
Application Report
SLVA100 - May 2001

1

Advanced Gas Gauge Host Firmware Guide for
the TI Battery Monitors ICs

Battery Management

ABSTRACT

TI advanced battery monitoring ICs, such as the bq2018, bq2019 and bq2023, are
designed to accurately measure the charge and discharge currents in rechargeable
battery packs. Intended for pack integration, these devices contain all the necessary
functions to form the basis of a comprehensive battery capacity management system in
applications such as cellular phones, PDA's, internet appliances, or other portable
products. TI battery monitors work with the host controller in the portable system to
implement the battery gas gauging and management system. The host controller is
responsible for interpreting the battery monitor data and communicating meaningful
battery data to the end-user or power management system.

This document, written around the bq2019, is designed to assist the firmware engineer
engaged in development of advanced gas gauging routines in the host controller. A
strategy and procedure is presented for implementing the gas gauging function in the host
firmware. The various tasks along with suggested constant and variable values are
outlined and described with notes pertaining to accuracy enhancement features.

System Components

To measure battery charge and discharge current and report state of charge to an end user,
requires several components (see Figure 1). These include:

• A battery monitor such as the bq2018, bq2019, or bq2023: Battery monitor ICs contain a
high accuracy coulomb counter, temperature monitor, communication interface and other
functions.

• A current sense resistor: The low-value (typically between 10 to 20 mΩ) sense resistor
provides a means for the battery monitor to measure the current flowing into or out of the
battery. The battery monitor senses the voltage across this resistor.

• A host controller with one free general-purpose I/O for communication: The host controller
is required to provide intelligence to the battery monitoring setup. The host controller
handles all communication with the battery monitor IC. Since the HDQ and SDQ
communication protocols are asynchronous one-wire based, a general-purpose I/O is
dedicated to handle the communication flow. The host also performs calculations with data
read from the battery monitor to determine the battery state of charge.

SLVA100

2 Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs

FIGURE 1: System Components

HDQ Communication-related Items
There are several items to consider when developing the lower level firmware for communicating with
the bq2019 or other battery monitors with HDQ interface.

Interrupt Strategy

Normal host processing of communication with the bq2019 may encounter a high priority
interrupt that needs to be serviced prior to completion of a communication transaction. The time
between any bits sent from the host to the bq2019 is not time critical, and as long as the HDQ
line is high, the host processor may pause the communication and service an interrupt for any
extended period and then resume the communication. However, when reading bits from the
bq2019, the host cannot allow any interruption, as the data is transmitted at a fixed rate and the
host must know the exact timing to determine whether individual bits are ones or zeroes.
Provision must be made for the host to flag any interruption while receiving data. The host
should then hold the data line low long enough to cause a break (no need to wait until
transmission is complete from the bq2019) and then retry the communication to avoid potential
misreads of the data.

Write and Verify

It is good practice to follow all data write operations to the bq2019 with a read operation to verify
that correct data was written. Repeat the write operation if the verify operation fails. In most
cases, writing to the part is only done during the power shutdown sequence. However, the five
register clear bits in the CLR register cannot be verified since they are automatically cleared
after being set. These are used at a typical one-hour interval for register maintenance.

Battery Pack Portable Device

Pack +

Data

Pack -

Host Controller
Program

Communication
Power Management

Battery Capacity
Calculation

Talk Time: 1:15
Standbytime: 7:25

Battery Monitor IC
(bq2018, bq2019,

bq2023)

Sense
Resistor

Cell(s)

System Display

SLVA100

Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs 3

Rollover Protection

The six 16-bit registers TEMP, CTC, DTC, SCR, CCR, DCR are divided into high and low bytes.
When reading a 16-bit value, there will be a time lapse between the two 8-bit readings. This
allows the possibility that the 16-bit value may have a carry from the low byte into the high byte
during the time interval between reading the two bytes.

Therefore, a strategy is required to insure there was no carry from low byte to high byte between
the readings of the two bytes. One way to eliminate this possibility may include three reads
instead of the normal two reads, with the high byte being read on the first and third reads and
compared to insure that a carry did not occur. Of course the data could be analyzed to
determine whether there was a possibility of a carry and the third read could be invoked only
when a possible carry existed.

