdown Cell Voltage | 12   | 0   | 5500 | 0x0     | mV   |

**Description**: Configures the cell voltage threshold at which the device enters SHUTDOWN mode after a 10-second delay. This threshold does not apply to VC pins not configured for use with actual cells.

0 = Cell-Voltage-based shutdown disabled

All other values = Cell voltage shutdown threshold in mV (signed)

#### 10.3.2.2 Power: Shutdown: Shutdown Stack Voltage

| Class | Subclass | Name                   |    | Min | Max   | Default | Unit |
|-------|----------|------------------------|----|-----|-------|---------|------|
| Power | Shutdown | Shutdown Stack Voltage | U2 | 0   | 65535 | 0x0     | mV   |

**Description**: Configures the stack voltage threshold at which the device enters SHUTDOWN mode after a 10-second delay.

0 = Top-of-Stack-Voltage-based shutdown disabled

All other values = Top-of-stack voltage shutdown threshold in mV (unsigned)

### 10.3.2.3 Power: Shutdown: Shutdown Temperature

| Class | Subclass | Name                 | Туре | Min | Max | Default | Unit |
|-------|----------|----------------------|------|-----|-----|---------|------|
| Powe  | Shutdown | Shutdown Temperature | U1   | 0   | 150 | 0x0     | °C   |

**Description**: Configures the internal temperature threshold at which the device shuts down.

0 = Shutdown based on internal temperature disabled

All other values = Shutdown Internal Temperature threshold in °C (unsigned)

#### 10.4 Security

#### 10.4.1 Security: Settings

#### 10.4.1.1 Security: Settings: Security Settings

| Class    | Subclass  | Name    |            | Type | Min   | Max  | Default  | Unit      |
|----------|-----------|---------|------------|------|-------|------|----------|-----------|
| Security | Settings  | Securit | y Settings | H1   | 0x00  | 0x07 | 0x0      | Hex       |
| 7        | 6         | 5       | 4          | 3    |       | 2    | 1        | 0         |
| RSVD0_   | 4 RSVD0_3 | RSVD0_2 | RSVD0_1    | RSVD | 0_0 S | EAL  | LOCK_CFG | PERM_SEAL |

**Description**: These bits configure the security settings of the device



# Table 10-20. Security Settings Register Field Descriptions

| Bit | Field     | Default | Description                                                                                                                                                                                                                                                                                                             |
|-----|-----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2   | SEAL      | 0       | Setting this bit causes the device to enter SEALED mode when reset (if saved in OTP) or exiting CONFIG_UPDATE mode. In production systems, set this bit for security purposes.  0 = Device does not default to SEALED mode.  1 = Device default state is SEALED.                                                        |
| 1   | LOCK_CFG  | 0       | Setting this bit prevents entry into CONFIG_UPDATE mode. This prevents further modifications to the device configuration after CONFIG_UPDATE mode is exited.  0 = Configuration parameters can be changed in CONFIG_UPDATE mode.  1 = Configuration parameters cannot be changed, CONFIG_UPDATE mode cannot be entered. |
| 0   | PERM_SEAL | 0       | Setting this bit prevents unsealing the device once it is sealed. If this is not programmed to OTP, this setting is lost on a full reset and the device is again able to unseal.  0 = The device can be unsealed by sending the correct security keys.  1 = The device cannot be unsealed.                              |

# 10.4.1.2 Security: Settings: Full Access Key Step 1

| Class    | Subclass    | Name       |              | Туре  | Min    | Max     | ĸ      | Default |    | Unit  |
|----------|-------------|------------|--------------|-------|--------|---------|--------|---------|----|-------|
| Security | Settings    | Full Acces | s Key Step 1 | H2    | 0x0000 | 0xFF    | 0xFFFF |         |    | Hex   |
| 15       | 14          | 13         | 12           | 11    |        | 10      |        | 9       |    | 8     |
| FAKEY_   | 15 FAKEY_14 | FAKEY_13   | FAKEY_12     | FAKE' | Y_11 F | AKEY_10 | FAI    | KEY_9   | FA | KEY_8 |
| 7        | 6           | 5          | 4            | 3     |        | 2       |        | 1       |    | 0     |
| FAKEY_   | 7 FAKEY_6   | FAKEY_5    | FAKEY_4      | FAKE  | Y_3 I  | AKEY_2  | FAI    | KEY_1   | FA | KEY_0 |