Break to Reset

If the battery pack is removed or some intermittent connection occurs on the HDQ line, the
bq2019 controller may become out of sync with the host communication. A safe practice would
be to issue a break prior to each communication to insure that communication was always in
sync. An alternative procedure might be to always send a break at the start of a communication
block and then not send it again unless there was a need to abort the communication or if the
bq2019 did not respond within the expected time.

Considerations for a Gas-Gauging System

Synchronization of reported capacity

The capacity reported by the gas gauge must be synchronized with the full and/or empty
condition of the battery. This is normally done by forcing the capacity to zero when the battery
drops to some level just above the minimum operating voltage for the host system.
Synchronization of the reported capacity can also be done when the battery is full if the host
can determine that the charger has completed a normal charge termination and if the firmware
has a function that will learn the true capacity of the battery in its typical use environment.

Measuring actual battery capacity

The measurement of the actual capacity is typically a measurement of a full discharge (or
charge if the battery is lithium) of the battery without any intervening event that might cause
the measured discharge to differ from that of a typical discharge. These events might include
cold temperature operation, sitting unused for an extended period during some portion of the
learning cycle, removal of the battery during the learning cycle, etc. It may also be prudent to
prevent learning a capacity very much different from the previous measured capacity (in one
learning cycle). A good measure of the actual capacity in the use environment will allow the
full capacity to track the capacity fade of the battery and provide a good reference to
synchronize the reported capacity when the battery reaches full.

SLVA100

4 Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs

Offset correction of capacity measurements

The bq2019 contains hardware for canceling the offset of the VFC and allows precision
measurement of the small voltages across the sense resistor. Nevertheless, some small
offset, perhaps less than 10-15 µV may exist. If a 20 mΩ sense resistor is used, the
equivalent 0.5 to 0.75 mA offset can cause some error accumulation if the host remains in a
full off condition (or the battery pack is removed) for an extended period of time. If a normal
shutdown sequence is performed and later confirmed by the host during a power up
sequence, it is possible to determine whether the DCR and CCR counts only contain counts
due to offset error. The host can check the charge, discharge, and time registers to determine
whether the count rate during the off interval was small enough to only be due to an offset
error. If so, the counts should be ignored. If this strategy is implemented, it may be necessary
to set a flag in some location in the bq2019 when a normal power down sequence is
completed and reset the flag after power up. This would allow the host to distinguish a normal
power down sequence from one caused by a battery removal or intermittent connection.

Charge efficiency

The charge efficiency of lithium-ion cells for coulometric charge is virtually 100% and charge
efficiency can be ignored. If an algorithm for NiMH or NiCd was needed, the charge efficiency
of the cells would have to be characterized and an algorithm developed to apply the efficiency
appropriately. The charge efficiency for these cells changes with temperature, rate of charge,
and state of charge. The detail procedure in this document assumes that charge efficiency is
100%.

Use basic bq2019 count units instead of engineering units

There is no need to accumulate the charge added or removed from the battery or to measure
the full charge capacity of the battery in mAh. It will be much more convenient to make all
computations in terms of the 3.05 µVh per count units reported by the CCR and DCR
registers. Most computations like relative state of charge (percent of full charge) and run time
(delta charge removed/charge remaining) are ratios and any unit conversions of both
numerator and denominator will cancel. Any computations like standby time can be made
using estimated standby current that has been converted to equivalent VFC counts to
eliminate unit conversion computations by the host during normal operation.

VFC gain or sense resistor variations

There is no need to perform calibration of the VFC gain and sense resistor unless there is a
requirement to provide information in engineering units to the host or user. Talk time is a ratio,

SLVA100

Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs 5

and any calibration error will cancel. If measured capacity is off by some percentage, say 20%
high, the remaining capacity of the battery will be 20% high and the use rate will also be 20%
high. When these are divided, the gain errors in both numerator and denominator will cancel.
If an accurate value for average current drain in mA is required, then a calibration will have to
be performed. The calibration factor can be stored in the bq2019 and retrieved by the host
during the power up process. The host can then use this factor whenever a current
computation must be reported.

Gas Gauging Firmware Example
Apart from the required general HDQ read and write functions, the gas gauge firmware may be
broken down into six tasks as in table 1.

Table 1. Gas Gauge Firmware Tasks

Name Recommended Interval Description

GGInitialize() On Power Up Qualify the battery and communication. Read and
convert constants and scratchpad variables from
bq2019 into the host.

GGUpdate() Once Per Minute (typical) Calculate capacity, average current, run time and
charge time. Manage full, empty and learning.
Update display.

GGRegisterMaint() Hourly Do register maintenance. Store remaining capacity
in the bq2019. Clear registers.

GGSelfDischarge() Several Times Per Day Make corrections to remaining capacity for self-
discharge.

GGMeasBattVltg() Every 20 Seconds Measure the battery voltage. Call GGUpdate() if
battery crosses the empty voltage threshold.

GGPwrDwnSave() On Power Down Provide an orderly shutdown. Update bq2019
registers.

GGInitialize ()

On power up, the host should initialize its battery monitoring system. This usually involves
testing the communication link, and reading some identification information stored in the bq2019
flash memory, such as the IDROM, that would insure the compatibility of the battery for the
system.

Once the battery and battery communication has been qualified, the initialization routine should
retrieve all appropriate constants from the bq2019 and store them into local variables (Table 2).

SLVA100

6 Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs

If your host is extremely limited in dynamic memory space, you may prefer to read these
constants as they are needed, but the time penalty could be significant. You will want to retrieve
a couple of constants from your own system, iTalkLd and iStbyLd, which specify your estimated
talk load (for cell phone applications) and standby load in milliamps. These should probably not
be kept in the bq2019, since they are not properties of the battery, but rather of the system.

Table 2. Typical Gas Gauge Constants

Class Name Suggested
bq2019
Address

[1]

Used In Type/Units Description/Comment

ID_ROM 78~7F GGInitialize() 8 bytes Factory programmed ROM

sMFG_DATA 20~25 GGInitialize() (str) ASCII Manufacturers Data

sMODEL 26~2B GGInitialize() (str) ASCII Battery Model

sMFG_NAME 2C~35 GGInitialize() (str) ASCII Manufacturer Name

iSERIAL_NO 36/37 GGInitialize() (Uint) Serial Number

Mfg Data

iMFG_DATE 38/39 GGInitialize() (Uint) Date Manufactured Date

iDES_CAP 3A/3B GGInitialize()

GGUpdate()

(Uint)
Milliampere
Hours

Pack Design Capacity

iSNS_RES 3C/3D GGInitialize() (Uint) m!Ω
* 327.68

Sense Resistor m!Ω x 215 /
100

iSLF_DSG_RATE 3E/3F GGInitialize()

GGSelfDischarge

(Uint) %/Day
* 105.8

Self Discharge Rate

iEND_DSG_VLTG 40/41 GGInitialize()

GGUpdate()

GGMeasBattVltg()

(Uint)

Millivolts

End of Discharge Voltage

iTERM_CURR 42/43 GGInitialize()

GGUpdate()

(Uint)
Milliamperes

Charge Taper Termination
Current

iCAP_COMP_TE
44

GGInitialize()

GGUpdate()

(Byte) % of
full capacity

Capacity compensation for
temperature

iCAP_COMP_LD
45

GGInitialize()

GGUpdate()

(Byte) % of
full capacity

Capacity compensation for
load current

iTALK_LD n/a GGInitialize() (Uint) mA Estimated Talk Load

iSTBY_LD n/a GGInitialize() (Uint) mA Estimated Standby Load

iTALK_LD_CNTS n/a GGInitialize()

GGUpdate()

Counts @
3.05 uVh

= iSNS_RES * iTALK_LD /
1000

iSTBY_LD_CNTS n/a GGInitialize()

GGUpdate()

Counts @
3.05 uVh

= iSNS_RES * iSTBY_LD /
1000

Design
Data

iCYCL_CAP n/a GGInitialize()

GGUpdate()

(Uint) =
iDES_CAP *
iSNS_RES*
0.8/1000

May be used to simplify math
in GGUpdate()

[1] Addresses are in hex. n/a indicates that the values are maintained by the host since they are
not a function of the battery. ID_ROM is a fixed address in the bq2019.

SLVA100

Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs 7

There are a number of variables to read from the bq2019 memory. These are listed in Table 3,
where the Used In column includes the GGInitialize() function. Additionally, it is recommended
that some additional local calculated constants iTALK_LD_CNTS, iSTBY_LD_CNTS,
iCYCL_CAP (table 2) and several additional local variables for flags and calculations (table 3).

Table 3. Typical Gas Gauge Variables

Class Name Suggested
bq2019
Address

[2]

Used In Type/Units Description/Comment

iLastMeasDsg 00/01 GGInitialize()

GGUpdate()

GGSelfDischarge()

(Uint)
Counts @
3.05 uVh

Last measured discharge.
(Initial value set during mfg.)

iRemCap 02/03 GGInitialize()

GGUpdate()

(Uint)
Counts @
3.05 uVh

Remaining capacity (Initial
value set during mfg.)

iCycleCnt 04/05 GGUpdate() (Uint) Units Cycle Count (Typically
increased if iDsgCntrCuml
has reached 80% of design
capacity)

iMaxTemp 06 GGInitialize()

GGUpdate()
GGPwrDwnSave()

(Byte)

°K

Max temp seen by this
bq2019. Update it in the host
during GG_Update.

bValidDsg 07 GGInitialize()

GGUpdate()

GGPwrDwnSave()

(bool)

Flag

Valid discharge flag

iDsgCntr 08/09 GGInitialize()

GGUpdate()

GGSelfDischarge()
GGPwrDwnSave()

(Uint)
Counts @
3.05 uVh

Discharge counter for
learning a new iLastMeasDsg

iDsgCntrCuml 0A/0B GGInitialize()

GGUpdate()

GGSelfDischarge()
GGPwrDwnSave()

(Uint)
Counts @
3.05 uVh

Cummulative discharge
counter tracks partial
discharges for iCycleCnt
update.

iLastRemCap 0C/0D GGInitialize()

GGPwrDwnSave()

(Uint)
Counts @
3.05 uVh

Last computed remaining
capacity value

Computed
Values

iCumlCorrectn 0E/0F GGInitialize()

GGUpdate()

GGSelfDischarge()

GGPwrDwnSave()

(Uint)
Counts @
3.05 uVh

Tracks cumulative self-
discharge corrections.
Disqualifies learning cycle if it
exceeds 10% of iDES_CAP.

iTimeSinceMaint n/a GGInitialize()

GGUpdate()

GGRegisterMaint()

(Uint)
Minutes

Minutes elapsed since last
register maintenance.

iRunTime n/a GGUpdate() (Uint)
Minutes

Est. remaining run time at
present current

Computed
Values

iTimeToFull n/a GGUpdate() (Uint)
Minutes

Est. remaining time to charge
to full

SLVA100

8 Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs

Class Name Suggested
bq2019
Address

[2]

Used In Type/Units Description/Comment

iTalkTime n/a GGUpdate() (Uint)
Minutes

Est. remaining run time at
iTALK_LD

iStbyTime n/a GGUpdate() (Uint)
Minutes

Est. remaining run time at
iSTBY_LD

iRelChgPercent n/a GGUpdate() (Uint) % Relative charge in percent of
full charge. aka ‘RSOC’

bInit n/a GGInitialize()

GGUpdate()

(bool)

Flag

Initial pass flag. Inhibits
iRunTime and iTimeToFull
calculations the first time
through GGUpdate()

bEDV n/a GGInitialize()

GGUpdate()

(bool)

Flag

Flag to notify other host
process that battery is at end
of discharge voltage.

bChgFull n/a GGUpdate() (bool)

Flag

Flag used by the charger or
other host process to indicate
that the battery is fully
charged.

iRemCapNow n/a GGInitialize()

GGUpdate()

GGRegisterMaint()

GGSelfDischarge()

GGPwrDwnSave()

(int) Counts
@ 3.05 uVh

Most recent calculation of
remaining capacity.

iRemCapPrev n/a GGUpdate() (int) Counts
@ 3.05 uVh

Calculation of remaining
capacity from the previous
update.

iRemCapTemp n/a GGSelfDischarge() (Uint)
Counts @
3.05 uVh

Temp variable for iterative
self-discharge estimate.

iSlfDsgEst n/a GGSelfDischarge() (Uint) Temp self-discharge variable.

iTempCorrection n/a GGSelfDischarge() (Uint) Temp self-discharge variable.

fElapsedTime n/a GGUpdate() (float)

Minutes

Value in Minutes, with
resolution to seconds since
power on reset detected.

fElapsedTimePrev n/a GGUpdate() (float)

Minutes

Value in Minutes, with
resolution to seconds since
the power on reset detected
previous to fElapsedTime.

iKelvin (Host)

TMPL (bq2019)

TMPH (bq2019)

60

61

GGInitialize()

GGUpdate

(Uint)

°K

TMPH, TMPL in the bq2019
contain die temperature in °K.

bq2019 Gas
Gauge
Registers
and cor-

responding

host vars. iRegClr (Host)

CLR (bq2019) 63

GGUpdate()

GGRegisterMaint()

GGSelfDischarge()

(Uint)

Bits

CLR is used to quickly clear
DCR, CCR, SCR, DTC, CTC
in any combination. iRegClr is
used by the host to setup the
next desired clearing pattern.

SLVA100

Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs 9

Class Name Suggested
bq2019
Address

[2]

Used In Type/Units Description/Comment

iChgTime (Host)

CTCL (bq2019)

CTCH (bq2019)

65

66

GGInitialize()

GGUpdate() ??

(Uint)

4096 counts
per hour

Charge Time Counter. May
be used in GGUpdate() if no
timer or time function is
available in the host.

iDsgTime (Host)

DTCL (bq2019)

DTCH (bq2019)

67

68

GGInitialize()

GGUpdate() ??

(Uint)

4096 counts
per hour

Discharge Time Counter. May
be used in GGUpdate() if no
timer or time function is
available in the host

iSlfDsgCntr (Host)

SCRL (bq2019)

SCRH (bq2019)

69

6A

GGInitialize()

GGSelfDischarge()

(Uint) 1
count per
hour (20 –
30°C)

Self Discharge Counter. Rate
varies automatically with
temperature.

iChgCntr (Host)

CCRL (bq2019)

CCRH (bq2019)

6B

6C

GGUpdate() (Uint)
Counts @
3.05 uVh

Charge count register in
bq2019 increments when
voltage at the SR pin is
positive.

iDsgCntr (Host)

DCRL (bq2019)

DCRH (bq2019)

6D

6E

GGUpdate() (Uint)
Counts @
3.05 uVh

Discharge count register in
bq2019 increments when
voltage at the SR pin is
negative.

[2] Addresses are in hex.

GGInitialize () Steps

The steps for GGInitialize () are as follows:

1. Read some or all of the manufacturing data from the bq2019. Return if the communication is
faulty or the battery is incorrect.

2. Read each of the design data class constants in table 2. Calculate the lower three constants
from the formulas in the table.

3. Read iMaxTemp, iLastMeasDsg, iLastRemCap, bValidDsg, iRemCap, iDsgCntrCuml,
iChgTime(CTC), and iDsgTime(DTC) from the bq2019.

4. Calculate iTimeSinceMaint as (iChgTime + iDsgTime) * 60 / 4096.

5. Set bInit true and bEDV false.

6. Set iRemCapNow to iLastRemCap.

7. If bValidDsg is true, first write false to that memory location in the bq2019, then read iDsgCntr
and iCumlCorrectn from the bq2019.

8. Jump to GGUpdate()

SLVA100

10 Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs

GGUpdate ()

GGUpdate() should be called at the desired display update interval, or whenever GGMeasVltg()
detects that the voltage has fallen below the iEND_DSG_VLTG. Typically the update is
performed at a 1-minute interval, but you may want to update more frequently as the voltage
reaches iEND_DSG_VLTG.

This function is where all the work gets done. First you read the bq2019 registers, get the time,
then determine if the battery is charging or discharging. If we are discharging: update the
auxiliary discharge counters, update the cycle count, make capacity corrections for temperature
& load and calculate run-time. Otherwise, if we are charging, then calculate time-to-full.

Next, a check is done to see if an hour has passed since the last register maintenance. If so,
GGRegUpdate () is called to record cumulative corrections, clear the registers and, if desired,
call GGSelfDischarge() several times each day.

Finally, a series of tasks handles capacity learning, end of discharge voltage, synchronization at
full and empty, and calculation of talk time, standby time and remaining percent of full. The
important thing to know here is that we clear the bq2019 registers when the voltage reaches
end-of-discharge, and when the battery reaches full condition we update the remaining capacity
& last-measured-discharge then clear the bq2019 registers.

GGUpdate() Steps

The steps for GGUpdate() are as follows:

1. Read the coulomb counters (CCR, DCR) into iChgCntr and iDsgCntr.

2. Read the bq2019 temperature (TMP) into iKelvin. If iKelvin > iMaxTemp then iMaxTemp =
iKelvin

3. Set the previous elapsed time (fElapsedTimePrev) to current elapsed time (fElapsedTime)

4. Read the current elapsed time (fElapsedTime) from your system, or the bq2019 time registers.

5. Set the previous remaining capacity (iRemCapPrev) to current remaining capacity
(iRemCapNow).

6. Calculate the remaining capacity as: iRemCapNow = iRemCap – iDsgCntr + iChgCntr.

7. Initialize iRunTime and iTimeToFull to –1. The function will return them this way the first time
through to signify that the result is not applicable.

8. if iRemCapNow < iRemCapPrev then we are discharging…

a. Increase the discharge counter: iDsgCntr = iDsgCntr + iRemCapPrev - iRemCapNow.

SLVA100

Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs 11

b. Increase the cumulative discharge counter: iDsgCntrCuml = iDsgCntrCuml +
iRemCapPrev – iRemCapNow.

c. Manage the discharge cycle count by testing to see if iDsgCntrCuml is still less than
iCYCL_CAP. If not, read iCycleCnt from the bq2019, increase it by 1 and write it back to
the part. Then decrease iDsgCntrCuml by iCYCL_CAP.

d. If this is not the first time through this function (bInit is false) then: Calculate
iTimeSinceMaint = iTimeSinceMaint + fElapsedTime – fElapsedTimePrev. Also, with
bInit = false and iRemCapNow = 0 then iRunTime = 0. With bInit = false and
iRemCapNow > 0, run time minutes are calculated as: iRunTime = [fElapsedTime –
fElapsedTimePrev] * iRemCapNow / [iRemCapPrev – iRemCapNow].

e. Apply any desired corrections to iRemCapNow for temperature and load. You can use
constants in the bq2019 such as iCAP_COMP_TE and iCAP_COMP_LD to model the
chemistry in your battery. The current temperature is already in iKelvin. There should be
no need to calculate the load current from dq/dt since your firmware knows if the system
is operational or in standby and can use iTALK_LD or iSTBY_LD. This correction
addresses the case where a cell phone that was charged in the ski lodge is placed in
the user’s jacket pocket. After half an hour at –10°C, the skier turns the phone on and
looks at his predicted talk time, which will appear inflated without this correction. You will
probably want to set a flag the first time this correction is made, and reset the flag when
the temperature and/or load changes significantly. A future application note will address
these techniques in detail. Move on to # 10 below.

9. If iRemCapNow >= iRemCapPrev and this is not the first time through this function (bInit is false)
then: Calculate iTimeSinceMaint = iTimeSinceMaint + fElapsedTime – fElapsedTimePrev and
check to see if iRemCapNow > iRemCapPrev + 1. If so, we are charging…

a. Test if iRemCapNow < iLastMeasDsg. If false then the battery must be full and
iTimeToFull = 0.

b. If the above test is true then we calculate time-to-full minutes as: iTimeToFull =
[fElapsedTime – fElapsedTimePrev] * [iLastMeasDsg – iRemCapNow] / [iRemCapNow
– iRemCapPrev]. Also set bValidDsg false to indicate that it is not a valid discharge
cycle. Note that while this formula is a good approximation for time-to-full, it can be
improved upon by taking into account the exponential shape of the charge current after
the charger transitions from constant-current to constant-voltage mode. A future
application note will address this issue in detail.

10. Test if iTimeSinceMaint < 60. If false, then call GGRegMaint () since it must have been over an
hour since the last register maintenance. Note that before it returns, GGRegMaint () may call
GGSelfDischarge which would add a cumulative self-discharge value in iCumlCorrectn.

11. If bValidDsg = true then test If iKelvin < 283 (10°C) . If so, set bValidDsg = false since the part is
too cold for a valid learning cycle.

12. If bValidDsg = true then test if iCumlCorrectn > 0.1 * iDES_CAP. If so, set bValidDsg = false
since we have too much self-discharge to allow a valid learning cycle.

SLVA100

12 Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs

13. Look for a battery full condition by first testing if iRemCapNow >= iLastMeasDsg. If true then the
battery is full. If false, the bChgFull flag (set by your charger?) should be checked since charging
the battery to iLastMeasDsg might not be possible if the cells have had a substantial capacity
fade since the last learning cycle. If the battery is full, the basic procedure is to set iRegClr to
0x1F, iTimeSinceMaint = 0, iRemCapNow = iLastMeasDsg, then test bValidDsg.

a. If bValidDsg = True write iRegClr to the CLR register then set iRegClr = 0. This allows
for learning to continue through partial charge/discharge cycles.

b. If bValidDsg = False: Set bValidDsg = true, iDsgCntr = 0, iDsgCntrCuml = 0 and
iRemCap = iRemCapNow. Then write iRemCap and iRegClr to the bq2019. Finally, set
iRegClr = 0.

14. If the battery is not full there are three possibilities to consider: It could be empty due to low
voltage, empty due to depleted capacity, or in a normal condition. The first test is to compare the
battery voltage with iEND_DSG_VLTG. If the voltage is not above this threshold, then perform
the steps in paragraph a below. If the voltage is at or above iEND_DSG_VLTG then test to see if
iRemCapNow has dropped to 0 or negative. If so, perform the steps in paragraph b below. If
iRemCapNow is above 0, the battery is normal – perform the steps in paragraph c below.

a. Low Voltage. First check bEDV. If it is true, then we have already handled the problem
in a previous update – so were done. Otherwise we have a low voltage synchronization
and learning cycle to handle. First, set iRemCapNow = 0, iTimeSinceMaint = 0, bEDV =
1 and iRegClr = 0x1F. Then test bValidDsg. If bValidDsg is false then we do not have a
valid learning cycle – set iRemCap = 0, write iRemCap and iRegClr to the bq2019, set
iRegClr = 0 and move on to step 15.

If the bValidDsg flag is true, however, we must perform the learning cycle. First add in
the latest capacity reduction: iDsgCntr = iDsgCntr + iRemCapPrev – iRemCapNow.
Then test iDsgCntr against iDES_CAP to insure that the proposed new value is within
+/-10% of the design capacity. If we are not outside the 10% limit, set iLastMeasDsg to
iDsgCntr, otherwise set iLastMeasDsg up or down 10% of the design value. Save the
new iLastMeasDsg to the bq2019. Set iRemCap = 0, write iRemCap and iRegClr to the
bq2019, set iRegClr=0 and move on to step 15.

b. Depleted Capacity. First set iRemCapNow = 0 to handle the negative case. Set iRegClr
= 0x1F and iRemCap = 0. Then write iRemCap and iRegClr to the bq2019. Finally, set
iRegClr = 0. Move on to step 15.

c. Battery Normal. Test if iRegClr = 0. If so, move on to step 15. However, if there is a
value, it is because GGRegMaint() was called in step 10 above. Set iRemCap =
iRemCapNow, write iRemCap and iRegClr to the bq2019. Finally, set iRegClr = 0.

15. Calculate talk minutes as iTalkTime = iRemCapNow * 60 / iTALK_LOAD, standby minutes as
iStbyTime = iRemCapNow * 60 / iSTBY_LOAD, percent full as iRelChgPercent = iRemCapNow /
iLastMeasDsg. Lastly, bInit is set false.

SLVA100

Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs 13

16. You now have several useful values – iRunTime or iTimeToFull, iTalkTime, iStbyTime,
iRelChgPercent and iRemCap that can be returned or used within this function to update your
display.

GGRegisterMaint ()

This simple function is called in GGUpdate() if it is determined that an hour has passed since
the previous register maintenance. Its job is to clear the variable that counts to an hour, request
a clearing of the bq2019 registers along with an update of remaining capacity in the part. Also if
calls GGSelfDischarge if self-discharge counts have reached a significant value.

Set iTimeSinceMaint = 0, and iRegClr = 0X1B. The 1B in iRegClr sets up a clearing pattern for
all clearable registers in the bq2019 except for SCR. Test if iRemCapNow > 0. If false, then the
function returns. Otherwise, read SCR into iSlfDsgCntr and test if iSlfDsgCntr <
iSLF_DSG_RATE. If true, then the function returns. If false, call GGSelfDischarge() and return.

GGSelfDischarge ()

The idea here is to read the self-discharge register and the self discharge rate from the bq2019,
then perform self-discharge correction, save the updated remaining capacity, and clear bq2019
registers.

This function is called in GGRegisterMaint() if it is determined that self discharge counts are
significant enough to be added into the discharge counters. We use three temporary variables
here – iRemCapTemp, iTempCorrection and iSlfDsgEst for the iterative self-discharge estimate.

First set the temporary variable iRemCapTemp to the smaller of iRemCapNow or
iLastMeasDsg. Set iTempCorrection = 0 and perform an iterative loop as shown below. Note
that iSlfDsgCntr was retrieved from the bq2019 in GGRegisterMaint() and was either passed in
or is a valid global.

Do while iSlfDsgCntr >= iSLF_DSG_RATE {

iSlfDsgEst = iRemCapTemp / 512

iTempCorrection = iTempCorrection + iSlfDsgEst

iRemCapTemp = iRemCapTemp – iSlfDsgEst

iSlfDsgCntr = iSlfDsgCntr – iSLF_DSG_RATE}

Then make the following assignments:

• iSlfDsgEst = iRemCapTemp * [iSlfDsgCntr / iSLF_DSG_RATE] / 512

• iRemCapTemp = iRemCapTemp – iSlfDsgEst

• iTempCorrection = iTempCorrection + iSlfDsgEst

• iRemCapNow = iRemCapNow – iTempCorrection

• iDsgCntr = iDsgCntr + iTempCorrection

SLVA100

14 Advanced Gas Gauge Host Firmware Guide for the TI Battery Monitors ICs

• iDsgCntrCuml = iDsgCntrCuml + iTempCorrection

• iCumlCorrectn = iCumlCorrectn + iTempCorrection

• iRegClr = iRegClr or 0x04 //SCR Clear bit

Return ()

GGMeasBattVltg ()

Use the system A/D converter to read the battery voltage at least every 20 seconds. Either make
the value available globally, or allow GGUpdate() to query the voltage. Call GG_Update
immediately if the voltage < = iEND_DSG_VLTG.

GGPwrDwnSave ()

Call this routine for power down save of variables into the bq2019. It saves the last remaining
capacity calculation, the cumulative discharge toward cycle count, and the maximum
temperature. If the present discharge is valid, then it saves the valid discharge flag along with
the discharge count toward last-measured-discharge learning and the cumulative correction
toward valid-discharge disqualification.

Set iLastRemCap = iRemCapNow. Write iLastRemCap, iDsgCntrCuml, iMaxTemp to the
bq2019. If bValidDsg = true then write bValidDsg, iDsgCntr and iCumCorrectn to the bq2019.

References

1. Texas Instruments, Inc. Data sheet for bq2019 Advanced Battery Monitor IC (SLUS456A)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