# **Description**:

This is the first word of the security key that must be sent to transition from SEALED to FULLACCESS mode. Do not choose a word that is identical to a subcommand address

### Table 10-21. Full Access Key Step 1 Register Field Descriptions

| Bit  | Field            | Default | Description |
|------|------------------|---------|-------------|
| 15–0 | FAKEY_15-FAKEY_0 | 1044    |             |

# 10.4.1.3 Security: Settings: Full Access Key Step 2

| Class    | Subclass    | Name       |              | Туре | Min   |      | Max     | Default |    | Unit   |   |
|----------|-------------|------------|--------------|------|-------|------|---------|---------|----|--------|---|
| Security | Settings    | Full Acces | s Key Step 2 | H2   | 0x000 | 0    | 0xFFFF  | 0x3672  |    | Hex    |   |
| 15       | 14          | 13         | 12           | 11   | 11 1  |      | 11 10 9 |         | 9  |        | 8 |
| FAKEY_   | 15 FAKEY_14 | FAKEY_13   | FAKEY_12     | FAKE | /_11  | FAKE | /_10 F  | AKEY_9  | FA | AKEY_8 |   |
| 7        | 6           | 5          | 4            | 3    |       | 2    |         | 1       |    | 0      |   |
| FAKEY_   | 7 FAKEY_6   | FAKEY_5    | FAKEY_4      | FAKE | Y_3   | FAKE | Y_2 F   | AKEY_1  | FA | AKEY_0 |   |

# Description:

This is the second word of the security key that must be sent to transition from SEALED to FULLACCESS mode. Do not choose a word that is identical to a subcommand address or the same as the first word.



It must be sent within 5 seconds of the first word of the key and with no other commands in between.

# Table 10-22. Full Access Key Step 2 Register Field Descriptions

| Bit  | Field            | Default | Description |
|------|------------------|---------|-------------|
| 15–0 | FAKEY_15-FAKEY_0 | 13938   |             |

# 10.4.2 Data Memory Summary

# **Data Memory Table**

| Class       | Subclass      | Address | Name                                                | Туре | Min Value | Max Value | Default | Units            |
|-------------|---------------|---------|-----------------------------------------------------|------|-----------|-----------|---------|------------------|
| Settings    | Configuration | 0x9000  | Reserved                                            | _    | _         | _         | _       | _                |
| Settings    | Configuration | 0x9014  | Power Config                                        | H1   | 0x00      | 0xFF      | 0x01    | Hex              |
| Settings    | Configuration | 0x9015  | REGOUT Config                                       | H1   | 0x00      | 0xFF      | 0x08    | Hex              |
| Settings    | Configuration | 0x9016  | I2C Address                                         | H1   | 0x00      | 0x7F      | 0x08    | Hex              |
| Settings    | Configuration | 0x9017  | I2C Config                                          | H2   | 0x0000    | 0xFFFF    | 0x3400  | Hex              |
| Settings    | Configuration | 0x901A  | TS Mode                                             | H1   | 0x0000    | 0x0001    | 0x0000  | Hex              |
| Settings    | Configuration | 0x901B  | Vcell Mode                                          | H1   | 0x00      | 0x07      | 0x0     | Hex              |
| Settings    | Configuration | 0x901C  | Default Alarm Mask                                  | H2   | 0x0000    | 0xFFFF    | 0xC200  | Hex              |
| Settings    | Configuration | 0x901E  | FET Options                                         | H1   | 0x00      | 0xFF      | 0x18    | Hex              |
| Settings    | Configuration | 0x901F  | Charge Detector Time                                | U1   | 0         | 255       | 1       | 100ms            |
| Settings    | Protection    | 0x9024  | Enabled Protections A                               | H1   | 0x00      | 0xFF      | 0xA1    | Hex              |
| Settings    | Protection    | 0x9025  | Enabled Protections B                               | H1   | 0x00      | 0xFF      | 0x00    | Hex              |
| Settings    | Protection    | 0x9026  | DSG FET Protections A                               | H1   | 0x00      | 0xFF      | 0xFF    | Hex              |
| Settings    | Protection    | 0x9027  | CHG FET Protections A                               | H1   | 0x00      | 0xFF      | 0xEF    | Hex              |
| Settings    | Protection    | 0x9028  | Both FET Protections B                              | H1   | 0x00      | 0xFF      | 0x06    | Hex              |
| Settings    | Protection    | 0x902C  | Cell Open Wire Check Time                           | H1   | 0x10      | 0x1F      | 0x10    | Hex              |
| Protections | Cell Voltage  | 0x902E  | Cell Undervoltage Protection<br>Threshold           | 12   | 0         | 5500      | 2500    | mV               |
| Protections | Cell Voltage  | 0x9030  | Cell Undervoltage Protection<br>Delay               | U1   | 0         | 255       | 10      | ADSCAN intervals |
| Protections | Cell Voltage  | 0x9031  | Cell Undervoltage Protection<br>Recovery Hysteresis | H1   | 0x00      | 0x03      | 0x02    | Hex              |
| Protections | Cell Voltage  | 0x9032  | Cell Overvoltage Protection<br>Threshold            | 12   | 0         | 5500      | 4200    | mV               |
| Protections | Cell Voltage  | 0x9034  | Cell Overvoltage Protection<br>Delay                | U1   | 0         | 255       | 10      | ADSCAN intervals |
| Protections | Cell Voltage  | 0x9035  | Cell Overvoltage Protection<br>Recovery Hysteresis  | H1   | 0x00      | 0x03      | 0x02    | Hex              |
| Protections | Current       | 0x9036  | Overcurrent in Charge<br>Protection Threshold       | U1   | 2         | 62        | 2       | 2mV              |
| Protections | Current       | 0x9037  | Overcurrent in Charge<br>Protection Delay           | U1   | 0         | 255       | 58      | Varying          |
| Protections | Current       | 0x9038  | Overcurrent in Discharge 1 Protection Threshold     | U1   | 2         | 100       | 4       | 2mV              |
| Protections | Current       | 0x9039  | Overcurrent in Discharge 1<br>Protection Delay      | U1   | 0         | 255       | 6       | Varying          |
| Protections | Current       | 0x903A  | Overcurrent in Discharge 2 Protection Threshold     | U1   | 2         | 100       | 3       | 2mV              |
| Protections | Current       | 0x903B  | Overcurrent in Discharge 2<br>Protection Delay      | U1   | 0         | 255       | 19      | Varying          |
| Protections | Current       | 0x903C  | Short Circuit in Discharge<br>Protection Threshold  | H1   | 0x00      | 0xFF      | 0x0     | Varying          |
| Protections | Current       | 0x903D  | Short Circuit in Discharge<br>Protection Delay      | H1   | 0x00      | 0x0A      | 0x01    | Varying          |
| Protections | Current       | 0x903E  | Latch Limit                                         | H1   | 0x00      | 0x07      | 0x0     | Varying          |
| Protections | Current       | 0x903F  | Recovery Time                                       | U1   | 0         | 255       | 5       | Seconds          |



| lass        | Subclass      | Address | Name                                                  | Туре | Min Value | Max Value | Default | Units                  |
|-------------|---------------|---------|-------------------------------------------------------|------|-----------|-----------|---------|------------------------|
| Protections | Temperature   | 0x9040  | Overtemperature in Charge<br>Protection Threshold     | U1   | 0         | 255       | 55      | V <sub>REG18</sub> /35 |
| Protections | Temperature   | 0x9041  | Overtemperature in Charge<br>Protection Delay         | U1   | 0         | 255       | 15      | CHECK intervals        |
| Protections | Temperature   | 0x9042  | Overtemperature in Charge<br>Protection Recovery      | U1   | 0         | 255       | 63      | V <sub>REG18</sub> /35 |
| Protections | Temperature   | 0x9043  | Undertemperature in Charge<br>Protection Threshold    | U1   | 0         | 255       | 147     | V <sub>REG18</sub> /25 |
| Protections | Temperature   | 0x9044  | Undertemperature in Charge<br>Protection Delay        | U1   | 0         | 255       | 15      | CHECK intervals        |
| Protections | Temperature   | 0x9045  | Undertemperature in Charge<br>Protection Recovery     | U1   | 0         | 255       | 134     | V <sub>REG18</sub> /25 |
| Protections | Temperature   | 0x9046  | Overtemperature in Discharge<br>Protection Threshold  | U1   | 0         | 255       | 48      | V <sub>REG18</sub> /35 |
| Protections | Temperature   | 0x9047  | Overtemperature in Discharge<br>Protection Delay      | U1   | 0         | 255       | 15      | CHECK intervals        |
| Protections | Temperature   | 0x9048  | Overtemperature in Discharge<br>Protection Recovery   | U1   | 0         | 255       | 55      | V <sub>REG18</sub> /35 |
| Protections | Temperature   | 0x9049  | Undertemperature in Discharge<br>Protection Threshold | U1   | 0         | 255       | 147     | V <sub>REG18</sub> /25 |
| Protections | Temperature   | 0x904A  | Undertemperature in Discharge<br>Protection Delay     | U1   | 0         | 255       | 15      | CHECK intervals        |
| Protections | Temperature   | 0x904B  | Undertemperature in Discharge<br>Protection Recovery  | U1   | 0         | 255       | 134     | V <sub>REG18</sub> /25 |
| Protections | Temperature   | 0x904C  | Internal Overtemperature<br>Protection Threshold      | U1   | 25        | 150       | 105     | °C                     |
| Protections | Temperature   | 0x904D  | Internal Overtemperature<br>Protection Delay          | U1   | 0         | 255       | 15      | CHECK intervals        |
| Protections | Temperature   | 0x904E  | Internal Overtemperature<br>Protection Recovery       | U1   | 25        | 150       | 100     | °C                     |
| Power       | Configuration | 0x9051  | Voltage CHECK Time                                    | U1   | 0         | 255       | 5       | Seconds                |
| Power       | Configuration | 0x9052  | Body Diode Threshold                                  | U1   | 1         | 10        | 1       | 500uV                  |
| Power       | Shutdown      | 0x9053  | Shutdown Cell Voltage                                 | 12   | 0         | 5500      | 0x0     | mV                     |
| Power       | Shutdown      | 0x9055  | Shutdown Stack Voltage                                | U2   | 0         | 65535     | 0x0     | mV                     |
| Power       | Shutdown      | 0x9057  | Shutdown Temperature                                  | U1   | 0         | 150       | 0x0     | °C                     |
| Security    | Settings      | 0x9059  | Security Settings                                     | H1   | 0x00      | 0x07      | 0x0     | Hex                    |
| Security    | Settings      | 0x905A  | Full Access Key Step 1                                | H2   | 0x0000    | 0xFFFF    | 0x0414  | Hex                    |
| Security    | Settings      | 0x905C  | Full Access Key Step 2                                | H2   | 0x0000    | 0xFFFF    | 0x3672  | Hex                    |

# **Revision History**



NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| DATE          | REVISION | NOTES           |  |  |  |  |
|---------------|----------|-----------------|--|--|--|--|
| December 2023 | *        | Initial Release |  |  |  |  |



Revision History www.ti.com

This page intentionally left blank.

# IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated