{9 TeEXAS
INSTRUMENTS

Parallel Processing
With the TMS320C4x

Application

Guide

1994 Digital Signal Processing Products

‘? TEXAS
INSTRUMENTS

Printed in U.S.A., February 1994 SPRA031

_____ > e Parallel Processing
Guiide With the TMS320C4x

1994

Parallel Processing With the

-

IIIIIIIIIII

SOYINK|_

TMS320C4x

Application Guide

SPRAO031
February 1994

{'f TEXAS
INSTRUMENTS

Printed on Recycled Paper

Part 1

Introduction to Parallel Processing

Part 2

Hardware Applications

Part 3

Software Algorithms

Part 4

End Applications

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products
or to discontinue any semiconductor product or service without notice, and advises its
customers to obtain the latest version of relevant information to verify, before placing
orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to current
specifications in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific
testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Please be aware that Tl products are not intended for use in life-support appliances,
devices, or systems. Use of Tl product in such applications requires the written approval
of the appropriate Tl officer. Certain applications using semiconductor devices may
involve potential risks of personal injury, property damage, or loss of life. In order to
minimize these risks, adequate design and operating safeguards should be provided by
the customer to minimize inherent or procedural hazards. Inclusion of Tl products in such
applications is understood to be fully at the risk of the customer using Tl devices or
systems.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI
warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of Tl covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used.

WARNING

This equipment is intended for use in a laboratory test environment only. It generates,
uses, and can radiate radio frequency energy and has not been tested for compliance
with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which
are designed to provide reasonable protection against radio frequency interference.
Operation of this equipment in other environments may cause interference with radio
communications, in which case the user at his own expense will be required to take
whatever measures may be required to correct this interference.
Copyright [1 1994, Texas Instruments Incorporated

Preface

The exponentially increasing demands for computationally intensive realtime signal processing applica-
tions outpace the performance improvements of each new generation of processors. With each passing
year, more applications require tremendous computing capabilities that current processors cannot achieve.
By coordinating the activities of individual processors, parallel processing offers the performance required
by these applications. DSP applications are particularly suited for parallel processing because they are
computationally intensive, highly parallel, highly structured, and often, periodic. Moreover, parallel multi-
processor systems have many benefits over single-processor systems. Parallel multiprocessor systems
have virtually unlimited performance, better fault tolerance, scalability, flexibility, and upgradability. For
these reasons, many high-end DSP applications, such as imaging, graphics, and data processing already
benefit from parallel processing.

Witnessing this evolution, Texas Instruments specifically developed its general-purpose TMS320C4x par-
allel digital signal processors and their development tools. The TMS320C4x not only has a high-perfor-
mance floating-point/integer CPU that achieves 275 MOPS and 50 MFLOPS, but also has high data
throughput peripherals that can transfer 320 MBytes/s. To facilitate interprocessor communication, the
'C4x has two 32-bit external buses and six byte-wide communication ports that can exchange data and pro-
grams. For ease of use, the 'C4x architecture supports an efficient C compiler. Furthermore, you can pro-
gram and debug any size multiprocessor system with one set of development tools.

This book introduces you to parallel processing applications with the 'C4x and is divided into four parts:

PARTI Introduction to Parallel Processing
PARTIl Hardware Implementations
PARTII Software Algorithms

PARTIV End Applications

The editor and authors hope that you find this application book useful and gain valuable information to
assist you in designing parallel processing systems with the TMS320C4x. In addition, the editor thanks all
of the authors and reviewers for their contribution to this volume of application reports.

Michael D. Luczak
Digital Signal Processing
Texas Instruments Incorporated

Contents

Page
PART | — INTRODUCTION TO PARALLEL PROCESSING
Parallel Digital Signal Processing: An Emerging Market. 1.
INtrOdUCHION . . . e 3...
The Technology Merge. e 3...
On-Chip Vs. Off-Chip Parallel Processing. e e 6
On-Chip Parallel ProCcessing e e e e e e G .
Off-Chip Parallel Processing oo e e
Processing Modules. e 8...
Multiprocessing Emulation. 9...
Software Development. 10..
Emerging Trends. oo 11 ..
COoNCIUSION . . . o 12..
Bibliography. 12...
Parallel Processing With the TMS320C40 Parallel Digital Signal Processor. 13
INtrOdUCHION . . . 15.
OV W . . . e 15.
Need for a Dedicated Parallel Processing System. 16
Need for a Dedicated /O Link. e 17.
Evaluating a Node for a Parallel Processing Architecture. 18
Parallel Processing TOPOI0gIES. oo vt e e e 20
Approaches to Performance/Throughput Enhancement. 20
Parallel Processing TaxOnomY.o vttt e e e e e 21
TMS320C40-Based AT/ISA and VME Architecture. 22
System-Level Design Issues With the TMS320C40 Communication Ports. 27
"CAONOAE RESEL. . o ot 27. .
Design Suggestions for a Large Topology.ottt 28
Matrix Multiplication Application of Parallel Processing 30
Parallel Processing Architecture TOpOoIOgIES. o oottt 31
Hypercube and ItS Properties 31
Mesh Topologieso 35..
Reconfigurable Massively Parallel Processors. i 39
Software Approach to Massively Parallel Systems 40
Links for Massively Parallel Processing., 40
Benchmarks, Analysis, and Data Decomposition.t 41
Benchmarks. AL
Algorithm Analysis. e A2
Data DeComposition 43. .
CONCIUSION . . et 44 ..
DefiNItiONS . . .o e 44 ..
RefereNCeS. . . . e 46 . .

PART Il — HARDWARE APPLICATIONS

Prototyping the TI TMS320C40 to the Cypress VICO68/VACO068 Interface. 47
INtrOdUCHION . . . 49. ..
Prototype DesSigN. . . .o oo 51 ..

Design Goalso 51 ..
Design Considerations oottt e 51.
High-Level Architecture e e e 53..
Hardware DesCription.o e 54..
ReESEt CirCUITIY . . o e e e 55. ..
Address Bus DeCOdiNg.o oo e 57.
BUS CONtrol. 57...
Master Bus Cycle Generation i e 59
Slave Bus Cycle Generatianttt e 60
VIC068/VACO068 Software Initialization. i 62.
CONCIUSION . . . o 64 ..
Acknowledgements. 64 ..
ReferenCes. 64 ..
Appendix A: Address Bus Decoder — ABEL Soutce i, 65
Appendix B: Bus Control Sequencer — ABEL SOUICE.ottt it 66
Appendix C: Master Cycle Generation Sequencer — ABEL Soutce 72
Appendix D: SChematiCs 83 .

AMELIA — An A/D-D/A Interface to the TMS320C40 GlobalBus 85
INtrOdUCHION . . . 87...
Analog Conversion — A Brief Overview 87
Modular Interface Design TeChniqUes.t 87
AME L A e 88 .
Programming Interface. 93..
CONCIUSION . . . o e e 96. .

PART Il — SOFTWARE ALGORITHMS

A Parallel Approach for Matrix Multiplication on the TMS320C4xDSP 97
INtrOdUCHIONo 99. ..
Matrix Multiplication e Q...
Fundamentals of Parallel Processing. 100

Partitioning Schemes 100
Architectural ASPECES 100.
Performance Measurementsttt 101
Parallel Matrix Multiplication 101.
Shared-Memory Implementation. 101
Distributed-Memory Implementation. 102
TMS320C40 Implementation.ttt 103
Results of Matrix Multiplication on a TMS320C40-Based Parallel System 104
Analysis of the Results. 105
CONCIUSION . .« o o 109..
RefereNCeS. . . .o 110..
Appendix A: Shared-Memory Implementation i 111

SHARED.C. . . 112
SHARED.CMD . ..o e e 113
Appendix B: Distributed-Memory Implementation. 114
INPUT ASM . e e e 114
DISTRIB.C . .t 114
DISTRIB.CMD . . . e e e 116..
Appendix C: Synchronization Routine for Shared-Memory Implementation. 117
Appendix D: C-Callable Assembly Language Routine for Matrix Multiplicatian 118
INPUTO _A ASM .. e 118..
MMULT. ASM o e 110. ..
SHAREDA. C ..o 120..
Parallel 1-D FFT Implementation With TMS320C4X DSPs. i 121
INtrOdUCHION . . . oo 123. ..
One-Dimensional (1-D) FFTo oo 124
TIMING ANAIYSISo 125..
Parallel 1-D FFT . .. 126. .
Parallel DIF FRT. ..o 126 .
Parallel DIT FRT ..o e 129 .
Partitioned 1-D FFT. 134.
TMS320C40 Implementation.ot e 136
Distributed-Memory Parallel FFT Implementations 137
Partitioned FFT Uniprocessor Implementation. 140
Results and CoNCIUSIONSot 141
Benchmarking Considerations. 141
PPDS Considerations.t 142
DIF Vs. DIT Implementation. e 142
Speed-Up/Efficiency ANalySiSot 142
Analysisofthe Results. 144
COoNCIUSIONS . . . o 144. .
ReferenCes. 145
APPENAICES. .« . vt 146
Appendix A: Uniprocessor 1-D DIF FFT Implementation. 147
FRET L. C . 147. ..
FETL2K.CMD .o e e 147 ..
FETG2K.CMD . . o e e e e 148. .
Appendix B: Uniprocessor 1-D DIT FFT Implementation. 149
FRET 2 C o o 149. ..
Appendix C: Parallel 1-D DIF FFT Multiprocessor Implementation. 150
DIS IR C .o 150..
DIS.CMD . .o 152 ..
Appendix D: Parallel 1-D DIT FFT Multiprocessor Implementation. 153
DIS DIT.C ot 153 ..
Appendix E: Partitioned 1-D DIT FFT Uniprocessor Implementation. 155
SERP L C. . o 155. .
SERP 2. C. . o 157..
SERP.CMDD. . .. e 158. .

Vi

SERPB.C . 159..

Appendix F: Library Routines (PFFT.SRC). i e 161
BRELY. ASM . 161. ..
BFELY R. ASM .. 163 ..
BFELYR L. ASM .o 165..
BFELYR 2. ASM .o 167 ..
CMOVE. ASM . . 169..
EXCH R ASM . o 170. .
MOVE. ASM . .. 171 ..
PR2DIF. ASM . . 172. .
R2DIF. ASM . 174 ..
R2DIT. ASM . 177 ..
WAITDMA. ASM . 184 ..

Appendix G: Input Vector and Sine Table Examples. 185
SINTAB. ASM . . 185 ..
SINTABR. ASM .. 186. .
INPUT. ASM . . 187 ..

Parallel 2-D FFT Implementation With TMS320C4x DSPs.o i 189

INtrOdUCHION . . .o 191...

The 2-D FFT Algorithm. e e e e 191.
TIMING ANAlYSISo 192..
Application of FFT on Correlation/Convolution Algorithms. 192

Parallel 2-D FFT . .. 193..
The Parallel Algorithm. 193.
Speed-Up ANalysis 193.
Shared-Memory Implementation. e 193
Distributed-Memory Implementation. i 194

TMS320C40 Implementation.ot 197
The TMS320C40.ot e e e e 197.
Serial Implementation. 197.
Shared-Memory Parallel Implementation. 198
Distributed-Memory Parallel Implementation 199
Implementation ReSUItS e 200

CONCIUSION . . . o e e 208. .

ReferenCes. 209. .

APPENAICES. . . o 210..

Appendix A: Serial Implementationsof 2-D FET 211
A.1l. SER.C: Single-Buffered Implementation (C Program). 211
A.2. SER.ASM: Single-Buffered Implementation (C40 Assembly Program). 215
A.3. SERB.C: Double-Buffered Implementation (C Program) 219
A.4. SERB.ASM: Double-Buffered Implementation ('C40 Assembly Program). . . 224

Appendix B: Parallel 2-D FFT (Shared-Memory Versian)., 232
B.1. SH.C: Single-Buffered Implementation (C Program). 232
B.2. SH.ASM: Single-Buffered Implementation (C40 Assembly Program). 235
B.3. SHB.C: Double-Buffered Implementation (C Program). 240
B.4. SHB.ASM: Double-Buffered Implementation (C40 Assembly Program). . .. 245

Appendix C: Parallel 2-D FFT (Distributed-Memory Version). 254

vii

C.1. DIS1.C: Distributed-Memory Implementation (C Program) — DMA Used

Only for Interprocessor Communication. 254
C.2. DIS2.C: Distributed-Memory Implementation (C Program) — DMA Used
for Interprocessor Communication and Matrix Transpositian 258
C.3. DIS2.ASM: Distributed-Memory ('C40 Assembly Program) — DMA Used
for Interprocessor Communication and Matrix Transpositian 262
Appendix D: Mylib.lib Routines. 27.7.
D.1. CFFT.ASM: Assembly Language FFTRoutine 277
D.2. CFFTC.ASM: Assembly Language FFT Routine (C-Callable). 279
D.3. CMOVE.ASM: Complex-Vector Move Routine. 282
D.4. CMOVEB.ASM: Complex-Vector Bit-Reversed Move Routine 283
D.5. SET_DMA.ASM: Routine to Set DMA Register Values. 284
D.6. EXCHANGE.ASM: Routine for Interprocessor Communication 285
D.7. SYNCOUNT.ASM: Interprocessor Synchronization Routine 288
Parallel DSP for Designing Adaptive Filters. 289

PART IV — END APPLICATIONS

Transmission of Still and Moving Images Over Narrowband Channels. 295
OV IV W & . e 297.
Networks and Transmission Methods 297

Nonpublic Land Mobile Telecommunication Network 297
Public Switched Telephone Network (PSTN) 297
Forward Error Correction (FEC) e e 298
Image Source Coding.ottt 299,
A Hybrid Codec for Moving Pictures.t 299
Advanced Source Codec Architectures. 300
Coding of Still Pictures 301
Speech Coding. 301.
Realization of a Source Codec Based on a Multiprocessor System 302
RefEreNCeS. . . 304. .

Optical Quality Assurance With Parallel Processors., 305
INtrOdUCHION 307. ..
OVEIVIBW . . . 307.
The Transputer T805 and the TMS320C40 DSP.ttt 309
Hardware 311.
SO . . . o e 311
AlGONtNMS . 312..
ObjeCt ReCOgNItION o o 313.
CONCIUSION . . . o 316. .

viii

List of Figures

Figure Title Page
Parallel Digital Signal Processing: An Emerging Market. 1.
1 Worldwide Single-Chip DSP Market. 4.
2 DSP Performance EVOIULION. e 5.
3 Performance Requirements (Actual TMS320 Designs).o oo i i e e 6
4 TMS320C40 System ArchiteCtures.o e e e e 8.
5 TIM-40 MOdUIE. . . . 9....
Parallel Processing With the TMS320C40 Parallel Digital Signal Processor. 13
1 Architecture for Real-Time ProCessing.ottt e 16
2 Conventional Vs. Parallel Processing Systems. i 17
3 TMS320C40 Parallel Processor Block Diagramottt 19
4 SIMD General Architecture With'C40s. e 21
5 Multiple-Instruction Stream/Multiple-Data Stream Systems 22
6 AT/ISA and VME Architecture With the SPIRIT-40 Dual, SPIRIT-40 Quad,

and SPIRIT-40 DRAM 23..
7 AT/ISA and VME ArchiteCtures e 24.
8 Dual Processor SPIRIT-40 Major Featuresottt 25
9 SPIRIT-40 Quad Processor Architecture 27
10 Token State After ReSet o e 28.
11 Four-Node Configuration With a Single-Link Interface and Unidirectional Transfers . 28
12 A Two-Dimensional Mesh Configuratian 29
13 Matrix Multiplication 31...
14 Two- and Three-Dimensional Hypercubes. s 32
15 Ten-Dimensional Hypercube Configured With Dual Processor—Single Node. 33
16 Three-Dimensional Cube e 34.
17 Hypercube Architecture With Parallel Paths 35
18 Three-Dimensional Mesh 36.
19 Mesh of Trees ArchiteCture. e 37.
20 Pyramid Building Block. 37..
21 Two-Level Pyramido 38..
22 RiNg Architecture. 39..
23 A Two-by-Two Switch With Four Possible Switch Settings. 40
24 Dart Board for p EStimation 41.

Prototyping the TI TMS320C40 to the Cypress VICO68/VACO068 Interface. 47

1 TMS320 — VIC/VAC Prototype Block Diagram 50

2 TMS320C40 — VIC/VAC Prototype 'C40GlobalBuso 52

3 TMS320C40 — VIC/VAC Prototype Program SRAM.o 54

4 TMS320C40 — VIC/VAC Prototype Programmable Logic 55
5 TMS320C40 — VIC/VAC Prototype VICO68 VMEbus Interface 56

6 TMS320C40 — VIC/VAC Prototype VICO68 Local Bus Interface. 58
7 TMS320C40 — VIC/VAC Prototype VACO68 VME Interface. 59

8 TMS320C40 — VIC/VAC Prototype VACOG68 Local Interface. 61

9 TMS320C40 — VIC/VAC Prototype VMEbus Data Bus Interface 63
10 TMS320C40 - VIC/VAC Protototype VMEbus P1 Connectar. 83
11 TMS320C40 — VIC/VAC Protototype VMEbus P2 Connectar. 84
AMELIA — An A/D-D/A Interface to the TMS320C40 GlobalBus 85

1 BloCK Diagramt e 89...
2 AMELIA Circuit ConNNectionSttt 92 .

A Parallel Approach for Matrix Multiplication on the TMS320C4xDSP 97

1 Shared-Memory Implementation. 102

2 Distributed-Memory Implementation. e 103

3 Speed-Up Vs. Number of Processors (Shared Memory)., 106
4 Efficiency Vs. Number of Processors (Shared Memary) 106
5 Speed-Up Vs. Number of Processors (Distributed Memory). 107
6 Speed-Up VS. MatriX Size. e e 107

7 Efficiency VS. MatriX Size. 108.

8 Speed-Up Vs. Matrix Size (Load Imbalance for Shared-Memory Programy). 108
Parallel 1-D FFT Implementation With TMS320C4x DSPs. i 121

1 Flow Chartof a 16-Point DIF FFT. e 124

2 Flow Chartof a 16-Point DIT FFT. e e 125

3 1-, 2-, and 3-Dimensional Hypercubes. 126
4 Parallel DIF FFT Algorithm. e 127.

5 DIF FFT Data Distribution Step (n=16 and p=4). oottt e 128
6 DIT FFT Data Distribution Step (n=16 and p=4).o oottt 130

7 Parallel DIT FFT Algorithm (Scheme 1). e 131

8 Parallel DIT FFT Algorithm (Scheme 2). 133

9 Partitioned Uniprocessor FFT Implementatian 135
10 TMS320C40 Parallel Processing Development System (PRPDS). 136
11 Interprocessor Communication Phase for DIF FFT (Processor.2). 138

12 Interprocessor Communication Phase for DIT FFT (Processor2). 139
13 FFT Speed-Up Vs. FFT Size e 143
14 FFT Efficiency VS. FFT Size e 143
Parallel 2-D FFT Implementation With TMS320C4xX DSPS. oot 189

1 2-D FFT Shared-Memory Implementation. i, 195

2 2-D FFT Distributed-Memory Implementation. 196

3 Double-Buffering Performance Analysis (Serial Program). 202
4 Speed-Up Vs. Matrix Size (p = 2) Over Single-Buffered Serial Program 202
5 Efficiency Vs. Matrix Size (p = 2) Over Single-Buffered Serial Program. 203
6 Speed-Up Vs. Matrix Size (p = 2) Over Double-Buffered Serial Program. 203
7 Efficiency Vs. Matrix Size (p = 2) Over Double-Buffered Serial Program.......... 204
8 Speed-Up Vs. Matrix Size (p = 4) Over Single-Buffered Serial Program 204
9 Efficiency Vs. Matrix Size (p = 4) Over Single-Buffered Serial Program. 205
10 Speed-Up Vs. Matrix Size (p = 4) Over Double-Buffered Serial Program. 205
11 Efficiency Vs. Matrix Size (p = 4) Over Double-Buffered Serial Program. 206
12 Speed-Up Vs. Number of Processors Over Double-Buffered Serial Program. 206
13 Efficiency Vs. Number of Processors Over Double-Buffered Serial Program. 207
Transmission of Still and Moving Images Over Narrowband Channels. 295

1 Digital Transmission SYStemMt 298

2 Hybrid Codec for px 8 Kbps. oo 299.

3 Object-Oriented Analysis-Synthesis Codec fer®kbps. 301

4 MUItI-DSP SyStemo 303.
Optical Quality Assurance With Parallel Processors., 305

1 Surface Quality Scan Application 307

2 Measured Signal 308.

3 Transputer T805 and the DSP TMS320C4Qot e 310
4 Interfacing the TMS320C40 and the Transputer. 310
5 Overall Concepton Hardwaret e e e 311

6 Overall Concept on Software. i e e e 312

7 Setup of Algorithms. 313.

8 Recognition of ObJects 314

9 Signal Filtering, Derivation and Max/Min Calculation. 315

Xi

List of Tables

Table Title Page
Parallel Processing With the TMS320C40 Parallel Digital Signal Processor. 13
1 'C40 Parallel Processing Featurest 20
2 Comparative Time for Four Methods to Execute an Algorithm. 44
Prototyping the TI TMS320C40 to the Cypress VICO68/VACO068 Interface. 47

1 Global Side MemMOory Map. . . . oot 57.
2 VIC068/VACO68 Initial Register Settingso e 62
AMELIA — An A/D-D/A Interface to the TMS320C40 GlobalBus 85

1 PiN ASSIgNMENTS.ttt 90..
2 Register Map.o 93...
Parallel 1-D FFT Implementation With TMS320C4xXDSPs. i 121

1 FFT Timing Benchmarks (in Milliseconds). 141
Parallel 2-D FFT Implementation With TMS320C4x DSPs.o i 189

1 TMS320C40 2-D FFT Timing Benchmarks (in Milliseconds) 207
2 TMS320C40 2-D FFT Timing Benchmarks (in Milliseconds) 208

Xii

Parallel Digital Signal Processing:
An Emerging Market

Mitch Reifel and Daniel Chen
Digital Signal Processing Products — Semiconductor Group
Texas Instruments Incorporated

Introduction

During the past decade, while CPU performance increased from 5 MIPS in the early 1980s to over 40 MIPS
today, applications performance developed exponentially, especially in imaging, graphics, and high-end
data processing. This “Malthusian” effect, in conjunction with the “silicon wall”, has created a situation

in which application needs have vastly outpaced the ability of single processors to keep up.

This condition inspired rapid development in parallel processing, especially in digital signal processing
(DSP). Currently, 75 to 80% of all 32-bit, floating-point DSP applications use multiple processors in their
design for several reasons. First, DSP algorithms are inherently suited to task partitioning and, thus, to
parallel processing solutions. Second, as the cost of single-chip DSPs decrease, using multiple DSPs in a
system becomes increasingly cost effective. Third, the high data throughput, real-time processing
capability, and intrinsic on-chip parallelism of DSPs make them especially suitable for multiprocessing
systems.

Simply put, parallel processing uses multiple processors working together to solve a single task. Processors
can either solve different portions of the same problem simultaneously or work on the same portion of a
problem concurrently.

This paper discusses digital signal parallel processing as well as the reasons why DSP and parallel
processing have become a natural match:

* Advances in CPU architectures.
* New developments in hardware development tools.
* The emergence of software languages and operating systems for multiprocessing.

This paper looks at solutions from different vendors as well as trends in the industry as a whole.

The Technology Merge

The first practical single-chip DSPs were introduced in the early 1980s. Because of their real-time
processing capability, high throughput, and intensive math-processing capability, DSPs began to replace
general-purpose processors in many applications. These applications were well suited for real-time
processing such as speech processing, telecommunications, and high-speed control. They also pushed DSP
to the forefront of technology and created one of the fastest going markets of the decade (see Figure 1).

Figure 1. Worldwide Single-Chip DSP Market

Millions of Dollars

2000

1500

1000

500

||—|I_I|_|I_|

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

The DSP market was one of the fastest growing markets of the 1980s. Parallel processing is
predicted to follow a similar pattern in the 1990s.

DSPs are now used in a broad range of nontraditional applications, such as graphics, imaging, and
servo-control, that were not originally thought of as part of the signal processing domain. Application
designers turned to DSPs because their cycle times were faster than those of general-purpose and RISC

architectures. By the middle 1980s, however, cycle time improvements in each new generation became
smaller.

Inthe 1990s, processor manufacturers are approaching the physical limitations of silicon and can no longer

rely on smaller geometries alone for increasing processor performance for next generation products, as
shown in Figure 2.

Figure 2. DSP Performance Evolution

Cycle Time (ns)

500

400

300

200

100

0

1982 1984 1986 1988 1990 1992 1994
Year
All semiconductor manufacturers are approaching the “silicon wall” and are looking at
different multiprocessor solutions to get around the problem.

In the meantime, tasks that were unheard of just a few years ago — such as virtual reality and video
recognition — are pushing the envelope of performance requirements. Figure 3 shows the trend with actual
designs that use TMS320 DSPs.

Multiprocessing meets these challenges. However, multiprocessing comes in different forms. Some
manufacturers gain performance improvements with on-board architectural enhancements, but this
technigue alone cannot meet every need.

Figure 3. Performance Requirements (Actual TMS320 Designs)

BIPS / GFLOPS

10

8

Continued growth in application requirements demands intensive development in processor
technology.

On-Chip Vs. Off-Chip Parallel Processing

Parallel processing enhancements can be divided into two broad categories: on-chip and off-chip. On-chip
parallelism relies on architectural enhancements for improved performance, while off-chip parallelism
incorporates additional processors.

On-Chip Parallel Processing

Architectural enhancements on RISC processors can be grouped into three distinct categories:
superpipelining, superscaling, and multi-CPU integration.

Superpipelining This technique breaks the instruction pipeline into smaller pipeline stages,
allowing the CPU to start executing the next instruction before completing
the previous one. The processor can run multiple instructions
simultaneously, with each instruction being at a different stage of
completion.

The main drawbacks of this technique are the increased level of control logic
onthe processor, difficulty in programming, and difficulty in task switching.
Real-time multitasking on a superpipelined processor can become
impossible if the pipeline grows too deep.

Processors that use superpipelining are the Intel i860 and the MIPS R4000.
Superscaling Instead of breaking the pipeline into smaller stages, superscaling creates

multiple pipelines within a processor, allowing the CPU to execute multiple
instructions simultaneously.

However, when multiple instructions are executed simultaneously, any data
dependency between the instructions (such as a conditional branch)
increases the complexity of the programming. Programmers must make
certain that simultaneously executed instructions don’t need the same
on-chip resource, or that one executing instruction doesn't need the result
of another whose result is not yet available.

Digital’s Alpha processor is one example of a CPU that uses superscaling.

Multi-CPU Integration This technique goes a step further than the preceding techniques and
integrates multiple CPUs into a single piece of silicon. The number of
processors may vary, depending on chip size, power dissipation, and pin
count.

Star Semiconductor's SPROC and the soon-to-be-announced MVP
(Multimedia Video Processor) advanced imaging processor from TI
implement this technique.

All three of these parallel processing techniques increase processor performance without the need for
dramatic cycle time improvement. None of the techniques, however, can achieve the BIPS performance
required by today’s applications. If an application demands higher performance than on-chip processors
can deliver, the solution must be multiple processors.

Off-Chip Parallel Processing

Off-chip parallel processing is not necessarily better — it's inevitable. No single processor, no matter how
itis pipelined, how itis scaled, or how many CPUs it has on board, can handle all applications. Recognizing
this, manufacturers developed techniques to integrate multiple processors efficiently. Like building blocks,
off-chip parallel processors connect easily to form expandable systems of virtually infinite size and variety.

Two processors employ this technique: the Inmos Transputer and the Texas Instruments TMS320C40. Both
of these processors also incorporate on-chip parallel processing features to achieve high individual
performance. The latest generation Transputer, T9000, uses superpipelining, while the 'C40 uses
superscaling. These processors offer both the high performance of the on-chip parallel processing
architectural enhancements and the extra features of off-chip expansion.

Off-chip expansion is achieved by connecting multiple processors together with zero glue logic for direct
processor-to-processor communication. While methods are different, (Tl uses six 8-bit parallel
communication ports; Inmos uses four serial links), the concept is the same: connect multiple processors
together to create a topology or array of virtually any size to achieve the performance needed by high-end
applications (see Figure 4). The communication ports (or links) on the devices are supplemented by parallel
memory buses and other support peripherals, allowing designers broad flexibility in designing their
systems.

These are some benefits of off-chip parallelism:

e Expandability — You can easily add more processors to your system to meet performance
requirements.

* Flexibility — You can implement a wide array of processor topologies that best fit your
application needs. Unlike hardwired multi-CPU integration, off-chip processing can implement
everything from 1D pipelines to 4D hypercubes.

e Upgradability — With processors that connect like building blocks, systems can be designed
in a modular fashion, allowing extra processing power to be added at a later date to meet
expanding processing needs.

Figure 4. TMS320C40 System Architectures

Hexagonal Grid

Six-nearest-neighbor connection. Useful in
numerical analysis and image processing.

3-D Grid
For hierarchical processing such as image
understanding and finite-element analysis.

4-D Hypercube

A more general-purpose structure. Useful in
solving scientific equations.

The TMS320C40 has six interprocessor communication ports for
creating topologies of virtually any size and type.

Processing Modules

Upgrading, expanding, and integrating parallel systems is even easier with processing modules than with
processors. TRAMs (Transputer Modules) for the Transputer and TIMs (TI Modules) for the *C40 provide
an open standard, easy-to-use approach that saves time.

The TIM-40 and TRAM describe modular building blocks for prototyping and manufacturing parallel-
processing systems. Both standards consist of a daughterboard module that can include a parallel processor,

memory, A/D-D/A conversion, and other functions as required. System designs can contain any number
of modules, limited only by the amount of room in the system (see Figure 5).

Figure 5. TIM-40 Module

Vendor-Defined Peripherals
(SRAM, DRAM, A/D, D/A, etc.)

Local Bus

25"
(63.5 mm)

11—l

Control Bus Global Bus v

>

Top Primary Connector
Global Expansion Connector
Bottom Primary Connector

Timer Interrupts TMS320C40

Comm. Ports 1,2,4,5

Comm. Ports 0,3

00 [

4.2"
(106.68 mm)

The architecture of the TIM-40 gives you both a standard interface to build parallel processing sys-
tems and also the flexibility to add support peripherals and features that best fit your application.

Designs based on the modules can be scaled and upgraded easily as system performance requirements
increase. Furthermore, modules used in development activities can be reused in new programs.

The modular approach helps designers enhance system reliability. In a massively parallel system that
requires 100 'C40s, TIM-40 modules can reduce the challenge of more than 3,000 pin connections to a task
of only 200 daughterboard-to-motherboard connections.

These architectural enhancements make hardware design and integration of multiple processors easy, but
they do not address debugging and programming the large parallel systems that result. This is where the
'C40 and Transputer differ. The designers of the 'C40, realizing the problems in debugging large parallel
systems, built into the processor features that allow unique multiprocessing debugging capabilities.

Multiprocessing Emulation

Programming and debugging single, serial processors has always been difficult. Programming the
enhanced processors in multiprocessor systems is even more difficult. Prior to the availability of the 'C40

and its development tools, developers used tools intended for uniprocessor architectures to design and
debug multiprocessor systems. While such tools were satisfactory for their original purpose, they were
difficult to use with embedded processors in parallel architectures. Designers used multiple emulators
and/or complicated software monitors to debug their parallel systems. These tools provided neither system
synchronization, unintrusive real-time operation, or the fine detail required to design and debug embedded
parallel processors.

The 'C40 XDS510 in-circuit, scan-based emulator incorporates the same cutting-edge tasks that are used
for parallel supercomputing. It supports global starting, stopping, and single-stepping of multiple 'C40s
in atarget system. It also has the capability to halt all the 'C40s in a system if a single 'C40 hits a breakpoint.

This parallel debug capability of the XDS510 is supported by the on-chip analysis logic designed into the
'C40. The XDS510 can access the analysis module to efficiently debug, monitor, and analyze the internal
operation of the device. The analysis module consists of an analysis control block, an analysis input block,
and a JTAG test/emulation interface block. The module features program, data, and DMA breakpoints, a
program counter trace-back buffer, and a dedicated timer for profiling.

A single XDS510 emulator can perform mouse-driven, windowed debugging of C and assembly language
for all the '"C40 processors in your system, regardless of the complexity of the topology. It also determines
whether the system load is balanced across the processors.

The TMS320C40 is the only parallel processor that has this emulation and debugging feature.

Software Development

One of the largest problems facing developers of multiprocessing systems is programming. Issues such as
program partitioning, load balancing, and program routing present unique difficulties. Various solutions
have been offered:

Graphical Programming Languages— Comdisco Systems recently introduced Multiprox — the first
graphical programming environment for developing systems that employ multiple TMS320C40s.
Multiprox lets you partition a signal flow block diagram into regions for separate processors to execute.
Multiprox automatically generates code for each processor, then compiles and downloads the code with
all the necessary interprocessor communication. As a result, you can develop algorithms in less time, and
the development process is simplified for those who are not parallel processing experts. Topologies of any
size and variation can be used with the system.

Operating Systems (OS)}— Various operating systems are available to help designers implement realtime
multiprocessor systems:

e Helios is a distributed parallel operating system designed to run on
multiple-instruction/multiple-data (MIMD) architectures, making it ideal for use in processing
modules. After the OS is distributed across the network, each processor runs the Helios nucleus,
and they all operate together as a single processing resource. The UNIX-like interface and Posix
programming interface allows developers familiar with these environments to program on the
'C40 quickly and easily.

e SPOX offers a hardware development platform and run-time support for real-time systems,
thereby simplifying the development of embedded multitasking applications. 'C40 SPOX
provides comprehensive sets of parallel DSP operations and includes a high-level software
interface that makes it easy to utilize the 'C40’s communication ports and DMA coprocessor.
SPOX supports both multiprocessing and multitasking applications.

e RTXC/MP for the 'C40 is designed for complex distributed systems with large arrays of
processors and has support for fault-tolerant systems.

10

Parallel Programming Languages— Programming languages are emerging to help the programmer
implement software across multiple processors. Parallel C for the 'C40 has been introduced by 3L Ltd.
Parallel C is a fullimplementation of C with many additional features that support parallel processing. The
compatibility with C allows existing single processor applications to be ported easily and quickly to parallel
systems while the parallel processing features facilitate easier network programming and communications.
Other languages available on the 'C40 include ANSI C and Ada, both of which come with multiprocessing
support.

Emerging Trends

One of the questions usually asked about the flattening in performance of silicon speed is, “What about
gallium arsenide?” (also called GaAs). To date, no semiconductor manufacturer has planned mass
production of GaAs-based processors, and it will probably be another decade before GaAs processors make
it onto the market. When GaAs processors do appear, their performance by itself still won't meet the
requirements of the newest applications. Multiprocessing, even with GaAs processors, will be a necessity.

A more imminent trend is multichip modules (MCMs). This is simply an extension of the off-board
processing theory that puts multiple processors into a single package, thus requiring smaller pin count and
board area than if the processors were used separately. MCMs provide the best of off-chip and on-chip
parallel processing. They offer the improved thermal management, power distribution, and signal integrity
of signal processors, as well as the flexibility, upgradability, and expansibility of off-chip parallel
processing. Tl has already announced dual and quad 'C40 MCMs. Even higher integration with new
packaging advancements, such as 3-D packaging, are planned.

11

Conclusion

The inability of single-chip processors to keep up with the expanding needs of emerging applications
makes parallel processing potentially one of the most rapidly growing technologies of the 1990s.

On-chip parallelism can improve performance only to a certain degree. Off-chip parallel processing can
increase the performance almost infinitely. Three key factors of parallel processing have been identified:
interprocessor communication, parallel debugging, and parallel programming. Two processors, the Texas
Instruments 'C40 and Inmos Transputer, were discussed. While both processors incorporate features for
high-speed processing and off-chip interprocessor communication, only the 'C40 has the on-chip debug
capability and the programming tools needed for programming arrays of processors of arbitrary size and
complexity.

Bibliography

Peterson, Robert, and John Scoggdectronic Packaging in DSEGexas Instruments Technical Journal,
Volume 9. No. 3, May—June 1992.

Simar, Ray,The TMS320C40 and Its Application Development Environment: A DSP for Parallel
Processinginternational Conference on Parallel Processing, Volume 1, p. 149-151.

Weiss, Ray, “Third Generation RISC Processde)N, March 30, 1992, p. 96-108.

12

Parallel Processing
With the TMS320C40
Parallel Digital Signal Processor

Yogendra Jain
Sonitech International Inc.

13

14

Introduction

This paper examines parallel processing using the Texas Instruments TMS320C40 floating-point
processor. It demonstrates popular parallel architecture topologies such as hypercube, mesh, ring, and
pyramid with the 'C40 and discusses the tradeoffs and performance of these 'C40-based architectures. This
paper is divided into the following sections:

e Qverview

Tells why the 'C40 architecture is ideal for parallel processing and describes a VME-based 'C40
board.

e Parallel Processing Topologies

Describes different parallel architectures such as hypercube, pyramid, mesh, ring, and tree. Also
discusses designing of massively parallel systems using the principle of reconfigurability.

e TMS320C40-Based AT/ISA and VME Architecture

Discusses the architecture of VME and AT/ISA TMS320C40-based boards that are expandable
from two nodes capable of 100 MFLOPS (million floating-point operations per second) to
hundreds of nodes.

e System-Level Design Issues With the TMS320C40 Communication Ports

Discusses the 'C40 node reset and offers design suggestions.
e Matrix Multiplication Application of Parallel Processing

Explains matrix multiplication.
¢ Parallel Processing Architecture Topologies

Describes the hypercube and its properties and mesh topologies.
* Reconfigurable Massively Parallel Processors

Discusses software approaches and links.
¢ Benchmarks, Analysis, and Data Composition

Explains benchmarking and evaluation of parallel processing systems, as well as algorithm
efficiency and data decomposition strategies.

* Conclusion
e Definitions
e References

Overview

Computational demands continue to outpace readily available technology. In recent years, fiber optics
technology has revolutionized the rate at which data can be carried between any two points. The theoretical
communication bandwidth offered by fiber optic channels is of the order & Mbytes/s.
Satellite-generated data must be processed at a raté&fl20Before and during surgery, when a team

of surgeons require a 3-D view of human body parts on a TV screen using tomography technology,
information must be processed at speeds on the orderl®fH0 Many more applications demand
increased processing speeds: speech recognition, spatial and temporal pattern recognition, modeling fusion
rectors, oil explorations, astronomy, robotics, and the solutions of large differential equations for numerical
simulations of earthquakes and for atomic and nuclear physics with thousands of variables. Next generation
communication technology will support and link ISDN, FDDI, and ATM data bases; live surgery across
continents; and intricate defense networks. No sequential computer or existing supercomputer can meet
processing demands today and certainly not in the future.

15

The silicon technology barrier has almost been reached; pushing closer may reduce reliability and increase
cost. One of the few options for meeting the computation needs is to exploit parallel processing. The
concept of parallel processing is illustrated in the simple analogy of a farmer plowing his field. Alone, it
will take him several months, by which time the harvest season will be gone, and his efforts will have been
in vain. Instead, the farmer brings in his four sons, all able to do the same quality of work at the same speed.
Each one of them starts from four different directions—say north, east, west, and south—and the father
coordinates the activities. Ideally, the total plowing time is reduced by a factor of four. This is precisely how
parallel processing works; each processor is similar in clock speed, memory size, and communication rate,
and they divide any task among themselves to speed up execution.

Need for a Dedicated Parallel Processing System

Workstations such as the Sun SPARC, HP 9000 series, and Digital Alpha offer 50 to 200 MIPS (million
instructions per second) processing. However, using a workstation as a high-performance computation
engine has several drawbacks:

¢ Complex operating systems can occupy as much as 50% of a CPU’s processing time.

e Sophisticated graphics displays and graphical user interfaces demand extensive CPU
processing.

* Real-time applications require an additional software layer, which must coordinate the disk,
graphics, and peripheral 1/0, host-to-data acquisition, and data-to-host transfers.

These drawbacks can be easily bypassed by integrating the workstation with dedicated parallel processing
host-based hardware. Such hardware can accelerate an application by several orders of magnitude over the
workstation. For example, a dual TMS320C40-based processor board can accelerate the performance of
a '486 processor by a factor of 20 to 40 for signal processing applications.

Computer manufacturers have also realized the limited 1/0 and processing capability of workstations and
are gravitating toward providing such standard host buses as the ISA, EISA, Microchannel, SBus, and
Futurebus for application-specific hardware. As shown in Figure 1, a host can have numerous subsystems,
including a dedicated accelerator and a data 1/0.

Figure 1. Architecture for Real-Time Processing

| CPU || Graphics ||Peripherals|| Ethernet |

I\ Host Bus
[) (AT/SA, VME, SBus)

lfe} lfe}

Accelerator

DSP-Based Parallel L
Processing

Workstation buses are easily saturated by the various subsystems that interface to the bus. I/O systems with
dedicated links to an accelerator can significantly reduce the data transfer burden on the bus as well as
off-load the CPU from real-time computation processing.

16

Need for a Dedicated 1/O Link

Although these standard host buses are sufficient for nonreal-time data and program transfers and for
uploading and downloading of compressed and processed data, they fall short for high-speed data transfers
and processing. For example, the ISA bus transfers peak at 2 Mbytes/s, EISA at 5-10 Mbytes/s,
Microchannel at 10-20 Mbytes/s, VME at 40 Mbytes/s, and SBus at 40-80 Mbytes/s. Animage processing
system running at 40 frames per second with color image sizes ok @244, 32 bits/pixel, and about

100 operations/pixel requires more than 320 Mbytes/s of data transfer and 4 GFLOPS (billion operations
per second). Such high speeds and massive amounts of data require a dedicated 1/O link to the processing
node (see Figure 1). Furthermore, a real-time application requires determinism on the 1/0 bus, which is not
available on the standard buses. Dedicated parallel processing systems can overcome limitations of host
bus speed and I/0 throughput bottleneck and offer more performance per unit cost compared to a sequential
supercomputer.

Parallel computing is the second fastest growing market next to network computing. In 1991, about 50%
of the supercomputers sold were parallel computers. By 1996, approximately 70% of all supercomputers
will be parallel computers [1]. A similar trend is emerging in minisupercomputers, superminicomputers,
and workstations. Cray and IBM are targeting a performance of 1 TFLOPS (trillion floating-point
operations per second).

A parallel computer consists of a collection of processing elements that cooperate to solve a problem by
working simultaneously on different parts of the problem (similar to the work sharing done by the farmer’s
sons). The difference between the conventional Von Neuman computer, which consists of a single
processor, and a parallel processing system is shown in Figure 2.

Figure 2. Conventional Vs. Parallel Processing Systems

Input 'C40 > Output 'C40 'C40

(a) Von Neuman Computer With 'C40

€40 'C40
Input
‘ ‘ ‘ ‘ ‘ ‘ 'C40 'C40
'C40| |'C40| |'C40| |'Ca0] |'C40| |'C40
‘ 'C40 'C40
Output
(b) Parallel Processing System With 'C40 (c) Parallel Processing Hypercube Architecture With 'C40

Figure 2(a) shows a conventional Von Neuman setup; Figure 2(b) shows a parallel processing system with
multiple 'C40s; view (c) shows a hypercube architecture.

17

Evaluating a Node for a Parallel Processing Architecture

A high-performance cost-effective parallel processing system for a nonspecific application must have
nodes that meet these criteria:

High processing speed,

A large number of high-speed DMA-supported links,

Easily configurable and incrementally expandable architecture,

Ease in load balancing (even processing distribution over all the processors),

Low cost per node or low cost per MIPS/MFLOPS/MOPS,

Ease in programming via multitasking kernels and multiprocessing program support,

High speed 1/0O, and

Such development tools as compilers, assemblers, linkers, simulators, and emulation hardware.

Why 'C40 as a Node

The selection of a node is critical for a parallel processing system. Many high-speed processors, such as
the 80486, i860, and 68040, are capable of number crunching. None, however, offer parallel processing
support. Some designers opt for a custom silicon solution for a node. The TMS320C40 from Texas
Instruments, as shown in Figure 3, meets all the above defined criteria and is ideally suited for parallel
processing.

18

Figure 3. TMS320C40 Parallel Processor Block Diagram

Program Cache and Program and Data Memory for Zero Wait-State Execution

8 GBytes of Addressable] cache RAM RAM ROM BlocK
Programmable (128 x 32) Block 0 Block 1 Reserved Local Bus for
Data Memory With 100 (1K x 32) (1K x 32) Program, Data, and DMA Program and
Mbytes/s Data Transfer Buses Allow Parallel Opera- Data Storage
Rate —_ +32 32 JIE 32 32 %32 32 JE 32 32 tions
HF WT MR BT MR 1]
D(31-0) S LD(31-0)
A(30-0) - LA(30-0)
%) DE PADDR Bus LDE
a 25
o AE LAE
E STAT(3-0) -\ M ——— M LSTAT (3-0) 3
8 LOCK — U DADDRI Bus g LLOCK s
O STrRBO1- | X DADDRZ Bus LSTRBO.L g
R/WO0,1 - LR/WO,1
Page0 1 DMADATA Bus LPAGEO,1
J_RDYO,l i DMAADDR Bus LRDYO,1
CEO. 1 - 3213232| 32
CEO0,1 Single-Cycle 32 32\ MUX LCEO,1
Multiply and 20 MBPS, 6 Ports/Processor,
— Accumulate - for Interprocessor Communication
DMA Coprocessor N
o | || LM\ /\ DMA Channel 0 : CtOM RO TREQo
npu
X PO DMA Channel 1 FIFO [« CACKo P
—\ DMA Channel 2 »]Output PAU Je» CSIRBO | 5
IR -\ CPUZ)\ Ipma channel 3| [*] FIFO oo | S
X1 -
oL S |]\ REGI) [OMA Channel 4] Port cnirl Reg o 5
TCLKO < 7 _[[REGZ]\ [DMA Channel 5 K 8
DMA Ch | S
TCLK1 < ao%t | Hrao \Hag 4§ OMA Channels L+~ com Ports 2
ROMEN — - CREQ £
RESET —»] o 32-Bit Barre] CPU Independent < Input bilg CACK5 5
c Multiplier Shifter Data Movement FIFO LALRs ¢}
RESETLOCOL — © AU oupit] PAU > CSIREs | o
— NMIE— T \Single-CycIe IEEE "l FIFO z CRDYsg
IIOF(3-0) > 40 rerded Floating-Point Conver- Port Cntl Reg CDs(7-0)
IACK <+ r P)r(e‘(a:ri]sice)n sion and Hardware Di-
o Registers vide agggpéirseoiquare Timer 0
| L (RO-R11) pp \—>{ Global
| —~—__ Store an_d Support Control Reg
e DISPO, IR0, IR} | ¥ for 32-Bit Integer, Timer Period | f¢» TCLKO
S_Othzler r 40-Bit Floating-Point Register
nals
9 Numbers Timer Counte
Register | v Self Timers
v = Geniirgtg ;\&% /(k:ci,cgzsses for Algorithm
—+| Auxiliary <—2|32 Operate in Parallel; > Timer 1 o :KSCMhL?SJ;:Ei?]g
4| Registers Specify Address Through G|°’|)a| Control
(ARO-AR7)| (32, Displacement, Index Control Reg
Registers, Circular and » 2 | Timer Period > TCLK1
ITAG Test Pins for <« Other Bit Reversed Addressing | | g | | @ Register
-) « Registers [* < | | & | Timer Counte
Debugging Multiple T An | % " cenerate s2-itAddress, | |5 | |S] | Register
Processors Loop Counters, General- | | Q | | <
/ Purpose Registers Port Control
General-Purpose Registers Global
for String and Intermediate L—>] Local
Variables ~ -

Texas Instruments, along with DSP board vendors, realized that over half of its customers were using
multiple TMS320C30/31 DSP processors. The processors communicated via shared memory or from
serial port to serial port. Such a configuration required additional hardware, software, and, most of all,
degraded processor performance. The 'C40 was designed specifically to facilitate system configurability
and provide massive parallelism with very little or no glue logic and without additional software overhead.
The instruction set of the 'C40 is compatible with the popular 'C30 DSP processor. The parallel processing
capability of the 'C40 [2], as illustrated in Figure 3, makes the 'C40 ideal for a parallel processing node
and particularly for scientific and DSP applications. Table 1 summarizes the 'C40’'s key
parallel-processing features.

19

Table 1. 'C40 Parallel Processing Features

Criteria Description

Node Speed 40 to 50 MFLOPS, 275 MOPS (up to 11 operations per cycle throughput),
40/32-bit single-cycle floating-point/integer multiplier, hardware divide,
and inverse square root support.

Node Link Six 20-Mbyte/s node-to-node communication ports. Configuration for
parallel processing topologies via the communication ports:

a. mesh up to three dimensions
b. pyramid of any dimension
c. hypercube of up to six dimensions

DMA Six-channel DMA coprocessor supports 20-Mbyte/s transfers at each
communication port. Compiler and operating system support for message
passing and processor-to-processor communication.

Expandability Up to six links with no glue logic.
Two identical external buses (32 bits data, 31 bits address).
Shared memory support.

Cost per Node $500 to $1000 per node at 40 MFLOPS.

1/0 per Node 320 Mbytes (100 Mbytes/s on global bus, 100 Mbytes/s on the local bus,
and 120 Mbytes on the six communication ports).

Programming Tools ANSI C compiler, ADA, simulator, off-the-shelf boards for PC and VME,
off-the-shelf DSP libraries.

Operating Systems Currently supported by five manufacturers. See Conclusion section for
details.

Hardware Debugging Tools Debugging of multiple 'C40s on the Sun SPARCstation (Sonitech’s JTAG

Brahma SBus) or the TI XDS510 emulator.

Manufacturer Support Support from Tl and over 50 board and software vendors.

The TMS320C40 is the processing node for Sonitech’s ISA, VME, and SBus family of board-level
products. The architecture of these boards is discussed beRaralhel Processing Topologies

Parallel Processing Topologies

This section presents several architectures that improve processing speeds. A matrix multiplication
example is discussed to demonstrate the application of parallel processing. Several parallel processing
architectures, such as hypercube, pyramid, ring, and mesh of trees topologies are explained in detail.

Approaches to Performance/Throughput Enhancement

In the Von Neuman computer model, the steps of decoding, fetch, execution, and memory operations are
performed in a sequential manner. Only one task is handled at a time; hence, the core CPU is utilized only
during the execution phase. Newer approaches, such as pipeline, multitasking, and vectors have increased
computer speed and CPU utilization.

In a pipeline, instruction decoding, data fetch, and memory operations are done in parallel over multiple

gueues while the CPU is executing instructions. If the execution of individual tasks does not depend on the
results of other tasks, the pipeline will be full. If a process is data-dependent and lacks the most recent
values, the pipeline will be blocked. The 'C40 has four levels of pipeline: fetch, decode, read, and execute.
In addition, the DMA adds transfer capability and performs as many as three operations per cycle. The 'C40
has a separate multiplier, ALU, address register modifier, loop counter, and delayed branch (which can
support eight operations per cycle).

20

Parallel Processing Taxonomy

There is a wide diversity in parallel processing terminology. Two classifications [6], one by Flynn and the
other by Skillicorn, can be implemented with 'C40s and are discussed briefly. Flynn categorizes computers
into three major types:

SISD (Single-instruction stream/single-data stream)

This is a Von Neuman computer. A single 'C40 can serve as an SISD computer. (See Figure 2.)
SIMD (Single-instruction stream/multiple-data stream)

Traditional SIMD machines have a primitive node with no large local program memory. A
controller feeds all the nodes with the same instruction and executes the program synchronously
and in lock step. The interconnection network from processor to processor and from processor
to memory can be an array, mesh, hypercube, or any network. Figure 4 shows a 'C40-based
SIMD architecture. Since the 'C40 has 2K words of on-chip memory (and possibly more local
memory on the local bus), the program blocks can be transferred from the host or the controller.
The next program block can be transferred via the DMA without CPU intervention; this
minimizes communication overhead on the interconnection network. Furthermore, the need for
broadcasting from the host to the individual 'C40 is reduced.

Figure 4. SIMD General Architecture With 'C40s

'C40
as a Controller

'C40 'C40 ooo0 'C40 'C40

‘ Interconnection Network ‘

MU MU ooo MU MU

Memory Unit (MU)
MIMD (Multiple-instruction stream/multiple-data stream)

In multiple-instruction stream/multiple-data stream architecture, as shown in Figure 5, each
processor acts autonomously, executing different instructions. There are two categories of
MIMD systems:

— Shared-memory or tightly coupled

The processors share the same memory, and there is a rigid protocol for reading, modifying,
and writing the data in the shared memory.

— Distributed memory or loosely coupled machine

Each processor node has its own local memory (program and/or data); hence, there is no
memory contention. Processors communicate via message passing. The interconnection
network could be hypercube, ring, butterfly, mesh of trees, or another application-specific
network.

The interconnection network is usually bus connected or directly connected. In bus
connected systems, parallel memories, network interfaces, and device controllers are all

21

connected to the same bus. In directly connected systems, the interconnection could be
crossbar, partially connected graphs, or multistage networks.

Figure 5. Multiple-Instruction Stream/Multiple-Data Stream Systems

Interprocessor Connection Network ‘ ‘ Interprocessor Connection Network ‘
'C40 'C40 eee 'C40 'C40 'C40 'C40 XX 'C40 'C40
Shared Memory for All 'C40 Processors LMU LMU ooo LMU LMU
MIMD With Shared Memory MIMD With Local Memory

Flynn's taxonomy does not fully classify many new architectural configurations. Skillicorn’s taxonomy

of computer architecture is based on the functional structure of architecture and the data flow between its
component parts, such as IP (instruction processor), DP (data processor), DM (data memory), IM
(instruction memory), and SW (switching network). According to Skillicorn’s classification, a total of 28
classes of computer architectural configurations are possible. Each classification is a function of the
number of IPs, DPs, DMs, and IMs and their interconnection to each other. The interconnection also
determines the method of message passing and/or message sharing and indicates the type of coupling of
a particular parallel architecture. For example, Skillicorn's Computer Taxonomy class 14, known as a
loosely coupled parallel processing system, has a total of n IPs and n DPs. Each IP is connected to each
DP and to each IM; each DP is connected to each DM and to all other DPs. An n-dimensional hypercube,
as shown in Figure 2(c), is an example of Skillicorn’s class 14 parallel processing system.

TMS320C40-Based AT/ISA and VME Architecture

Sonitech has developed VME and AT/ISA TMS320C40-based boards that are expandable from two nodes
(100 MFLOPS) to hundreds of nodes, and memory that is expandable from 8 Mbytes to 768 Mbytes. This
report discusses the architecture of these boards for readers who are designing their own target systems,
integrating a system, or interfacing to the 'C40 global, local, or communication port bus. Figure 6 shows
the SPIRIT-40 Dual with two 'C40s, the Quad-40 with four 'C40s, and the SPIRIT-DRAM with a large
shared global memory. An ASM-M (application-specific module—memory) expansion bus brings the host
bus from the Spirit-40 Dual to the Quad-40, SPIRIT-DRAM, or other custom boards.

22

Figure 6. AT/ISA and VME Architecture With the SPIRIT-40 Dual, SPIRIT-40 Quad, and
SPIRIT-40 DRAM

SPIRIT-40 Dual SPIRIT-40 DRAM SPIRIT-40 Quad

ASM-M1
A36:D32 100 MByte/s

VME
AT/ISA
Interface

ASM-MO
A36:D32 100 MByte/s

000000

VA

)

DRAM
Bank 1

Note: For clarity, SRAM not shown.

This modular system (Figure 6) decouples the main processor card (SPIRIT-40) with a low-cost high-speed
coprocessor unit (Quad-40) and with a large DRAM memory (SPIRIT-DRAM). Both the Quad and the
DRAM boards feature no host bus (VME or ISA) interface for several reasons:

* The host bus is typically saturated (see Figure 1), and adding host interface will not increase the
overall host to 'C40 system I/O,
* The ASM-M brings the host bus to the other two boards and to additional user-customized
boards, and
* The configuration:
— Saves 20 to 30% of board real estate,
— Encourages the use of communication ports, as opposed to the host bus passing data and
messages,
— Reduces the cost of the Quad card (200 MFLOPS) to only $1000 more than the Dual (100
MFLOPS),
— Uses minimal power per slot and is therefore more reliable, and
— Requires no daughter cards.

23

A more detailed SPIRIT-40 VME architecture is shown in Figure 7, and major features of this architecture
are highlighted in Figure 8. The two 'C40s are nearly identical, except that one has an RS232 interface and
a boot EPROM. Attached to the 'C40 local bus is up to 4 Mbytes of local SRAM (can be as small as 256
bytes, or not used at all) and DSP control registers. The DSP control registers are specifically designed for
configuring and programming massively parallel systems. Each register has a unique processor ID, the size
and speed of local and global SRAMs, a processor boot mode (to boot from SRAM, PROM, or
communication ports), the capability to reset and interrupt the direction and status of the six
communication ports, and ASM-M port access and control. In a data flow architecture, where a large size
data block is being routed in search of a processor with a large memory, the memory size register can be
quickly read to determine whether that particular node has enough memory.

Figure 7. AT/ISA and VME Architectures

ASM-C ASM-C
(Communication) ASM-M (Communication)
Ports (6) Memory Expansion Connectors Ports (6)
o Nl y EXp (=)
o | | | [] s
Main SRAM Main SRAM
up to up to
EES%M 4 Mbytes 4 Mbytes Local
1 N SRAM
128K Bytes) T T N up to
— 4 Mbytes
ocal
SRAM — TMs320c40f
s — {Tms320C40 N VA (—
4 Mbytes
T
DSP |__LF—— ~No_ v DSP
Control Control
Registers JTAG <A . |Card Control " | Registers
and Status
RS-232 N Ll "| Registers
l + VME Master/A32,
Tx Rx 24,16,D032,16,8(EO)

Slave Interface
A32,D032,16/A16,D16

i
I 1

I VME Connector I I VME Connector I
P1 P2

24

Figure 8. Dual Processor SPIRIT-40 Major Features

(Photograph)

1) 12 ASM-C Communication Port Connectors. Each 30-pin port connector is capable of 20-Mbyte/s transfers and has
its own DMA controller. The 12 ports facilitate large processor arrays, data switches, and external /0 connections.

2) ASM-M Communication Port Connector. This 240-pin connector provides two 50-Mbyte/s buses (32 bits wide, 32-bit
address), one for each 'C40. The connectors make 256 Mbytes of DRAM available per'C40 via a smallinterconnect board
to an adjacent VME slot with Sonitech DRAM cards.

3) Removable Faceplate. This faceplate unplugs to allow access to the ASM-M connector. In large systems (dozens
of processors), the faceplate can be replaced by a user-designed panel to eliminate discrete cables.

4) Memory SIMMs (single inline memory modules). These SRAM SIMMs provide zero-wait-state access for the 'C40.
Up to 16 Mbytes can be installed on the board.

5) TCLK. The TCLK lines connect to each 'C40’s two timer-counter channels and can be used as inputs or outputs for
controlling external equipment.

6) JTAG. The industry-standard JTAG connector provides access to each 'C40's JTAG path for software development.
7) VME Master/Slave Interface. This card may operate as a VME master, slave, standalone, or Slot 1 controller.

8) Dual 40- or 50-MFLOPS 'C40 DSPs. The 'C40 supports a variety of development tools from Sonitech and other third
parties, including a choice of five operating systems, C and FORTRAN compilers, and DSP libraries.

25

The main bus (or global bus) memory operates on a shared-access basis, giving the VME host and 'C40
access to the entire memory space on a cycle-by-cycle basis. This simplifies software development and
speeds movement of large data arrays compared to systems that use a small dual-port RAM. Also on the
'C40 main bus (global bus) is the ASM-M expansion bus, which allows up to three cards to be connected.
The VME bus has access to the ASM-M and can transfer data over this bus without interfering with the
'C40’s access to its SRAM (notice the transceivers/buffers). One advantage of this implementation is that
the host bus can transfer data to the ASM-M slave without impacting the 'C40 execution. The SPIRIT-40
VME transfers data at 20 to 30 Mbytes/s over the host VME bus and is a slot 1 bus master; that is, it reads
and writes to the memory of other cards on the VME bus.

In addition to the local and global memory interfaces to the 'C40, six communication ports are connected
to the front panel. To simplify interconnection to external communication port devices (such as data
acquisition, video bus, or other custom interfaces), each communication port connector includes an
external interrupt signal to the 'C40 and a reset signal that can be configured as an input or output. (See
Figure 10.) A secondary connector is provided for access to the timer clock.

The RS232 can interface to any host machines (MAC, Sun, PC, etc.) for code downloading, debugging,
and diagnostics. For stand-alone operations, the boot EPROM can boot not only the main 'C40, but also
all the other 'C40s.

The coprocessor SPIRIT-Quad is shown in Figure 9. It interfaces with the ASM-M via the shared SRAM,
and the global buses of each 'C40 can access this SRAM. The 'C40 processors on the Quad have the same
type and size of memory and the same DSP control register as the processor on the Dual card. Such
symmetry is highly desirable, as discussed later in this report, for many architectural configurations and
algorithms. A total of 12 communication ports are brought out. There are three from each 'C40; the other
communication ports are connected among themselves.

26

Figure 9. SPIRIT-40 Quad Processor Architecture

ASM-M O or 1
Memory Expansion
Connector (Slave)

Control and
Arbitration Logic

Shared
. SRAM
upto4
JEG |] 1 L MBytes
o S L L Ll
{ € o 7 E » O 7 E » O [E 0>
SEsC | = E5 O SEsC—> | SE5CH |
20‘3—\:’-’— C40 goag—» C40 gon.\j—» C40 goag—» C40
To = To — To —» To —
Other =] Other =] Other — Other =
3°'C40s > 3°C40s > 3°C40s ™ 3°'C40s ~>
DSP DSP DSP
DSP Control Control Control
4 Control Registers Registers V| Registers
Registers
Boot Local 9 Local Local Local
EPROM SRAM RS-232 SRAM SRAM SRAM
up to 4 MB up to 4 MB up to 4 MB up to 4 MB

Tx Rx
The SPIRIT-DRAM supports applications requiring massive amounts of global memory. Like the
SPIRIT-Quad, the SPIRIT-DRAM has no host interface (only power and grounds are connected); the host

bus is available via the ASM-M memory expansion connector. A total of 256 Mbytes of DRAM is available
on a shared-access basis (one to three wait states) to all the 'C40s on the Dual board.

System-Level Design Issues With the TMS320C40 Communication Ports

The TMS320C40 communication ports transfer data at 20 Mbytes/s. This communication capability makes
the 'C40 ideally suited for large interconnect parallel processing networks. You should analyze several
design issues, however, before selecting an interconnect topology and peripheral interface design. The
'C40 communication ports consist of 12 lines: eight data, one strobe, one ready for byte-transfer
handshaking, one for token transfer, and one for token acknowledge. A communication port can be in either
of two I/O states: output state if it has the token, or input state if it does not have the token. During power-up,
three of the six communication ports have a token (output ports), and three don’t have a token (input port).
For bidirectional communication, the connected input and output communication ports pass the tokens
back and forth.

'C40 Node Reset

Figure 10 shows a configuration with two 'C40 nodes, A and B, each with one communication link. The
power-up default is that A-Link has the token and is an output; B-Link does not have the token and is an
input. During bidirectional data transfers, A and B exchange tokens. If B-Link has the token, node A is
reset; after the reset, both A-Link and B-Link will have the token. Both links then drive the data bus (if for
more than 100 ns, the communication ports could be damaged).

27

Figure 10. Token State After Reset

Token
O —> —>
— C40A 'C40B
Output Input
Communications

Link

The SPIRIT-40 communication ports have signals that prevent communication link contention and
simplify interface to peripheral devices.

In a large topology where multiple 'C40 links are connected to many other 'C40s, a reset to one 'C40 must
immediately follow a reset to all 'C40s. Such a scheme has significant software and system-level
ramifications. For example, all of the intermediate data and programs, including program and data
download, will be lost and must be reinitialized. The problem is further complicated if a peripheral device
is attached to a link and has an option to assert a reset to the 'C40.

The ASM-C (application-specific module—communication port interface), a superset version of the 'C40
communication port interface, guarantees no contention between the communication links. The
bidirectional CTOKRES* (token restore) signal resets all the 'C40 links, is received by all the 'C40’s in
the cluster, and is connected to each 'C40’s NMI (nonmaskable interrupt). Once the 'C40 enters the NMI
routine, it can select reset or no reset. The CAUXRES* and CINT* I/O signals are provided for non-'"C40
reset. These signals will not reset the 'C40 or a communication port token interface. They can reset aremote
communication-link-connected peripheral device or one 'C40 interrupting another 'C40. When a remote
device or another 'C40 asserts this signal, the 'C40 that receives the signal is interrupted and can take
appropriate action in software.

Design Suggestions for a Large Topology
* Use redundant links to avoid bidirectional communication port I/O

The "C40 has six communication ports. If a four-processor configuration with single links, as
in Figure 11, is required, the remaining links can be used so that only unidirectional transfers
are necessary on each link. Such a configuration permits reset of a single 'C40 without cluster
reset. For example, a 3-D hypercube (three links per node) can be configured for six
unidirectional links (dashed lines).

Figure 11. Four-Node Configuration With a Single-Link Interface and Unidirectional

Transfers
O
'C40 | 'C40
——————— -~
O
f
O | N s Q
| ANy |
NS
\ N \
// \\ |
(b / N i Q
L« O
'C40 | 'cao0
O

28

Partial cluster reset

For applications that cannot tolerate a full system reset, you can configure the hardware and
software for partial cluster reset. For example, in the two-dimensional mesh shown in Figure 12,
the thick lines represent a second link. This way, each link is maintained unidirectionally in the
horizontal direction and so is not affected by a reset. A reset at any one node needs to propagate
in the vertical direction only, not in the horizontal direction.

Use Buffered Communication Ports

Buffering the communication ports will reduce the transfer speeds and, depending on the design,
usually allow only unidirectional transfers. The advantage is that the communication port links
can be significantly longer than 6-12 inches.

Figure 12. A Two-Dimensional Mesh Configuration

1
I
!
|
T

rL'l
:
_I‘
T

— = Bidirectional link

X ='C40 under reset
—— = Column to be reset
— = Unidirectional link

29

Matrix Multiplication Application of Parallel Processing

Parallel processing has a wide range of applications, including the following:

embedded real-time

image processing

feature extraction

motion detection

speed estimation

thermographic analysis

speech recognition

spatial and temporal pattern recognition
vision

weather
seismology
defense

radar

sonar

scientific
medical
industrial
communications

One commonly used algorithm is matrix multiplication. In general, if A is a matrixof end B is a matrix
of n x k dimensions, respectively, then a mesh of size kis required to compute matrix-matrix
multiplication. In our example, m=n=k = 2.

The example below and Figure 13 show an example of matrix multiplication. Let the nodes of the mesh
be labeled like a matrix element (row,column), that is, nodes (1,1), (1,2), (2,1), and (2,2)

AXB=

Step 1.

Step 2.

Step 3.

Step 4.

1 7 8 19 22
X =C=
3 5 6 43 50
'C40(1,1)

d=A(1,1)*B(1,1)=2*7=14

'C40(1,1)
C(1,1)=A(1,2)*B(2,1)+d=1*5+14=19
'C40(1,2)
e=A(1,1)*B(1,2)=2*8=16
'C40(2,1)
f=A(2,1)*B(1,1)=4*7=28

'C40(1,2)
C(1,2)=A(1,2)*B(2,2)+e=1*6+16=22
'C40(2,1)
C(2,1)=A(2,2)*B(2,1)+=(3*5)+28=43
'C40(2,2)
9=A(2,1)*B(1,2)=4*8=32

'C40(2,2)
C(2,2)=A(2,2)*B(2,2)+g=(3*6)+32=50

At the end of the algorithm, each 'C40 node designated as 'C40(i,j) contains element C(i,j). Reference
[3]explains parallel implementation of matrix multiplication using both shared and distributed memory

approaches. The features for the 'C40 architecture bring high efficiency, low-communication overhead,
and almost perfect speed-up to this implementation.

30

Figure 13. Matrix Multiplication

6]
:
8]
'C40 (1,1) 'C40 (1,2) 'C40 (1.1) 'C40(1.2)
> 000 000 0+2*7=14 000
Step 0 Step 1
a0 (2.1) 'C40 (2.2) 'C40 (2,1) 'C40 (2,2)
000 000 —» 000 000
(6]
'C40 (1,1) 'C40 (1,2) 'C40 (1,1) 'C40 (1,2)
14+1%5=19 0+2*8=16 19 16+1%6=22
l Step 2 Step3 [6]
'C40 (2,1) [4] 'C40 (2,2) 'C40 (2,1) 'C40 (2.2)
AT 000 28+3*5=43 0+4*8=32
'C40 (1.1) 'C40 (1.2)
19 22 Done
|19 22
Step 4 Done A*B=C= ‘ 43 50 ‘
'C40 (2.1) 'C40 (2.2)
43 32+3*6=50

Parallel Processing Architecture Topologies

This section discusses the hypercube, pyramid, ring, mesh, and mesh of trees architedtthes
properties.

Hypercube and Its Properties

The hypercube is a configuration of loosely coupled parallel processors based on the binary n-cube
network. A significant difference between hypercube and most other parallel architectures is that its modes
use message passing instead of shared variables or shared memory to communicate. These are the key
advantages of a hypercube architecture:

¢ Powerful Network: Easily mapped and efficiently implemented.
¢ Small Diameter. Shortest path separating the farthest two nodes.
¢ Alternate Paths Alternate paths for all nodes to minimize congestion.

e Scalability: Flexibility in expanding and contracting the network without significant hardware
and software modification and cost.

e Fault Tolerance Robust when nodes and links malfunction.

The 'C40’s six communication ports can be connected at 20 Mbytes/s to form a six-dimensional hypercube
(64 nodes). In addition, the 'C40’s large amount of addressable local, global, internal, and cache memory,
coupled with its CPU performance, DMA, and pipeline, permits a large subprogram to be implemented
efficiently on one node. This reduces the node-to-node communication overhead.

31

An n-dimensional hypercube contain$riodes. Nodes are connected directly with each other if their
binary addresses differ by a single bit. In an n-dimensional hypercybeakh processor is directly
connected with n neighboring processors with n-bit binary addresses in the interval-a.td2e
processing elements are placed at each vertex of the hypercube. Adjacent nodes are connected directly with
each other if and only if their binary addresses differ by a single bit. One commonly noted disadvantage
of a p-cube computer (p=number of nodes) is its requirement for large numbep3 @dmput/output

ports per node.

If a hypercube has fewer than six dimensions, the extra links from each 'C40 can be used as secondary links
for high reliability and full duplex communication and to decrease the node-to-node distance. In special
cases where two or more paths of equal distance are to be connected, priority is given to those paths whose
planes have complementary MSBs; this yields a system with a minimum diameter. Figure 14 shows two-
and three-dimensional hypercubes without extra links.

Figure 14. Two- and Three-Dimensional Hypercubes

'C40 'C40

'C40 'C40 'C40 'C40

'C40 'C40

'C40 'C40

'C40 'C40

(@) Two-Dimensional Hypercube (b) Three-Dimensional Hypercube

You can also create a hypercube of up to ten dimensions by combining two 'C40s as one node (see
Figure 15). One of the two 'C40s is the number-crunching processor; the other 'C40 is used for
communication, control, task scheduling, data decomposition, and, if required, number-crunching support
for the first processor. This configuration has a peak performance of 100 GFLOPS. The SPIRIT-40 Dual
processor is ideal for this dual-processor/single-node configuration.

32

Figure 15. Ten-Dimensional Hypercube Configured With Dual Processor—Single Node

1 2 3 4 5
'C40 for
'C40 for —Communication
10 Number Crunching —Control 6——

—Task Scheduling
—Data Decomposition
—Redundancy

9 8 7
\

'C40 Node for lO-Di‘mensionaI Hypercube

Hypercube Node Assignment

Hypercube nodes are assigned an address with respect to the Reflexive Gray Code (RGC). RGC is
important because it uniquely defines adjacent nodes and node-to-node distances. RGC can be expressed
mathematically as:

Ghir = {(0)Gn, (D(GR)} - (1)

where G, is the RGC of order rf3n is the reflection of G, 0(G,) is the insertion of 0 as a MSB, and 3G
is the insertion of 1 as a MSB.

The following are RGCs for n = 2, 3, and 4.
* One-dimensional
G, =0;andG} =1 2
* Two-dimensional
G, =0, 1, and G} = 1,0;therefore, G, = 00,01,11,10 A3)
Similarly,
e Three-dimensional
G,; = 000,001, 011,010,111,110,100,101 (4
* Four-dimensional

G, = 0000, 0001, 0011, 0010, 0111, 0110, 0100, 0101,

1111,1110, 1100, 1101, 1000, 1001, 1011, 1010 ®)

In addition to the node addresses as described above, the link connections must be assigned. The number
of links or edges in a hypercube arexn2n-1 On the *C40-based n=6 hypercube, 192 cables will be
required. Port connections are assigned via an iterative algorithm.

33

Six Properties of the Hypercube

Six properties [8, 11, 14] are unique to the hypercube and can be applied to task allocation, data
decomposition, communication, and architectural expansion and contraction:

34

1.

“An n-dimensional hypercube can be constructed recursively from a lower dimensional cube.”

This property makes a hypercube a modular parallel architecture; it allows you to build a higher
dimensional hypercube from lower dimensional hypercubes. With 'C40s as nodes, you can
always upgrade the hypercube a minimum of six dimensions or higher by combining two 'C40s
into one, as shown in Figure 15.

“Any n-cube can be tiered in n possible ways into two (h—1) subcubes.”

Due to this property, hypercube can divide larger data size into smaller data size, assign the tasks
to different subcubes in any order, and combine the results.

“There are n!2ways of numbering the'zhodes of the n-cube.”

It is not necessary to assign node addresses in any specific order. Since the node addresses are
RGC, you can assign the starting addresses to any node. This is especially useful when the data
input node changes from one node to another; to implement the same algorithm, just reassign
the node address rather than change the program or the physical link connection.

“Any two adjacent nodes A and B of an n-cube are such that the nodes adjacent to A and those
adjacent to B are connected in a one-to-one fashion.”

In the three-dimensional cube shown in Figure 16, two adjacent nodes, A and B, are chosen
arbitrarily. Ahas al, a2, a3 as its adjacent nodes, and B has b1, b2, b3 as its adjacent nodes. Note
that the pairs (al, bl), (a2, b2), and (a3, b3) are also adjacent. If this process is repeated until all
the nodes are marked either a or b, then exactly half the nodes are marked a, and the remaining
half are marked b. All the nodes are linked in a one-to-one fashion (and are adjacent) like nodes
A and B.

Figure 16. Three-Dimensional Cube

A=b1 al=B
D 2
a2l Th2
a3 b3
C} a)
b4 a4

“There are no cycles of odd length in an n-cube.”

This property simplifies message passing, which is the heart of the loosely coupled MIMD
hypercubes. For example, a message traveling from node A back to node A will pass through
an even number of links. Parity is positive (+tve) if the number of 1s in a binary address of a node
is even; if the number of 1s is odd, the parity is negative (-tve).

“The n-cube is a connected graph of diameter n.”

When a message travels from one node to any other node, the shortest distance will not exceed
the diameter, which is equal to the hypercube dimension, n. Additionally, there are n different
(nonoverlapping) parallel paths (see node A and node B paths in Figure 17) between any two
nodes. These parallel paths are equal if A and B are the farthest nodes. The message must pass
through n links or less in an n-dimension hypercube. In other words, in an n-dimension
hypercube, a message needs to pass through only n—1 (or less) nodes to get to the intended node.

Figure 17. Hypercube Architecture With Parallel Paths

o0 000 » |— — — T a0
A \
N SN |
N , v\) |
N C40 f—-—- 23— 'C40
N v\ |
N . \
N
NC 'C40 \\ : 'C40
Y
'C40 B . \
11
'C40 foammmmmmad B
H_2 111
H.3

Distinguishing Hypercube From Similar Configurations

Many architecture configurations such as wraparound mesh or wraparound tori can be mistaken for
hypercubes. The following theorem differentiates hypercubes from other similar architecture
configurations.

Theorem: A graph G with a total number of V nodes and E edges is a hypercube if and only if:

* V has 2" nodes.

e Every node has degree n.

e Gis connected in a diameter of n (see hypercube property six, above).

* Any two adjacent nodes A and B are such that the nodes adjacent to A and those adjacent to B
are linked in a one-to-one fashion (see hypercube property four, above).

This theorem is proved by induction and discussed elsewhere, but it can be verified easily by applying the
theorem to a mesh with eight nodes and a hypercube of three dimensions. In summary, the hypercube is
one of the most versatile and efficient networks. It is well suited for both special-purpose and
general-purpose tasks and can easily be implemented with the TMS320C40 DSP.

Mesh Topologies

Simple Mesh

A two-dimensional mesh is the simplest parallel processing topology. Its nodes are located at the
intersection of rows and column links. Stacking two-dimensional meshes and linking all the nodes in the
vertical plane yields a three-dimensional mesh (see Figure 18). The 'C40 is perfectly suited for a 3-D mesh
in which four communication ports are linked to neighbors in the horizontal plane, and the remaining two
are linked in the vertical plane. The edge nodes require only four links, and the corner nodes require three
links. Extra edge and corner links can be used for data input/output, redundancy, and expandability. The
mesh diameter is of the order log n, where n is the total number of mesh nodes.

35

Figure 18. Three-Dimensional Mesh

Tx Tx Tx Tx Tx Tx Tx Tx
a0l [ea0l [ea0l B . , , ,
—| c4o} {ca0] {.ca0] { C4o|—| C4o|—| C4o|—| C4o|—| C40|—
Rx Rx Rx Rx Rx Rx Rx Rx
Rx Rx Rx Rx Rx Rx Rx
—|'C4o| |'C40| |'C4o| |’C40|—|’C4o|—|'C40|—|'C40|—|'C4o|—
Tx Tx Tx T T Tx Tx Tx Tx
—|'C4o| |’C40| |’C4o| |’C40|—|’C40|—|'C40|—|'C4o|—|'c40|—
Rx Rx Rx Rx Rx Rx Rx Rx
I Rx I I Rx I I Rx I Rx RXx RXx RXx
—|'c4oI {.ca0] {ca0] I’C4O|—|’C4O|—|’C4O|—|’C4O|—|’C4O|—
Tx Tx Tx Tx Tx Tx Tx T

Mesh of Trees

Mesh of trees architecture gives a higher overall performance than an array ORing topology fmhe n

mesh of trees [14] is constructed from ax m mesh by adding processors and links to form a complete
binary tree in each row and each column. In Figure 19, the mesh nodes are square and numbered from 00
to 15. A 'C40 row tree node is added to the mesh node 00 and node 04. Similarly, mesh nodes 08 and 12
are linked to another 'C40 tree node, and both of these tree nodes are linked to a’C40 apex node to complete
the binary row tree. After a complete binary row tree is completed for all the mesh nodes, columns are
formed in the same way.

36

Figure 19. Mesh of Trees Architecture

'C40 Column 'C40 Column 'C40 Column
Tree Node Tree Node Tree Node
'C40 Mesh 'C40 Mesh 'C40 Mesh 'C40 Mesh
Node Node Node Node
00 01 02 03
"C40 Row "C40 Row 'C40 Row "C40 Row
Tree Node Tree Node Tree Node Tree Node
'C40 Column 'C40 Column 'C40 Column
Tree Node Tree Node Tree Node
'C40 Mesh 'C40 Mesh 'C40 Mesh 'C40 Mesh
Node Node Node Node
04 'C40 Apex 05 'C40 Apex 06 'C40 Apex 07 'C40 Apex
Node Node Node Node
'C40 Column 'C40 Column 'C40 Column
Tree Node Tree Node Tree Node
’C40 Mesh ’C40 Mesh ’C40 Mesh "C40 Mesh
Node Node Node Node
08 09 10 11
'C40 Row 'C40 Row 'C40 Row "C40 Row
Tree Node Tree Node Tree Node Tree Node
'C40 Column 'C40 Column 'C40 Column
Tree Node Tree Node Tree Node
'C40 Mesh 'C40 Mesh 'C40 Mesh "C40 Mesh
Node Node Node Node
12 13 14 15

The tree leaves are the origindlmodes of the mesh. Overall, the network has-32n processors. The

leaf and root processors have two links, and all other processors have three links. The diameter of n
mesh of trees is 4 log n. The mesh of trees also exhibits the recursive decomposition property, which is
useful for parallel computations, for designing efficient layouts, and for fabricating a larger dimension
mesh of trees from smaller dimension meshes of trees. This property is also helpful in implementing
identical computations at low levels using the subnetworks, and for high-level global communication using
the root processors. As the size of the network increases, the number of ports for communication increases
linearly; this disadvantage is similar to that of hypercubes.

Pyramid Architecture and Its Properties

A pyramid is a repetitive structure whose building block consists of the basic unit shown in Figure 20.
Pyramids are widely used in image processing, where large data is segmented and decomposed.

Figure 20. Pyramid Building Block

Parent

Child 1 Child 4

Child 2 Child 3

37

There are five 'C40 nodes in the building block of the pyramid. The 'C40 node on the top is called the parent
of the four lower-level child nodes. Each parent can have only four children, and all the children are
connected in a mesh. Each level of a pyramid is a mesh, and the bottom level or the level with maximum
nodes (2 x 2N) is called théaselevel. The ratio of nodes in a lower level to the node(s) in the adjacent
u%per I%vel is 4:1. The topmost level (level 0) is callechffexof the pyramid, and it has only one node

(29 x 2Y=1).

A two-level 'C40-based pyramid (see Figure 21) has 21 nodes (one apex node requires four links, four
nodes at level 1 require seven links, and 16 base-level nodes require a maximum of five links). Since the
'C40 has a maximum of six communication ports, some nodes at level 1 will not be symmetrical. To
compensate, a “dual processor single node,” as shown in Figure 15, is suggested for these nodes. The other
option is to include a one-node-to-two-node multiplexer.

Figure 21. Two-Level Pyramid

'C40 Node 'C40 Node 'C40 Node 'C40 Node
Level 2 Level 2 Level 2 Level 2
'C40 Node 'C40 Node
Level 1 Level 1
'C40 Node 'C40 Node 'C40 Node 'C40 Node
Level 2 Level 2 Level 2 Level 2

[[Cionode |
/ Level O \

'C40 Node 'C40 Node 'C40 Node 'C40 Node
Level 2 Level 2 Level 2 Level 2
'C40 Node 'C40 Node
Level 1 Level 1
'C40 Node 'C40 Node 'C40 Node 'C40 Node
Level 2 Level 2 Level 2 Level 2

The 'C40 offers several advantages when you build a pyramid. The concurrent DMA and CPU operations
over the links reduce communication overhead for large amounts of data. The apex node has two free links
that can be used for data I/0. Also, the children can pass data among themselves without slowing down
the parent nodes. This is an advantage in image processing, where data decomposition and task scheduling
are common.

The Quad-40 board is a complete set of four children. To build a two-level pyramid, you need boards for
the base level (a total of 16 'C40s), another board for level 1, and a SPIRIT-40 dual board to complete the
pyramid structure.

Ring Architecture

A ring architecture and its variations, as shown in Figure 22, consist of a number of processors connected
in an array fashion. When the last processor of an array is connected back to the first processor (wraparound
array), a ring is formed. Ring architecture offers several advantages over a simple array in terms of
computation and communication times. The communication protocols are well established and simple.
When a mode or link malfunctions in ring architecture, however, messages must be rerouted in the reverse
direction from the break point. Such rerouting taxes each processor’s CPU and increases the overall
bandwidth on the remaining links.

38

The 'C40 processor node can increase the ring architecture reliability and link bandwidth by 300%, as
shown in Figure 22a. The most versatile extension of ring architecture is the vertical stack of rings
organized to form a cylindrical architecture. The cylindrical architecture offers two links for increased
reliability in the horizontal plane and r number of vertical parallel paths, as shown in Figure 22c, where
r is the number of nodes in any ring layer. The cylinder also provides for inputs at the top and outputs at
the bottom. Cylindrical structures are highly modular because it is possible to increase the diameter of the
ring and the height of the cylinder.

Figure 22. Ring Architecture

| 1'C40-1 ||
'C40-8| |]'C40-2

'C40-7 'C40-3

'C40-6] —|'C40-4
[—]'C40-5|]

a. 300% Redundant Ring

| |'cao-1]_|
'ca0-8[] | |'c40-2

'C40-7 'C40-3

'C40-6 | —|'C40-4
[—'C40-5|]

b. 200% Redundant Ring With 1/0O Ports ¢. Modular Cylindrical Architecture

Reconfigurable Massively Parallel Processors

Massively parallel computers require many links, and the link-to-processor ratio differs, depending on the
selected architecture. For example, the 'C40 links support hypercubes with a maximum of six dimensions
and pyramids with only one level. To overcome the link limitation, massively parallel systems require
reconfigurable architecture. Reconfigurable computers, as the name implies, can be reconfigured from one
architecture to another without any physical modification in processor-to-processor connections. The
computers are reconfigured via a link switch, which multiplexes one link to many or many links to many
others. This class of machines offers high fault tolerance and overall lower cost systems if the cost of a link
switch is less than adding additional links to the processor.

Switch configuration can be performed before the processing begins (nonreal-time), deterministically, or
dynamically as the switch passes the packets to its destination. Hardware switch reconfiguration requires
physical switches, and the following factors must be evaluated:

e Total number of paths that enter and exit from the switch (degree)

¢ Number of possible configurations for the switch (configuration settings)

¢ Number of lines entering the switch from each direction (data path width)

¢ Number of different paths that the switch can simultaneously connect (crossover capability)

39

Figure 23 shows a R 2 switch in which any one link can be connected to any one of the other three links.
This switch reconfigurability offers three processor-to-processor connections with only one link per
processor. For example, the 'C40’s six ports can be physically increased to 18 links (18 adjacent nodes or
an 18-dimension hypercube) via thex22 switch on each port.

Figure 23. A Two-by-Two Switch With Four Possible Switch Settings

South—-East South—-West West—East
Open and and and
North—West North—East North—South
North North North North

West East East
East West
West East
West

South South South South

The switch connection mechanism can be controlled by circuit switching or packet switching. In circuit
switching, the links are pre-established; in packet switching, the packet header carries the destination
address. Switches are cost-effective in implementing massively parallel processors.

Software Approach to Massively Parallel Systems

The software approach for reconfiguration of interconnection networks is based on the graph embedding
principle. Graph embedding, also known as mapping, and other techniques based on graph embedding,
such as reshaping, direct embedding, embedding by graph decomposition, and many-to-one embedding
can be found in related literature.

Links for Massively Parallel Processing

Massively parallel systems require a large number of links. Large numbers of links can cause problems of
electromotive force (emf) generation, signal degradation due to large link distances, cross-talk, ground
loops, security, and less bandwidth speed. If a bus architecture is used instead of links, then the shared bus
also lowers the system speed and requires extensive control and arbitration logic.

In the future, fiber-optic-based 'C40 communication port links will overcome the problems. The new
fiber-optic link uses low power; has a single IC with transmitter, receiver, serial-to-parallel conversion,
clock generation, and recovery functions; and is fully compatible with the emerging FDDI and other
upcoming standards.

40

Benchmarks, Analysis, and Data Decomposition

Benchmarks
This section summarizes several benchmarks for evaluating multiprocessing architecture performance:

MFLOPS

This theoretical number represents the maximum number of arithmetic operations or
instructions that can be executed by a device and is expressed as millions of floating-point
operations per second (MFLOPS). The 'C40 can perform 40-50 MFLOPS. In some
implementations such as filtering, it is possible to achieve 99% of theoretical MFLOPS. The
factors that decrease throughput are memory contention, input/output bottlenecks, message
passing, interrupt latency, and housekeeping. The 'C40 reduces bottlenecks with dual identical
buses and a six-channel DMA coprocessor for both internal and 1/0 operations.

LINPACK

The LINPACK benchmark, also known as Dongarra’s benchmark, uses the Gaussian
elimination process to solve a large matrix. A benchmark [10] for a 64-node hypercube, 1000
X 1000 matrix, three MFLOPS per node, 20-Mbytes/s links, and message overheagf 100
gives approximately 45% processor utilization. When this is extrapolated to the 'C40, where
each node performance is 50 MFLOPS, 20 Mbytes/s link speed, and message overhead of
approximately 100 cycles or 5%, a 64-node 'C40 hypercube can be expected to have a
minimum of 45% or better processor utilization or a minimum LINPACK benchmark of 1.4
GFLOPS.

MIPS /MOPS (Millions of Instructions/Operations per Second)

These numbers are application-dependent because different instructions require different
numbers of operations. For example, the 'C40 can perform as many as eight CPU and three
DMA operations per cycle, which is equivalent to 275 MOPS.

Kernel tasks

Kernel tasks occur frequently and influence the system throughput. Benchmarking these
kernels—for example, the Fast Fourier Transform (FFT) algorithm, FIR, matrix operation, and
correlation—shows relative performance for different parallel computers.

Calculation Algorithm
The dart board algorithm [11], Figure 24, can be used to estimate the value of

Figure 24. Dart Board for TtEstimation

7 N

41

The dart board consists of a circle circumscribed by a square. The radius of the circle is one unit. Darts are
thrown atthe dart board in such away that each dart has an equal probability of hitting any part of the square.
If a dart lands within the circle, it is counted as 1; outside the circle, as a 0. At the end of the algorithm, the
total number of ones are divided by the sum of the 1s and 0s. The estimigtelatined as shown below.

Area of circle _ @ (radius)? g ®)

Area of square (2 x radius)? 4

of 1s n (radius)? T @

(# of 1s) + (# of 0s) (2 x radius)? 4
In thettbenchmark algorithm, each 'C40 node runs its own dart board algorithmestimation. In a
parallel system, the score increments in parallel on all nodes. At the end, the n estimatesgibbally
combined. Each 'C40 node generates a nonoverlapping set of random numbers.

True benchmarking can be done only by implementing the actual algorithm on all the systems and
architecture configurations of interest. This is a demanding task because it requires programming resources
and hardware cost.

Algorithm Analysis
This section discusses algorithm load distribution and speedup for multiple node systems.

Load Distribution

If all nodes are identical (memory size, communication channel, clock speed) and if they execute a program
with equal data size, they will all complete execution at the same instant. In this case, the 'C40 computation
time, T, is the same for all nodes. However, if data size is unequal or if the start of execution is staggered,
Tmaxs calculated as follows:

n = number of 'C40 nodes; T, = computation time at 'C40 node i ®)

Tmax = Max{T;, Ty v T} ©
N

Twasted = Z(Tmax - Ti); (10)

i=1

max

V = Variation ratio = , where T, = min {T,, T, oereeeee. T a1

T
For an ideal parallel processing system with a perfect load balancing, the variation ratio is:

min

V=1 (12)
and
Twasted =0 (13)

Speedup

Speedup and cost are two critical parameters for evaluating parallel systems against sequential systems.
Speedup is defined as:

. . . , (14)
worst-case running time of fastest known sequential algorithm for problem
worst-case running time of parallel algorithm

Speedup =

42

It may appear that speedup is directly proportional to the number of 'C40 nodes. This may not always be
true, especially when data dependencies or parallel processing system restrictions prevent dividing the task
into equal parallel tasks. Assuming that a program could be subdivided into n equal subprograms for
parallel implementation on n 'C40 nodes, the system cost is defined as:

Cost = program execution time X number of 'C40 nodes used (15)

c(n) = t(n) x p(n) (16)
If the parallel algorithm is perfectly load balanced, an optimum cost is obtained. If a parallel system is not
load balanced, several 'C40 nodes may be idle and contribute to higher cost. A parallel processing system
is cost-optimal if the cost of the parallel execution matches the known lower bound on the number of
sequential operations. You can reduce the running time of a cost-optimal parallel algorithm by using more
'C40 nodes. You can also maintain the cost-optimal equation and use fewer 'C40 nodes at the price of
higher running time. For example, in tbdd-even merginglgorithm, if the number of elements to be
merged is equal to n, then the upper bound on a sequential computer is O(n) [order of n]. If the same merging
is carried out on a parallel processing machine with n 'C40 nodes, the cost is:

Cost = t(n) x p(n) (17)
wheret(n) andp(n) are defined above.
=[1 + logn] X [1 + nlogn] = O(nlog?n) (18)
(read as order of n log square n)
Parallel implementation of merging is not cost-optimal, because<QQh log?n).

Efficiency () of a parallel algorithm is evaluated as shown below.
. . : . (19)
__worst-case running time of fastest known sequential algorithm for problem
B Cost = p(n) x t(n)
For example, if a program is executed sequentially in 100 ms and the same program is executed parallel
over 10 processors in 20 ms, efficienny is 50%.

As the value of n increases, other factors that must be evaluated are the cost of capital investment,
maintenance, programming, etc.

Data Decomposition

Data decomposition is an effective tool in evaluating architecture performance. A brief review of different
techniques for data decomposition and task allocation is presented in this section.

Uniform Partitioning
The task execution is independent of input data. Data is completely deterministic. In parallel execution,

the data and computation are equally distributed among all 'C40 nodes for best load balancing and
maximum efficiency. Uniform partitioning is used in convolution, FFT, and filtering algorithms.

Static Partitioning

In Hough transformation, computation is proportional to the number of edges present and not to the size
of the image. For example, if only a chair is present in the right-hand corner oké&%22mage, then

the 'C40 nodes with that portion of the image will be busy computing edges, whereas the rest of the 'C40
nodes will be idle because no edges are present. This load is not balanced, and the data is not decomposed.
Static load balancing requires a priori information as an input for data decomposition.

43

Weighted Static

Computation is a function not only of granule size and data density but also of spatial relationship of
significant data. For this type of data, a weighted static scheme is useful for load balancing and data
decomposition. In Hough transformation, information regarding granular size and the number of edges can
be easily obtained. Two granular sizes may have equal amounts of significant data (edges), but in one case,
the edges may not be related to each other at all. In the other cases, the edges may be spatially connected
to form a certain object, and a large amount of computation may be required to identify an object.

Dynamic

Uniform, static, and weighted static schemes decompose data after the data characteristics are known.
However, it is possible to assign new tasks to a particular 'C40 node in advance by predicting that the
current task will be completed after a certain period.

Table 2 shows [13] execution time for an eight-node system implementing a motion-detection algorithm.
The dynamic method yields near perfect data decomposition (close to 1 variation ratio). This is also true
for other algorithms that have data dependency, spatial relationship, and data variation across the inputs.

Table 2. Comparative Time for Four Methods to Execute an Algorithm

Total . : Weighted ’
Eight Nodes Uniform Static Static Dynamic
T maximum 3500 1100 1200 1000
T minimum 100 200 750 950
Variation Ratio V 35 55 1.6 1.1
Conclusion

The TMS320C40 is a nearly perfect node for implementing hypercube, ring, mesh, and pyramid
architectural configurations. For integrating a parallel processing system, a 500-MFLOPS system can cost
as little as $20,000 to $30,000. Many programming and design tools are now available for the 'C40, and
many more will be available soon. For quick time to market, many board-level 'C40-based products that
are available now can be integrated. Many low-cost and low-power derivatives of this processor from Texas
Instruments are expected. Computationally intensive algorithms will be ported to the 'C40 and will be
available as off-the-shelf algorithms. The TMS320C40 is destined to become the most commonly used

parallel-processing node.

Definitions

'C40 node: A node that consists of a processor, execution units, memory

modules, communication port, and other necessary hardware.
Dimension of hypercube structure: n =4pgp = number of processors)

Distance: The number of links used by the message to travel from the source
'C40 node A to the destination 'C40 node B.

Link: A physical connection between any two nodes.

44

Hamming Distance (HD):

Node/Vertex (N):

Parallel Paths:

Computation time (j)

Maximum computation time (fax

Minimum computation time (hin)

Variation Ratio (V)

Wasted time (Jasted

'C40

Efficiency

Speed-up (@

Parity:

Path:

The number of bits that are different in two A and B binary
addresses. For example, if A is (1010101) and B is (0101010),
then the Hamming distance is 7.

A processing element that is in the network. Also, the pointin the
graph where one or more edges meet.

Paths with equal lengths and nonoverlapping edges.

Computational time on a single-processor system.

Tmax = Max{T,, T, ... T}

Tmin = mln {Tll T2, e TN}
where N = P = # of processors

Tinax
Tmin

N

Twasted= Z(Tmax - Ti);

i=1
Texas Instruments TMS320C40 floating-point DSP.

Ep = Sp/p with values between (0,1), is a measure of processor
utilization in terms of cost efficiency.

Sp = TdTp, where Tis the algorithm execution time when the
algorithmis completed sequentially; Whereq,sis'[he algorithm
execution time using p processors.

The number of 1s in a node’s binary address. Parity of a node is
positive if there are an even number of 1s in the node’s binary
address; if the number of 1s is odd, parity is negative.

The ordered list of processors visited by the message in going
from the source 'C40 node A to the destination 'C40 node B.

45

References

[1] Tim Studt. R&D Magazine, July 1992.
[2] TMS320C4x User’s Guide, Dallas; Texas Instruments Incorporated, 1991.

[3] Parallel 2-D FFT Implementation With TMS320C4x DSPs Application Report, Dallas; Texas
Instruments Incorporated, 1991.

[4] K. Hwang and D. DeGroot. Parallel Processing for Supercomputers and Artificial Intelligence. New
York: McGraw-Hill, 1989.

[5] R.H. Kuhn and D.A. Padua. Tutorial on Parallel Processing. IEEE Computer Society, 1981.

[6] Z. Hussain. Digital Image Processing. Ellis Horwood, 1991.

[7]S.G. Akl. The Design and Analysis of Parallel Algorithms. Englewood Cliffs: Prentice-Hall, Inc., 1989.
[8] Y. Saad and M.H. Schultz. Topological Properties of Hypercubes.

[9] Product Catalog, Sonitech International, Wellesley, Massachusetts 1992.

[10] Hungwen Li and Q. F. Stout. Reconfigurable Massively Parallel Computers. Englewood Cliffs:
Prentice-Hall, 1991.

[11] G. Fox & others. Solving Problems on Concurrent Processors, Volume |. Englewood Cliffs:
Prentice-Hall, 1988.

[12] M. Ben-Ari. Principles of Concurrent and Distributed Programming. Englewood Cliffs:
Prentice-Hall, 1990.

[13] A.N. Choudhary and J.H. Patel. Load Balancing and Task Decomposition Techniques for Parallel
Implementation of Integrated Vision Systems Algorithms, Proceedings of Supercomputing 1989,
November 13-17, 1989, pp. 266—275. New York: IEEE Computer Society.

[14] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures. San Mateo: Morgan
Kaufmann Publishers, 1992.

[15] Sonitech internal program “Iterative Method for 'C40 Communication Port Interconnection.”

46

Prototyping the TI TMS320C40 to the
Cypress VIC068/VACO068 Interface

Peter F. Siy and David L. Merriman
The MITRE Corporation

Timothy V. Blanchard
Cypress Semiconductor

47

48

Introduction

The Texas Instruments TMS320C40 digital signal processor (DSP) represents a state-of-the-art solution
to many signal processing problems via its high-speed central processor unit (CPU), unique parallel
processing 1/0O capability, and robust interface to other system components [1]. Likewise, the Cypress
Semiconductor VIC068 VMEbus Interface Controller and its companion VAC068 VMEbus Address
Controller provide a complete VMEbus interface, including master and slave capability [2,3]. Since these
components are effective in a wide variety of applications and since the VIC068/VACO068 is a single- or
multiple-TMS320C40 VMEbus card design, we developed a single TMS320C40 VMEDbus card for use in
a satellite modem application [4].

The VIC068/VACO068 is designed to interface with the Motorola 68000 family of microprocessors, so it
was determined that the interfacing to a TMS320C40 required a logic simulation or some form of
programmable, configurable prototype. When this design was initiated, only preliminary documentation
existed for the VMEbus chip set, and no simulation models were available for either the chip set or the
TMS320C40 DSP. Therefore, we first prototyped the interface of these components in a wire-wrap
environment before proceeding to a printed circuit board design. This paper provides the high-level as well
as low-level details of the prototyping effort so that others may examine our approach and techniques to
minimize design time for subsequent efforts. Note that this design has not been optimized for either size
or speed. Section 2 outlines the design goals established before design began and gives relevant background
regarding the devices involved. The paper focuses on the hardware details, programmable logic source
code, and schematics that follow. In addition, the software initialization of the chip set by the 'C40 is
described. Throughout this paper, we assume that you are familiar with the 'C40 architecture as well as with
the VMEDbus and its protocol(s). You can refer to [5,6] for more details on the VMEbus. Figure 1 shows
the VIC068/VACO068 prototype block diagram.

49

Figure 1. TMS320 — VIC/VAC Prototype Block Diagram

Comm Port 3 —4—P— —4—»— Comm Port 0
Comm Port 4 —4—p— —4—»— Comm Port 1
Comm Port 5 —€—p— TMS320C40 —4—»— Comm Port 2

JTAG Scan Path —€—9— —¢— Clock In

@ L
4 4 C40Bus 4

High Low Control

Data Address/Data C40-VIC/VAC 128K Words 128K Words
PLD Interface Program EPROM Program SRAM

Master Cycle
Generation
Slave Cycle
Generation

High
Address

A Pseudo-68000 A
v vy Signals vy

Data Bus VIC068 VMEBuUSs VAC068 VMEBus

a
Buffers Controller -~ Address Interface ¢

Serial Parallel I/O

A

VMEBuUS
(A24 D32)

Prototype Design

Design Goals

We began by developing a set of design goals for the VME interface that were based on our particular needs.
We were interested in a 'C40 card that provided both (VMEbus) master and slave capability for reads,
writes, read-modify-writes, write posting, and slave block transfers. We designed the address/data
capability according to the most prevalent configuration (for other cards available commercially): 24-bit
address and 32-bit data (i.e., A24/D32); however, the design presented here does not preclude 32-bit
addressing with minor modifications. Via the VIC068, this design also features system controller
capability. We did not incorporate VMEbus interrupt support, because we provided application-specific
interrupt inputs directly to the 'C40. We utilized the VACO068 for address control/mapping of the two
Universal Asynchronous Receiver/Transmitters (UARTS) that were required for our application, and for
general-purpose parallel I/O. The new Cypress CY6C964 Bus Interface Logic Circuit can be used instead
of the VACO068. In addition to the VMEbus functionality, we required the interface to be compatible with
both the existing 'C40-40 (50-nanosecond cycle time) and the faster 'C40 (40-nanosecond).

Design Considerations

First, we thoroughly examined the VIC068 and VACO068 and reviewed the 680x0 family bus signals and
cycles. In particular, we referred to the 68020 user’s manual [7] extensively. The VIC068 and VAC068
interface directly to the Motorola 680x0 family data, address, and control signals and are driven with the
familiar 680x0 address and data strobes (F2S. An asynchronous transfer protocol is implemented via
data transfer and size acknowledgment signals DSA&GKIODSACK1 In addition to these signals, the
transfer size signals SIZ0 and SIZ1 are essential elements in the 680x0’s dynamic bus sizing capability and,
with the lower address lines, encode the size of the transfer in progress. Also, during the transfer, the
function code signals (FCO—FC2) provide information of importance in multiuser environments. Bus
arbitration is an integral part of the 680x0 via the bus reques), (BR grant (B and bus grant
acknowledge (BGACK signals and is used directly by the VIC068. Finally, as in many other
general-purpose microprocessors, bus cycles for the 680x0 are several clock cycles long.

While the VIC068 and VACO068 are driven by (and can drive) the familiar 680x0 bus signals, the 'C40 bus
signals show little similarity to those of the 680x0 family. The 'C40’s bus protocol is common to the
TMS320 floating- point DSP product line. An external ready signal allows for wait-state generation and
controls the rate of transfer in a synchronous fashion (i.e., cycles can be extended an integer number of
clock cycles). As described in [1], the 'C40 has two identical external interfaces: the global memory
interface and the local memory interface. Each consists of a 32-bit data bus, a 31-bit address bus, and two
sets of control signals. The benchmark of all DSP technology, the 'C40 executes single-cycle instructions
(see the 'C4x user’s guide for complete details) and relies on a multistage pipeline for execution speed.
Detailed bus status, including type of instruction and type of access, is given for each cycle via the STAT
lines. Individual control lines can put the address, data, and control bus(es) in the high-impedance state.
There is no read-modify-write signal (as on the 680x0); however, an instruction-driven i@ is
available. Each cycle is controlled by a strobe (STRBgnal in conjunction with the corresponding
read/write (R/W¥strobe. One of the 'C40’s notable features is its range of configuration options. The 'C40
has evolved fromits earlier floating-point counterparts into a truly flexible interface via the local and global
bus configuration control registers.

51

Figure 2. TMS320C40 — VIC/VAC Prototype 'C40 Global Bus

GAO-GA30
Reset
IR R R E R NE NS N R R R M NN R R RN N RN E = +5V +5V Vector
Ao O|ofw|ju|julo|lajla(n|ojlu|oja|lO|o|u|loja|n|u(o|ojo|lulmfOo(a|m Location
2IIPILLTLISTYTILLSNLZIQININILERNZS
LI IIILIILIILIILILILILILIIIIIR?
— AD30 STRBO
AF3! R/WO 16
RESETLOC1
ACS3 b cE0 15
v32 | —— RESETLOCO
RDYO SW1 —
CEO — | AmB3 . ——
RESET[O———O RESET
ACS3 STRBT
_|AC3 RIWT
AB32
war| PAGEL TMS320C40GFL
RDY1
vaa | ROMEN
CE1
Xif——
3 xarcLKIN AL
DE AC3
(A3 — H1 H1CLK
A& H3A05 H3CLK
ADS2Y 7aTo
AES3] SraT1
AF34
——— STAT2
AE31
waa | STATS
—{ LocK
O 4 N M ST W OM~OWMOOMO A NMSTLWmW O©N™~OWOOO o
O 4 N M T W O~ WD A o A o A A o d NN NNNNNNNNOM
[alyalyaiyalyalyalyalalyalyalalalalallalalalalaialyalalyalaiyalyalyalyalyaiyalyaiya)
Ol N| S| A S| N A S| N A SN O O] N S | M| O | N O S | M| O |
el Bl Rl Bl Kl Rl el Bl Bl Bl Bl Kl Bl Bl Bl Bl Kl B2l Bl Eel Bl Kl B2l Kyl Bl Bl Kl Evl Evl Bl Nl B
DOI>| D<ol ZIE|SaldZIXS7-SXI|oxXu I|luaalolo||ww
(GDO0-GD31
U16 U17A
ouTlE 8 v1 2
1
Y2
ouTl- o [ey =
GSTRBO e I va |2
STRBO osc
GR/WO 40 MHz
GEE 74ACT11208
GSTRB1
GRDY1
GSTATO-
GSTAT3
GLOCK

52

High-Level Architecture

The high-level architecture for the card places fast 20-ns high-density 4-megabit{B23KCypress

CMOS SRAM modules on both local and global buses of the 'C40 (the size of the memory array does not
impact the 'C40-to-VIC068/VACO068 interface design). We designated the global side as program memory
and the local side as data memory for our application. In our environment, it is anticipated that the local
memory will be fully occupied by DMA coprocessor activity coupled with data fetches during
communications-oriented DSP operations. Given this, we chose to place the A24 VME spectrum on the
global (program) side, segmenting the local side I/O activity (the critical path for our application) from all
VMEDbus activity. (However, the interface documented herein can be used on either side because the global
and local buses are symmetric.) On the global side, in addition to program SRAM, we also placed two 128K
x 16 EPROMSs for embedded program store, using the boot load feature of the 'C40.

Because we limited our design to VMEbus A24 addressing, this range fits nicely anywhere in the 'C40
global side address spectrum, from 08000 0000h to OFFFF FFFFh. Therefore, VMEbus master access is
memory mapped into the 'C40 global side address range. When an access occurs in this predefined A24
range, the 'C40 bus signals are transformed into 680x0 bus signals, which drive the VIC068/VAC068 pair
and initiate a VMEDbus transfer. Global side accesses outside of this range do not generate such signals and
occur at full speed (i.e., the speed appropriate for that memory or peripheral). Regarding the “endianess”
[8,9] of the interface, we know that the 680x0 family maintains big-endian byte ordering (byte-addressable
memory organization) with little-endian bit ordering in each addressable unit. In contrast, the 'C40 is flat

in its byte endianess (32-bit word addressable only) and little-endian bit ordered. Therefore, no swapping
is done on the interface, because 32-bit word transfers (between processors) maintain DO as the least
significant bit. This forces a tradeoff of transfer speed for a wider range of transfers (byte, word, and three
byte) than the 'C40 offers. We chose to limit our transfers to D32. To make transfers of all sizes available,
you must preform additional setup and/or decoding before/during the transfer in progress.

53

Figure 3. TMS320C40 — VIC/VAC Prototype Program SRAM

GAO-GA16 T GDO-GD31
AO 128K-Word SRAM Module 1100
AL 1/01
A2 1102
A3 1103
A4 1/04
A5 1/05
A6 1106
A7 1107
1108
A9 1109
A10 1/010
All 1/011
A12 11012
A13 11013
Al4 11014
A15 CYM1836 11015
Al16 11016

11017
Cs1 11018
cs2 1/019

11020
cs3 11021
Cs4 11022

11023
OE 11024
SRWO — B 11025
11026
11027
11028
11029
1/030
1/031

i
w

194999499999994¢

+5V

32

GSTRBO

CEEEEELELEEELLLbrELEECTTrELEELTt

Hardware Description

After examining the VIC068/VACO068 interface and capabilities and comparing them with the 'C40, we
initiated a prototype design. Based on the preceding discussion, the strategy is to map from the given set
of 'C40 bus signals to a set of 680x0-like signals, driving their counterparts on the VIC068 and VAC068

for master cycles (the 'C40 is reading from or writing to the VMEbus). Not only can the 'C40 initiate
VMEDbus cycles as a bus master, but also the card should respond to slave cycles. Most often, slave access
is gained through shared memory on the (slave) card. On the 'C40-based VME card, one set of signals is
required to respond to bus requests from the VIC068/VAC068, and an additional set is required to “hold
off” the 'C40 global side during such transfers.

To accomplish this transformation of signals, programmable logic is applied. We wanted to keep the design
time to a minimum while maintaining the most flexible (i.e., programmable) design. Based on this, we used
the Texas Instruments TIB82S105BC programmable logic sequencer. This device is a field-programmable
Mealy-type state machine with 16 inputs, 8 outputs, 48 product terms, and 14 pairs of sum terms; it operates
at a maximum frequency of 50 MHz [10]. Development tools for these sequencers are plentiful and
inexpensive — we used Data I/O’'s ABEL version 4.0 for all programmable logic device (PLD)
development.

54

Figure 4. TMS320C40 — VIC/VAC Prototype Programmable Logic

u12
16R6 =
H1CLK b ik
1 oe
riso 22 Grrom
RESET 211 ri70 P mwR
GSTATO- rRi60 P2 7D
GSTAT3 ris0 P22 WwWR
<1 r1a0 P WRD
4y r130 22
55 >—
66 AL
GA28 ’ 17 <=12
GA29 816 10190
GA30 919 101200
GSTRB1
Bus Decode
u13 u14 u1s
FPLS - FPLS FPLS
H3CLK L ok LY ok 1 ok
29 pripE oE ~2 prioE 50E 22 priDE
RESET & I RESET — 10 RESET —] 10
MRD 811 vro — 1 s i
MWR q, VR — 12 55—
RRD 5113 RRD {13 rw -3
RWR S roo |28 TBG R — 14 ron 22— PAS mRmc —2 4 ror |8 DSACKD
GPROM a 13 F10 |2 GBE GproM —H 15 F10 |2 Bs sizo s F10 |2~ DSACKT
MWB 6 Fon |28 MoE e — 16 oS- RW sizs e Fon |25 TBERR
iBR 21y Fa0 X2 SOE Br -2 Fa0 22— RMC Fco —2{ 17 ra0 2> GSTREO
DEDLK 271\ Fan |X2— GROY1I DEDLK 2418 Fan sz pe1 -2 s Fan 22— GRWO
DSACKO 26 19 F50 12 DSACKO 26 19 F50 12 siz1 FC2 26 19 F50 12
DSACK1 2 Fo F— psAckt 22 110 reo - Fc1 TBG 22{i0 Fer F—
[BERR 244y Fo P BERR 2 111 Fo P2 Fe2 284 Fro P
GLOCK =1 P Grock 22112 230,
22113 22113 2213
=3 I 2L 114 24,
20115 29415 2915
Bus Control Master Bus Slave Bus
Cycle Generation Cycle Generation
Reset Circuitry

We found that the VIC068/VAC068 required a “global” reset to operate correctly. In particular, the VIC068
IRESETsignal should be driven with the incoming reset request. This signal can be buffered as shown to
provide the delayed signal to the IPbPut —thereby providing the required stimulus for a VIC068 global
reset. Given these inputs, the VIC068, in turn, drives the REHBETand the SYSRESEIlne if the

VICO068 is configured as a system controller) for 200 milliseconds. We used the RE§HIT on the
VICO068 to reset both the 'C40 and the VACO068, as well as programmable logic on-board.

55

Figure 5. TMS320C40 — VIC/VAC Prototype VICO68 VMEDbus Interface

'_
z 3
8‘8‘“"5‘3‘8‘5 ‘555
clglzlelglgle I
0D M o H S| | N ©o| O <
=S Z2 ol ¥l Z2 a ol Z2| x
o N0 Y |0 O |~ ~ |Z =
o ‘o oo e ‘o S E 5
Al-A7 T N_AL K2 x| |z |z |x | |x < 5 I
AO1 2K
A2 11,0, 2
A3 12 |, a
VS V0 P
A5 m2 |, oo ==
p6 13 |, —=
AT N2 |,

AMO-AMS5 MO R6 |, =
M1 R7 |, —
VPRI —

Nams R8 |, —
M4 RO |\,
aMs_RI0]\ A BGOOUT
bo-D7 DO_K13 1pn9 VICO68_VME BG1OUT
D1 K14 {po1 BG20UT
D2_LI5 1po, BG30UT
D3 314 |,
D4 K15 | o, =
D5 315 |, =
D6 H1a | . =
D7_HI5 |, ey
E P7 A_S
DS0 R11 4550
DS1 P11l pst
DTACK RS 4BIACK
— — —
BERR N10 4 BERR L |H .
WRITE P10 JWriTE ok lF[E
WoRS P2 ors 20
LWORD LWORD AR
0| W[M7 v
- | x| =z
& T T I—W +5V
X | |4 |4
=2 RrMm
o o £ |F
gl
0 n < (7]
>-
7]

56

N12

R12
P12
N11
P13

M14
L13

N15
M15

N13
P14
M13
N14

BCLR
BBSY

BRO
BR1
BR2
BR3

BGOOUT
BG1OUT
BG20UT
BG30OUT

BGOIN
BGL1IN
BG2IN
BG3IN

Address Bus Decoding

The VIC068/VACO068 interface (and consequently the VMEDbus itself) is mapped into the 'C40 global side
at 0D000 0000h. In our application, we divided the global side into two halves viathe STRB ACTIVE field

in the 'C40 global memory control register. We placed zero-wait-state devices (fast SRAM) in the lower
half and placed slower memory (EPROM) and peripherals (the VIC068/VAC068 pair) in the upper half.
Therefore, the 'C40 addresses program memory via STRBO and addresses the VMEbus via STRB1. As
shown in the accompanying schematics, U12 is a 16R6 programmable device (in particular, a Texas
Instruments TIBAL16R6-5C was used). It decodes each global 'C40 STRB1 bus cycle by using the 'C40
H1 clock. Cycle type decoding is performed fully via the STAT lines (instead of using thetfRiW) and

allows for future expansion/reconfiguration if required. As shown, the STRB1 range is divided into eight
distinct segments by using GA28—GA30 (GA31 is implicitly a logic 1). Outputs of the decoding operation
are VMEbus master write (MWRmaster read (MR VIC068/VAC068 register write (RW)Rregister

read (RRD and EPROM read (GPROMThe VIC068/VAC068 documentation shows that the VAC068

is hard-wired, starting at address OFFFD 0000h, and designates VIC068 selection, starting at address
OFFFC 0000h. A memory map for the global side, as decoded by the 16R6 logic device, is shown in Table 1.
The ABEL source code is provided in the appendix.

Table 1. Global Side Memory Map

Address Unit Addressed

08000 0000h SRAM

0C000 0000h EPROM

0D000 0000h VMEbus A24
Address 00 0000h

OFFFC 0000h VIC068 Register Set

OFFFD 0000h VACO068 Register Set

Bus Control

Once a cycle in the VMEbus address range is detected by the address-decoding programmable logic, the
sequencers provide the signals required for both master and slave cycles. U13 is the first of three sequencers
and facilitates overall bus control, providing these enable signals: 'C40 global buy (@&fer cycle
sequencer output (MQFEslave cycle sequencer output (SOBVIEbus slave local bus grant (LBGnd

a 'C40 ready signal (GRDY/1Notice that a full complement of inputs is presented to the bus control
sequencer. This was done to accommodate all possible cycles and allow reconfiguration without hardware
changes. While the 'C40 H3 clock (20 MHz) was used here, this is not an absolute requirement, because
the array of sequencers operates asynchronously, once a master or slave cycle begins. However, using H3
simplifies the sequencer code because the H3 clock serves as a convenient reference to the 'C40 cycle in
progress.

A master cycle begins with U12 generating a master read or write signal or a register read or write. This
enables the output of the master bus cycle signal generation sequencer U14 (in fact, this signal is asserted
during all bus activity other than slave cycles). A master cycle ends with the assertion of the acknowledge
signals DSACK(and DSACKl1and/or the local bus error signal LBERE generated by the VIC068 in
response to acknowledge signals received over the VMEbus. The sequencer responds to these signals by
asserting GRDYo supply the ready signal RDYar this 'C40 STRB1 access. In this design, external

ready signals are used exclusively (versus ANDing or ORing with internal ready), and the generation of
the ready signal conforms to the second of two methods described in [1]: high between accesses.

57

Slave cycles are initiated by the assertion of the VIC068 local bus requestifipgRsignal. Then, U13
provides bus control by first disabling the 'C40 global bus (deasserting @RBEthe master cycle
sequencer output (MQEnd then by enabling the outputs on the slave cycle sequencdr (BGEWhen
the bus has been successfully “seized”, the local bus grant signa) {EBGserted. Slave cycles are
terminated by the deassertion of the local bus request input signal.

Figure 6. TMS320C40 — VIC/VAC Prototype VICOG68 Local Bus Interface

741514 741514
8 ol X 6 5 iREseT
ﬂﬂﬂﬂﬂ%ﬂﬂ{ﬂﬂ
P
o)
T — '~ N M SOOI~ OO |+ |N
sl EREEEEEEEEE
U} GAlASLAl :::::::§
T IV
X ICH N
oaa g7 |-
GA5 _ B6 —— | B15 ——
_GAS5 B6 o ABEN pp———— ABEN
. Ncae_cef o Labo |4 1apo
6 \oar_ssf Lol E2 sl
S N_eDo_Bs | o teoo [-22°iepo
O N_eb1_malf Leol 22 epy
GD2 A3 LD2 ooR 2 bR
—GD3 B4l . UWDENIN =22 GWDENIN
—GD4_GC5], ., TWDENN P2 TWoENIN
~Gps B3| o VIC068 SwoEn p-—
— GD6 A2 | LD6 DENO I)GLDENO
—GD7 C4 | —
LD7 ISOBE G15 5V
— E3
PAS ALl e LAEN |——— LAEN
ps —C¥ == R1
DSACKO DSACKG
DSACK1 BSACKT 2
LBERR L[BERR d)
RIW B sw2 c1
RMC m i I
- _
sizo B34 o
sizs A4
FC1 —C1n EC1 U4 US5A
Fe2 Al e
[BR ﬁm out |8 19 1, vip2
LBG s vo| -
- out - 8dat e
« N4 O | | [17 4 — | 3
3 o282 E RIS RIBIH|E s & | osceamhz G2 v4
aw|52BI1CPDE (e @ o
| o O s 125 |9 |« O |y < g p—
0|0 |m|= L 00 [2<I<|0|= x| O - 74ACT11208
N R CEECECECEEEEE
o T T a0 g a
RN1 741514 741514
8
BLT 4 E 2 1
UNTTERT S|4 |7 - [4 Il Qi
v LBIEEREERE RS s e
o e SRER A AISAEAES
> s nln = RN2
swi RN2 3 Y
4 13 2
Ing ‘m 5
0 (0
— w (W
xlx

58

Master Bus Cycle Generation

The master bus cycle generation sequencer U14 runs in tandem with the bus control sequencer U13, and
the sequencer code found in U13 and U14 results from one common state diagram. It was necessary to split
these functions because of the number of outputs per sequencer. Therefore, the inputs to U14 are identical
to those on U13. Master bus cycles proceed according to the appropriate cycle (read or write) definition

in [7]. The function code lines are driven to indicate the widest possible audience, supervisory data.
Termination of a master cycle ends with the assertion of the acknowledge signals D&#AdIBBACK1

and/or the local bus error signal LBERRdescribed above. Note that VIC068/VACO068 register accesses

are also master accesses in the 'C40 global side address range. While the sequencer code does not initiate
read-modify-write cycles, you could use the 'C40 GLO@gut to do this.

Figure 7. TMS320C40 — VIC/VAC Prototype VACO68 VME Interface

5
S£23%8
oA d 4d 4dI<
AB-A31 —\ - Sla 8|o| & ﬁl
A8 A8 | g E ﬂgf 8{ % é E
A9 B8 | o % 3 3l pglxe
A10 A7 | 10 Do 1<2
AL Bian D10 22—
A2 AB I D11 ft
A3 BOlais D12 |2
—Ald AS1ag ip13 M2
_ A5 BSlais D14 [NL
A6 Adlaie D15 |2
AL7 X2 INE
A8 Bllas VACO068_VME pioo [
A19 B3 | ,1q pio1 1B12
A20 A2 | o0 o2 |AL4
A21 C3 | oot pio3|B13
A2 B2l pi04 |72
A23 AL | rps pios | €12
A24 BY | ppy P06 | BL4
A25 A9 | e pio7 €13
A26 B10 | rog pios |P13
A27 AL0 | 7 P09 |BL5
A28 BLL [\pg pio10] 14
_ A% Al pio11 |22
A30 AL3 [50 pio12 | P15
ML A2 g pio13| Bt
A_S D2 WS

59

Slave Bus Cycle Generation

Slave cycles are initiated by the VACO068 in response to a request over the VMEbus in the selected range
as determined in the appropriate VACO068 register (discus3d€C068/VAC068 Software Initialization,

page 63. Inputs to the sequencer are the common 680x0 bus signals driven by the VIC068 for slave cycles
(and alternately driven by the master sequencers for master cycles). Assertion of the local bus grant signal
LBG by U13 indicates the absence of the 'C40 on the global bus, thereby allowing access of shared global
SRAM by the VIC068/VAC068 pair. Assuming the correct transfer size, the memory strobe signals
GSTRBO and GR/WO0 are driven, providing access to the shared global SRAM. After this,
acknowledgement is provided via DSACKId DSACK1 ending the slave cycle. Note that while
VACO068 documentation states that its DSACK signals can be put in the high-impedance state on the
assertion of LAEN, we found this not to be the case with our configuration. Therefore, UBA was required
to artificially put those signals in the high-impedance state so that the slave sequencer could control the data
acknowledgement.

60

Figure 8. TMS320C40 — VIC/VAC Prototype VACOG68 Local Interface

GA8 — GA30

GA8
GA9

GA12

GAl14

GAl7

GA19

GA22

GA24

GA27

GA29

PULLUP.
PAS,

P14
M13
P15

GA10
GAll

N13
N14
L13

GA13

M14
L14

GA15
GA16

N15
K14
M15

GA18

K15
L15

GA20
GA21

J15
H14
H15

GA23

G14
G15

GA25
GA26

F14
F15
E15

GA28

F13
C15

GA30
El14

R

LAEN 1
T4F244]

N

GDO - GD15

12
—va

14
—Y3

— 16
DSACKL" Y2
DsAcko—2] v1

G

v 94 o
—wfwd %)
|% = S LY |«
g T oo Q
m|m 0 <
ue 0|8 2|0|8 7| I
X T FIE|-|4 X[|d9 |4 [© |+
we RQESERREBIEEEDEE
<§E T E w5 m 5 | 0w |0 |n P6 GDO
LA9 glglt =5 Q& |3 o 1919 [OLp16
LA10 © . b17|R6_©D1
LA11 LD1g FE7_GDb2
LA12 LD1g R4 _GD3
LA13 Lp2o |R7_GD4
LA14 LD21 | R®_GD5
LA15 LD22 | P8 _GD6
LA16 Ls23 |N7_GD7
LAL7 LD2a | N8_GD8
LA18 LD2s | R8_GD9
LA19 L D26 |R9_GD10
LA20 VAC068_LOC LD27 P9 GD11
LA21 LD2g | RL0 GD12
LA22 LD2g | P10 GD13
LA23 LD30 | RLL GD14
LA24 LD31 | P11 GD15
LA25
LA26
LA27
LA28
LA29
(%]
W0 e g 1B S
LA31 OOEEO%SQEmg
PASEF/(JF/()ﬂn:gQF)(TJO‘;GSSS
ol w>ElK|<IZFIEIE . £ o
slelelslgl Y 3]s QNE‘H‘v‘
& rlizla by, z x|z
1= 5 IR RERK ST Y
UsA i@ A 72 0 |0 % § &() L I I
i Q< < |3 3]
8 > L
A4 |—
6
A3 |—
4
A2
2
Al

61

VIC068/VACO068 Software Initialization

While the VIC068/VACO068 pair register set is, at first glance, overwhelming, we found that very few
registers require attention before the pair can be used for either master or slave operations. The VAC068
should be initialized first because it controls both master and slave address mapping. When initialization
is complete, the VIC068 is programmed. You can fine-tune the interface by using the programmable delay
registers for the interface after initial capability is verified. As we programmed the VIC068/VACO068 using

C, we developed vic.h and vac.h header files, which give base and offset definitions for the complete
register set of each device.

Before programming the VIC068/VACO068 pair, you must bring the VAC068 out of its initial Force
EPROM mode (which asserts EPROMfo8all accesses) by reading from the EPROM space beginning

at OFF00 0000h. While the address-decoding programmable logic device U12 does not provide for access
to this range, we can initiate a dummy access to this region by manipulating the 'C40 global memory
interface control register. We first set the SWW and WTCNT fields so that the register will provide
zero-wait-state, internal ready dependent (only) accesses to the appropriate strobe (STRBL1 for our case).
We then perform a read from address OFF00 0000h, reset the SWW field to external ready accesses, and
perform a second read to the VAC068 — this time at the VAC068 register base OFFFD 0000h. This second
read provides the required access to snap the sequencers back to their default states.

After the Force EPROM mode is exited, we first verify that the VAC068 can be addressed by reading the
device ID via the VACO068 ID register. Then, we program the slave SLSELO base address register, the
SLSELO mask register, and the master A24 base address register. To enable the VAC068 decode and
compare functions, the last step is to write to the VACO068 ID register. The VIC068 ID register is similarly
polled; following the successful read of that register, we set the address modifier source register and the
slave select 0 control O register. This completes the initial programming of the pair. Now, we can extinguish
the SYSFAIL LED (if applicable) by writing to the interprocessor communication 7 register. The initial
register settings for our application are provided in Table 2.

Table 2. VIC068/VACO068 Initial Register Settings

Address Register Size (Bits) Setting

OFFFD 0200h VAC SLSELO Base 16 0010h

OFFFD 0300h VAC SLSELO Mask 16 00FOh

OFFFD 0800h VAC A24 Base 13 0D10h

OFFFD 2900h VAC ID 16 Write to Enable VAC
OFFFC 00B4h VIC Address Modifier 8 03Dh

OFFFC 00COh VIC Slave Select 0 Control 0 8 014h

62

€9

LWDENIN
LEDI
DENO
LEDO

UWDENIN

GD8- _ /

Figure 9. TMS320C40 — VIC/VAC Prototype VMEbus Data Bus Interface

L
L L
L L
@ @
U9 U10 U1l
XCVR XCVR XCVR
2N GeA 2 GBA 2 GBA
23 cEBA 23 cEBA 23 cEBA
1) EBA 1) EBA 1) EBA
13 GaB 13 GaB 13 GaB
1 cEaB 1 cEAB 1 cEAB
14| EaB L 14N EaB L 14N EaB
] C C
GD8 3 ep{oar Biofep?2 D8 GDI6 34plnn pip|ep?2 D16 GD24 Sqplpan; pinfen?2 DX
GDY 4 oy [T pon lep?l D9 GD17 4 @ [T manled?l D17]| [GD25 4 ¢y o moolep?l D25
GDI0 5 ¢ p[Trs paole»0 D10]| [GD18 5 ¢ T manler® Di8| [GD26 5 ¢y oA Baolepd D26
GDIL 6 plTrs panlenl®Dil]| [GD19 6 ¢ pITar manlert® D19 [GD27 6 ¢y ITar maolepld D27
GD12 7 [Tre pooleni8 D12]| [GD20 7 @) [T monlept8 D20| [GD28 7 ¢y ITAs oo lepls D28
GD13 8 [Trs moolenl?D13]| [GD2L 8 ¢ ITre monleriZD2l| [GD19 8 ¢ 31T moolepl? D29
GD14 9 (3 ITnr iolenrl®Dl4]| [GD22 9) T mrolerl®D22| [GD30 9 ¢y [Tar 570 lpl6 D30
GD1510 ¢ pITrs panlenlsD15| [GD2310 3l Ths meolenrl®D23]| [GD3110 ¢y [Trs maolepls D3l
74F543 74F543 74F543

GD31

D8-

D31

Conclusion

We have developed a prototype interface between the 'C40 DSP and the Cypress VIC068/VACO068 with
a minimum amount of programmable logic in the form of simple PLDs and sequencers. The result is a
reconfigurable, programmable interface for A24/D32 VMEbus master/slave capability. While the initial
transfer speed is low, you can improve it by increasing the sequencer’s clock rate and eliminating
unnecessary states in the prototype sequencer code. You can initiate read-modify-write cycles with the
existing hardware by using the 'C40 LOCK instruction group. Ultimately, the knowledge gained from this
effort could be used to develop an FPGA interface that improves both speed and size. In the future,
simulation models for state-of-the-art devices such as the 'C40 and VIC068/VAC068 should precede the
actual hardware release, allowing early proof-of-concept with in-place CAE tools.

Acknowledgements

The authors would like to thank James E. S. Wilkins of The MITRE Corporation for his essential
contributions to the prototype effort and also to David Fuchs, Texas Instruments, Waltham, Massachusetts,
for his timely support and encouragement. A special note of thanks go to the staff at Data 1/O for their
support of the ABEL programming language.

References

TMS320C4x User’s Guigdexas Instruments, 1991.
VIC068 VMEbus Interface Controller Specificati@ypress Semiconductor, 1991.
VACO068 VMEbus Address Controller SpecificatiGgpress Semiconductor, 1991.

A w0 Do

Siy, P. F., and W. T. Ralston, “Application of the Tl 'C40 in Satellite Modem Technology,” presented
at theThird Annual International Conference on Signal Processing Applications and Technology
Boston, MA, November, 1992.

5. IEEE Standard for a Versatile Backplane Bus: VMEIN®sw~ York: Wiley-Interscience, 1987.

W.D. PetersoriThe VMEbus HandbooKFEA International Trade Association, Scottsdale, AZ,
1990.

7. MC68020 32-Bit Microprocessor User’s Manu®otorola, Inc., 1984.

8. Henessey, J. L., and D. A. Pattersdamputer Architecture: A Quantitative Approach
San Mateo: Morgan Kaufmann Publishers, Inc., 1990.

9. Dewar, R. B. K., and M. Smosndicroprocessors: A Programmer’s View
New York: McGraw-Hill, Inc., 1990.

10. Programmable Logic Data BopKexas Instruments, 1990.

64

Appendix A: Address Bus Decoder — ABEL Source

Module Decode
Title Global Bus Decode
Date 24 March 1992
Revision 1.0
Part TIBPAL16R6-5C
Abel Version 4.00
Designer Peter F. Siy
Company MITRE Corp.
Location Bedford, MA
Project C40 1/0 Board
U12 device 'P16R6’;
"Inputs”
clk, reset pin 1,2; "clock, reset”
gstatO,gstatl,gstat2,gstat3 pin 3,4,5,6; "C40 status”
ga28,ga29,ga30 pin 7,8,9; "C40 address”
gstrbl pin 12; "C40 strobe 1”
oute pin 11; "output enable”
"Outputs”
mrd, mwr pin 13,14, "master read & write”
rrd,rwr pin 15,16; ’register read & write”
gprom pin 17; "PROM select”
"Misc”
ga3l =1, "dummy var”
"Sets”
stat = [gstat3,gstat2,gstatl,gstat0]; "status”
addr = [ga31,ga30,ga29,0a28]; "ms nibble”
output = [gprom,rwr,rrd,mwr,mrd]; "output”

HLXCZz=1,0,X.,.C.,.Z;

equations
output.c = clk;
output.oe = loute;

"Master Read”
Imrd :=reset & (addr == *hd) & (stat ==[1,0,X,X]) & !gstrbl;

"Master Write”
Imwr :=reset & (addr == ~*hd) & ((stat ==[1,1,0,1]) #
(stat ==[1,1,1,0])) & !gstrbl;

"Register Read”
Irrd := reset & (addr == ~hf) & (stat == [1,0,X,X]) & !gstrb1;

"Register Write”
Irwr ;= reset & (addr == ~hf) & ((stat ==[1,1,0,1]) #
(stat ==[1,1,1,0])) & !gstrbl;

"PROM Read”
Igprom :=reset & (addr == ~hc) & (stat ==[1,0,X,X]) & !gstrbl;

65

Appendix A (Continued)

test_vectors

([clk,reset,gstat3,gstat2,gstatl,gstat0,ga30,9a29,ga28,
gstrbl,oute] —> output)

CXXKXKXXX XX XL —> Z; "1 test for high-z"
C,0,X,X, X, X, X,X,X,X,0] —> "p11111;"2 test for reset”
c,1,1,0,X,X,1,0,1,0,0] —> "b11110;"3 test for master read”
c1,1,10,1,1,0,1,0,0] —> "b11101;"4 test for master write”
c1,1,1,1,0,1,0,1,0,0] —> "b11101;"5 test for master write”
c,1,1,0,X,X,1,1,1,0,0] —> Ab11011;"6 test for register read”
c11,1,0,1,1,1,1,0,0] —> Ab10111;"7 test for register write”
c11,11,0,1,1,1,0,0] —> "b10111;"8 test for register write”
c,1,1,0,X,X,1,0,0,0,0] —> "b01111;"9 test for PROM read”
C,1,1,0,X,X,0,0,0,0,0] —> Ap11111;"10 test bad address”
c,1,0,0,0,0,1,1,1,0,0] —> "b11111;"11 test bad status”
end decode

Appendix B: Bus Control Sequencer — ABEL Source

module bus_control

title 'C40 Bus Control
Date 30 March 1992
Revision 1.0

Part TIB82S105BC
Abel Version 4.00

Designer Peter F. Siy
Company MITRE Corp.
Location Bedford, MA
Project 'C401/0 Card”’

U13 device 'F105;

"Inputs”

clk, reset pin 1,9; "clock, reset”
mrd,mwr,rrd,rwr,gprom pin 8,7,6,5,4; "decoded cycle”

mwb,lbr pin 3,2; "master/slave requests”

dedlk pin 27; "m/s deadlock”
dsack0,dsackl,lberr pin 26,25,24; "cycle responses”

glock pin 23; "C40 lock”

oe pin 19; "output enable”

"Outputs”

Ibg pin 18 istype 'buffer,reg_RS’; "slave grant”
gbe pin 17 istype 'buffer,reg_RS’; "C40 g bus enable”
soe,moe pin 15,16 istype 'buffer,reg_RS’; "pls oe(s)”
grdyl pin 13 istype 'buffer,reg_RS’; "C40 ready 1”
"Sets”

cycle = [gprom,rwr,rrd,mwr,mrd]; "cycle request”

ack = [dsackl,dsack0]; "acknowledge”

output = [grdy1,soe,moe,gbe,lbg]; "output”

"State Description”
P4,P3,P2,P1,POnode 41,40,39,38,37 istype 'reg_RS’;
sreg = [P4,P3,P2,P1,P0];

66

Appendix B (Continued)

o
o

RPRrOOOOOOOO
R ooo
corro

roRrOoRORrORO

oo
oo

P
P

P
P

OO0 O00O00000o

POO~NOUIRAWNRERO

T(IDI“ L I I I T I B T U BT

[9)]

[y

o

"
FRFRFRPRROO00000

(£U)(DU)U)(DU)U)U’JU)U’JU)

RPOROROR OR OR O

ROOOOORRRRRFR
rroooorrkRFROD
rorkrooRrRrOORR

H,.L,X,C,Z2=1,0,X.,.C.,.Z,;

equations

output.OE = loe; "set output enable”
output.CLK = clk; "clock the output regs”
sreg.CLK = clk; "and state regs”

@page
state_diagram sreg
state SO:

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "slave disable”

moe.R =1; "enable master pls”
grdyl.S=1; "not ready”

ENDWITH,;

else if (!mrd # Imwr & Ibr) then S1; "master read/write”

else if (!rrd # Irwr & Ibr) then S4; "reg read/write”

else if (Igprom & Ibr) then S8; "EPROM read”

else if (!lbr # !dedlk) then S16 WITH "slave request”

ghe.S=1; "disable global side”
moe.S =1; "and master pls”
ENDWITH;

else SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "slave disable”

moe.R = 1; "enable master pls”
grdyl.S =1; "not ready”

ENDWITH,;

@page _
"Master Read/Write”

67

Appendix B (Continued)

state S1:

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S =1; "not ready”

ENDWITH,;

else if ldedlk & ((!mwb) # (mwb)) then S16 WITH
moe.S =1,
ghe.S=1;
ENDWITH;

else if Imwb then S2;"wait for mwb”
else S1;

state S2:

if Ireset then SO WITH

Ibg.S=1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdy1.S =1, "not ready”

ENDWITH;

else if Idedlk & ((!mwb) # (mwb)) then S16 WITH;
moe.S=1;
ghe.S=1;
ENDWITH;

else if (ldsackl & !dsackO) # !lberr) then S3 WITH
grdyl.R =1,
ENDWITH;

else S2;

state S3:

goto SO WITH
grdyl.S =1;
ENDWITH;

@page .

"Register Read/Write”

state S4.

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1; "not ready”

ENDWITH;

else if ldsackl then S5 WITH
grdyl.R =1,
ENDWITH,;

else S4;

state S5:

goto SO WITH
grdyl1.S =1;
ENDWITH,;

@page
"EPROM Read, 150ns EPROMSs”

68

Appendix B (Continued)

state S8:

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S =1, "not ready”

ENDWITH;

else goto S9;

state S9:

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1; "not ready”

ENDWITH;

else goto S10;

state S10:

if Ireset then SO WITH

Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1;d ’notready”

ENDWITH;

else goto S11;

state S11:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl1.S =1; "not ready”
ENDWITH;
else goto S12 WITH
grdyl.R =1,
ENDWITH;
state S12:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1;d "notready”
ENDWITH;
else goto SO WITH
grdyl.S =1;
ENDWITH;
@page

"Local Bus Request”

69

Appendix B (Continued)

state S16:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1; "not ready”
ENDWITH;
else goto S17 WITH
soe.R=1; "enable slave PLS”
ENDWITH;
state S17:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S=1; "not ready”
ENDWITH;
else goto S18 WITH
Ibg.R =1, "finally allow slave access”
ENDWITH;
state S18:
if Ireset then SO WITH
Ibg.S = 1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdy1.S =1, "not ready”
ENDWITH;
else if Ibr then goto S19 WITH
Ibg.S =1; "slave disable”
ENDWITH;
else S18;
state S19:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S =1, "not ready”
ENDWITH;
else goto S20 WITH
soe.S =1; "disable slave pls”
ENDWITH;
state S20:
if Ireset then SO WITH
Ibg.S =1; "slave disable”
ghe.R=1; "enable C40 global side”
soe.S=1; "disable slave pls”
moe.R = 1; "enable master pls”
grdyl.S =1; "not ready”
ENDWITH;
else goto SO WITH
moe.R = 1;
ghe.R=1;
ENDWITH;

70

"1 power up”
"2 power up”
"3 reset state”
4 master read”
14 ready for nxt”
15 prom read”
16 prom read”
21 slave request’
22 en slve pls”
25 rescend grant”
26 disable sl pls”
"27 end sl access”
33 rescend grant”
34 disable sl pls”
"35 end sl access”

"17 wait”
18 wait”

11 ready for nxt”
"19 wait”
20 ready for nxt”

5 mwb asserted”
6 data acked”
7 ready for nxt”
8 master write”
9 mwb asserted”
10 data acked”
12 reg read”
13 data ackd”
23 slave grant”
24 slave aces”
29 deadlock”
30 en slve pls”
31 slave grant”
32 slave aces”

Appendix B (Continued)

AANMOTANMOSTLOOD O
NNNNDNNNNDNNNDNANNNNNDN

ANNNNANNNNANNNANNNNNNN

"enable C40 global side”
"dummy err 6099”
"disable slave PLS”
"enable master pls”
"dummy err 6099”

"dummy err 6099”
"not ready”

"dummy err 6099”
"dummy err 6099”

"slave disable”

VA.,1111111111111111100001111000111

S O00 AT 00 Tddrddddddddrd A A A AAAAAAA A A

VA..llllOlll11111111111111111111111

1;

state S31:
goto SO WITH

H0 0000000000000 LOLOLOLOLLOLOLOLOLOOOLOOOLOO

([clk,reset,gprom,rwr,rrd,mwr,mrd,lbr,mwb,
dsackl,dsack0,dedlk,lberr,glock,oe] —>
[sreg,grdyl,soe,moe,gbe,lbg])

"Power-Up”
test_vectors
end bus_control

@page
@page

71

Appendix C: Master Cycle Generation Sequencer — ABEL Source

module master

title 'C40 Bus Control
Date 31 March 1992
Revision 1.0

Part TIB82S105BC
Abel Version 4.00

Designer Peter F. Siy
Company MITRE Corp.
Location Bedford, MA
Project 'C40 1/0 Card”’

U14 device 'F105’;

"Inputs”

clk, reset pin 1,9;
mrd,mwr,rrd,rwr,gprom pin 8,7,6,5,4;
mwb, lbr pin 3,2;
dedlk pin 27;
dsack0,dsackl,lberr pin 26,25,24;
glock pin 23;
oe pin 19;
"Outputs”

pas pin 18 istype 'buffer,reg_RS’;
ds pin 17 istype 'buffer,reg_RS’;
rw pin 16 istype 'buffer,reg_RS’;
rmc pin 15 istype 'buffer,reg_RS’;
siz0 pin 13 istype 'buffer,reg_RS’;
siz1 pin 12 istype 'buffer,reg_RS’;

fcl pin 11 istype 'buffer,reg_RS’;
fc2 pin 10 istype 'buffer,reg_RS’;

"Sets”
cycle = [gprom,rwr,rrd,mwr,mrd];
ack = [dsackl,dsack0];

"clock, reset”
"decoded cycle”
"master/slave requests”
"m/s deadlock”
"cycle responses”
"C40 lock”
"output enable”

"68K address strobe”
"68K data strobe”
"68K read/write bar”
"68K read—mod-write”

"68K size 0"

"68K size 1”

"68K function 1”

"68K function 0”

"cycle request”
"acknowledge”

output = [pas,ds,rw,rmc,siz0,siz1,fc1,fc2]; "68K ouputs”

"State Description”

P4,P3,P2,P1,POnode 41,40,39,38,37 istype 'reg_RS’;

sreg = [P4,P3,P2,P1,P0];

S0 =10,0,0,0,0];
S1=[0,0,0,0,1];
S2=10,0,0,1,0];
S3=[0,0,0,1,1];
S4=10,0,1,0,0];
S5=10,0,1,0,1];
S6 =10,0,1,1,0];
S7=1[0,0,1,1,1];
S8 =10,1,0,0,0];
S9=[0,1,0,0,1];
S10=[0,1,0,1,0];
S11=[0,1,0,1,1];
S12=[0,1,1,0,0];
S13=[0,1,1,0,1];
S14=00,1,1,1,0];
S15=[0,1,1,1,1];
S16 =[1,0,0,0,0];
S17=[1,0,0,0,1];
S18 =[1,0,0,1,0];
S19=[1,0,0,1,1];

72

Appendix C (Continued)

S20=11,0,1,0,0];
S21=1[1,0,1,0,1];
S22 =11,0,1,1,0];
S23=01,0,1,1,1];
S24 =11,1,0,0,0];
S25=11,1,0,0,1];
S26 =[1,1,0,1,0];
S27 =11,1,0,1,1];
S28 =01,1,1,0,0];
S29=101,1,1,0,1];
S30=11,1,1,1,0];
S31=[1,1,1,1,1];
"Misc”

rwmemnode 42 istype 'reg_RS’; "riw flag”
H,LXCZz=1,0,X.,.C.,.Z;
equations

output.OE = loe;
output.CLK = clk;

"set output enable”
"clock the output regs”

sreg.CLK = clk; "and state regs”
rwmem.CLK = clk; "and r/w store”
@page

state_diagram sreg

state SO:

if (Ireset # !dedlk) then SO WITH

pas.S=1; "no strobe”
ds.S=1; "no strobe”
rw.S =1; "read”
rwmem.S =1; "flag for mem”
rmc.S=1; "no rmc

siz0.R =1; "set for”
siz1.R =1; "32-hit xfers”

fcl.R=1; "setfor supervisory”
fc2.S=1; "data access”
ENDWITH;

else if (!Imrd & 'rwmem & lbr) then S1 WITH
rw.sS=1;

rwmem.S =1;

ENDWITH;

else if (!'mrd & rwmem & lbr) then S2 WITH
pas.R =1, "assert pas”

ds.R=1; "and ds”

ENDWITH;

else if (!mwr & rvmem & Ibr) then S8 WITH
rw.R =1; "assert r/w”

rwmem.R =1;

ENDWITH;

else if (!mwr & Irwmem & Ibr) then S9 WITH

"master read” .
"assert read/write”

"master read”

"master write”

"master write”

"reg read”

pas.R =1; "assert pas only”

ENDWITH;

else if (Irrd & 'rwmem & Ibr) then S16 WITH

rw.S =1; "assert r/w”

rwmem.S =1;

ENDWITH;

else if (Irrd & rwmem & lbr) then S17 WITH "reg read”
pas.R =1, "assert pas”

ds.R=1; "and ds”

ENDWITH;

73

Appendix C (Continued)

else if (Irwr & rvmem & lbr) then S24 WITH "reg write”
rw.R=1;
rwvmem.R =1;

ENDWITH,;
else if ('rwr & 'rwmem & lbr) then S25 WITH
pas.R =1, "assert pas only”
ENDWITH,;
else SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
rw.S=1; "read”
rwmem.S =1; "flag for mem”
rmc.S=1; "no rmc”
sizO.R=1; "set for”
sizl.R=1; "32—hit xfers”
fclR=1; "set for supervisory”
fc2.S5=1; "data access”
ENDWITH;
@page
"Master Read”
state S1:
if (Ireset # !dedlk) then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S =1; "read”
rwmem.S =1; "flag for mem”
rmc.S=1; "no rmc”
siz0O.R =1, "set for”
sizl.R=1; "32-bit xfers”
fclR=1; "set for super”
fc2.5=1; "data access”
ENDWITH,;
else S2 WITH
pas.R =1,
ds.R=1;
ENDWITH;
state S2:
if ('reset # !dedlk) then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
rw.S=1; "read”
rwmem.S =1; "flag for mem”
rmc.S=1; "no rmc”
sizO.R=1; "set for”
sizl.R=1; "32-bit xfers”
fcl.R=1; "set for super”
fc2.S5=1; "data access”
ENDWITH;
else if Imwb then S3; "wait for 'mwb”
else S2;
state S3:
if ('reset # !dedlk) then SO WITH
pas.S =1; "no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S=1; "flag for mem”

74

Appendix C (Continued)

rmc.S=1; "no rmc”
sizO.R=1; "set for”
siz1.R=1; "32-bit xfers”
fclR=1; "set for supervisory”
fc2.S5=1; "data access”
ENDWITH;
else if ((!dsackl & !dsackO) # !lberr) then S4 WITH
grdyl.R=1
ENDWITH,;
else S3;
state S4:
goto SO WITH
pas.S =1,
ds.S=1;
ENDWITH,;
@page
"Master Write”
state S8:
if (Ireset # !dedlk) then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S = 1;
rmc.S=1; "no rmc”
sizO.R =1; "set for”
sizl.R=1; "32-bit xfers”
fclR=1; "set for supervisory”
fc2.S=1; "data access”
ENDWITH,;
else S9 WITH
pas.R =1,
ENDWITH;
state S9:
if ('reset # !dedlk) then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S = 1;
rmc.S=1; "no rmc”
sizO.R =1, "set for”
sizl.R=1; "32-bit xfers”
fclR=1; "set for supervisory”
fc2.5=1; "data access”
ENDWITH,;
else S10 WITH
ds.r=1;
ENDWITH,;

75

Appendix C (Continued)

state S10:

if (Ireset # !dedlk) then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S =1;

rmc.S=1; "no rmc”

siz0O.R=1; "setfor”
sizl.R =1; "32-bit xfers”
fcl.R=1; "setfor super”
fc2.S=1; "dataaccess”
ENDWITH,;

else if Imwb then S11;
else S10;

state S11:

if ('reset # !dedlk) then SO WITH
pas.S=1; ’no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S=1;

rmc.S=1; "normc”

siz0.R =1; "set for”

sizl.R =1; "32-hit xfers”
fcl.R=1; "setfor supervisory”
fc2.S=1; "data access”
ENDWITH,;

else if ((!dsackl & !dsackO) # !lberr) then S12;
else S11,

state S12:
goto SO WITH
pas.S=1;
ds.S=1;
ENDWITH;

@page
"Register Read”

state S16:
if Ireset then SO WITH
pas.S=1; "no strobe”

ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S = 1;

rmc.S=1; "normc”
siz0O.R=1; "setfor”
sizl.R =1; "32-bit xfers”
fcl.R=1; "setfor super”
fc2.S=1; ’data access”
ENDWITH,;

else S17 WITH
pas.R =1,
ds.R =1;
ENDWITH;

76

state S17:

if Ireset then SO WITH
pas.S=1; ’no strobe”
ds.S=1; "no strobe”
rw.S=1; "read”
rwmem.S=1;

rmc.S=1; "normc”
siz0.R =1; "set for”
sizl.R =1; "32-bit xfers”
fcl.R=1; "setfor super”
fc2.S=1; "data access”
ENDWITH,;

else if ldsackl then S18 WITH
grdyl.R=1
ENDWITH,;

else S17;

state S18:
goto SO WITH
pas.S =1,
ds.S=1;
ENDWITH,;

@page ,
"Register Write”

state S24:

if Ireset then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S =1; "read”
rwmem.S = 1;

rmc.S=1; "normc”
siz0.R =1; "set for”
siz1.R =1; "32-bit xfers”
fcl.R=1; "setfor supervisory”
fc2.S=1; "data access”
ENDWITH,;

else S25 WITH
pas.R =1,
ENDWITH,;

state S25:

if Ireset then SO WITH
pas.S=1; "no strobe”
ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S = 1;

rmc.S=1; "normc”
siz0O.R=1; "setfor”
sizl.R =1; "32-bit xfers”
fcl.R=1; "setfor supervisory”
fc2.S=1; "data access”
ENDWITH,;

else S26 WITH
ds.r=1;
ENDWITH;

Appendix C (Continued)

7

Appendix C (Continued)

state S26:
if Ireset then SO WITH
pas.S=1; "no strobe”

ds.S=1; "no strobe”
w.S=1; "read”
rwmem.S = 1;

rmc.S=1; "normc”

siz0O.R=1; "setfor”

sizl.R =1; "32-hit xfers”
fcl.R=1; "setfor supervisory”
fc2.S=1; "dataaccess”
ENDWITH,;

else if ldsackl then S27;

else S26;

state S27:
goto SO WITH
pas.S =1,
ds.S=1;
ENDWITH,;

@page

"Power-Up”

state S31:

goto SO WITH

pas.S=1; ’no strobe”
pas.R=0; “error 6099 fix”

ds.S=1; "no strobe”
ds.R=0; "error 6099 fix”
rw.s =1, "read”

rwmem.S =1;

rw.R =0; "error 6099 fix”
rmc.S=1; "normc”
rmc.R=0; "error 6099 fix”
siz0.R =1; "set for”

siz0.S = 0; "error 6099 fix”
siz1.R =1; "32-hit xfers”
siz1.S =0; "error 6099 fix"
fcl.R=1; "setfor supervisory
fc1.S=0; “error 6099 fix"
fc2.S=1; "data access”
fc2.R=0; "error 6099 fix”
ENDWITH,;

@page

test_vectors
([clk,reset,gprom,rwr,rrd,mwr,mrd,lbr,mwb,
dsackl,dsack0,dedlk,lberr,glock,oe] —>
[sreg,rwmem,fc2,fcl,siz1,siz0,rmc,rw,ds,pas])

”

[1,%, X, X, X, X, X, X, X, X, X, X, X, X,0] => [S31,X,X,X,X, X, X, X,X,X]; "1 power up”
[0,X,X, X, X, X, X, X, X, X,X,X,X,X,0] => [S31,X,X,X,X,X,X,X,X,X]: "2 power up”
[C,0,X, X, X, X, X, X, X, X, X,X,X,X,0] —> [SO0, 1,1,0,0,0,1,1,1,1]; "3 reset state”
[C,1,1,1,1,1,0,1,1,1,1,1,1,1,0] => [S2, 1,1,0,0,0,1,1,0,0]; "4 master read”
[C,1,1,1,1,1,0,1,0,1,1,1,1,1,0] —> [S3, 1,1,0,0,0,1,1,0,0]; "5 mwb

asserted”

c11111,01,0,00,1,1,1,0]—>[S4,1,1,0,0,0,1,1,0,0]; "6 data acked”
c1111211211,1,1,2,1,1,0]— [SO, 1,1,0,0,0,1,1,1,1]; "7 ready for

nxt”

[c11,11,02,1,2,1,2,1,1,1,0] —>[S8, 0,1,0,0,0,1,0,1,1]; "8 master

78

Appendix C (Continued)

write”

[c11,1102,1,2,1,2,1,1,1,0]—>[S9, 0,1,0,0,0,1,0,1,0]; "9 assert pas”
[c11110,12,2,1,1,2,1,1,0]—[S10,0,1,0,0,0,1,0,0,0]; "10 assert ds”
[c1,1110,12,0,1,1,1,1,1,0]—>[S11,0,1,0,0,0,1,0,0,0]; "11 mwb”
[c11,1,1,0,2,1,0,0,0,1,1,1,0] —>[S12,0,1,0,0,0,1,0,0,0]; "12 data ackd”
c1111112,2,1,1,1,1,1,0]— [SO0, 0,1,0,0,0,1,0,1,1]; "13 ready for
next”

[c11,10,12,1,2,1,1,1,1,1,0]—>[S16,1,1,0,0,0,1,1,1,1]; "14 reg read”
[€ci11101112,1,11,1,1,0]—>[S17,1,1,0,0,0,1,1,0,0]; "15 assert
strobes”

[c11,10,1,2,1,1,0,1,1,1,1,0] —>[S18,1,1,0,0,0,1,1,0,0]; "16 data ackd”
ci1111111,2,1,1,1,1,1,0]—[SO0, 1,1,0,0,0,1,1,1,1]; "17 ready for
nxt”

[C,1,1,0,1,1,1,1,1,1,1,1,1,1,0] —> [S24,0,1,0,0,0,1,0,1,1]; "18 reg write”
[c11,01,1,2,1,2,1,1,1,1,1,0] —> [S25,0,1,0,0,0,1,0,1,0]; "19 assert pas”
[c11021,12,1,1,1,1,1,1,1,0] - [S26,0,1,0,0,0,1,0,0,0]; "20 assert ds”
[c1,10211,11,1,01,1,1,1,0]—[S27,0,1,0,0,0,1,0,0,0]; "21 data ackd”
c1111,12,11,1,1,1,1,1,0]—>[So0,0,1,0,0,0,1,0,1,1]; "22 ready for
next”

end master

APPENDIX D

SLAVE CYCLE GENERATION SEQUENCER — ABEL SOURCE
module slave

title 'C40 Bus Control

Date 2 April 1992

Revision 1.0

Part TIB82S105BC

Abel Version 4.00

Designer Peter F. Siy

Company MITRE Corp.

Location Bedford, MA

Project 'C401/0 Card’

U15 device 'F105;

"Inputs”

clk, reset pin 1,9; "clock, reset”

pas,ds pin 8,7; "address,data strobe”

rw,rmc pin 6,5; "read/write strobes”

siz0,sizl pin 4,3; "bus sizing”

fcO,fcl,fc2 pin 2,27,26; "function codes”

Ibg pin 25; "local bus grant”

oe pin 19; "output enable”

"Outputs”

dsackO pin 18 istype 'buffer,reg_RS’; "data ack 0”

dsackl pin 17 istype 'buffer,reg_RS’; "data ack 1”

lberr pin 16 istype 'buffer,reg_RS’; "bus error”

gstrb0 pin 15 istype 'buffer,reg_RS’; "C40 mem strobe”

grw0 pin 13 istype 'buffer,reg_RS’; "C40 read/write”
"Sets”

size = [siz1,siz0]; "size”

func = [fc2,fc1,fc0]; "function”
output = [grwO0,gstrb0,Iberr,dsackl,dsack0];

"State Description”

P3,P2,P1,PO node 40,39,38,37 istype 'reg_RS’;
sreg = [P3,P2,P1,P0];

S0 =10,0,0,0];

0,1]
1,0];

79

S3=10,0,1,1];
S4=[0,1,0,0];
S5=10,1,0,1];
S6 =[0,1,1,0];
S7=[0,1,1,1];
S8 =1[1,0,0,0];
S9=[1,0,0,1];
S10=11,0,1,0];
S11=[1,0,1,1];
S12 =[1,1,0,0];
S13=[1,1,0,1];
S14 =01,1,1,0];
S15=[1,1,1,1];
"Misc”

rwmemnode 42 istype 'reg_RS’;
H,LX,C,Zz=1,0,X.,.C.,.Z;
equations

output.OE = loe;

output.CLK = clk;

Appendix C (Continued)

"rw flag”

"set output enable”
"clock the output regs”
"and state regs”

"and r/w store”

"deassert”

else if (Ipas & !ds & rw & Irwmem & !siz0 & Isiz1) then S2 WITH

sreg.CLK = clk;

rwmem.CLK = clk;

@page

state_diagram sreg

state SO:

if (freset) then SO WITH
dsack0.S =1;

dsackl.s=1; rall’

Iberr.S =1; "strobes”
gstrb0.S=1; "deassert C40”
grwO.R =1, "strobe, read”
rwmem.S =1; "set to read”
ENDWITH,;

else if (!lbg) then S1;

else SO WITH

dsack0.S=1; "deassert”
dsackl.s=1; rall’

Iberr.S =1; "strobes”
gstrb0.S=1; "deassert C40"
grwo.R =1, "strobe, read”
rwmem.S =1; "set to read”
ENDWITH;

@page

"Sort Slave Request”

state S1:

"Reset”

if (Ireset) then SO WITH
dsack0.S=1; “deassert”
dsackl.S=1; "all’

Iberr.S = 1; "strobes”
gstrb0.S=1; “deassert C40"
grwO.R = 1; "strobe, read”
rwmem.S =1; "set to read”
ENDWITH,;
"32-Bit Read”

grw0.S = 1;

rwmem.S = 1;

ENDWITH;

80

Appendix C (Continued)

else if (Ipas & !ds & rw & rwmem & !siz0 & !siz1) then S3 WITH
gstrbO.R = 1;
ENDWITH;

"32-Bit Write”

else if (Ipas & !ds & 'rw & rwmem & !siz0 & Isiz1) then S2 WITH
grwO.R =1,

rwmem.R = 1;

ENDWITH;

else if (Ipas & !ds & 'rw & 'rwmem & !siz0 & !siz1) then S3 WITH
gstrbO.R = 1;
ENDWITH;

"lllegal Access (non—32 bit access)”

else if (Ipas & !ds & (rw # !rw) & (siz0 # siz1)) then S9 WITH
Iberr.R=1;

ENDWITH,;

else S1;

@page _
"32-Bit Read/Write”
state S2:

goto S3 WITH
gstrbO.R = 1;
ENDWITH,;

state S3:

goto S4 WITH
dsack0.R =1;
dsackl.R =1;
ENDWITH,;

state S4:

if pas then SO WITH
dsack0.S =1;
dsackl.S =1;
gstrb0.S = 1;
ENDWITH;

else S4;

@page

"lllegal Access”
state S9:

if pas then SO WITH
Iberr.S = 1;
ENDWITH

@page

"Power-Up”

state S15:

goto SO WITH

dsack0.S=1; "noack”
dsackO.R =0; "error 6099 fix”
dsackl.S=1; "noack”
dsackl.R=0; “error 6099 fix"

rwmem.S =1; “r/'w mem”
rwmem.R = 0; "error 6099 fix”
Iberr.S = 1; "no bus error”

Iberr.R = 0; "error 6099 fix”
gstrb0.S=1; "no strobe”
grw0.S = 1; "read”
ENDWITH;

81

Appendix C (Continued)

([clk,reset,pas,ds,rw,rmc,siz0,siz1,fc0,fcl,fc2,Ibg,0e] —>

[sreg,rwmem,dsack0,dsackl,lberr,gstrb0,grw0])

test_vectors

@page

done, release gstrb”

0 slave write,lbg”
1 pas asserted”

wait for pas release”
2 and ds”

; "2 power up”

3 reset state”

slave read,lbg”
as asserted”
nd ds, strobe”

p
a
a
9 and ds, r/w asserted”

0 and strobe”
8 done, release lberr”
8 and ds,assert strobe”

9 slave write,lbg”
0 pas asserted”

1 and ds”
0 wait for pas release”
1 done,relase gstrb”

4 wait for pas release”
5 done,relase gstrb”

6 slave write,Ibg”

7 wait for pas release”
7 pas asserted”

2 wait for pas release”
3 done,relase gstrb”

4 bad access,lbg”

5 pas asserted”

5 wait for pas release”
6 and ds, error”

]; "1 power up”

3 assert strobe”

6 done,relase gstrb”
7 slave read,lbg”

8 pas asserted”

2 assert strobe”

VA1VA1111000111100011110001111111110001110001

VA: s AT A A A A A A AAAAAAAAAAAAA OO A A A A A A A A A A A A A A

1VA;111100111110011111001111111111001111001

DN AT IO T AN NI IO AT TN O A TR DO AATNNSTSTOATN LSO
AANDLNNNNNNNNNNNDDNDDDDDDNDNDNDNDNDNDNDNDNNNDNNNNN NN
Il

_>[

ANANNNNNNANNNNNNANNNNNNANNNNNNANNNNNNANNNNNNANNNNNNNN
.m_.m_.m.______________________________________

XX 100004400650 H4+400050ddddddd00600+d—+4005S
Y100 ccoddo0000Hd00000+dHd000d+d00000HdHdc0o0
IRZAA T A A A A A AT A A A A A A A A A d A A A A AT T T A A A A A A

Hc00000000000000O0LOLOLLOLOLOLOLLOLOLOLOLOLOLOOLOOO

end slave

82

Appendix D: Schematics

Figure 10. TMS320C40 — VIC/VAC Protototype VMEbus P1 Connector

> A9 GND
> A10 SYSCLK
> All GND

AL DS1
[>-AL3 DS0
Al WRITE
[>Als GND
[—-Al6 DIACK
A7 GND
[>-Als AS
ALY GND

A0 IACK
A2 IACKIN
A2 IACKOUT
A3 AM4
A2 A7
A2 A6
A A5
A2 A4
A28 A3
A2 A3
[—>-A30 Al
AL

D A32 +5V

_— D0-D7
P1 —_ P1
Bl BBSY ——>C1 D8
B2 BCLR | c2 D9
B3 ACFAIL ——>Cs3 D10
B4 BGON | c4 D11
——>B5 BGOOUT >G5 D12
—>B6 BG1IN | c6 D13
> B7 BGIOUT 7 D14
B8 BG2IN | cs D15
B9 BG2OUT ——>Co GND
——>BIO BG3IN | C10 SYSFAIL

> B1l BG30UT > C11 BERR

> B12 BRO > C12 SYSRESET

> B13 BR1 > C13 LWORD

> Bla BR2 —>Cl4 AM5
[—>Bi5 BR3 [—>Cl5 A23
——>BI6 AMO ——>Cl6 A22
Bl AM1 ——>Cl7 A21
B8 AM2 ——>Ci8 A20
——>B19 AM3 ——>Cl9 A19

> B20 GND > C20 Al18

Dﬂ D Cc21 Al7
Dﬁ D Cc22 Al6

 Al-A7 > B23 GND > c23 A15

B24 IRQ7 > Cc24 Al4

B25 IRQ6 > C25 Al3

B26 IRQ5 > C26 Al2

B27 IRQ4 > c27 All

B28 IRQ3 > C28 A10

B29 IRQ2 D C29 A9
B30 IRQ1 D C30 A8
8L >

D B32 +5V D C32 +5V

— Db8-D15

— A8-A23

83

Appendix D: Schematics (Continued)

Figure 11. TMS320C40 - VIC/VAC Protototype VMEbus P2 Connector

—
42
>4
>
45
>4
AL
48
>4
>4
AL
-
AL
AL
T
A1
AL
AL
AL
A0
42l
-
——
42
425
-4
42
A2
)
>4
-
A2

84

P2

D B1 +5V
D B2 GND
S

D B4 A24
D B5 A25
D B6 A26
D B7 A27
D B8 A28
D B9 A29
D B10 A30
D B11 A31
D B12 GND
D B13 +5V
D B14 D16
D B15 D17
D B16 D18
D B17 D19
D B18 D20
D B19 D21
D B20 D22
D B21 D23
D B22 GND
D B23 D24
D B24 D25
D B25 D26
D B26 D27
D B27 D28
D B28 D29
D B29 D30
D B30 D31
D B31 GND
D B32 +5V

— A24-A31

~— D16-D23

— D24-D31

o1
>
>
>
>
—>c6
.-
——
>
)
o
o
>ci
>-ci4
o8
—>Cie
o
E——
o
>
T
s
o2
——
——
>c2
L
>
>c2
—>C
>
>cx

AMELIA — An A/D-D/A Interface to
the TMS320C40 Global Bus

Steve R. France
Loughborough Sound Images Ltd.

85

86

Introduction

AMELIA is Loughborough Sound Images’ (LSI) Analog ModulE Link Interface Adapter. It is used on a
number of LSI's development boards, including those that use the TMS320C40 DSP from Texas
Instruments. It allows you to build a modular interface system that can be upgraded as technology
progresses. In addition, AMELIA uses none of the 'C40’s parallel communication links, so the processing
system maintains its flexibility.

This application note describes the broad functionality of AMELIA, how it integrates analog and digital
operations, and how it enhances the interface options open to the system builder.

Analog Conversion — A Brief Overview

The large number of 'C40 systems that connect to the outside world via an application-specific analog
interface require a range of solutions. In these solutions, it is crucial that data be presented to the processor
accurately to maintain its value.

A number of analog interface devices have been available for some time and the comparison has been made
primarily in terms of conversion bandwidth, or how fast the converter can operate. The tradeoff has been
in the conversion performance, or accuracy of the device. Generally, the wider the bandwidth, either the
resolution of the converter (humber of bits) or the signal-to-noise ratio is reduced. Thus, it is common to
find converters with 8-bit resolutions that operate in the megahertz sampling range, but 16-bit devices are
limited to hundreds of kilohertz.

Today, there is a much greater concern for accuracy of conversion. Ultimately, the application determines
the exact performance requirements: from 8-bit servo control and 10- to 14-bit requirements of telecomms
and radar, through the growing 16-bit arena, to the digital audio applications requiring 24 bits of resolution.
Consequently, users are becoming more selective, and a single general-purpose device cannot fulfill all
requirements.

Modular Interface Design Techniques

A modular approach to interface design makes possible a range of interface solutions to meet the
requirements of all the varied applications. A modular design also protects earlier investments when you
update your system.

Analog conversion techniques are progressing at a fast pace in the semiconductor industry; this means that
traditional methods of design in which the converter is mounted on the same PCB as the DSP are somewhat
limited. If your application would benefit from the improved performance that a new device can provide
but your system has a traditional design, the whole system must be replaced, including DSP technology
that may still be current. With the modular approach, the new module simply replaces the old, maintaining
your investment in the 'C40 processing system.

LSI's modular technique attaches a separate PCB directly to LSI's 'C40 boards on both the PC and VME
chassis; the PCB remains within the single height constraints of those systems. This approach realizes other
benefits in the performance of the system. A single-board system has inherent flaws in the way that digital
noise easily transmits into sensitive analog components and imposes an upper performance limit that is less
than optimal. When the analog section is removed from the digital PCB, system performance figures
approaching those of the converters are achieved. This is attributed to better isolation between the two sets
of components.

87

Analog component layout also accounts for performance differences. With a single-board system, cost
constraints on total system design prevent repeated changes on the circuit board. Consequently, a number
of these systems rely on analog interfaces that exhibit suboptimal performance. Having a separate board
for the analog interface affords two advantages: the layout problem is eased, and a new analog design can
proceed independently of the digital system, allowing a more rapid time to market with a new design.

A modular interface design technique is now in place at LSI. To illustrate the performance benefits with
the 'C40, typical measured figures are 90 dB signal to noise and distortion for a delta-sigma converter, and
84 dB for a 200-kHz successive approximation device. These figures were measured with the complete
assembled system inserted into the host platform.

AMELIA

To develop a modular system, it was first necessary to find a common way in which to interface a wide range
of conversion modules to an equally wide range of DSPs. The paramount consideration for LSI was
flexibility so that all functionality of the DSP could be available; this precluded the use of serial ports on
'C3x and 'C5x devices. Additional design objectives were to avoid consuming a 'C40 communication link
and to consider the differing connection methods and protocol requirements. The best solution was to
memory map the analog interface.

Memory mapping solves the problems of interfacing to different TI DSP families and does not remove any
device functionality. AMELIA serves as the link between the DSP and the interface device, absorbing any
interconnection differences.

The basic functional blocks of AMELIA are shown in Figure 1. The device is produced in a 2000-gate
FPGA and is packaged in a 68-pin PLCC. The pin assignment is shown in Table 1. AMELIA provides two
synchronous serial ports for the 'C40. Sixteen-bit data words are transmitted and received under control
of the sophisticated frame sync logic. The flexibility of that logic is ideally suited for connection to a wide
range of A/D, D/A, and other serial communication devices. The 'C40 and serial sides of AMELIA operate
asynchronously to each other. They can handle very slow peripherals without slowing the 'C40; the DSP
is interrupted only when the data is ready for processing.

88

DSPINT

D(15-0)
A(3-0)
RIW
cs
CLK/STRB
RESET

CLKO
CLK1

Figure 1. Block Diagram

Interrupt
Logic
Input Shift
DSP Registers
Interface G and Data
Logic Latches
Output Shift
——) Regiers
and Data
Latches
m— R ¥t
Logic
Control and
Configuration K
Registers J—‘ Parallel 1/0

Timer Logic

EXT INT

RxDO
RxD1
CLKR

TxDO
TxD1
CLKX

FSR
FSX

CM(7-0)
SM(7-0)

MCLKO

MCLK1

89

Table 1. Pin Assignments

Pin Name Pin Number State Description
Analog Control/Status
CMO 34 (0] Control port to the analog daughter module.
CcM1 33
CM2 31
CM3 30
CM4 29
CM5 28
CM6 27
CM7 26
SMO 39 I Status port from the analog daughter module.
SM1 37
SM2 36
SM3 35
Analog Serial Bus Interface
CLKR 52 | Serial receive clock. This is the serial shift clock for both receive
channels.
CLKX a7 | Serial transmit clock. This is the serial shift clock for both trans-
mit channels.
FSR 53 | Frame synchronization pulse for the serial receive channels.
FSX 48 1/0 Frame synchronization pulse for the serial transmit channels.
RXDO 50 | Data receive for channel 0/1. Serial data for channel 0/1 is re-
RXD1 51 ceived on this pin.
TXDO 45 O Data transmit for channel 0/1. Serial data for channel 0/1 is
TXD1 46 transmitted on this pin.
DSP Parallel Bus Interface
AO 11 | Four-bit address port.
Al 12
A2 13
A3 16
DO 61 11012 Sixteen-bit data port lines.
D1 62
D2 63
D3 64
D4 65
D5 67
D6 68
D7 1
D8 2
D9 3
D10 5
D11 6
D12 7
D13 8
D14 9
D15 10
CSs 18 | Chip select. When an access is performed, this signal must be
low.
CLK/ 19 I Clock or strobe signal. This signal generates early write strobes
STRB for write cycles if the data hold time is insufficient for the device.

90

Table 1. Pin Assignments (Continued)

Pin Name Pin Number State Description

RESET 20 | Reset. When this pin is low, the device is placed in the reset
condition.

R/W 17 | Read/write signal When a read is performed, this signal must
be held high. When a write is performed, this signal is low.
Interrupt

DSPINT 22 O Open-collector interrupt on the DSP. Interrupts generated by

the serial interface or by an external interrupt source can be
output to the DSP on this pin.

EXINT 44 | External interrupt. Interrupts generated on this pin can be
passed through to the DSP.

Miscellaneous

NCO 54 z Unused pin. This pin must be terminated to ground via a 10-kQ
resistor.

NC1 59 Zz Unused pins. These pins must be left unconnected.

NC2 56

NC3 57

NC4 58

NC5 60

NC6 40

Power Supply

GND1 14 GND Ground pins.

GND2 15

GND3 32

GND4 49

GND5 66

Vcel 4 Vce +5-Volt supply pins.

Vce2 21

Vces 25

Vcea 38

Vces 55
Timer

CONV1 41 O/z Conversion pulse generator 1 output. This pin outputs pulses
generated by timer 1 as programmed from the DSP interface.

MCLKO 42 110 Master clock. When configured as an input, this clock can drive

MCLK1 43 either of the two internal timers. As an output, this pin is driven
by the timer clock TCLKO/1.

TCLKO 23 | Timer clock. The clock on this pin can drive either of the two in-

TCLK1 24 ternal timers; its source is on the motherboard.

AMELIA has three main components: a DSP parallel interface section, a synchronous serial interface, and
a sample-rate generation section.

The parallel section is connected onto the 'C40 global (or local) bus with no signal modifications, as shown

in Figure 2. AMELIA uses 16 bits of data and just four address lines; its signals include read/write, chip
select, a clock input, and chip reset. The functional block includes data buffers and multiplexers, internal
address decoders, and an interrupt generator. Interrupts can be generated from three different sources:
receive register full, transmit register empty, and external interrupt signals received from the daughter
module. This provides a flexible method of data transfer control.

91

Figure 2. AMELIA Circuit Connections

po —po AMELIA RXDO
DL ——— b1 RxD1
D2 — b2 TxDO
p3 — b3 TxD1
D4 — D4 FSR
ps —— b5 FSX
D6 — D6 CLKR
b7 — b7 CLKX
p8 — |ps8
9 g — oo CONVO |———— +5V
£ D10 ———{D10 CONV1
g D11 —— D11 %tﬁ
= pI2 — 1p12 —
3 D13 D13 MCLKO |——— 4.7 kQ
] D14 —— P14 MCLKL
3 D15 — D15 DSPINT
= ,
= A — a0 EXINT C40 Interrupt
Al —— A1 SM3 |
A2 —{ A2 SM2
A3 ———{ A3 SMm1
SMO
RW — |BRw CcMm7
CsS ———————|cCs CM6
H ——— CLK/STRB CM5
RESET — RESET CM4
cM3 b——
GND —{ }—NCo cm2 f——m
10 kQ cM1
CMO

The timer section comprises a full 16-bit reloadable time-out counter and a divide-by-1,-2,-4 or -8
prescaler. The timer can be independently clocked from one of four sources, any of which can be used to
provide the sample rate clock. The LSI'C40-based board has a socketed oscillator that can be used for this
purpose. The clock source is a user-selectable feature because sample rate sources are already provided on
the analog interface modules.

The control and configuration block is a software programmable section that gives AMELIA its wide
operating characteristic. These controls make it possible to accommodate a wide range of serial standards
found on converter devices. Most converters use a form of synchronous serial interface (SSI), but this
varies across manufacturers. The main differences are the phasing and the type of frame sync signals that
control the transfer. AMELIA has sophisticated frame sync shaping circuitry to accommodate as wide a
range of protocols as possible. As a result, AMELIA can input FSR and FSX signals in bit, word, or 12S
formats with either normal or inverted polarity and can also generate FSX in any of these protocols.

The parallel 1/0 block provides eight digital outputs (CM7-0) and four digital inputs (SM3-0). These are
general-purpose signals that can be used to provide autoconfiguration, control, or status information about
the interface module being used. Analog interfaces use this feature to configure converter-specific signals
on the modules.

The present version of AMELIA is a two-channel design incorporating two input and two output channels.
As such, AMELIA integrates two parallel-to-serial and two serial-to-parallel converters. For analog data
input, data is read from the analog module under control of the frame sync logic and transferred to the data

92

latches, which are then read by the 'C40. Data sampling is synchronous because both data channels are
driven from the same clock source.

From performance measurements of AMELIA, the maximum clock rate that can be accommodated at the
serial interface is 12 MHz. This gives adequate bandwidth for a wide range of devices to be interfaced to
the 'C40.

Programming Interface

AMELIA can accommodate a wide range of fundamentally different conversion techniques. To implement
this, the ASIC incorporates a high level of programmability. All control signals generated for the converters
are configurable in terms of polarity. The duty cycle of the sample rate trigger is selectable as either a pulse
train or as a square wave, allowing both delta-sigma and successive approximation parts to be
accommodated. Because of the fundamental differences in the operation of these conversion standards, the
delta-sigma converter requires a sample rate clock, whereas successive approximation devices need a
stream of conversion pulses to operate.

This level of flexibility requires a block of 16 address locations from the 'C40. These locations include both
channels’ input and output data registers, timer programming register, and the control and configuration
registers. Also, a number of locations are reserved for future enhancements. The register map is shown in
Table 2.

Table 2. Register Map

Location (Hex) Read Write
9000 0000 NU NU
9000 0001 NU NU
9000 0002 ChO Input Data ChO Output Data
9000 0003 NU NU
9000 0004 NU NU
9000 0005 NU Timerl
9000 0006 Ch1 Input Data Ch1 Output Data
9000 0007 NU NU
9000 0008 NU User control
9000 0009 NU NU
9000 000A Analog Status Analog Control
9000 000B Interrupt Status Interrupt Mask
9000 000C NU NU
9000 000D NU NU
9000 000E NU NU
9000 000F NU Configuration

NOTE: NU = Not Used.

Once the configuration for the analog module is complete, the details of the control registers may be
ignored. The programming task is reduced to writing five prepared control words. Example 1 shows a
two-channel echo program that simply reads data from the ADC and immediately writes that data back out
to the DAC.

93

Example 1. Two-Channel Echo Program

* *
* ECHO example program. *
* *
* ECHO initializes the AM/D16DS on the DPC/C40 and echoes the *
* input on each channel. *
* *
.data

STACK .word 002ffcO0h ;Define stack space

IACKLOC .word 80000000h ;Interrupt acknowledge location
IVECTAB .word 002ff800h ;Interrupt vector table

CHANA .word 90000002h :Channel A address

CHANB .word 90000006h ;Channel B address

UCR .word 90000008h ;User control register address
ACR .word 9000000ah ;Analog control register address
IMR .word 9000000bh ;Analog interrupt mask register address

CONFIG .word 9000000fh ;Configuration register address

text
;Set up interrupt vector table

BR START

.word Oh ;Unused interrupts: NMI

.word Oh ;TINTO

.word Oh JIIOFO0

.word ISR ;Amelia Interrupts on [IOF1
;Start of program...

START: LDP @STACK,DP ;Initialize the stack

LDl @STACK,SP

LDl @IVECTAB,RO ;Set up the interrupt vector table
LDPE RO,IVTP

o Write to the registers within AMELIA...
LDI @UCR,ARO ;User control register

LDl 0a000h,R5 ;
STl R5,*AR0 ;ADMCLKO to be used

94

LDI @ACR,ARO ;Analog control register

LDl 0aOH,R5 ;

STl R5,*AR0 ;48 KHz sample rate
:AMELIA into reset

LDI @ACR,ARO ;Analog control register

LDl 0eOH,R5 ;

STl R5,*AR0 ;AMELIA released from reset,
;calibrating

LDI @CONFIG,ARO ;Analog configuration register

LDl Ob390H,R5 ;loaded with Key value

STl R5,*AR0 ;

LDI @IMR,ARO ;Analog interrupt mask register

LDI 01H,R5 ;Int when RX register full

STI R5,*AR0 ;

: AMELIA configuration complete. Initialize 'C40

LDl 0O,R3 ;channel a output
LDl O,R4 ;channel b output
LDI @IMR,ARO ;ARO = Interrupt mask register
LDI @CHANA,AR1 ;AR1 = channel a input
LDI @IACKLOC,AR2 ‘AR2 = | nterrupt ack. location
LDI @CHANB,AR3 ;AR3 = channel b input
OR 90h, IIE ;Enable IIOF1 interrupt
OR 02000h, ST ;CPU global interrupt

LOOP: BR LOOP ;IDLE until interrupted

ISR:
LDl *ARO,R5 ;read interrupt to clear
LDI *AR1,R3 ;Load channel a input —> R3
STl R3,*AR1 ;Save R3 —> channel a output
LDI *AR3,R4 ;Load channel b input —> R4
STI R4,*AR3 ;Save R4 —> channel b output
RETI
.end

The program begins by initializing the 'C40 stack and interrupt vector table location. AMELIA resides at
addresses above 9000 0000h in the 'C40 memory map, placing it on the global expansion bus. The analog

95

module used in the example was a delta-sigma converter, the AM/D16DS daughter module from LSI. All
the specific programming details for the module are included with that product.

To begin analog interface programming, you configure the user control register (UCR). This register
defines the clock source to be used on the module and also any prescaler values that may be required. The
on-module oscillator ADMCLKO is selected. The analog control register then selects the sample rate of
ADMCLKO to be 48 kHz. The UCR also controls of the module calibration. The first figure written to the
register resets the analog module, and the second write causes the register to enter an offset calibration
cycle.

The configuration register defines the correct communication protocol between the 'C40 and the analog
module, which has already been defined at LSI, so a simple write to the register is sufficient. In practice,
the configuration register sets a number of controls to define clock polarities, a valid clock edge on which
to read data, and the frame sync controls.

The interrupt mask register is the last initialization task; the rest of the program is application-specific. The
final task to start the system is to enable the IIOF1 interrupt on the 'C40, the signal to which AMELIA is
connected.

The data is read and written in the interrupt service routine, which also illustrates the simple software
interface to AMELIA.

Conclusion

This article has outlined a significant advance in the techniques required to provide a modular analog
interface to the 'C40. The single-chip interface adapter offers a number of advantages: all the functionality
of the 'C40 is preserved, converters can easily be exchanged if the requirements change, and the interface
modules have a higher performance specification. The combination adds up to a powerful interface
solution that can be used to apply generic 'C40 signal processing technology to a range of specific
applications.

ADC and DAC conversion is the basis of this paper, but other communication protocols could easily be
transferred onto a common interface platform, including RS-232 and PSTN extension line connections.
Digital interfaces can also be added, including digital audio, telecomm, and control applications. Adding
functionality to the standard platform is a straightforward task.

96

A Parallel Approach for Matrix
Multiplication on the TMS320C4x DSP

Rose Marie Piedra
Digital Signal Processing — Semiconductor Group
Texas Instruments Incorporated

97

98

Introduction

Matrix operations, like matrix multiplication, are commonly used in almost all areas of scientific research.
Matrix multiplication has significant application in the areas of graph theory, numerical algorithms, signal
processing, and digital control.

With today’s applications requiring ever higher computational throughputs, parallel processing is an
effective solution for real-time applications. The TMS320C40 is designed for these kinds of applications.

This application note shows how to achieve higher computational throughput via parallel processing with
the TMS320C40. Although the focus is on parallel solutions for matrix multiplication, the concepts stated
here are relevant to many other applications employing parallel processing.

The algorithms that are presented were implemented on the Parallel Processing Development System
(PPDS), which has four TMS320C40s and both shared- and distributed-memaory support. The algorithms
make use of parallel-runtime-support library (PRTS) functions available with the 'C40 C compiler for easy
message passing.

This report is structured in the following way:

Matrix Multiplication Gives a brief review of matrix multiplication and some common
application areas.

Fundamentals of Parallel Processing Presents some basic concepts of parallel processing. Partition-
ing, memory configuration, interconnection topologies, and
performance measurements are some of the issues discussed.

Parallel Matrix Multiplication Focuses on parallel implementations of matrix multiplication.
Shared- and distributed-memory implementations are consid-
ered, as well as TMS320C40 suitability for each.

Results of Matrix Multiplication on a

TMS320C40-Based Parallel System Presents the results of shared- and distributed-memory imple
mentations of parallel matrix multiplication on the 'C40 PPDS.
Includes analysis of speed-up, efficiency, and load balance.

Conclusion States conclusions.
Appendices List the code for parallel matrix multiplication. The programs

have beenwritten in C. For faster execution, a C-callable assem-
bly language routine is also supplied.

Matrix Multiplication

Let A and B be matrices of sim&mandmx|, respectively. The product matrix C = A * B istaxl matrix,
for which elements are defined as follows [7]:

m-1
¢ = z ay by where _
K=0 O<i<n O0<j<I

99

The matrix multiplication requires @nl) arithmetic operations, with each arithmetic operation requiring
a cumulative multiply-add operation. Wheril, a matrix-vector multiplication exists. Assuming that
n=m=l, matrix multiplication is an @@) operation.

Matrix-multiplication applications range from systems-of-equations solutions to graph representation.
Also, matrix-vector multiplication can be applied to compute linear convolution. Refer to [2] and [7] for
further information on these techniques.

Fundamentals of Parallel Processing

When applications require throughput rates that are not easily obtained with today’s sequential machines,
parallel processing offers a solution.

Generally stated, parallel processing is based on several processors working together to accomplish a task.
The basic idea is to break down, or partition, the computation into smaller units that are distributed among
the processors. In this way, computation time is reduced by a maximum fagtehefrep is the number

of processors present in the multiprocessor system.

Most parallel algorithms incur two basic cost components[7]:

e computation delay—under which we subsume all related arithmetic/logic operations, and
e communication delay—which includes data movement.

In a realistic analysis, both factors should be considered.

This application report presents some basic concepts of parallel processing. Refer to [2], [4], [5], [6], and
[7] for more detailed information.

Partitioning Schemes
From the software point of view, two basic approaches are used to create a parallel application:

* Functional Partitioning: In this case, the task is a single function that has been subdivided
between the processors. Each processor performs its subfunction on the data as it moves from
one processor to the next in an assembly line or pipeline fashion.

e Data Partitioning: In this case, the task is partitioned so that each processor performs exactly
the same function, but on different subblocks of the data. This approach requires algorithms with
strong intrinsic parallelism. The parallel matrix multiplication implemented with the
TMS320C40 PPDS applies this data-partitioning approach.

Architectural Aspects
From the hardware point of view, two important issues should be considered:

e Memory configuration (shared- versus distributed-memory): In a distributed-memory
system, each processor has only local memory, and information is exchanged as messages
between processors. In contrast, the processors in a shared-memory system share a common
memory. Although data is easily accessible to any processor, memory conflict constitutes the
bottleneck of a shared-memory configuration. Because the PPDS has both shared and
distributed memaory, it is an excellent tool for implementing and evaluating different parallel
configurations.

e Connectivity network: Thisissue relates to the way the processors are interconnected with each
other. Fully connected networks (in which all the processors are directly connected to each other)
are the ideal networks from an “ease of use” point of view. However, they are impractical in large

100

multiprocessor systems because of the associated hardware overhead. Linear arrays, meshes,
hypercubes, trees, and fully-connected networks are among the topologies most commonly
used. Hypercube topologies are widely popular in commercially available multiprocessor
systems because they provide higher connectivity and excellent mapping capabilities. In fact,

it is possible to embed almost any other topology in a hypercube network [4]. Mesh topologies
are also commonly used to make systems modular and easily expandable. When
distributed-memory systems are used, interconnectivity issues play an important role in the
message-passing mechanism.

Performance Measurements
Two measurements apply to the performance of a parallel algorithm—speed-up and efficiency.

* Speed-upof a parallel algorithm is defined §s=Ts/T, whereTs is the algorithm execution
time when the algorithm is completed sequentially,lyid the algorithm execution time using
p processors. Theoretically, the maximum speed-up that can be achieved by a parallel computer
with p identical processors working concurrently on a single problgm k&wever, other
important factors (such as the natural concurrence in the problem to be computed, conflicts over
memory access, and communication delay) must be considered. These factors can reduce the
speed-up.

* Efficiency, defined ag, =§/p with values between (0,1), is a measure of processor utilization
in terms of cost efficiency. An efficiency close to 1 reveals an efficient algorithm. If the
efficiency is lower than 0.5, it is often better to use fewer processors because using more
processors offers no advantage.

Generally, the communication cost should be minimized by using wiser partitioning schemes and by
overlapping CPU and I/O operations. DMA channels help to alleviate the communication burden.

Parallel Matrix Multiplication

In parallel matrix multiplication, successive vector inner products are computed independently.

Because this application report focuses on multiple instruction multiple data (MIMD) implementations
(shared- and distributed-memory approaches), systolic implementations are not discussed. However,
single instruction multiple data (SIMD) implementations are also feasible with the TMS320C40.

Shared-Memory Implementation

Letn=qgp, wherenis the number of rows of matrix Ajs the number of processors, a1 is an integer.
Matrices A and B are stored in global memory so that each processor can have access to all the
rows/columns. The basic idea is to allocate a different working set of rows/columns to each processor.

Processor computes row vector§, gi+1, ... ,gi+g-1 of product matrix C, wheie= 0,1,...p—1. This is
illustrated in Figure 1 fop =4 andh=m=1| = 8.

101

Figure 1. Shared-Memory Implementation

Matrix A X Matrix B > Matrix C
(8x8) (8x8) (8x8)
01234567 01234567 01234567

PO » 0 0 PO » 0
1 1 1
P1L » 2 2 P1 » 2
3 3 3
P2 » 4 4 P2 » 4
5 5 5
P3 » 6 6 P3 » 6
7 7 7

Note: All processors have full access to the entire matrix B.

Two different approaches can be followed:

1. Execute operations totally in shared memory (full memory conflict)This implementation
does not require any initial data transfer, but a conflict among memory accesses results (see code
in Appendix A).

2. Transfer data for execution in on-chip memory of each processor (reduced memory
conflict): This approach reduces the delay caused by memory conflicts, butit requires extra data
transfer. This moving of data can be executed by the CPU or DMA via double-buffering
techniques.

Using double-buffering techniques can minimize the data-transfer delay. For matrix-vector
multiplication, vector B is initially transferred to on-chip RAM. While the CPU is working on
row A, the DMA is bringing row Ri+1)to on-chip RAM. If the two buffers are allocated in
different on-chip RAM blocks, no DMA/CPU conflict will be present. If the DMA transfer time

is less than or equal to the CPU computation time, the communication delay will be fully
absorbed. The TMS320C40 has two 4K-byte on-chip RAM blocks that enable it to support
double buffering of up to 1K words. Although this approach is not implemented in this
application report, page 104 shows what kind of performance can be expected.

Distributed-Memory Implementation
Letn=gp, wherenis the number of rows of matrix Ajs the number of processors, ayxll is an integer.

Matrix A has been partitioned inforegions with each region containiggows and being assigned to the
local-memory (LM) of each processor. Matrix B is made available to all the processors. The
data-partitioning scheme is similar to the shared-memory approach. The differences are the extra time
required for data distribution/collection via message passing and the fact that all computations are done in
the LM of each processor with no memory-access conflict involved. With the use of double-buffering, this
communication delay can be reduced.

In this implementation, it is assumed that only processor 0 has access to matrix A and B. Processor 0 acts
as a host processor responsible for broadcasting the needed data to each of the other processors and waiting
for the vector results from the other processors. This is illustrated in Figure 2. Data distribution/collection

is system-specific and may not be needed for certain applications.

102

Figure 2. Distributed-Memory Implementation

Step 1: Data Broadcasting (Asynchronous) q = (n/p)=(8/4)=2
P1 Matrix A: Rows 2, 3 Complete Matrix B
PO P2 Matrix A: Rows 4, 5 Complete Matrix B
P3 Matrix A: Rows 6, 7 Complete Matrix B

Step 2: Distributed Matrix Multiplication (Processor i)

Partition of) > Partition of
Matrix A x Matrix B Matrix AxB
01234567 01234567 01234567
0
Row (i*q) 1 Row (i*q)
Row (i*q+1) 2 Row (i*q+1)
3
4
5
6
7

Step 3: Data Collection (Asynchronous)

P1 Rows 2, 3

P2 Rows 4,5 — P PO Rows 0, 1

P3 Rows 6, 7

Note: Asynchronous = using DMA channels.

TMS320C40 Implementation

The TMS320C40 is the first parallel-processing DSP. In addition to a powerful CPU that can execute up
to 11 operations per cycle with a 40- or 50-ns cycle time, it contains 6 communication ports and a
multichannel DMA [3]. The on-chip communication ports allow direct (glueless) processor-to-processor
communication, and the DMA unit provides concurrent I/O by running parallel to the CPU. Also, special
interlocked instructions provide support for shared-memory arbitration. These features make the
TMS320C40 suitable for both distributed- and shared-memory computing systems.

103

Results of Matrix Multiplication on a TMS320C40-Based Parallel System

Parallel matrix multiplication was implemented in the TMS320C40 PPDS. The PPDS is a stand-alone
development board with four fully interconnected TMS320C40s. Each 'C40 has 256K bytes of local
memory (LM) and shares a 512K-byte global memory (GM)[1].

Features of implementing parallel matrix multiplication in the TMS320C40 PPDS:

* The programs are generic. You can run the programs for different numbers of processors in the
system just by changing the value of P (if you set P=1, you will have a serial program).

e Data input is provided in a separate file to preserve the generality of the programs.

* A node ID must be allocated to each processor. In this way, each processor will select
automatically the row/column working set allocated to it. In this implementation, a different
node ID is allocated to each processor by using the 'C40 debugger commands to initialize that
variable. It is also possible to allocate a node ID by usingnilieid function in the
parallel-runtime-support library (PRTS), which reads a predetermined set node ID value from
a user-specified memory location.

* For benchmarking of shared-memory programs, a global start of all the processors is absolutely
necessary; otherwise, the real-memory-access conflict will not be observed. To help with this
process, a C-callable assembly routine is provided in Appendixi€dunt.asirfor debugging
systems without global start capability. Rotating priority for shared memory access should be
selected by setting the PPDS LCSR register to 0x40. On this basis, the total execution time of
the parallel algorithm can be defined as T = max,(Where Tis the execution time taken by
processor i (see Appendix Shared.c. T; = time between labels aind).

¢ For benchmarking of distributed-memory programs, I/O-execution time is optional. Data 1/0
is system-specific and normally is not considered. In this application report, speed-up/efficiency
figures are given for both cases—including and not including I/O—in order to show the effect
of the communication delay in a real application. In this program (see Appendistri.c),
when processor 0 is acting as a host, then

Execution time
(/O included)

time between labels t1 and t4 in processor 0.

Execution time time between labels t2 and t3 in the processor with more load, or in any
(/O not included) processor in the case of load balancing.

e If a debugger with benchmarking optiomsr(b) is not available, the 'C40 analysis module or
the 'C40 timer can be used. In this application report, the 'C40 timer and the timer routines
provided in the PRTS library have been used for speed-up efficiency measures. Serial program
timings for the speed-up figures were taken with the shared-memory program with P = 1.

¢ Whenthe number of rows of matrix A is not a multiple of the number of processors in the system,
load imbalance occurs. This case has been considered for the shared-memory
(full-memory-conflict) implementation. (See Appendixghared.c

In parallel processing, speed-up/efficiency figures are more important than cycle counting because
speed-up/efficiency figures show how much performance improves if you make an application parallel.
You can apply the speed-up factors to any known sequential benchmarks to get a rough idea of the
parallel-execution time (assuming that the same memory allocation is used). Appendix D includes a
C-callable assembly-language function that executes matrix multiplication in approximately
nrowsa*(5+ncolsb*(6+ncolsa)) cycles in single-processor execution. This assumes use of program and
data in on-chip RAM. It also shows how you can use that function for parallel-processing execution.

104

Analysis of the Results

The performance of a parallel algorithm depends on the problem size (matrix size in our case) and on the
number of processors in the system. Speed-up and efficiency figures covering those issues can be observed
from Figure 3 to Figure 8 for the parallel algorithms presented. As you can see:

Shared-memory (full-memory conflict) has the lowest speed-up and efficiency. However, the
initial transfer of data to on-chip memory increases the speed-up, and if double-buffering
techniques are used, shared-memory implementation becomes as ideal as the
distributed-memory approach.

Speed-up is proportional to the number of processors. In the shared-memory implementation
(reduced-memory conflict) or in the distributed case (computation only), an optimal speed-up
of p can be reached. See Figure 3 and Figure 5. This result occurs because matrix multiplication
does not require any intermediate communication steps. In Figure 4,px#h8nthere is a
decline in efficiency due to load imbalance.

In general, efficiency is a better measure to analyze a parallel algorithm because it is more
meaningful in processor utilization. For example, compare Figure 3 and Figure 4—the
efficiency figure shows more clearly how increasing the number of processors negatively affects
the performance of the shared-memory (full-memory conflict) implementation.

Speed-up/efficiency increases for larger matrices in all cases, except for the shared-memory
(full-memory conflict) case. In the distributed-memory case (with 1/0), speed-up/efficiency
increases because the communication delagdQiperation) becomes negligible against the
computation delay (@) operation) for large. See Figure 6 and Figure 7.

Inthe case of load imbalance, efficiency decreases because computation is not evenly distributed
among the processors. This is plotted in Figure 8. As you can see, if P = 4, the worst case occurs
when matrix size = 5, because while processor 0 is calculating the last row (row 4), all the other
processors are idle. The results shown here were taken for the shared-memory implementation
but are applicable for the distributed case.

The shared-memory implementation requiném+m*I+n*l words of shared memory (for
matrices A, B, and C, respectively). When this amount of memory is not available in the system,
intermediate-file downloading can be used. Another option is in-place computation (-A * B

A) using one intermediate buffer of siz@er processor. For the distributed-memory case, the
performance depends on the way you implement your initial data distribution. In the application,
processor 0 requires*m+m*l+n*l words of local memory. The other processors require
g*m+m*I+g*| of local memory, wherg = [h/pl]

The programs in Appendices A and B have been used to calculate the speed-up/efficiency figures. For the
assembly-language case (Appendix D), the speed-up figures for the computation timing are still valid. For
the total timing (I/O included) using the assembly-language routine, the C implementation of the PRTS
routines lowers the speed-up, but for larger matrices, this is minimized.

105

Figure 3. Speed-Up Vs. Number of Processors (Shared Memory)

Speed-Up
5

Number of Processors
=== Shared-memory implementation with full memory conflict
=&=— Shared-memory implementation with double buffering for reduced-memory conflict

Note: Matrix size = 16x16

Figure 4. Efficiency Vs. Number of Processors (Shared Memory)

Efficiency
110%

100%

90%

80%

70%

60%

5% — ———————————

€0 (—— Y Y —

30%

Number of Processors
=>4 Shared-memory implementation with full memory conflict
== Shared-memory implementation with double buffering for reduced-memory conflict
Note: Matrix size = 16x16

106

Figure 5. Speed-Up Vs. Number of Processors (Distributed Memory)
Speed-Up
5

1 2 3 4 5
Number of Processors
=B~ Distributed-memory implementation with computation and 1/O delay
- Distributed-memory implementation with computation only
Note: Matrix size = 16x16
Figure 6. Speed-Up Vs. Matrix Size
Speed-Up
5
L O L) —_—) |
4 — o = @
_ - —— —— = —F]
)E— f———— e "
3 —— T — — —
7
o —
,
S -
0 I I I I I I I I I I I I I I I I
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

Matrix Size
=&~ Distributed-memory implementation with computation and I/O delay
-@- Distributed-memory implementation with computation only
=>& Shared-memory implementation with full memory conflict

== Shared-memory implementation with double buffering for reduced-memory conflict
Note: Number of Processors = 4

107

Efficie
120%
110%
100%
90%
80%
70%
60%

Figure 7. Efficiency Vs. Matrix Size

ncy

50% [— —

on———5 - - - -
30% [—)Z ————————————————————————————————
O
0% . T T T T T T T T T T

0%

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Matrix Size
=== Distributed-memory implementation with computation and I/O delay
-@' Distributed-memory implementation with computation only
=> Shared-memory implementation with full memory conflict

—~=— Shared-memory implementation with double buffering for reduced-memory conflict

Note: Number of Processors = 4

Figure 8. Speed-Up Vs. Matrix Size (Load Imbalance for Shared-Memory Program)

Speed-Up
5

3 4 5 6 7 8 9 10 11 12 13 14 15 16
Matrix Size

=L Shared-memory implementation with full memory conflict
—>— Shared-memory implementation with double buffering for reduced-memory conflict
Note: Number of Processors = 4

108

Conclusion

This report has presented parallel implementations of matrix multiplication using both shared- and
distributed-memory approaches. Matrix multiplication is an excellent algorithm for parallel processing,
as the speed-up/efficiency figures have shown. To avoid memory conflict when using the shared-memory
approach, itis important to transfer the data to on-chip/local memory for execution. Because interprocessor
communication is required only initially, it does not have a strong effect on the performance of the
distributed-memory approach; but with double-buffering techniques, this can be minimized even more.
Load balancing must also be considered.

109

References

[1] D.C. Chen and R. H. Price. “A Real-Time TMS320C40-Based Parallel System for High Rate Digital
Signal Processing/CASSP91 Proceedingslay 1991.

[2] S. G. Akl. The Design and Analysis of Parallel Algorithnisnglewood Cliffs, New Jersey:
Prentice-Hall, 1989, page 171.

[3] TMS320C4x User's Guiddexas Instruments, Incorporated, 1991.

[4] D. P. Bertsekas and J. N. TsitsiklRarallel and Distributed Computation, Numerical Methods
Englewood Cliffs, New Jersey: Prentice-Hall, 1989.

[5] S. Y. Kung.VLSI Array Processor€Englewood Cliffs, New Jersey: Prentice-Hall, 1988.

[6] U. Schendellintroduction to Numerical Methods for Parallel Computétsgland: John Wiley & Sons,
1984.

[7]1 J. J. Modi.Parallel Algorithms and Matrix Computatioiew York: Oxford University Press, 1988.

110

Appendix A: Shared-Memory Implementation

INPUTO.ASM

* % ko

* Fkkkkkkkkkk * Fkkkkkkkkkk

INPUTO.ASM: Contains matrix A and B input values.

*% *kkkkkkkhkkhkkkkkkkhkrkk *% *hkkkkkkhkkhhkkkkkk

.global _MAT_A

.global _MAT_B

.global _MAT_AxB

.global _synch ; counter for synchronization (global start)

.data

_synch .int 0
_MAT_A ; stored by rows

_MAT B ;

float 1.0,2
float 5.0, 6.
float 9.0, 1
float 13

float 1.0, 2.
float 1.0, 2.
float 1.0,2
float 1.0,2

_MAT_AxB .space 16 ; must produce (by rows):

;10,20,30,40

; 26,52,78,104
;42,84,126,168
; 58,116,174,232

.end

111

SHARED.C

* * *kkk * * * * *kkk *

/
SHARED.C : Parallel matrix multiplication (Shared memory version: full memory
conflict)

— All the matrices (A,B,C) are stored by rows.

To run:

¢cl30 —v40 —g —02 —as —mr shared.c
asm30 —v40 —s input0.asm

asm30 —v40 —s syncount.asm

Ink30 shared.obj input0.obj shared.cmd

*

* o

#define NROWSA 4 /* number of rows in mat A */
#define NCOLSA 4 /* number of columns in mat A */

#define NCOLSB 4 /* number of columns in mat B */
#define P 4 /* number of processors */

extern float MAT_A[NROWSA][NCOLSA];
extern float MAT_B[NCOLSA][NCOLSB];
extern float MAT_AXB[NROWSA][NCOLSB]J;

extern int synch; [* synchronization for global start */
extern void syncount();

float *AINROWSA],*B[NCOLSA],*AXB[NROWSA],temp;

int *synch_p = &synch,

g =NROWSA/P,
11

=0,
my_node, i, j, k,tcomp;
/ ekl ikl ke

main()

asm(” OR 1800h,st"); /* cache enable */

[* accesing matrices declared in an external assembly file */
for (i=0;i<NROWSA;i++) A[i] = MAT_A[i];

for (i=0;i<NCOLSA;i++) B[i] = MAT_BJi;
for (i=0;i<NROWSA;i++) AxBI[i] = MAT_AXB]i];

syncount(synch_p,P); /* global start:loop until counter=P */
if (i = NROWSA %P) >0)) { /* load imbalancing:optional */
if (my_node<i) ++q; else 11 =i;
I1 += g*my_node; [* select beginning of row working set
for processor "my_node” */
t1: time_start(0); /* benchmarking with C40 timer */
for (i=11;i<(11+q);i++) [* matrix multiplication */

for (j=0;j<NCOLSB;j++)
{

temp =0;
for (k=0;k<NCOLSB;k++) temp += A[i][K] * BIK][]] ;
?xB[i][i] = temp;

t2 : tcomp = time_read(0); [* shared—memory benchmark *
syncount(synch_p,2*P); [* optional: if you want all processors

finish at the same time */
} Fmain*/

112

SHARED.CMD

/ x x S—
SHARED.CMD: Linker Command File for Shared-Memory Program

*% *% *kkkkkkkhkkhhkkkhkk *% *% F*kkkkk Fkkkkk *% x/

syncount.obj

—C /*link using C conventions */
—stack 0x0100
—Irts40r.lib /* get run—time support */
—lprts40r.lib
—m a.map
/* SPECIFY THE SYSTEM MEMORY MAP */
MEMORY
ROM: org = 0x00 len = 0x1000

RAMO: org = 0x0002ff800 len = 0x0400 /* RAM block0 */
RAM1: org = 0x0002ffc00 len = 0x0400 /* RAM block1 */
LM: org = 0x040000000 len = 0x10000 /* local memory */
GM: org = 0x080000000 len = 0x20000 /* global memory */

}
/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS

text: {} >RAMO /*code *
cinitt {} > RAM1 [* initialization tables */

stack: { > RAMO /* system stack */
.bss: {} > RAM1 /* global & static vars */
data: {}>GM /* for input matrix */

113

Appendix B: Distributed-Memory Implementation

INPUT.ASM

*

* INPUT.ASM : Input file for processors 1 to (P-1)

*

*% *% *kkkhkkkhkkhhkkkkkk *% * *kkkkkkkhkkhhkkkhkk

.global _MAT_A
.global _MAT B
.global _MAT_AxB

.data
_MAT_A .Space 16
_MAT_B .Space 16
_MAT_AxB .space 16

.end

DISTRIB.C

JRFREFF AR Kk kKKK KKFK * * *kk KKK

DISTRIB.C : Parallel matrix multiplication (distributed—memory
implementation)
(no load imbalancing has been considered)

cl30 —v40 —g —mr —as —02 distrib.c

asm30 —v40 —s input0.asm (see InputO.asm on page 111)

asm30 —v40 —s input.asm

Ink30 distrib.obj input0.obj distrib.cmd —o a0.out (For processor 0)

Ink30 distrib.obj input.obj distrib.cmd —o a.out (For processors 1 to (P—1))

/

#define NROWSA 4 /* number of rows in mat A */

#define NCOLSA 4 /* number of columns in mat A */

#define NCOLSB 4 /* number of columns in mat B */

#define P 4 /* number of processors */

extern float MAT_A[NROWSA]INCOLSA];
extern float MAT_B[NCOLSA][NCOLSB];
extern float MAT_AXB[NROWSA][NCOLSB]J;

float *AINROWSA], *B[NCOLSA], *AXB[NROWSA], temp;
int my_node ,
g = NROWSA/P,
tcomp, ttotal,
ij.k,11;
intport[4][4]={ 0,0,4,3,
3,0,0,4,
1,3,0,0,
0,1,3,0}; 1* connectivity matrix: processor i is

connectedtop rocessor j thru port]i][j]:

system specific PPDS

/ Fkkkkkkkkkk Fkkkkkkkkkk /

114

main()

asm(” OR 1800h,st");

[* accesing assembly variables */

for (i=0;i<NROWSA;i++) A[i] = MAT_A]i];

for (i=0;i<NCOLSA;i++) B[i] = MAT_B]il;

for (i=0;i<NROWSA;i++) AxBJi] = MAT_AXxB]il;

t1: time_start(0);
/* Processor 0 distributes data. Other processors receive it */

if (my_node==0)
for(i=1;i<P;++i){ /* asynchronous sending (DMA) */
send_msg(port[0][i],&A[i*q][0],(*NCOLSA),1);
send_msg(port[0][i],&B[0][0],(NCOLSA*NCOLSB),1);
[* autoinitialization can also be used */

else { [* synchronous receiving (CPU) */
k =in_msg(port[my_node][0],&A[0][0],1);
I}(=in_msg(portimy_node][0],&B|[0][0],1);

t2: tcomp = time_read(0);

for (i=0;i<q;i++) /* Matrix multiplication */
for (j=0;j<NCOLSB;j++)

{

temp =0;

for (k=0;k<NCOLSB;k++) temp += A[i][k] * BIK][j];

AXxBIi][j] = temp;

t3: tcomp = time_read(0) — tcomp;

[* Processors 1-(P—1) send result to proc. 0. Processor O:ready to receive it */
if (my_node==0)

for(i=1;i<P;++i)receive_msg(port[0][i],&AxB[i*q][0],1); /* asynchronous*/
else send_msg(port[my_node][0],&AxB[0][0],(q*NCOLSB),1);

if (my_node==0) [* Wait for interprocessor communication to finish */
for (i=1;i<P;++i) while (chk_dma(port[0][i]));
else while (chk_dma(port[my_node][0])) ;

t4: ttotal = time_read(0);
/* this is including: comp + input + output + 2 timer_reads */

} Fmain*/

115

DISTRIB.CMD

/ P S—
DISTRIB.CMD: Linker Command File for Distributed-Memory Program
x|

F*kkk *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkhkk

*%

—C [* link using C conventions */
—stack 0x0100
—Irts40r.lib [* get run—time support */
—lprts40r.lib
—m a.map
/* SPECIFY THE SYSTEM MEMORY MAP */
MEMORY
{
ROM: org= 0x0 len = 0x1000

RAMO: org= 0x0002ff800 len = 0x0400 /* RAM block0 */

RAM1: org= 0x0002ffc00 len = 0x0400 /* RAM blockl */

LM: org = 0x040000000 len=0x10000 /*local memory */

GM: org = 0x080000000 len =0x20000 /* global memory */
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */
SECTIONS
{
text: {} > RAMO [* code */
.cinit: {} > RAM1 [* initialization tables */
.stack: {} > RAMO [* system stack */
.bss: {} > RAM1 /* global & static vars */
data: {}>LM [* for input matrix */
}

116

Appendix C: Synchronization Routine for Shared-Memory Implementation

*
* syncountasm: assembly language synchronization routine to provide a
* global start for all the processors. Initially, a counter in shared
* memory is set to zero. Each processor increments the counter by 1. When
* the counter equals value , the processors exit this routine. Rotating
* priority for shared-memory access should be selected . The processors
* start with a maximum cycle difference of 3 instruction cycles, which for
* practical purposes is acceptable. This routine is C—callable and uses
* registers for parameter passing.
*
* Calling conventions:
* void syncount((int *) counter ,int value) ar2,r2
*
* where counter = synchronization counter in shared memory
* value = counter value to be reached.
*
R e s e e e e R e e e e e e e e e
.global _syncount
text

_syncount:

LDIl *AR2,R1

ADDI 1,R1

CMPI R1,R2

STII R1,*AR2

Bz L1
AGAIN LDI *AR2,R1

CMPI R1,R2

BNz AGAIN

L1 RETS

.end

117

Appendix D: C-Callable Assembly Language Routine for Matrix Multiplication

INPUTO_A.ASM

*

* INPUTO_A.ASM: Contains matrix A and B input values. Matrix B is
* stored by columns.
*

.global _MAT_A

.global _MAT_B

.global _MAT_AxB

.global _synch ; counter for synchronization

.data
_synch int 0

_MAT_A ; stored by rows
float 1
float 5.
float 9
float 1

_MAT B ; stored by columns!!!
float 1
float 2
float 3.
float 4
_MAT_AxB .space 16 ; must produce (stored by rows)
; 10,20,30,40
; 26,52,78,104
;42,84,126,168
; 58,116,174,232

.end

118

MMULT.ASM

*
* MMULT.ASM: Matrix multiplication (assembly language C—callable program)
*
* mmult(&C, &A, &B, nrowsa, ncolsa, ncolsb)
* ar2,r2,r3,rc, rs, re
*
* — Matrix A (nrowsa xncolsa): is stored by rows (row—major order)
* — Matrix B (ncolsa xncolsb): is stored by columns (column—major order)
* — Matrix C (nrowsa xncolsh): is stored by rows (row—major order)
* —"ncolsb” must be greater or equal to 2
* — This routine uses register to pass the parameters (refer to C compiler
* users’guide for more information)
*
* 5/1/90 : Subra Ganesan
* 10/1/90: Rosemarie Piedra
*
.global _mmult
text
_mmult
LDI R2,AR0 ; ARO: address of A[0][0]
LDl R3,AR1 ; AR1: address of B[0][0]
; AR2: address of C[0][0]
LDI RS,IRO ; IRO: NCOLSA
LDl RE,R10 ; R10: NCOLSB
PUSH AR5 ; preserve registers
PUSH AR3
PUSH R5
SuBl 1,RC,AR3 ; AR3: NROWSA-1
SUBI 2,RS,R1 ; R1: NCOLSA-2
SUBI 1,RE,R9 ; R9: NCOLSB-1
ROWSA
LDl R9,AR5
COLSB ; Initialize R2

MPYF3 *ARO++(1),*AR1++(1),R0 ; perform one multiplication

SUBF3
RPTS

R2,R2,R2
R1

A(1,1)*B(1,)) = RO
; repeat the instruction NCOLSA-1 times

MPYF3 *ARO++(1),*AR1++(1),R0

Il ADDF3 RO,R2,R2
; M(1,J) * V(IJ) —>R0
; M(1,J-1) *V(J-1) + R2—>R2
DBD AR5,COLSB ; loop for NCOLSB times
ADDF RO,R2 : last accumulate
STF R2,*AR2++(1) ; result —> C[I][J]
SUBI IRO,ARO ; set ARO to point A[0][0]
DBD AR3,ROWSA ; repeat NROWSA times
ADDI IR0O,ARO ; set ARO to point A[1][0]
MPYI3 IRO,R10,R5 ; R5 : NCOLSB*NROWSB(IRO0)
SUBI R5,AR1 ; set AR1 to point B[0][0]
POP R5
POP AR3
POP AR5 ; recover register values
RETS

119

SHAREDA.C

/ *kkFFKKKAH * * * *kkkK * * * * *

SHAREDA.C : Parallel Matrix Multiplication (shared memory version: full
memory conflict)
—This program uses an assembly language C—callable routine for matrix
multiplication for faster program execution.
—Matrix A and C are stored by rows. Matrix B is stored by columns to
take better advantage of the assembly language implementation.
To run:
¢l30 —v40 —g —02 —as —mr shareda.c
asm30 —v40 —s input0_a.asm
asm30 —v40 —s syncount.asm
asm30 —v40 —s mmult.asm
Ink30 mmult.obj shareda.obj inputO_a.obj shared.cmd

* * * * * * * * * /

#define NROWSA 4 /* number of rows in mat A */
#define NCOLSA 4 /* number of columns in mat A */
#define NCOLSB 4 /* number of columns in mat B */
#define P 4 /* number of processors */
extern float MAT_A[NROWSA]INCOLSA]; /* stored by rows */
extern float MAT_B[NCOLSB][NCOLSA]; /* stored by columns ~ */
extern float MAT_AxB[NROWSA][NCOLSB]; [* stored by rows */
extern void mmult(float*C, float*A, float*B, int nrowsa, int ncolsa,
int ncolsb);

extern int synch; /* synchronization for benchmarking */
extern void syncount();
float *A[NROWSA], *B[NCOLSB], *AXB[NROWSA], temp;
int *synch_p = &synch,

g =NROWSA/P,

11 =0,

my_node, i, j, k, tcomp;

/ * * * * * * a/

main()
asm(” OR 1800h,st"); [* cache enable */
[* accesing matrices declared in an external assembly file */

for (i=0;i<NROWSA;i++) A[i] = MAT_AJi];
for (i=0;i<NCOLSB;i++) B[i] = MAT_B]i];
for (i=0;i<NROWSA;i++) AxBJi] = MAT_AXxB]i];

syncount(synch_p,P); [* global start */

if (I = NROWSA %P) >0)) { /* load imbalancing: optional */
if (my_node<i) ++q; else 11 =i;

I1 += g*my_node; [* select beginning of row working set
for processor "my_node” */
t1: time_start(0); [* benchmarking with C40 timer */

mmult (&AXB[11][0],&A[11][0],&B[0][0],q,NCOLSA,NCOLSB):/* matrix mult.*/

t2 : tcomp = time_read(0); /* shared—memory benchmark */
syncount(synch_p,2*P); /* optional: if you want all processors

finish at the same time */
} Fmain*/

120

Parallel 1-D FFT Implementation
With TMS320C4x DSPs

Rose Marie Piedra
Digital Signal Processing — Semiconductor Group
Texas Instruments Incorporated

121

122

Introduction

The Fast Fourier Transform (FFT) is one of the most commonly used algorithms in digital signal processing
and is widely used in applications such as image processing and spectral analysis.

The purpose of this application note is to investigate efficient partitioning/parallelization schemes for
one-dimensional (1-D) FFTs on the TMS320C40 parallel processing DSP. Partitioning of the FFT
algorithm is important in two special cases:

¢ Forcomputation of large FFTs in which input data doesn’t fit in the available processor’s on-chip
RAM. In this case, execution must be performed with the data off-chip, resulting in performance
degradation. As a consequence, execution time grows exponentially with the FFT size.

* For FFT computation in multiprocessing systems where more than one processor is used to
reduce FFT execution time. Theoretically, a maximum speed-up of P can be reached in a system
with P processors. In reality, such a speed-up is never achieved, because of interprocessor
communication overhead, among other factors.

This document focuses on complex FFTs; however, the concepts used can be easily applied to real FFTs.

This paper covers both Decimation-in-Time (DIT) and Decimation-in-Frequency (DIF) methods of
computation to give flexibility in programming and to demonstrate the results of parallelization on both
methods.

Given the general scope of this application note, the programs have been kept as generic as possible to work
for any FFT size and for any number of processsors in the system. For a specific application (fixed FFT
size and fixed number of processors), a better performance is expected because of savings in programming
overhead.

The programs were developed in the C language, and the core routines were implemented in ’'C40 assembly
language to provide a combination of C portability and assembly language performance. Compiler
optimization techniques such as the use of registers for parameter passing have been used in the programs
to increase performance. Even higher performance could be achieved with a total assembly language
implementation.

The algorithms were tested on the Parallel Processing Development System (PPDS), a system with four
TMS320C40s and with both shared and distributed-memory support.

This report is structured as follows:
Introduction States the purpose and scope of this application note.

One-Dimensional (1-D) FFT Gives a brief review of the FFT algorithm, discussing DIF and DIT
FFT implementation methods.

Parallel 1-D FFT Focuses on parallel 1-D FFT implementations on multiprocessing
systems. DIF and DIT FFT implementations are discussed.

Partitioned 1-D FFT Focuses on very large partitioned 1-D FFT implementations on
uniprocessor systems. The DIT implementation is discussed.

TMS320C40 Implementation Presents the results of uniprocessor and distributed-memory
multiprocessor implementations on the PPDS. Gives analyses of the
speed-up and efficiency achieved.

Results and Conclusions States conclusions.

Appendices List source code.

123

One-Dimensional (1-D) FFT

The Discrete Fourier Transform (DFT) of mpoint discrete signa{(i) is defined by:

X(k)=n21x(i)wnik

where 6k <n,j =V~ 1 andw, =e12n (known as the twiddle factor).

Direct DFT computation requires %) arithmetic operations. A faster method of computing the DFT is

the FFT algorithm. FFT computation is based on a repeated application of an elementary transform known
as a “butterfly” and requires thai(FFT length) is a power of 2 (i.ex= 2M[4]. If nis not a power of 2,

the sequencx(i) is appended with enough zeroes to make the total length a power of 2. A more detailed
analysis of 1-D FFT can be found in [3] and [6].

There are two basic variants of FFT algorithms: Decimation-in-Frequency (DIF) and Decimation-in-Time
(DIT). The terminology essentially describes a way of grouping the terms of the DFT definition; see the
equation above. Another parameter to consider is the radix of the FFT, which represents the number of
inputs that are combined in a butterfly [4].

This application note focuses on Radix-2 Complex FFT, but the partitioning concepts stated here can also
be applied to other FFT algorithms. Figure 1 and Figure 2 show complete graphs for computation of a
16-point DIF and DIT FFT, respectively. Both assume the input in correct order and the output in
bit-reversed order.

Figure 1. Flow Chart of a 16-Point DIF FFT

x(7) X (K)

oX
[ee]

%

oR
[y
N

&
&5
%
%

&K
0%
K8
%%
L5
220208
oy SRS
(/?‘0‘0
o
AN
c‘gs
X

© 0N O~ WNPRFLO

o
%%

TR

N

o/f
©

el o
w N

%

[y

i
oL
[y
=

m }3;
R é,"’

[y
)]
[=)¢!
=
(&

lse} >
><
x

1

>

+

@

Y = (A-B)WK

124

Figure 2. Flow Chart of a 16-Point DIT FFT
x (i) X (k)

0 0
1 8
2 4
3 12
4 2
5 10
6 Q * .
PRe:Y -
2 XD .
9 @* 9
10 0 .
n % 13
12 05 .
e % 11
14 .
15 5

Timing Analysis

If FFT is used to solve ampoint DFT, (log n) steps are required, witti2 butterfly operations per step.
The FFT algorithm therefore requires approximate)log n~ O logy n) arithmetic operations, which
is n/(logy n) times faster than direct DFT computation.

125

Parallel 1-D FFT

Decimation-in-Frequency (DIF) and Decimation-in-Time (DIT) decomposition schemes are investigated
for parallel implementation. Parallel FFT theory is covered in [1], [11], [12], and [13].

For this parallel implementation of the 1-D FFT, a distributed-memory multiprocessing system with
processors connected iaimensional hypercube network topology is required.

A d-dimensional hypercube is a multiprocessor system characterized by the presehpeooégsors
interconnected as @dimensional binary cube. Each node forms a vertex of the cube, and its node
identification (node ID) differs exactly one bit from that of each ofl iteighbors. Figure 3 shows the
typical configuration for a 1-, 2-, and 3- dimensional hypercube.

This paper does not cover parallel shared-memory implementations, because the FFT algorithm is more
suitable for distributed-memory multiprocessing systems. Solowiejczk and Petzinger have proposed an
interesting approach to solve very large FFT (> 10K points) on shared-memory systems [13].

Figure 3. 1-, 2-, and 3-Dimensional Hypercubes

1-Dimensional Hypercube

2-Dimensional Hypercube 3-Dimensional Hypercube

Parallel DIF FFT

Letn=gp, wherenis the FFT sizg is the number of processors present in a hypercube configuration , and
g =1 is an integer. FFT input is in normal order, and FFT output is in bit-reversed order. The parallel
algorithm is shown in detail in Figure 4 fo= 16 andb = 4.

126

Figure 4. Parallel DIF FFT Algorithm

After S tial Data
Initial € Interprocessor Communication Phase = > q_rf&ﬁteﬂp"?‘r Collection
Data o Step 0 »le Step 1 e Step2,3 —» (optional)
bistr. I I e
I I -
x0 4 I 0 I 0 ¢ 0=Yp
i 1 1 0 1=Y
Processor & q/2 butterflies | | — =8
0=00 X8 0 1 | 4 0 U | 2 0 ¢ 2=VYy
X9 1 | 5 2 | 3 4 0 3=Y12
___________________________ _<_ J— % —_—— —
| 2
Processor 3 U1 Kol) sov
1rgcoelszsor X3 | | - 10
X10 2 0 | 6 4 | 6 0 X 6=VYg
X11 3 |7 6 |7 4 0 7=Y14
—————————— i At R R A
X4 0 | 8 | 8 X 8=Yq
Processor X5 | 9 [9 oL ,J 9=Yg
2=102 xqo 4 | 12 0 0 | 10 0 X 10=Yg
X13 5 | 13 2 [11 4 0 11=VY13
———————————— —f——————§—|————————<——%———
X6 0 | 10 0 | 12 X 12=Y3
Processor x7 [11 | 13 0 < 13=Y11
3=112 4, 6 Exchangeofq2 | 14 4 | 14 0 ¢ 14=Y7
X15 7 Complex Numbers | 15 6 | 15 4 0 15=Y15
____________ e S S G
Input Vector T T f
X (Note 1) (Note 1) Bit Reversed
Output
Notes: 1) Intermediate numeration refers to original ordinal values — not to input or Yk = FFT(xK)
output vector notation.
2 X = X
Wik

Phase 1. Data Distribution Phase:

Vector inputx is partitioned sequentially intgoyroups ofg/2 complex numbers each and assigned to
processor, groupd andi + p. At the end of this data distribution step, processontains vector elements
(i*g/2) + jand (*g/2) +n/2 +j where < i <p and 0<j < /2. This process is shown in Figure 5 fior

16 andp = 4.

127

Figure 5. DIF FFT Data Distribution Step (n=16 and p=4)

Input Vector
x| X
oL Group0 — xg
X1 —® Processor 0: Groups 0 and 4 X3
X2 | X9
— Group 1
X3 X2
X4 7 —® Processor1: Groupsland5 *3
— Group 2 X10
X5 | X11
xa | X
6L Group 3 xg
X7 » Processor 2: Groups 2 and 6 X12
xa | X13
8 L Group4 ——
X9 | X6
X10 | —® Processor 3: Groups 3 and 7 X7
— Group5 —— x14
X11 X15
.
12 Group6 ———
X13 J
n]
= Group 7
X15

Phase 2. Interprocessor Communication Phase:

Interprocessor communication is required because subsequent computations on one processor depend on
intermediate results of the other processors. With this mapping schiem@current exchange
communication steps are required during the ditbges (& k <d), whered=logy(p) is the hypercube
dimension.

At each of these steps, every node :
e computes a butterfly operation on each of the butterfly pairs allocated to it and then
e sends half of its computed resujt consecutive complex numbers) to the node that needs it
for the next computation step, and waits for the information of the same length from another
node to arrive for continuing computation [12].

The selection of the destination processor and the data to be sent is based on the node-id allocated to each
processor as follows:

If bit j of its node ID is 0,

sendy/2 consecutive complex numbers (lower half) to processor dnode = (node 1D ydtivdgitped)
else

sendy/2 consecutive complex numbers (upper half) to processor dnode = (node ID pétiepped)

Variablej initially points to bit (log p)—1, the most significant bit of the node ID, and is right-shifted after
each interprocessor communication step. Because of this bit-swapping, interprocessor communication is
always carried between neighbor processors according to the hypercube definition.

128

Phase 3. Sequential Execution Phase:

During the remainingni=d) stages, no interprocessor communication is required, and a sequential FFT of
sizeqis independently performed in each of the processors. Notice in Figure 4 that steps 2 and 3 correspond
to a sequential 4-point FFT because

VhK=WppkP Wyt =wWyl) [6].
Phase 4. Data Collection (optional):

At the end of FFT computation, processoontaingg complex elements with ordinal positioig + j in

the bit-reversed FFT vector result{p < g and 0<i < p). If data must be collected, this will involve the
linear transfer off*2 consecutive memory locations. Collected results are in bit-reversed order. If required,
the host processor can then execute a bit-reverse operation omaeizer.

This parallelization scheme reduces interprocessor communication delay (interprocessor communication
is restricted to neighbor processors on a hypercube) and balances the load perfectly (each processor
executes an equal number of butterfly computations assuqngp as an integer number).

Parallel DIT FFT

Letn=qgp, wherenis the FFT sizey is the number of processors present in a hypercube configuration, and
g= 1is aninteger. FFT input is in normal order, and FFT output is bit-reversed after data collection.

Parallel DIT requires a parallelization scheme different than the one presented for parallel DIF FFT.
Sequentialg-point FFT execution is required in the first (Jog— logp) steps, and interprocessor
communication is required in the lastjqusteps. This is exactly opposite to the DIF case. However, strong
similarities exist between DIT and DIF parallel approaches.

Phase 1. Data Distribution Phase:

Because applying the same DIF initial data distribution will require additional interprocessor
communication during the initigtpoint FFT, the data distribution scheme must be modified. Vector input
X is now distributed in such a way that processmntains elemenis+ j*p, where (< j < (n/p) and 0<

i<p.
This process is shown in Figure 6 for 16 andp = 4.

129

Figure 6. DIT FFT Data Distribution Step (n=16 and p=4)

X0
n —
XO ——® Processor 0: ig
1
X12
X2 y
1
X3
B Processor 1: 0
4 —
4 X13
X5
X2
X
6 B Processor 2: 6
X7 X10
X14
Xg — ‘s
*9 X7
—® Processor 3:
X11
X10
X15
X11 -
X12
X13 ——
X4 T
X15

Input Vector (normal order)

Phase 2. Sequential Execution Phase:

During the first (—d) stages, no interprocessor communication is required, and a sequential FFT of size
g is independently performed in each of the processors.

Phase 3. Interprocessor Communication Phase:

As in the DIF cased concurrent exchange communication steps are required, whelegy(p) is the
hypercube dimension but this time during the tbsteps. At each of these steps, every node:

* sends half of its computed reswdtd complex numbers) to the node that needs it for the next
computation step,

¢ waits for the information of the same length from that node to arrive for continuing computation
[12], and then

e computes the vector butterfly operation.

Notice that the sequence is send —> compute (hot compute —> send as in the DIF case). For the send step,
two approaches can be followed:

Scheme 1:Same approach as in the DIF case.
If bit j of its node ID is 0,

sendy/2 consecutive complex numbers (lower half) to processor dnode = (node 1D yétivdgiped)
else

sendg/2 consecutive complex numbers (upper half) to processor dnode = (node ID pgthicmped).

130

Figure 7. Parallel DIT FFT Algorithm (Scheme 1)

Sequential >|
¢ g-Point FFT |
DL —— TS ———— SN R—
I
X0 >< T | 0 | 0
%@ngsm X4 0 q/2 butterflies 4 | 4
=2 g 0 M [U 2 0 I U 10
x12 0 4 v | 6 4 | 5 2
______________ SIS, S S M, S A
X | 1 | 2
b ! X | I U
rocessor Xxg 0 5 | 6
1=012 5 o e : U 30 | 3 4
x13 0 4 I 7 4 | 7 6
e i b T———————
X 8 8
o 2 < 1 |
rocessor Xg 0 | 12 | 12
27102 45 0 e | 10 2 I U 9 1
x14 O 4 | 14 6 I 13 3
______________ SO A Vi, S A
X3 I 9 | 10
Processor x 0 >< | U 13 | 14
2 7 |
3=112 x11 O >< : Exchlange ofg/Z 1 2 | 11 5
x15 0 4 _|_C0mp exnumbers ;- o | 15 7
Input Vector
X (Note 1) (Note 1)

Notes: 1) Intermediate numeration refers to ordinal values — not to input or output numeric values.

2) k

M oe X

3) >< Type | butterfly operation >-< Type Il butterfly operation

Variablej initially points to the most significant bit of node id (bit (jgg)) and is right-shifted after each
interprocessor communication step. Figure 7 illustrates this partitioning scheme. The approach is similar
to the one suggested in [11] o= 16 andp = 4 for bit-reversed data input. This scheme is useful with
regular core DIT FFT routines that use a full-size sine table.

Because memory space is always a concern in real DSP applications, several highly optimized FFT routines
use reduced-size sine tables. This is true of the Meyer-Schwarz Complex DIT FFT routine shown in
Appendix B, which constitutes the core routine for this parallel DIT implementation. The routine offers

a faster execution time and a reduced size sine table, but the programming complexity increases.

Multiplication for twiddle factors not directly available in the sine table becomes an issue during the
butterfly vector operations in the interprocessor communication phase. Meyer-Schwarz FFT uses a
reduced-size bit-reversed sine table of alycomplex twiddle factors.

131

In this case, multiplication for twiddle factovg,, wherek = n/4, must receive special treatment. In the
Meyer-Schwarz FFT, the missing twiddle factors are generated with the symmetry

W, (n/4+Kk)=_jwp,Kk(Equation 2)

This is done by changing real and imaginary parts of the twiddle factors and by negating the real part. This
leads to 2 different types of butterfly operations: TYPE | (regular butterfly operation) and TYPE I
(butterfly operation for missing twiddle factors). See Appendix B for a detailed explanation of the two
butterfly types.

The concept of 2 types of butterflies should be extended to the butterfly vector operation for thefmal log
steps of the parallel DIT FFT implementation. Figure 7 shows that with Scheme 1 some processors must
compute only TYPE | operations, others only TYPE Il operations, and others both TYPE | and TYPE Il
operations at each vector butterfly operation. This increases the programming complexity and makes it
difficult to write a parallel program with (humber of processors) andFFT size) as general parameters.

To solve this issue, a different interprocessor communication scheme is proposed:

Scheme 2:
If bit j of its node ID is 0,

¢ send they2 complex numbers with odudinal positions 1, 3, 5 ¢~1) to processor dnode =
(node 1D with bitj swapped)
* execute vector butterfly operation (TYPE I)

¢ send they2 complex numbers with evemndinal positions 0, 2, 4 gF2) to processor dnode =
(node 1D with bitj swapped)
e execute vector butterfly operation (TYPE II)

Figure 8 shows this new interprocessor communication scheme. Nonconsecutive complex numbers are
exchanged between the processors. Notice that:

e Butterfly pair elements are now consecutively located.

e Each processor executes only one butterfly type at each stage. This simplifies the programming
effort in trying to make the program generic.

e Basedon Equation 2, a new notation has been introduced for TYPE Il butterflies. It uses twiddle
factorW,k and is notated by t' where t'lkkmodulo (/4). This notation will be used in the rest
of this documentation.

Phase 4. Data Collection (Optional):

Processor i containg complex elements with ordinal positioitg+j*2*p and i*q+j*2*p+1 of the
bit-reversed FFT vector resull [< q and O< i <p). In other words, each processor transfers consecutive
pairs of complex numbers to positioiith a destination incremental index of2€ollected output data

is in bit-reversed order. This process is illustrated in Figure 8.

132

Processor 0
002

Processor 1
01

Processor 2
102

Processor 3
11

Figure 8. Parallel DIT FFT Algorithm (Scheme 2)

Sequential
g-Point FFT

<+——Step 0, 1—¥

—

Interprocessor
Communication
Phase

- R
2?2_8____41(1_5___13__2?(_1
S-SR N
x13 0 4 o 11 2
e o e]
X6 % 0 | ! 6 4(0')|
500X x| B
X407 0 4T L1 % S
AR
aso’ N T s o
Input Vector

X (Note 1)

—_—ple—

«—— Step2 —»«— Step 3——»|

(Note 1)

Data Collection
(Optional)

(Note 1)

Notes: 1) Intermediate numeration refers to ordinal values, not to input or output vector values.

X

2) k

3)

= K p:¢
Wie

>< Type | butterfly operation

>< Type Il butterfly operation

o
5
)
gl

x
=
I:

Complex Distance Between

= 2*p

2 Segments

133

Partitioned 1-D FFT

Data allocation has a high impact on algorithm performance. For example, in the case of the 'C40, a
program can make two data accesses to internal memory in one cycle but only one access to external
memory (even with zero wait states).

This is especially important in computation-intensive algorithms like the FFT, which takes advantage of
dual-access 'C40 parallel instructions [8]. The 'C40 offers 2K words of on-chip RAM that can hold up to
1k complex numbers. But for FFTs larger than 1K complex (or 2K real), the data don't fit in on-chip RAM,
and execution must be performed off-chip with the corresponding performance degradation.

For FFTs with 2K complex numbers, it is possible to compute on-chip independently a 1k-point real FFT
on the real and imaginary components of the complex vector input; this solves the issue of execution on
off-chip data. This approach is efficient and simple to implement, but it works only for this specific case.

A more generic solution to this problem is to apply decomposition schemes as explaindehbiratiet

1-D FFT section. This generalization can be achieved easily: the multiprocessor environment can be
replaced by looping in the code P times; the multiprocessor exchange phases are nothing more than
accesses with different offsets.

Also, it's possible to use the DMA for data I/0 in a double-buffering fashion: while the CPU is working
in the set of data for logpthe DMA transfers the result from loge-1) and brings in the new set of data

for loop (j+1). If the CPU and DMA are provided each with an independent buffer each from a separate
on-chip RAM block, memory access conflict is minimized, and the DMA can run concurrently with the
CPU with the corresponding cycle savings.

Scheme 2 (Figure 8) is inconvenient for DMA use. Because data transfer does not occur with the same
index offset at each loop, four levels of DMA autoinitialization would be required: two to transfer the real
components and two to transfer the imaginary components. Even though such implementation is possible,
it will increase programming complexity and DMA transfer cycles. For this reason, a new scheme is
proposed in Figure 9 for the uniprocessor case. A formal explanation follows.

Letn=qgp, wheren is the FFT sizeq is the FFT size that can be executed on-chippatidis an integer.
FFT input is in normal order, and FFT output is bit-reversed.

Phase 1Execution op ¢-point FFTs: elements-j*p where & j<(n/p) are transferred to on-chip memory
for ag-point FFT execution. The process repeats for eachilf@p i <p).

Phase 2Execution op butterfly vector operations at each of the remainitvglogp) FFT stages. Notice

how the index offset between complex numbers of each input vector is constant at each stage, making it
easier to implement DMA data movement. Notice also that TYPE | and Il butterflies are now intercalated
at each butterfly vector operation.

This scheme is not good for a parallel processing configuration, because it increases interprocessor
communication delay.

The focus in this section has been on partitioned DIT FFT uniprocessor implementations because our DIT
FFT core routine is substantially faster than the DIF core routine. However, partitioned DIF FFT
uniprocessor implementations are feasible and even easier to implement, given the full-size sine table
normally required.

134

Figure 9. Partitioned Uniprocessor FFT Implementation

) Output is
Loop j Bit-Reversed

: -G S G
L% 0 3 0 5 2
© o X . X K X
x13 0 4 | 7 (0} | 7 2
2 X | X s X
, %6 0 | 10 2 | 9 1
e < L X L WX
x14 O 4 14 2 1 v
? < ., X L. X
X7 0 1 2 13 3
3
e e X
x15 0 4 | 15 2 | 15 3
<«——— QPointFFT B Step 2 b4 Step 3 2

(Step 0, 1)
Notes: 1) Intermediate numeration refers to ordinal values; not to input or output vector values.
g kN T kX
16

3) >< Type | butterfly operation >< Type Il butterfly operation

135

TMS320C40 Implementation

The TMS320C40 is the world’s first parallel-processing DSP. In addition to a powerful CPU with a 40- or
50-ns cycle time, the 'C40 contains six communication ports and a multichannel DMA [8]. The on-chip
communication ports allow direct (glueless) processor-to-processor communication, and the DMA unit
provides concurrent I/O by running parallel to the CPU. Special interlocked instructions also provide
support for shared-memory arbitration. These features make the 'C40 suitable for both distributed- and
shared-memory multiprocessor systems [2].

The programs presented here were tested on the TMS320C40 Parallel Processing Development System
(PPDS). The PPDS includes four 'C40s, fully interconnected via the on-chip communication ports. Each
'C40 has 256KB of local memory SRAM, and all share a 512KB global memory [5]. See Figure 10.

Figure 10. TMS320C40 Parallel Processing Development System (PPDS)

Connect 64K Words 8K Bytes 64K Words 8K Bytes
“ SRAM EPROM SRAM EPROM
Connect
L1 LO L L1 LO
Connect Com2/5 Com4 Com2/5
Com4
TMS320C40 TMS320C40 Global
Connect Coml Coml Expansion
Como Com3 ComoO Ccom3 Bus
Com3 Como Com3 Como 128K Words
Connect Com1 Comi Global SRAM
TMS320C40 TMS320C40
Com4
Connect Com2/5 Com4 Com2/5
L1 LO ’/ L1 LO
Connect
Connect J 64K Words 8K Bytes 64K Words 8K Bytes
SRAM EPROM SRAM EPROM

Given the general scope of this application note, the programs have been written to be independent of the
FFT size and the number of processors in the system. This adds to extra programming overhead. Further
optimization is possible with a fixed number of processors and/or a fixed FFT size.

Appendix A and Appendix B illustrate regular serial DIF and DIT implementations, respectively, that
provide comparative measures for the parallel programs.

136

Distributed-Memory Parallel FFT Implementations

Distributed-memory Decimation-in-Frequency (DIF) and Decimation-in-Time (DIT) parallel FFTs have
been implemented. These programs can work for any FFT size and any number of processors in the system
as long ag| = n/p stays inside the [4,1024] range (for the DIF case) and [32,1024] for the DIT case. The
lower limit is due to programming specifics, and 1024 is the limit for the 2K-word 'C40 on-chip RAM. If

aq > 1024 is required, the regular r2dif/r2dit FFT routines could be replaced by partioned FFT versions
like the program presented in Appendix D (with some modifications).

Interprocessor Connections

For this parallel 1-D FFT implementation, a hypercube network is required (of course the programs can
also run in a fully connected network as the PPDS). As explained PPatladlel 1-D FFT section, a
hypercube is characterized not only by a specific comm port connectivity but also by a specific node ID
allocation. In the case of the PPDS, this node ID allocation should be followed:

CPU A=0 CPUB=1 CPUC=3 CPUD=2

Node IDs can be allocated via emulator commands (e my_node = xxx) or via a predefined local memory
location that can be read using the my_id function available in the parallel-runtime support library
(PRTS40.LIB) available with the 'C40 compiler version 4.5 or higher.

Interprocessor Communications

This implementation uses the CPU for interprocessor communication, even though the DMA could also
be used. Because the CPU must wait for the interprocessor communication to finish before executing the
next butterfly vector step, no real advantage is observed in using the DMA for data transfer. Aykanat and
Dervis [11] have proposed a scheme to overlap half of the butterfly vector computation with the
interprocessor communication, giving an average of 10% improvement for matrices larger than 10K
points, but this almost doubles the program size. In this paper, the goal is to present a workable
moderate-size parallel FFT implementation; for this reason, their approach was not used.

A) Decimation-in-Frequency (DIF) FFT

Appendix C contains the source code for the 'C40 parallel DIF FFT implementation. The Radix-2 assembly
language complex DIF FFT implementation shown in Appendix F has been used as the FFT core routine.
Real and imaginary components of the input data are stored in consecutive memory locations. The size of
the sine table is 5*FFT_SIZE/4.

Figure 11 shows more detail of the interprocessor communication phase of DIF FFT for processor 2. These
details refer to specifics of the C source implementation in Appendix C and the general diagram shown in
Figure 5.

137

Figure 11. Interprocessor Communication Phase for DIF FFT (Processor 2)

I Step 0 pid Step 1 >
’"" To/From Processor 0 "‘
I
Butterfly
Vector Operation
X4 8 8
X5 Wkp:4<-— 9 Wkp:O<-— 9
Prgceslsgr X12 0 — Sinestep=1 12 1 — Sinestep = 2| | 10
-2 13 Wkpo= 5 13 Wkplz 2 - 1
Wkpoz mynode*q/2=(2*2)=4 To/From Processor 3
Step 0 Sinestepg=1
Destination node= (mynode=10,) XOR (msbit =10,)= 00, = 01
Step 1 Wkpf (Wkpo*Z) modulo (n/2) =(4*2) modulo 8 =0

Sinestep;=sinestepg*2=1*2= 2

Note: Wkpiz Whkpointer value for step i;
Sinestepj = sinestep value for step i.

Notice that Phase 2 (sergppoint FFT execution) requires a sine table of sizgbihstead of a size 4.
The 5%y/4 elements are part of therB4 sine table but are not consecutively located (offggt =

Two approaches can solve this issue:

1. Have an extra “move” operation to transfer the twiddle factors requiredifpoiat FFT into
consecutive memory locations, or

2. Modify the assembly language FFT routine to access the twiddle factors with an gffset =
instead of with an offset = 1.

Either approach can be selected by changing the version number in DIS_DIF.C (Appendix C). The second
approach (VERSION =1) is faster but requires the modification of the FFT core function. If you plan to
use your own FFT routine but don’t want to enter into the specifics of the parallel modification, the first
approach offers a good solution.

B) Decimation-in-Time (DIT) FFT

Appendix D contains the source code for the 'C40 parallel DIT FFT implementation (Scheme 2). The
Radix-2 assembly language complex DIT FFT implementation shown in Appendix F (Meyer-Schwarz
FFT) has been used as the core routine. Real and imaginary components of the input data are stored in
consecutive memory locations. Even though the code is larger than in the DIF core routine, Meyer-Schwarz
FFT outperforms the DIF implementation in execution time and also offers a reduced-size sine table
(bit-reversed).

138

Figure 12 shows more detail of the interprocessor communication phase of DIT FFT for processor 2. These
details refer to specifics of the C source implementation in Appendix D and to the general diagram shown
in Figure 8.

Figure 12. Interprocessor Communication Phase for DIT FFT (Processor 2)
To/From Processor O

Step 2 % Step 3 >
To/From ITrocessor 0 "

4 4 Processor 2

6 |6 5 | X
o X (int) Wkp,= 0) (int) Wip,= 2
1 1 sinestep, 1 sinesteps ><
14 14) 3

XX

To/From Processor 3

_ mynode _ 2 _
kp, p T4 0.5
Step 2 (int) Wkpz =0

sinestep, = 2 (complex distance =1)

Wkp3=Wkp2x2=0.5><2=1
Step 3 (int) Wyp, =1
3

sinestepz = 4 (complex distance =2)

Notes: 1) The sine table is bit reversed.

(int) W,
' p, —= Wno) _
(int) Wkp3 Wi :]— sinestep, = 1

Wl - _
sinestepz = 2
Wp3 } Ps

2) Wkp- = Wkpointer value for step i
|

Sinestep; = sinestep value for step i.

The sine table is stored in bit-reversed order and with a table length(of= FFT length). The table can
be used for all the FFT lengths less than or equal Therefore, no extra “move” operation is required
to compact the sine table of a sizEFT so that it will work for a sizg=(n/p) FFT.

139

Partitioned FFT Uniprocessor Implementation
Single buffering and double buffering have been implemented:

Single buffering For an FFT size larger than 1K point, complex data is partitioned in 1K-complex size
blocks @=1K). Initial data is in external SRAM and is transferred to on-chip RAM (0x002F F800) on
blocks of sizeg for CPU processing.

Appendix E shows single-buffered partitioned DIT FFT implementations. Both programs (serpl.c and
serp2.c) are functionally identical, but serpl.c is faster because it avoids integer divisions and moduli
operations, which are costly when programming in C.

Double buffering FFT size is partitioned in 512K-complex point size bloaks5(2K). The 2K x
32-bit-word on-chip RAM constantly holds 2 buffers. Each buffer is located in a different on-chip RAM
block to minimize CPU/DMA access conflict. One of the buffers is used for CPU arithmetic operations,
while the other is used as source/destination address for DMA 1/O operation.

While the CPU is executing one butterfly vector operation (3tepne of the on-chip RAM blocks, the
DMA transfers back the results from the previous butterfly operation (st {0 off-chip memory and
brings a new set of data (stgX)) to the other on-chip RAM block. DMA autoinitialization is used for
this purpose.

While the CPU waits for DMA to finish, it checks whether the corresponding IIF (internal interrupt flag)
bit is set to 1 (DMA control register TCC (transfer counter control) bit has been set to 1). Another way of
checking whether a unified DMA operation has completed is to check whether the DMA control register
start bits are equal to 20T his is easier to implement from a C program because DMA registers are memory
mapped, but the IIF checking method is preferred because it avoids DMA/CPU conflict when the 'C40
peripheral bus is accessed. It's important to remember that DMA uses the peripheral bus during
autoinitialization because autoinitialization is nothing more than a regular DMA transfer operation.

A partitioned implementation of very large real FFTs for the 'C3x generation, using the same partitioning
scheme explained in this application note, can be obtained from the DSP Bulletin Board Service (BBS) at
(713) 274-2323, or by anonymous ftp from ti.com (Internet port address 192.94.94.1).

140

Results and Conclusions

Table 1 showsthe 'C40 1-D FFT timing benchmarks taken in the 'C40 PPDS and using the 'C40 C compiler
(version 4.5) with full optimization and registers for parameter passing. The compiler/assembler tools were
run under OS/2 to avoid memory limitation problems with the optimizer, but the DOS extended-memory
manager can also be used. Table 1 shows the FFT benchmark results.

Table 1. FFT Timing Benchmarks (in Milliseconds)

- Program Number of Points
64 128 256 512 1K 2K 4K 8K
fftl.c 0.095 | 0.21 |0.467 | 1.03 |2.259 | 9.181 |19.994 | 43.26
dis_dif (version 0; p=2) 0.078 | 0.158 | 0.332 | 0.703 | 1.497 | 3.187 — —
DIF dis_dif (version 1; p=2) 0.071 | 0.145 | 0.305 | 0.651 | 1.394 | 2.981 — —
dis_dif (version 0; p=4) | 0.06 |0.108 | 0.211 |0.44 |0.89 |1863 | 3911 | —
dis_dif (version 1; p=4) 0.055 | 0.101 | 0.197 | 0.413 | 0.859 | 1.76 3.705 —
fft2.c 0.064 | 0.141 | 0.315 | 0.703 | 1.562 | 8.373 | 18.378 | 40.026
DIT | dis_dit (p=2) 0.062 | 0.111 | 0.249 | 0.526 | 1.037 | 2.224 — —
dis_dit (p=4) — 10.089 [0.179 | 0.359 | 0.738 | 1.454 | 3.051| —
serpl — — — — — 4,758 | 11.137 | 26.153
SERP | serp2 — — — — — 5.65 |14.228 | 34.319
serpb — — — — — 9.173 | 11.401 | 26.615

Note: 'C40 cycle time = 40 ns.

Benchmarking Considerations

1.

To achieve precise benchmark measurements, a common global start of the processors is
required. This feature is offered by the parallel debugger controller available with the 'C4x
XDS510 emulator (version 2.20 or higher). Also a shared-memory synchronization counter can
be used [2].

The 'C40 timer 0 and the timer routines in the parallel runtime support library (PRTS40.LIB)
are used for benchmark measures. The real benchmark timing is equal to the timer counter value
multiplied by 2*('C40 cycle time). For the parallel programs, the total execution time of the
parallel algorithm can be defined as T= max(Ti), where Ti is the execution time required by
processor i.

Data distribution and collection have not been included in the benchmark timings, because they
are system specific. In our case, we have used the PPDS shared memory for initial data
distribution/collection, but this is not the general case. It's also important to notice that data
movement is not a significant timing factor in the overall algorithm execution. Data movement
of n numbers is an @] operation [7]. As it was explained before, FFT computation is an
O(nlogn) operation. For large, data movement time becomes negligible. Also, DMA can be
used for data distribution/collection, leaving the CPU free for some other computation in a
customer-specific application. Careful analysis is required to minimize CPU/DMA memory
access conflict.

141

PPDS Considerations

The 'C40 PPDS is a general-purpose parallel processing board. It is not optimized for
distributed-memory-only type of applications, because it dedicates one of the 'C40 external buses for
shared-memory interfacing. You can expect further performance improvement if you use a board that offers
'C40s with local memory in both external buses. This type of architecture takes advantage of the 'C40 dual
bus architecture and reduces the memory access conflict that could exist among instruction fetches, data
access, and/or DMA accesses. Modification of the linker command files for the programs is recommended
to take advantage of the 'C40’s good I/0O bandwidth. Allocation of program and data into different external
buses is also recommended.

For the reasons explained above, in this PPDS implementation, all the linker command file sections have
been allocated to the primary external bus with on-chip RAM reserved for FFT computation. This has been
assumed for all the programs in order to establish a fair comparison between parallel and sequential
implementations. The only exception is the regular sequential implementation of very large*ERS, (

in which case, most of the sections are allocated on-chip, except for the input data and sine table. See
AppendixA.

DIF Vs. DIT Implementation

DIT implementations outperformed DIF implementations because of a faster Meyer-Schwarz complex
DIT FFT core routine. The Meyer-Schwarz DIT FFT routine offers faster execution time and a
reduced-size sine table at the expense of a more complex and larger implementation code. For medium and
large FFTs, the overall trade-off is very positive.

Speed-Up/Efficiency Analysis

Speed-up of a parallel algorithm is defined as Sp = Ts/Tp, where Ts is the serial time (p=1) and Tp is the
time of the algorithm executed usipgrocessors [2]. In this application note, Ts is the execution time for
programs in Appendix A. Figure 13 shows speed-up vs FFT size for the parallel 1-D FFT programs. Note
that the definition of speed-up has been also applied to the partitioned serial implementation in order to have
a global comparative measure.

An even more meaningful measure is efficiency defined as Ep = Sp/p with values between (0,1). Efficiency
is a measure of processor utilization in terms of cost efficiency. If the efficiency is lower than 0.5, itis often
better to use fewer processors because using more processors is not cost effective. Figure 14 shows
efficiency versus FFT size for the parallel 1-D FFT programs.

142

Figure 13. FFT Speed-Up Vs. FFT Size

serpl
dis_dif (version 1; p=2)
dis_dif (version 1, p=4)
dis_dit (p=2)

dis_dit (p=4)

64

200

128 256 512 1024 2024
FFT Size

Figure 14. FFT Efficiency Vs. FFT Size

4096

8192

150

100

50 ¢

004 e

dis_dif (version 1; p=2)
dis_dif (version 1; p=4)
dis_dit (p=2)

64

128 256 512 1024 2024

FFT Size

4096

8192

143

Analysis of the Results

* Speed-upis proportional to the number of processors used. However, efficiency decreases when
the number of processors increases. This is normal in algorithms like the parallel FFT, which
requires interprocessor communication to solve data dependencies, because eventually the
communication overhead begins to dominate. Based on this, it's better to use the minimum
number of processors that can still give the speed-up required.

e Parallel 1-D FFT performance improves for larger FFT size because it becomes more
computationally intensive, reducing proportionally the programming overhead.

* Notice also that efficiency figures for large FFTs (complex FFT size > 1K point) go above 100%,
the theoretical maximum efficiency. This extra efficiency does not come from the parallelization
itself, but from savings in on-chip data execution, as explained before.

e Partitioned 1-D FFT serial implementation (complex FFT size > 1K point) shows a speed-up
close to 1.8 that slightly declines as the FFT size increases. This performance improvement is
due to execution of data on-chip: having the input data on-chip permits access of two data in one
cycle in some 'C40 parallel instructions (in external memory will take two cycles at least).
Notice also that serpl.c was considerable faster than serp2.c because of savings in the division
and moduli operations.

* There was a 15 to 20% improvement using double buffering in the partitioned serial program
serpb.c compared with serp2.c (the equivalent single-buffered implementation), but not with
respect to serpl.c. For specific customer applications (fixed number of processors and/or FFT
size), a better performance of serpb.cis expected. Also, extra performance can be obtained with
a 'C40 board with dual-bus architecture because it minimizes CPU/DMA memory access
conflict.

Conclusions

This application note has illustrated decomposition methods to partition the FFT algorithm in smaller FFT
transforms. This is particularly useful in uniprocessor implementations of very large FFTs (> 1K point
complex) or in systems where multiple processors are used for speed-up gain.

The source code and its linker command files are presented in the appendices, but they can also be
downloaded from the Texas Instruments DSP Bulletin Board at (713) 274-2323 and via anonymous ftp
from ti.com (Internet port address 192.94.94.1).

144

References

[1] Hwang, K., and F. A. Briggs&Computer Architecture and Parallel Processihggw York:
McGraw-Hill, 1984.

[2] Piedra, R. MParallel 2-D FFT Implementation with TMS320C4x DSRsxas Instruments, 1991.

[3] Burrus, C. S., and T. W. ParkBFT/FFT and Convolution Algorithm&lew York: John Wiley and
Sons, 1985.

[4] Papamichalis, P. An Implementation of FFT, DCT, and Other Transforms on the TMS320C30.
Digital Signal Processing Applications With the TMS320 Fariume 3, page 53.
Texas Instruments, 1990.

[5] Chen, D.C., and R. H. Price. A Real-Time TMS320C40 Based Parallel System for High Rate Digital
Signal ProcessingCASSP91 Proceedingslay 1991.

[6] Oppenheim, A. V., and R. W. SchafBigital Signal Processingenglewood Cliffs, New
Jersey: Prentice-Hall, 1975.

[7] Akl, S. G.The Design and Analysis of Parallel AlgorithrEsglewood Cliffs, New Jersey: Prentice-
Hall, 1989, page 171.

[8] TMS320C4x User’s Guiddexas Instruments, Inc., 1991.

[9] Bertsekas, D. P., and J. N. TsitsikiFarallel and Distributed Computation, Numerical Methods
Englewood Cliffs, New Jersey: Prentice-Hall, 1989.

[10]Kung, S. Y.VLSI Array Processoré&nglewood Cliffs, New Jersey: Prentice-Hall, 1988.

[11] Aykanat, C., and A. Dervis. An Overlapped FFT Algorithm for Hypercube Multicompl@?&91
ProceedingsAugust 1991.

[12]Zhu, J. P. An Efficient FFT Algorithm on Multiprocessors With Distributed-Menibing Fifth
Distributed-Memory Computing Conferendel 1, 358-363. January 1990.

[13] Solowiejczk, Y., and J. Petzinger. Large 1-D Fast Fourier Transforms on a Shared-Memory System.
ICPP91 ProceedingsAugust 1991.

145

Appendices

Appendix A: Uniprocessor 1-D DIF FFT Implementation

e fftl.c: 1-D DIF FFT implementation
e fftl2k.cmd: linker command file for FFT < 2K
e fftg2k.cmd: linker command file for FFZ 2K

Appendix B: Uniprocesor 1-D DIT FFT Implementation
e fft2.c: 1-D DIT FFT implementation

Appendix C: Parallel 1-D DIF FFT Multiprocessor Implementation

e dis_dif.c
e dis.cmd: linker command file

Appendix D: Parallel 1-D DIT FFT Multiprocessor Implementation
e dis_dit.c

Appendix E: Partitioned 1-D DIT FFT Uniprocessor Implementation

* Single-buffered implementations
— serpl.c
— serp2.c
— serp.cmd: linker command file
¢ Double-buffered implementation
— serpb.c

Appendix F: Library Routines (PFFT.LIB)

e Dbfly.asm: butterfly vector operation (type I)

e blfyr.asm: butterfly vector operation (type I1&Il)
bflyrl.asm: butterfly vector operation (type I)
bflyr2.asm: butterfly vector operation (type II)
cmove.asm: complex numbers move operation
exch_r.asm: interprocessor communication routine
move.asm: real numbers move operation
pr2dif.asm: radix-2 complex DIF routine for par FFT
r2dif.asm: radix-2 complex DIF routine

r2dit.asm: complex DIT routine

* waitdma.asm: routine that waits until DMA finishes

Appendix G: Input Vector and Sine Table Examples

* sintab.asm: sine table for a 64-point DIF FFT
¢ sintabr.asm: sine table for a 64-point DIT FFT
* input.asm: 64-point complex input vector

146

FFT1.C

Appendix A: Uniprocessor 1-D DIF FFT Implementation

/
FFT1.C : Serial FFT DIF implementation

#define N 64 I* FFT size (n) */
#define LOGN 6 /* number of rows */
extern void r2dif(); /* C—callable complex DIF FFT */
extern float INPUT[]; /* input vector */

float *shinput =INPUT,;

int i;

int tcomp; * for benchmarking */

/ /
main()

start:

asm(” or 1800h,st"); /* cache enable */
time_start(0); /* start timer O for benchmark */
r2dif (shinput,N,LOGN); /* FFT computation */
tcomp= time_read(0); /* tcomp = execution time ~ */
} Fmain*/

FFTL2K.CMD

/*linear command

file for FFT size < 2K */

—C /* link using C conventions */

fft.obj /* FFT C code */

sintab.obj /* sine table */

input.obj /* input data */

—Ipfftr.lib I* get FFT Assembly code routine */

—stack 0x0040 /* set stack size */

—Irts40r.lib /* get run—time support */

—lprts40r.lib /* get timer routines */

—m fft.map /* generate map file */

—o fft.out /* output file name */

MEMORY
ROM: org = 0x00 len = 0x1000 /* on—chip ROM */
RAMO: org = 0x002ff800 len = 0x0800 /* on—chip RAM: 2 blocks */
LM: org = 0x40000000 len = 0x10000 /* local memory */
GM: org = 0x80000000 len = 0x20000 /* global memory */

}

SECTIONS

{
.input: {} > RAMO /* input vector */

.sintab: {} >LM
fttext: {} > LM
text: {} >LM
.cinit: {} >LM
.stack: {} >LM
bss: {{>LM
fftdata: {} > LM

/* sine table */
/* FFT assembly routine (.text) */
/* FFT C code (.text) */
/* initialization table */
/* system stack */
/* global & static C variables */
/* FFT assembly routine (.text) */

147

FFTG2K.CMD

[*linear command file for FFT size > 2K */
- /* link using C conventions */
fft.obj /* FFT C code */
sintab.obj /* sine table */
input.obj /* input data */
—Ipfftr.lib I* get FFT Assembly code routine */
—stack 0x0040 /* set stack size */
—Irts40r.lib [* get run—time support */
—lprts40r.lib /* get timer routines */
—m fft.map * generate map file */
—o fft.out /* output file name */
MEMORY
ROM: org = 0x00 len = 0x1000 /* on—chip ROM */
RAMO: org = 0x002ff800 len = 0x0800 /* on—chip RAM: 2 blocks */
LM: org = 0x40000000 len = 0x10000 /* local memory */
GM: org = 0x80000000 len = 0x20000 /* global memory */
}
SECTIONS
{
input: {} >LM /* input vector */
.sintab: {} >LM /* sine table */
ffttext: {} > RAMO /* FFT assembly routine (text) */
text: {} > RAMO /* FFT C code (.text)
.cinit: {} > RAMO /* initialization table */
.stack: {} > RAMO [* system stack */
.bss: {} > RAMO /* global & static C variables */
) fftdata: {} > RAMO /* FFT assembly routine (.text) */

148

Appendix B: Uniprocessor 1-D DIT FFT Implementation

FFT2.C

/
FFT2.C : Serial DIT FFT implementation

#define N 64 [* FFT size (n) */

#define LOGN 6 /* number of rows */

extern void r2dit(), [* C—callable complex DIT FFT */
cmove(); /* CPU complex move */

extern float INPUT[]; /* input vector */

float *shinput =INPUT,;

int i

int tcomp; /* for benchmarking */

/ /

main()

start:

asm (" or 1800h,st”); /* cache enable */

time_start(0); [* start timer O for benchmark */

r2dit (shinput,N); /* FFT computation */

tcomp= time_read(0); /* tcomp = execution time */

} *main*/

149

Appendix C: Parallel 1-D DIF FFT Multiprocessor Implementation

DIS_DIF.C

/
DIS_DIF.C : Distributed—memory Parallel DIF FFT implementation.
* if VERSION = 0 this program uses an extra "move” operation
of the sine table to avoid modification of the serial FFT
core (r2dif.asm)
* if VERSION = 1 this program uses pr2dif.asm as the FFT
core routine. pr2dif.asm is a slightly modified version of
r2dif.asm that enables a serial FFT program (size q FFT)
to work with a sine table of size 5*n/4, where n=qg*p
Requirements: 4 <= Q <= 1024 (minimum: because of cmove.asm requirements
maximum: because of on—chip RAM limitations)
Network topology : Hypercube

Version : 1.0
VERSION DATE COMMENT
1.0 8/92 Original version

ROSEMARIE PIEDRA (TI Houston)

#define VERSION 1

#define N 64 [* FFT size (n) */

#define M 6 /* Log (FFT size) */

#define P 2 /* Number of processors */

#define D 1 /* Log P= hypercube dimension */

#define Q N/P /* elements per processor */

#define LOGQ M-D /* number of serial stages */

#define BLOCKO 0x002ff800 /* on—chip RAM buffer *

extern void r2dif(), [* C—callable complex DIF FFT */
cmove(), /* CPU complex move */
bfly(), /* butterfly vector routine */
exchange_r(); /* interprocessor communication */

extern float INPUT], /* global input data */
SINE[]; /* sine table of size 5*N/4 */

float *input = (float *)BLOCKO, /* pointer to on—chip RAM */
*inputg = (float *)BLOCKO+Q,
*shinput = INPUT;

unsigned int n2 =N/2, I* FFTSIZE /2 */

q =Q,

g2 =Q/2,

g54 =5*Q/4,

mshit =1<<(D-1), /*"1”in most significant bit
of processor id */

sinestep =1, /* initial distance between

twiddle factors of succesive
butterflies *

my_node,dnode,comport,i,Wkpointer,sinestep;
/* Connectivity matrix : processor i is connected to processor j through

port port[i][j] */

#if ==4
int port[P][P] ={-1,0,3,-1,

3,-1,-1,0,

0,-1,-1,3,

-1,3,0,-1}
#else
int port[P][P] ={-1,0,3,-1}
#endif
int tcomp; /* benchmarking */
/ /
main()

[* cache enable *

asm (" or 1800h,st”);

/

Data distribution simulation: processor "my_node” contains complex elements:
(my_node* Q/2)+i

(my_node* Q/2)+N/2+i where 0<=i<Q/2

This part is optional: data distribution is system specific

150

cmove (shinput+my_node*q,input,2,2,g2); /* move first segment */
cmove (shinput+my_node*g+N,inputq,2,2,g2); /* move second segment

!
D = LOG P exchange communication steps *
/

start:
time_start(0); [* start timer O for benchmark */
dnode = my_node * msbit; [* select destination node */
comport = port[my_node][dnode]; /* get comport to be used */
Wkpointer = my_node*q2; /* initialize offset from _SINE
to first twiddle factor */
for (i=0;i<D-1;i++) { /* loop D-1 times */

bfly (mput q,Wkpointer,N,sinestep); /* Butterfly vector operation
on a g—point complex input vector
using twiddle factors pointed by
Wkpointer with a twiddle factor
offset distance = sinestep */

/* interprocessor data exchange: send/receive succesive (real offset = 2)
*/

g complex numbers to comm port

if (my_node & msbit) exchange_r(comport,input,g2,2);

else exchange_r(comport,inputq,q2,2);

/* parameter updates for next loop: */
/* twidle factor pointer :
Wkpointer=(Wkpointer*2) modulo (n/2)
*
/

Wkpointer *= 2;
if (Wkpointer >= n2) Wkpointer —= n2; /* substracnon is faster than
modulo operation
msbhit >>=1; /* right shift of bit selector
for destination node selection */
dnode = my_node " mshit; /* next destination node */
comport = portfmy_node][dnode]; /* comm port attached to dnode */
sinestep <<= 1, /* distance between twiddle factors
used in succesive butterflies
doubles at each stage */

h

/* last loop: parameter update operations are not needed */
bfly (input,q,Wkpointer,N,sinestep)

if (my_node & msbit) exchange_r(comport,input,q2,2);

else exchange_r(comport,inputq,q2,2);
/
Serial FFT of size Q *
/

#if (VERSION ==

move (SINE,SINE,P,1,q54); /* modify a size—N FFT sine table

to a size Q—FFT sine table */

r2dif (input,q,LOGQ); /* regular serial DIF FFT routine */
#else

pr2d|f (input,q,LOGQ,P); * special FFT routine */
#endif

/

Data collection simulation: output in PPDS shared—memory is in bit-reversed

order. This part is optional: data collection is system specific

tcomp = time_read(0); /* Benchmarking */
cmove (input,shinput+my_node*q*2,2,2,q);
} I*main*/

151

DIS.CMD

—C /* link using C conventions */
dis.obj /* FFT C code */
sintab.obj /* sine table */
input.obj /* input data */
—Ipfftr.lib /* app. note library */
—stack 0x0040 /* set stack size */
—Irts40r.lib /* get run—time support */
—lprts40r.lib [* get timer routines */
—m dis.map [* generate map file */
—o dis.out /* output filename */
MEMORY
ROM: org = 0x00 len = 0x1000 /* on—chip ROM */
RAMO: org = 0x002ff800 len = 0x0800 /* on—chip RAM: 2 blocks */
LM: org = 0x40000000 len = 0x10000 /* local memory */
) GM: org = 0x80000000 len = 0x20000 /* global memory */
SECTIONS
{
.sintab: {} > LM * SINE TABLE */
ffttext:{} > LM /* FFT CODE */
text: {}>LM /* CODE */
.cinit: {} >LM /* INITIALIZATION TABLES*/
.stack: {} >LM /* SYSTEM STACK */
.bss: {}>LM /* GLOBAL & STATIC VARS */
fftdata:{} > LM /* FFT DATA */
.input: {} >GM /* INPUT VECTOR *
)

NOTE: On—chip RAM has been totally reserved for FFT execution.
If Complex FFT size < 1K, some of the sections could be allocated
in on—chip RAM.

*/

152

Appendix D: Parallel 1-D DIT FFT Multiprocessor Implementation

DIS_DIT.C

/
DIS_DIT.C : Distributed—memory Parallel DIT FFT implementation.
Requirements: 32<= Q <=1024 (minimum: because of Meyer—Schwarz FFT limitations
maximum: because of on—chip RAM limitations)
Network topology : Hypercube

Version : 1.0
VERSION DATE COMMENT
1.0 8/92 Original version
ROSEMARIE PIEDRA (TI Houston)
/
#define N 64 /* FFT size (n) */
#define M 6 /* Log (FFT size) */
#define P 2 /* Number of processors */
#define D 1 /* Log P= hypercube dimension */
#define Q N/P /* elements per processor */
#define LOGQ M-D I* number of serial stages */
#define BLOCKO 0x002ff800 /* on—chip RAM buffer */
extern void r2dif(), /* C—callable complex DIF FFT */
cmove(), /* CPU complex move */
bflyr1(), /* butterfly vector routine */
bflyr2(), /* butterfly vector routine */
exchange_r(); [* interprocessor communication */
extern float INPUT][]; /* global input data */
float *input = (float *)BLOCKO, /* pointer to on—chip RAM */

*inputp2 = (float *)(BLOCKO0+2),
*shinput = INPUT,
p =F,
Wkpointer;
unsigned int n2 =N/2, /* FFTSIZE /2 */
g2 QI2 I* FFTSIZE/(2*P) */
Q

q)
msbit =1 << (D-1), /*"1”in msbit of processor id */
sinestep =2, /* initialize twiddle factor distance
between succesive butterflies ~ */
my_node,dnode,comport,i;
/* Connectivity matrix : processor i is connected to processor j through

port port[i][j] */
#if (P==4)
int port[P][P] ={-1,0,3,-1,
3,-1,-1,0,
0,-1,-1,3,
-1,3,0-1}
#else
int port[P][P] ={-1,0,3,-1}
#endif
int tcomp; /* benchmarking */
/ /
main()

asm(” or 1800h,st”);

/

Data distribution simulation: processor "my_node” contains elements
my_node +i*P where 0<=i<Q

This part is optional: data distribution is system specific

cmove (shinput+my_node*2,input,2*P,2,q);

/
Serial FFT of size Q *
/
start:
time_start(0); /* start timer O for benchmark */

r2dit (input,q);
/

D = LOG P communication steps *
/

153

dnode = my_node " msbit; /* select destination node */
comport = portfmy_node][dnode]; /* get comport to be used */
Wkpointer = my_node/p; /* initialize offset from _SINE
to first twiddle factor */
for (i=0;i<D-1;i++) { /*loop D-1 times */
/*

exchange_r: interprocessor data exchange: send/receive g/2 complex
numbers to com port

bflyr2/bflyrl: butterfly vector operation (type l/type Il) on a g—point
complex input vector using twiddle factors pointed by Wkpointer with
a twiddle factor offset distance = sinestep

*

/

if (my_node & msbit) {
exchange_r(comport,input,q2,4);
bflyr2(input,q2,(int)\Wkpointer,sinestep); /* butterfly type Il */

else {
exchange_r(comport,inputp2,92,4);
bflyrl(input,q2,(int)Wkpointer,sinestep); /* butterfly type | */

[* parameters update for next loop */
mshit >>=1; /* right shift of bit selector for

destination node selection */
dnode =my_node " msbit; /* next destination node */
comport = port[my_node][dnode]; /* comm port attached to dnode */
Wkpointer *= 2; /* twiddle factor pointer update */
sinestep <<=1; /* distance between twiddle factors

used in succesive butterflies doubles

at each stage */

h
/* last loop: parameter update operations are not needed */
if (my_node & msbit) {

exchange_r(comport,input,gq2,4);

bflyr2(input,q2,(int)Wkpointer,sinestep); /* butterfly type Il */
else {

exchange_r(comport,inputp2,q2,4);

bflyrl(input,q2,(int)Wkpointer,sinestep); /* butterfly type | */

}

/
Data collection simulation: output in shared—memory is in bit-reversed order.
This part is optional: data collection is system specific

/
tcomp = time_read(0); /* benchmarking */
cmove (input,shinput+my_node*4,4,4*P,q2);
cmove (inputp2,shinput+my_node*4+2,4,4*P,q2);

} *main*/

154

Appendix E: Partitioned 1-D DIT FFT Uniprocessor Implementation

SERP1.C

/
SERP1.C : Partitioned serial DIT FFT implementation(Single—buffered version)
(This version uses the same partitioning scheme as serp2.c but
provides cycle savings by avoiding integer divisions)

Requirements: 32<= Q <= 1024 (minimum: because of Meyer—Schwarz FFT limitations

maximum: because of on—chip RAM limitations)

Version : 1.0
VERSION DATE COMMENT

1.0 8/92 Original version

ROSEMARIE PIEDRA (TI Houston)
/

#define N 2048 /* FFT size (n) */
#define P 2 /*P =N/Q */
#define D 1 /* LOG P */
#define Q N/P /* maximum FFT size that can

be computed on—chip */
#define BLOCKO 0x002ff800 /* on—chip RAM buffer */

extern void r2dit(), /* C—callable complex FFT ~ */
cmove(), /* CPU complex move */
cmoveb(); /* CPU bit-reversed complex move */

extern float INPUTT]; /* Inputvector=N=Q*P */

float *input = (float *)BLOCKO, /* on—chip RAM */

*shinput = INPUT,
*src_addr = INPUT,;
unsigned int i,j,k,

delta =P,
ngroup =2,
incr_group = N,
p2 =2*P,
Wkpointer =0,
q =0,
g2 =Q/2;
int tcomp; /* benchmarking */
/ /
main()
asm(” or 1800h,st”);
start:
time_start(0); [* start timer O for benchmark */
/
P size—q FFT’s *
/
for (j=0;j<P;j++,src_addr +=2) {
cmove(src_addr,input,p2,2,q); /* g elements are transfered to
on—chip RAM for execution */
r2dit(input,q); /* g—point FFT */
cmove(input,src_addr,2,p2,q); /* FFT results are transfered back

to off—chip memory

}
!
LOG P Butterfly operation steps *
/

src_addr = shinput;
for (1=0;i<D;i++) { /* log P steps of P butterfly vector operations each */

for (k=0;k<ngroup;++k) { /* at each step i there are "ngroups” of
identical butterfly vector operations */
for (j=0;j<delta;j+=2) { /* each group contains (delta/2)
butterfly vector operations */
cmove(src_addr+j,input,delta,2,q); /* move data on—chip */
bflyr(input,q,Wkpointer); /* butterfly vector operation */
cmove(input,src_addr+j,2,delta,q); /* move result off chip */
src_addr +=incr_group; /* update src address base for next group */
Wkpointer += q2; /* update Wk pointer for next group */
}

155

ngroup <<=1,

Wkpointer = 0;
src_addr = shinput;
delta >>=1;
incr_group >>=1,;

tcomp = time_read(0);

} I*main*/

156

/* number of groups decrement by half
after each step */
/* initialize Wk pointer= Wn(0) */

/* update parameters for next step */

SERP2.C

/
SERP2.C : Partitioned serial DIT FFT implementation (Single—buffered version)
Requirements: 32<= Q <= 1024 (minimum: because of Meyer—Schwarz FFT limitations

maximum: because of on—chip RAM limitations)

Version : 1.0
VERSION DATE COMMENT
1.0 8/92 Original version
ROSEMARIE PIEDRA (TI Houston)
/
#define N 2048 I* FFT size (n) */
#define P 2 /*P =N/Q */
#define D 1 /*LOG2 P *
#define Q N/P /* Maximum FFT size that can be
computed on—chip */
#define BLOCKO 0x002ff800 /* on—chip RAM buffer */
extern void r2dit(), [* C—callable complex FFT ~ */
cmove(), /* CPU complex move */
cmoveb(); /* CPU bit-reversed complex move */
extern float INPUTT]; /* Input vector=N=Q*P */
float *input = (float ¥)BLOCKO, /* pointer to on—chip RAM */
shinput = INPUT, [pointer to input vector */

*src_addr = INPUT;
unsigned int i,j,k,ngroup,
delta =P,
incr_group =N,
= 2*P

p)
Wkpointer =0,

q =Q,
q2 =Q/2;
int tcomp; /* benchmarking */
/ /
main()
start:
time_start(0); [* start timer O for benchmark */
/
P Serial FFT of size Q *
/
for (j=0;j<P;j++,src_addr +=2) { [* loop P times */
cmove(src_addr,input,p2,2,q); /* move q complex numbers to on—chip */
r2dit(input,q); /* g—point FFT */
cmove(input,src_addr,2,p2,q); /* move FFT result to off-chip memory */

/
LOG P Butterfly operation steps *
/

for (i=0;i<D;i++) { /* log P steps of P butterfly vector operations each */
[* first butterfly vector operation */

cmove(shinput,input,delta,2,q); /* move first data on—chip */
bflyr(input,q,0); * butterfly vector operation */
cmove(input,shinput,2,delta,q); /* move vector result off—chip */
for (j=2;j<2*P;j+=2) { [* (P-1) butterfly vector operations */
ngroup = j/delta; /* select which group it belongs to */

src_addr = shinput + ngroup*incr_group + j%delta; /* data source
address for butterfly operation */

cmove(src_addr,input,delta,2,q); /* move data on—chip */
bflyr(input,q,ngroup*q2); /* butterfly vector operation */
cmove(input,src_addr,2,delta,q); /* move vector result off—chip */
delta >>=1; /* update parameters for next step */
incr_group >>=1,;

tcomp = time_read(0); /* tcomp = execution time */

} I*main*/

157

SERP.CMD

-
serp.obj
sintab.obj
input.obj
—Ipfftr.lib
—stack 0x0040
—Irts40r.lib
—lprts40r.lib
—m serp.map
—0 serp.out
MEMORY

ROM: org = 0x00

/*link using C conventions */
/* FFT C code *
/* sine table */
/* input data */
/* get FFT Assembly code routine */
/* set stack size */
/* get run—time support */
[* get timer routines */
/* generate map file */
/* output file name */

len = 0x1000 /* on—chip ROM */

RAMO: org = 0x002ff800 len = 0x0800 /* on—chip RAM: 2 blocks */
LM: org = 0x40000000 len = 0x10000 /* local memory */

GM: org = 0x80000000 len = 0x20000 /* global memory */

}

SECTIONS

{
input: {} >LM /* input vector */
.sintab: {} >LM /* sine table */
fttext: {} > LM /* FFT assembly routine (.text) */
text: {}>LM /* FFT C code (.text) */
cinit: {} >LM /* initialization table */
.stack: {} >LM /* system stack */
bss: {}>LM /* global & static C variables */

fftdata: {} > LM

158

/* FFT assembly routine (.text) */

SERPB.C

/
SERPB.C : Partitioned serial FFT algorithm (Double—buffered version)

Requirements: 32<= Q <= 512 (minimum: because of Meyer—Schwarz FFT limitations

maximum: because of on—chip RAM limitations)

Version : 1.0
VERSION DATE COMMENT

1.0 8/92 Original version

ROSEMARIE PIEDRA (Tl Houston)
/

#define N 2048 [* FFT size (n) */
#define P 4
#define D 2
#define Q N/P /* FFT subsize (512 suggested)*/

#define BLOCKO 0x002ff800 /* on—chip RAM buffer 1 */
#define BLOCK1 0x002ffc00 /* on—chip RAM buffer 2 */

#define DMAO 0x001000a0 /* DMAO address */
#define CTRLO 0x00c00008 /* autoinitialization */
#define CTRL1 0x00c40004 /* no autoinitialization ~ */

#define MASK 0x02000000 /* 1IF(bit DMAINTO) = 0 */

#define DMAGO(dma,auto) *(dma+3)=0; *(dma+6)=(int)auto; *dma=CTRLO;

extern

extern
inline

void r2dit(), /* C—callable complex FFT ~ */
cmove(), /* CPU complex move */
cmoveb(), /* CPU bit-reversed complex move */
wait_dmay), /* CPU waits for DMA to finish */
set_dmay(); /* set—up DMA registers */

float INPUTI[]; /* Inputvector=N=Q*P */

extern void wait_dmay();

/* CPU waits for DMA to finish*/

float *shinput = INPUT,
*src_addr = INPUT;
/* DMA autoinitialization values */
int dma04[7] ={CTRL1,(int)(INPUT+5),2*P,Q,BLOCKO0+1,2,0},
dma03[7] = {CTRLO,(int)(INPUT+4),2*P,Q,BLOCKO,2,(int)}dma04},
dma02[7] ={CTRLO,BLOCKO0+1,2,Q,(int)(INPUT+1),2*P,(int)dma03},
dma0l[7] ={CTRLO,BLOCKO,2,Q,(int)INPUT,2*P,(int)Jdma02},
dma08[7] ={CTRL1,(int)(INPUT+3),2*P,Q,BLOCK1+1,2,0},
dma07[7] {CTRLO,(int)(INPUT+2),2*P,Q,BLOCK1,2,(int)dma08},
dma06[7] {CTRLO,BLOCK1+1,2,Q,(int)(INPUT+3),2*P,(int)}dma07},
dma05[7] ={CTRLO,BLOCK1,2,Q,(int)(INPUT+2),2*P,(int)Jdma06};
unsigned int i,j,k0,k1,temp = 0,
ngroupO,ngroupl,
delta =P,
incr_group =N,
=2*P,
Wkpointer =0,
q =Q,
g2 =Q/2;
volatile int *dma = (int ¥)DMAO;
int tcomp; /* benchmarking */
/ /
main()

start:

asm(” or 1800h,st”);

time_start(0); [* start timer O for benchmark */
/

P Serial FFT of size Q *

/

DMAGO(dma,dma07); /* DMA transfers data block 1 */
cmove(src_addr,BLOCKO,p2,2,q); /* CPU transfer data block 0 */
r2dit(BLOCKO,q); /* FFT on data block 0 */

for (j=2;j<P;j+=2) { /*loop (P-2)/2 times *

159

/* initialize values for DMA autoinitialization */

dma01[4] = (int)src_addr; /* DMA transfer back butterfly result */
dma02[4] = (int)(src_addr+1);

dma03[1] = (int)(src_addr+4); /* DMA brings new set of data */
dma04[1] = (int)(src_addr+5);

wait_dma(MASK); /* wait for DMA to finish */
DMAGO(dma,dma0l); /* DMA start */
r2dit(BLOCK1,q); /* FFT on on—chip RAM block 1 data */
dma05[4] = (int)(src_addr+2);

dma06[4] = (int)(src_addr+3);

dma07[1] = (int)(src_addr+6);

dma08[1] = (int)(src_addr+7);
wait_dma(MASK);

DMAGO(dma,dma05); /* move data from/to BLOCK1 */

src_addr = src_addr+4; /* point to next block */

r2dit(BLOCKO,q); /* FFT on on—chip RAM block 0 data */

}
dma01[4] = (int)src_addr; dma02[4] = (int)(src_addr+1); dma02[0] = CTRL1,
wait_dma(MASK); /* wait for DMA to finish */
DMAGO(dma,dma0l); /* start DMA */
r2dit(BLOCK1,q); /* last FFT computation */
cmove(BLOCK1,src_addr+2,2,p2,q); /* move last FFT result off—chip*/
wait_dma(MASK); /* wait for DMA to finish moving

of previous FFT result */

/
LOG P Butterfly operation steps *
/

src_addr = shinput;
for (1I=0;i<D;i++) { /* loop (log P) times */
dma02[0] = CTRLO;
ngroupl = 2/delta;
k1= (int)shinput + ngroupl*incr_group + 2 % delta;
dma07[2] = dma08[2] = dma04[2] = dma03[2] = delta; /* DMA src offset*/
dma01l[5] = dma02[5] = dma05[5] = dma06[5] = delta;
dma07[1] = k1, dma08[1] = k1+1;

DMAGO(dma,dma0Q7); /* section 1 —> BLOCK1 */
kO = (int)src_addr;
ngroup0 = 0;
cmove(k0,BLOCKO,delta,2,q); [* section 0 —> BLOCKO */
bflyr(BLOCKO,q,0); /* bfly on section 0 */
for (j=4;j<p2;j+=4) { /* loop (P-2)/2 times */

dma01[4] = (int)ko; /* move section from BLOCKO */

dma02[4] = (int)(k0+1);

ngroup0 = j/delta;

kO= (int)shinput + ngroupO*incr_group + j % delta;

dma03[1] = kO; /* move new section to BLOCKO */
dma04[1] = kO+1;

wait_dma(MASK);

DMAGO(dma,dma01);
bflyr(BLOCK1,q,ngroupl*q2); /* bfly on current section */
dma05[4] = (int)k1,; /* move section from BLOCK1 */

dma06[4] = (int)(k1+1);
ngroupl = (j+2)/delta;
k1 = (int)shinput + ngroupl*incr_group + (j+2) % delta;
dma07[1] = (int)k1; /* move new section to BLOCK1 */
dma08[1] = (int)k1+1;
wait_dma(MASK);
DMAGO(dma,dma05);
bflyr(BLOCKO,q,ngroup0*q2); /* bfly on current section ~ */
} I* loop (j) */

dma01[4] = kO; dma02[4] = kO+1; dma02[0] = CTRLZ;

wait_dma(MASK);

DMAGO(dma,dma01l);

bflyr(BLOCK1,q,ngroupl*q2);

cmove(BLOCK1,k1,2,delta,q);

delta >>=1,

incr_group >>=1;

wait_dma(MASK);

} I* loop (i) */

tcomp = time_read(0);
} *main*/

160

Appendix F: Library Routines (PFFT.SRC)

BFLY.ASM

EE

BFLY.ASM : Butterlly operation on vector input (C—callable) to be used
with the parallel DIF FFT program.

version : 1.0

EE

VERSION DATE COMMENT
1.0 8/92 Original version
ROSEMARIE PIEDRA (TI HOUSTON)

EE I N B

SYNOPSIS:

void bfly (input, fft_size, Wkptr, sintab_size, step)
ar2 r2 r3 rc rs

float *input : Complex vector address

int fft_size :Complex FFT size

int Wkptr : Offset from _SINE to first twiddle factor to be used.
int sintab_size: Sine table size = N (size =5*N/4)

int step : Distance between twiddle factors of succesive butterflies

EE N B I R I

AR +] Al AR’ +] Al
V4

—~—
——

I+
BR + B COS—jSIN——BR’ +j Bl

AR’= AR + BR
Al'= Al + BI

BR'= (AR-BR)*COS + (Al-BI)*SIN
BI'= (AI-BI)*COS — (AR-BR)*SIN

_bfly:

.global _bfly ; Entry point for execution
.global _SINE ; pointer to sine table
text
SINTAB .word _SINE
LDl SP,ARO
PUSH DP ; save dedicated registers
PUSH R6
PUSHF R6
PUSH AR3
.if REGPARM ==
LDl *~ARO(1),AR2 ; input pointer
LDl *~ARO0(2),R2 ; fitsize
LDl *~ARO(4),RC ; sintab size
LDl *~ARO(5),RS ; twiddle factor step
Ll?l *~ARO0(3),AR0 ; offset to first twiddle factor to be used
.else
LDl R3,AR0 ; offset to first twiddle factor to be used
.endif
LDPSINTAB
LDl 2,IRO ; distance between succesive butterflies
LDl RS,IR1 ; distance between twiddle factors of
; succesive butterflies
LSH3 -2,RC,R3 ; R3 = sintabsize/4, distance between sine

; and cosine pointer

161

ADDI R2,AR2,AR3 ;AR2=A AR3 =B = A + fftsize

LSH3 -1,R2,RO ; R8 = fftsize/2

SUBI 1,RO,RC ; RC should be one less than desired #
RPTBD BLK1 ; execute fftsize/2 butterfly operations
LDI@SINTAB,R1

ADDI R1,AR0 ; ARO = sine pointer

ADDI ARO,R3,AR1 ; AR1 = cosine pointer

LDF *ARO++(IR1),R6 ;R6 =SIN ; point to next SIN
SUBF *AR3,*AR2,R2 ; R2 = AR-BR

SUBF *+AR3,**AR2,R1 ;R1=AI-BI

MPYF R2,R6,RO ; RO = (AR-BR)*SIN

ADDF *+AR3,*+AR2,R3 ; R3 = Al+BI

MPYF *AR1,R1,R3 ; new R3 = (AI-BI)*COS

STF R3,*+AR2 ;PR A = Al+B] rrrx

SUBF RO,R3,R4 ; R4 = (AI-BI)*COS — (AR-BR)*SIN
MPYF R1,R6,RO ; RO = (AI-BI)*SIN

ADDF *AR3,*AR2,R3 ; R3 = AR+BR

MPYF *AR1++(IR1),R2,R3 ;new R3 = (AR-BR)*COS ; point to next COS
STF R3*AR2++(IR0) ; *** AR’ = AR+BR ****
; and point to next butterfly

ADDF RO,R3,RO ; RO = (AR-BR)*COS + (AI-BI)*SIN
BLK1 STF RO,*AR3++(IR0) ; ¥ BR' = (AR-BR)*COS + (AlI-BI)*SIN ****
STF R4,*+AR3 ; ¥ BI' = (AI-BI)*COS — (AR-BR)*SIN ****
POP AR3
POPF R6
POPR6
POPDP
RETS
.end

162

BFLYR.ASM

BFLYR.ASM : Butterfly operation on vector input (C—callable) to be used
with the parallel DIT FFT program (DIS_DIT1.C).

* version : 1.0

* VERSION DATE COMMENT

* 1.0 8/92 Original version

* ROSEMARIE PIEDRA (TI HOUSTON)

* SYNOPSIS:

*void bflyr (input, fft_size, Wkptr)

* ar2 r2 13

* float *input : Complex vector address

* int fft_size :Complex FFT size

* int Wkptr : Offset(Re) from _SINE to first twiddle factor to be used.

* TYPE | BUTTERFLY

* +

* AR +j Al AR’ +j Al

* \ [+

* \

* \/

* /\

* [\

* / \+

* BR+jBl— COS - SIN BR’ +j BI

* TR = BR*COS + BI*SIN

* Tl =BI*COS — BR*SIN

* AR=AR + TR

* Al'= AL+ TI

* BR=AR-TR

* BI'=Al-TI

* TYPE Il BUTTERFLY

* +

* AR +j Al AR’ +j Al

* \ /+

* \

* \/

* /\

* [\

* / \ +

* BR+jBl—-SIN—-jCOS BR' +jBI'

*

* TR = BI*COS - BR*SIN

* Tl =BR*COS + BI*SIN

* AR=AR+ TR

* Al'= Al=TI

* BR=AR-TR

* BI'=AlI+TI

* DESCRIPTION: ————— <—input (Re +jim)

* Type | I

* WK ——— <—input+2 (Re + jlm)

* —————— <—input+4 (Re +jlm)

* Type Il |

* WK ——— <—input+6 (Re + jlm)

* —————— <—input+8 (Re +jim)

* Type | |

* Wk+1l ——— <—input+10 (Re + jlm)

* ——— <—input+12 (Re + jim)

* Type Il |

* Wk+1 ———— <— input+14 (Re + jlm)
.global _bflyr ; Entry point for execution
.global _SINE

text

SINTAB .word _SINE

163

_bflyr:

LDl SP,ARO
PUSH DP ; save dedicated registers
PUSH R6 ; R6 lower 32 bits
PUSHF R6 ; R6 upper 32 bits
PUSH AR3
if REGPARM ==
LDl *~ARO(1),AR2 ; input pointer
LDl *~ARO0(2),R2 ; fftsize
LDl *~ARO0(3),ARO0 ; Offset to first twiddle factor to be used
.else
LDl R3,ARO0 ; Offset to first twiddle factor to be used
.endif
LDP SINTAB
LDl 3,IR0 ; butterfly step
LDl 2,JR1 ; twiddle factor step (because cos—sin)
LDI @SINTAB,R1 ; R1 = sine table address
ADDI R1,ARO ; ARO = cosine pointer
ADDI 2,AR2,AR3 ; AR2 = points to AR
; AR3 = points to BR
LSH -2,R2 ; R2 = FFTSIZE/4
SuUBl 1,R2,RC ; RC =FFTSIZE/4 -1
RPTBD BLK ; loop FFTSIZE/4 times
LDF *ARO,R6 ; R6 = COS
MPYF *AR3,R6,R2 ; R2 = BR*COS

MPYF *+AR3,*+ARO0,RO ;RO =BI*SIN
* TYPE | Butterfly
MPYF *AR3,*+ARO,R1 ; R1 = BR*SIN

| ADDF RO,R2,R2 ; R2 =TR =BR*COS + BI*SIN
MPYF *+AR3,R6,R0 ; RO =BI*COS
| SUBF R2*AR2,R3 ;R3 = AR-TR
ADDF *AR2,R2,R2 i R2 = AR+TR
” STF R3'*AR3++ , *hkkkkk BR = AR_TR *kkkkk
; AR3 = POINTS TO BI
SUBF R1,RO ; RO =TI =BI*COS — BR*SIN
SUBF RO,*+AR2,R1 ; R1L = AI-TI
” STF R2|*AR2++ ; *khkkkkk AR - AR+TR *kkkkk
; AR2 = POINTS TO Al
ADDF RO,*AR2,R3 ;R3 = Al+TI

I STF RLYAR3++(IRQ) ; owmss Bl = AJT] wrwer
: AR3 = POINTS TO NEXT BR (TYPE Il)
MPYF *+AR3,R6,R0 ;RO = NEXT BI*COS (TYPEII)
| STF R3FAR2++(IRQ) ; &swwss Al = AL+T] *owwss
; AR2 = POINTS TO NEXT AR (TYPE I)
* TYPE Il Butterfly

MPYF *AR3,*+AR0,R2 ; R2 = BR*SIN
MPYF *+AR3,*+ARO,R1 ;R1l =BI*SIN

|| SUBF R2,RO,R2 ;R2 =TR =BI*COS — BR*SIN
MPYF *AR3,R6,RO ; RO = BR*COS
|| SUBF R2*AR2,R3 ;R3 = AR-TR
ADDF *AR2,R2,R2 i R2 = AR+TR
” STF R3’*AR3++ ’ *hkkhkkk BR = AR_TR *kkkkk
; AR3 = POINTS TO BI
ADDF R1,RO ; RO =TI = BR*COS + BI*SIN
ADDF *+AR2,RO,R1 ;R1 = AI+TI
” STF RZV*AR2++ , *hkkhkkk AR = AR+TR *kkkkk
; AR2 = POINTS TO Al
SUBF RO0,*AR2,R3 ;R3 =AI-TI

|| STF RL1*AR3++(IRQ) ; **xkkkx B| = A[4T| *wowks
; AR3 = POINTS TO NEXT BR
LDF *++ARO(IR1),R6 ;R6 = NEXT COSINE
MPYF *+AR3,*+ARO,RO0 ;RO = NEXT BI*SIN (TYPE I)
BLK MPYF *AR3,R6,R2 ; R2 = NEXT BR*COS (TYPE I)
|| STF R3*AR2++(IR0) ; **xkkdx Al = AT *rrkx
; AR2 = POINTS TO NEXT AR

POP ARS3
POPF R6
POP R6

POP DP

RETS

.end

164

BFLYR1.ASM

BFLYR1.ASM : Butterlly (TYPE 1) vector operation to be used with the
parallel DIT FFT program (DIS_DIT2.C). C—callable routine.
version : 1.0

* VERSION DATE COMMENT
* 1.0 8/92 Original version
* ROSEMARIE PIEDRA (TI HOUSTON)
* SYNOPSIS:
* void bflyrl (input, fft_size, Wkptr, step)
* ar2 r2 13 rc
* float *input : Complex vector address
* int fft_size : Complex FFT size/2 = Number of butterflies
* int Wkptr : Offset(complex) from _SINE to first twiddle factor to be
* used.
* int step : Distance(real) between twiddle factors of succesive
* butterflies
* +
* AR +jAl AR’ +j Al
* \ [+
* \
* \/
* /\
* I\
* / \ +
* BR+jBIl— COS —j SIN BR’ +j BI
*
* TR =BR*COS + BI*SIN
* Tl =BI*COS — BR*SIN
* AR'=AR+ TR
* Al'= AL+ TI
* BR=AR-TR
* BI'=Al-TI
.global _bflyrl ; Entry point for execution
.global _SINE
text
SINTAB .word _SINE
_bflyrl:
LDl SP,ARO
PUSH DP ; save dedicated registers
PUSH R6 ; R6 lower 32 bits
PUSHF R6 ; R6 upper 32 bits
PUSH ARS3
if REGPARM ==0
LDl *~ARO(1),AR2 ; input pointer
LDl *~ARO0(2),R2 ; fitsize/2 = number of butterflies
LDl *~ARO(4),RC ; twiddle factor step
Ll?l *~ARO0(3),AR0 ; Offset to first twiddle factor to be used
.else
LDI R3,ARO ; Offset to first twiddle factor to be used
.endif
LDP SINTAB
LDl 3,IR0 ; butterfly step
LDl RC,IR1 ; twiddle factor step
; AR3 = lower butterfly pointer
LSH 1,ARO ; ARO = 2 * (first twiddle factor offset)
LDI @SINTAB,R1 ; R1 = sine table address
ADDI R1,ARO0 ; ARO = cosine pointer
* FIRST BUTTERFLY
ADDI 2,AR2,AR3 ; AR2 = points to AR
; AR3 = points to BR
SUBI 1,R2,RC ; RC = FFTSIZE/2 -1
RPTBD BLK1 ; loop FFTSIZE/2 times
LDF *ARO,R6 ; R6 = COS
MPYF *AR3,R6,R2 ; R2 = BR*COS

MPYF *+AR3,*+AR0O,RO ;RO =BI*SIN

165

* BLOCK1 START : 9 instructions
MPYF *AR3,*+AR0,R1 ; R1 = BR*SIN

| ADDF RO,R2,R2 ;R2 =TR =BR*COS + BI*SIN
MPYF *+AR3,R6,R0 ; RO =BI*COS
|| SUBF R2*AR2,R3 ;R3 = AR-TR
ADDF *AR2,R2,R2 i R2 = AR+TR
” STF R3‘*AR3++ ; *hkkkkk BR = AR_TR *kkkkk
; AR3 = POINTS TO BI
SUBF R1,RO ; RO =TI =BI*COS - BR*SIN
SUBF RO,*+AR2,R1 ; R1L =AI-TI
” STF R2,*AR2++ ; *kkkkkk AR = AR+TR *kkkkk
; AR2 = POINTS TO Al
ADDF RO,*AR2,R3 ;R3 =TI+ Al

|| STF RL1*AR3++(IR0) ; **xkkdx B| = AT *rrx
; AR3 = POINTS TO NEXT BR
LDF *++ARO(IR1),R6 ; R6 = NEXT COSINE
MPYF *+AR3,*+ARO,RO0 ; RO = NEXT BI*SIN
BLK1 MPYF *AR3,R6,R2 ; R2 = NEXT BR*COS
|| STF R3*AR2++(IR0) ; *xdxkex Al = A[4T]| workrex
; AR2 = POINTS TO NEXT AR

POP AR3
POPF R6
POP R6

POP DP

RETS

.end

166

BFLYR2.ASM

BFLYR2.ASM : Butterlly (TYPE Il) vector operation to be used with the
parallel DIT FFT program (DIS_DIT2.C)

version : 1.0
* VERSION DATE COMMENT
* 1.0 8/92 Original version
* ROSEMARIE PIEDRA (TI HOUSTON)
* SYNOPSIS:
* void bflyr2 (input, fft_size, Wkptr, step)
* ar2 r2 r3 rc
* float *input : Complex vector address
* int fft_size : Complex FFT size/2 = Number of butterflies
* int Wkptr : Offset (complex) from _SINE to first twiddle factor to be
* used.
* int step : Distance (real) between twiddle factors of succesive
* butterflies
* +
* AR +jAl AR’ +j Al
* \ [+
* \
* \/
* /\
* I\
* / \ +
* BR+jBl— -SIN —-j COS BR' +jBI
*
* TR =BI*COS - BR*SIN
* Tl =BR*COS + BI*SIN
* AR'=AR+ TR
* Al'= Al=TI
* BR=AR-TR
* BI'=Al+TI
.global _bflyr2 ; Entry point for execution
.global _SINE
text
SINTAB .word _SINE
_bflyr2:
LDl SP,ARO
PUSH DP ; save dedicated registers
PUSH R6 ; R6 lower 32 bits
PUSHF R6 ; R6 upper 32 bits
PUSH ARS3
if REGPARM ==0
LDl *~ARO(1),AR2 ; input pointer
LDl *~ARO0(2),R2 ; fitsize/2 = number of butterflies
LDl *~ARO(4),RC ; twiddle factor step
Ll?l *~ARO0(3),AR0 ; Offset to first twiddle factor to be used
.else
LDI R3,ARO ; Offset to first twiddle factor to be used
.endif
LDP SINTAB
LDl 3,IR0 ; butterfly step
LDl RC,IR1 ; twiddle factor step
; AR3 = lower butterfly pointer
LSH 1,ARO ; ARO = 2 * (first twiddle factor offset)
LDI @SINTAB,R1 ; R1 = sine table address
ADDI R1,ARO0 ; ARO = cosine pointer
* FIRST BUTTERFLY
ADDI 2,AR2,AR3 ; AR2 = points to AR
; AR3 = points to BR
SUBI 1,R2,RC ; RC = FFTSIZE/2 -1
RPTBD BLK1 ; loop FFTSIZE/2 times
LDF *ARO,R6 ; R6 = COS
MPYF *+AR3,R6,R2 ; R2 = BI*COS

MPYF *AR3,*+AR0,RO ; RO = BR*SIN

167

* BLOCK1 START

MPYF *+AR3,*+ARO,R1 ;R1 =BI*SIN

SUBF RO,R2,R2 ;R2 =TR =BI*COS - BR*SIN
MPYF *AR3,R6,RO ; RO = BR*COS
SUBF R2,*AR2,R3 ;R3 = AR-TR
ADDF *AR2,R2,R2 i R2 = AR+TR
STF R3‘*AR3++ ; *hkkkkk BR = AR_TR *kkkkk
; AR3 = POINTS TO BI
ADDF R1,RO ; RO =TI =BR*COS + BI*SIN
ADDF *+AR2,RO,R1 ; RL = AI+TI
STF R2,*AR2++ ; *kkkkkk AR = AR+TR *kkkkk

; AR2 = POINTS TO Al
LDF *++ARO(IR1),R6 ;R6 = NEXT COSINE
STF R1*AR3++(IRQ) ; *dkiwtk B| = A4 *orkkx
; AR3 = POINTS TO NEXT BR
SUBF RO,*AR2,R3 ;R3 =AI-TI
MPYF *AR3,*+ARO0O,R0O ; RO = NEXT BR*SIN

BLK1 MPYF *+AR3,R6,R2 ; R2 = NEXT BI*COS

168

STF R3*AR2++(IRQ) ; ®omr Al = AJT| *rweee
; ARZ = POINTS TO NEXT AR

POP AR3
POPF R6
POP R6

POP DP

RETS

.end

CMOVE.ASM

Calling conventions:

EEE N I I

version 1.0

r2 r3

where src : Vector Source Address

dst : Vector Destination Address
src_displ: Source offsset (real)
dst_displ: Destination offsset (real)
lenght : Vector lenght (complex)

Rose Marie Piedra

.global _cmove
text

_cmove:

Il
CMOVE LDF

.if REGPARM ==0
LDl SP,ARO

LDl *~ARO(1),AR2
LDI *~ARO(4),IR1
LDI *~ARO0(5),RC
SuUBI 2,RC
RPTBD CMOVE
LDl *~ARO0(2),AR1
LDl *~ARO0(3),IR0O
LDF *+AR2(1),RO
.else

LDl RC,IR1

SuUBI 2,RS,RC
RPTBD CMOVE
LDI R2AR

LDl RS3,IR0

LDF *+AR2(1),RO
.endif

loop

LDF *AR2++(IR0),R1

STF RO,*+AR1(1)

POP ARO
BUD ARO

LDF *AR2++(IR0),R1

STF RO*+AR1(1)
STF R1,*AR1
NOP

.end

; Source address
; Destination index (real)
; Complex lenght
; RC=lenght-2

; Destination address
; Source index (real)
; destination index (real)
; complex lenght —2

; source address
; source index (real)

*+AR2(1),RO
STF R1,*AR1++(IR1)

CMOVE.ASM : TMS320C40 C—callable routine to move a complex float
vector pointed by src, to an address pointed by dst.

void cmove((float *)src,(float *)dst,int src_displ,int dst_displ,int lenght)
ar2

rc

169

EXCH_R.ASM

version 1.0

EXCHANGE_R.ASM: TMS320C40 C-callable routine to exchange

two floating point complex vectors pointed by "src_addr” in
each processor memory. This routine uses CPU to
send/receive (no port synchronization is used) "lenght”
complex numbers to "comport” .

*

*

*

*

*

*

*

* Calling conventions:
*

*

* ar2 r2
*

* int comport

*

*

*

*

*

void exchange_r (comport, src_addr, lenght , offset)

r3 rc

: Comport number to be used
void *src_addr : Source/destination address
int lenght
int offset

: Complex vector lenght
: Source/destination address step (real)

Rose Marie Piedra

.global _exchange_r

text

CP_IN_BASE .word 0100041H
_exchange_r:

LDI

SP,AR1

PUSH DP
if REGPARM ==

LDI
LDI
LDI
LDI
.else
LDI
LDI

.endif

LDP
ADDI
SUBI

*_AR1(1),AR2
*~AR1(2),ARO0
*_AR1(3),R3
*_AR1(4),IR0

R2,AR0
RC,IRO ;

CP_IN_BASE
1,IR0,IR1
2,R3,RC

LSH3 4,AR2,RO

; Points to top of stack

; comport number

; Source/destination adress
; lenght (complex)
; offset

; source/destination address
offset

; set DP register
i IR1 = offset + 1
; RC = complex lenght —2
; RO = comport number << 4

; AR2 = comport FIFO pointer
;R2 =Im
; send Im part to OFIFO

; R2 = Re part
; RO =receive Im part from IFIFO
; send Re part to OFIFO
; store Im part in memory
; R2 = Im part (next)
; RO =receive Re part from IFIFO
; send next Im part to OFIFO
RO) ; store Re part in memory
= points to next complex number

; R2 =last Re part
; RO =read Im part from IFIFO
; send last Re part to OFIFO
; store last Im part in memory
; RO =receive last Re part from IFIFO
; store last Re part in memory

LDI @CP_IN_BASE,AR2
RPTBD BLK
ADDI RO,AR2
LDI *+ARO,R2
STI R2*+AR2
* REPEAT BLOCK STARTS
LDl *ARO,R2
LDl *AR2,RO
STI R2*+AR2
STI RO, *+ARO
LDl *+ARO(IR1),R2
LDl *AR2,RO
STI R2*+AR2
BLK STl RO,*ARO++(l
; ARO
* LAST COMPLEX NUMBER TO SEND/RECEIVE
LDl *ARO,R2
LDI *AR2,RO
STI R2*+AR2
STI RO,*+ARO
LDl *AR2,RO
STl RO,*ARO
POP DP
RETS
.end

tcomp = time_read(0);

} I*main*/

170

MOVE.ASM

Calling conventions:

ar2 r2

where src : Vector Source Address
dst : Vector Destination Address
src_displ: Source offsset
dst_displ: Destination offset
lenght : Vector lenght

EEE N I I

version 1.0 Rose Marie Piedra

MOVE.ASM : TMS320C40 C—callable routine to move a float
vector pointed by src, to an address pointed by dst.

.global _move
text

_move:
if REGPARM ==0
LDl SP,ARO
LDl *~ARO(1),AR2
LDl *~ARO(4),IR1
LDl *~ARO(5),RC
SuBl 2,RC
RPTBD MOVE
LDl *~ARO0(2),AR1
LDI *~ARO(3),IR0O
LDF *AR2++(IR0),RO

; Source address
; Destination index
; Vector lenght
; RC=lenght-2

; Source index

.else
LDI RC,IR1 ; destination index
SuUBI 2,RS,RC ; Vector lenght -2
RPTBD MOVE
LDI R2,AR1 ; source address
LDl RS3,IR0 ; source index
LDl *AR2++(IR0),RO
.endif

* loo

MOVE LDF *AR2++(IR0),RO
I STF RO*AR1++(IR1)
STF RO,*AR1
RETS
.end

; Destination address

void move((float *)src,(float *)dst,int src_displ,int dst_displ,int lenght)
r3

rc

171

PR2DIF.ASM

*

COMPLEX, RADIX-2 DIF FFT : PR2DIF.ASM *
*

GENERIC PROGRAM FOR A RADIX-2 DIF FFT COMPUTATION IN TMS320C40 *

TO WORK WITH PARALLEL FFT PROGRAM

VERSION: 1.0 *

EE T I

*

VERSION DATE COMMENT *
1.0 7/92 ROSEMARIE PIEDRA (TI HOUSTON): *
modified to work with parallel FFT program *

SYNOPSIS: int pr2dif(SOURCE_ADDR,FFT_ SIZE LOGFFT,P) *
ar2 r2 r3 rc
float *SOURCE_ADDR ; input address *
int FFT_SIZE ; 64, 128, 256, 512, 1024, ... *
int LOGFFT ; log (base 2) of FFT_SIZE *
int P ; number of processors *

* Xk

EE I

— THE COMPUTATION IS DONE IN-PLACE. *

THIS IS A SEQUENTIAL IMPLEMENTATION OF PARALLEL FFT, ALMOST IDENTICAL *
TO THE CODE AVAILABLE IN THE C40'USER’S GUIDE. THE CODE HAS BEEN ~ *
MODIFIED TO WORK WITH A SINE TABLE OF SIZE (FFT_SIZE*P)/2 INSTEAD OF *
(FFT_SIZE/2)

E I

* SECTIONS NEEDED IN LINKER COMMAND FILE: .cffttext : cfft code *

* THE TWIDDLE FACTORS ARE STORED WITH A TABLE LENGTH OF 5*FFT_SIZE/4 *
* THE SINE TABLE IS PROVIDED IN A SEPARATE FILE WITH GLOBAL LABEL _SINE *
* POINTING TO THE BEGINNING OF THE TABLE.

.global _pr2dif ; Entry execution point.
.global _SINE ; address of sine table

; Initialize C Function.
.sect ".ffttext”
SINTAB .word _SINE
_pr2dif:
LDl SP,ARO
PUSH DP
PUSH R4 ; Save dedicated registers
PUSH R5
PUSH R6
PUSHF R6
PUSH AR4
PUSH AR5
PUSH RS8
.if REGPARM ==0
LDl *-ARO(1),AR2 : points to X(I): INPUT
LDl *~ARO0(2),R10 ; R10=N
LDl *~ARO(3),R9 ; R9 holds the remain stage number
LDI *~ARO(4),RC ;! ; RC =P =number of processors
.else
LDI R2,R10
LDI R3,R9
.endif
LDP SINTAB
LDI 1,R8 ; Initialize repeat counter of first loop
LSH3 1,R10,IR0 ; IRO=2*N1 (because of real/imag)
LSH3 -2,R10,IR1 ; IR1=N/4, pointer for SIN/COS table
MPYl RC,IR1 ;! ; IRI=NP/4
LDI RC,AR5 ;M ; Initialize |E index (AR5=IE)
LSH 1,R10
SUBI3 1,R8,RC ; RC should be one less than desired #

172

*

LOOP

Outer loop

RPTBD BLK1

LSH -1,R10

LDl AR2,ARO

ADDI R10,AR0,AR6
First loop

; Setup for first loop
; N2=N2/2
; ARO points to X(I)
; ARG points to X(L)

ADDF *ARO*AR6,RO ; RO=X(I)+X(L)
SUBF *ARG++*AR0++R1 ; R1=X(1)=X(L)
ADDF *AR6*AROR2 ;R2=Y()+Y(L)
SUBF *AR6*AROR3 ;R3=Y()-Y(L)
STF R2,*ARO— :Y(1)=R2 and...

I STF R3*AR6— - Y(U)=R3

BLK1 STF RO*AR0O++(IR0) ; X())=R0O and...

STF R1,*AR6++(IR0) ; X(L)=R1 and ARO,2 = ARO,2 + 2*n
* |f this is the last stage, you are done

SuUBI 1,R9

BZD END

main inner loop

LDl 2,AR1

LDI @SINTAB,AR4
ADDI AR5,AR4
ADDI AR2,AR1,ARO
SuBl 1,R8,RC

; Init loop counter for inner loop
; Initialize 1A index (AR4=IA)
; IA=IA+IE; AR4 points to cosine
; (X(1),Y (1)) pointer
; RC should be one less than desired #

INLOP:
RPTBD BLK2 ; Setup for second loop
ADDI R10,AR0,AR6 ; (X(L),Y(L)) pointer
ADDI 2,AR1
LDF *AR4,R6 ; R6=SIN

* Second loop
SUBF *AR6,*AR0O,R2 s R2=X(1)-X(L)

BLK2 STF

SUBF *+ARG6,*+AR0
MPYF R2,R6,RO
ADDF *+ARG6,*+AR0

R1 ;RI=Y()-Y(L)

; RO=R2*SIN and...

R3 :R3=Y()+Y(L)

MPYF R1*+AR4(IR1),R3 ;R3=R1*COSand ...

STF R3,*+AR0
SUBF RO,R3,R4
MPYF R1,R6,RO

PY()=Y()+Y(L)
; R4=R1*COS-R2*SIN
; RO=R1*SIN and...

ADDF *AR6,*ARO,R3 ; R3=X()+X(L)
MPYF R2*AR4(IR1),R3 ;R3=R2*COS and...
STF R3*ARO++(IR0) ; X()=X(I)+X(L) and ARO=AR0+2*N1

ADDF RO,R3,R5

STF R4,*+AR6
CMPI R10,AR1
BNEAF INLOP

ADDI AR5,AR4
ADDI AR2,AR1,ARO
SuBl 1,R8,RC

LSH 1,R8
BRD LOOP
LSH 1,ARS5
LDl R10,IRO

SUBI3 1,R8,RC

END POP RS8

POP AR5
POP AR4
POPF R6
POP R6
POP R5
POP R4
POP DP
RETS

.end

; R5=R2*COS+R1*SIN

R5,*AR6++(IR0) ; X(L)=R2*COS+R1*SIN, incr AR6 and...

; Y(L)=R1*COS-R2*SIN

; Loop back to the inner loop
; IA=IA+IE; AR4 points to cosine
; (X(1),Y (1)) pointer

; Increment loop counter for next time
; Next FFT stage (delayed)
; IE=2*IE
; N1=N2

; Restore the register values and return

173

R2DIF.ASM

* *
* COMPLEX, RADIX-2 DIF FFT : R2DIF.ASM *
* *
* *
* Generic program for a radix—2 DIF FFT computation using the *
* TMS320C4x family. The computation is done in—place and the result *
* is bit-reversed. The program is taken from the burrus and Parks ~ *
* book, p. 111. *
* *
* The twiddle factors are supplied in a table put in a .data section *
* with a global label _SINE pointing to the beginning of the table *
* This data is included in a separate file to preserve the generic *
* nature of the program. The sine table size is (5*FFT_SIZE)/4. *
* *
* VERSION: 3.0 *
* *
* *
* VERSION DATE COMMENT *
* 1.0 10/87 Original version *
* PANNOS PAPAMICHALIS (TI HOUSTON) *
* *
* 20 1/91 DANIEL CHEN (TI HOUSTON): C40 porting *
* 3.0 7/91 ROSEMARIE PIEDRA (TI HOUSTON): made it~ *
* C—callable. Discard bit-reversed transfer *
* of output result (not needed for some *
* applications). If bit-reversing is needed *
* check cmoveb.asm in "Parallel 2-D FFT *
* implementation with TMS320c4x DSPs”"(SPRA027)*
* *
* SYNOPSIS: int r2dif(SOURCE_ADDR,FFT_SIZE,LOGFFT)
* ar2 r2 r3 *
* *
* float *SOURCE_ADDR ; input address *
* int FFT_SIZE ; 64, 128, 256, 512, 1024, ... *
* int LOGFFT ; log (base 2) of FFT_SIZE *
* *
* —THE COMPUTATION IS DONE IN-PLACE. *
* *
* *
* + *
* AR +j Al AR’ +jAI
* \ /+ *
* \ / *
* \/ *
* /\ *
* / \ *
* / \+ *
* BR+jBI COS-jSIN——BR'+jBI
* _ *
* *
* AR'=AR +BR *
* Al'= Al + Bl *
* BR'= (AR-BR)*COS + (Al-BI)*SIN *
* BI'= (AI-BI)*COS — (AR-BR)*SIN *
* *
.globl _SINE ; Address of sine/cosine table
.globl _r2dif ; Entry point for execution

sect " ffttext”
SINTAB .word _SINE

174

_r2dif:

LDl SP,ARO
PUSH DP
PUSH R4
PUSH R5
PUSH R6
PUSHF R6
PUSH AR4
PUSH AR5
PUSH AR6
PUSH R8

.if REGPARM ==

LDI
LDI
LDI
.else
LDI
LDI
.endif
LDP SINTAB
LDl 1,R8
LSH3 1,R10,IR0
LSH3 -2,R10,IR1

*_ARO(1),AR2
*_AR0(2),R10
*~AR0(3),R9

R2,R10
R3,R9

; Save dedicated registers

; lower 32 bits
; upper 32 bits

; points to X(1): INPUT
; R10=N
; R9 holds the remain stage number

; Initialize repeat counter of first loop
; IRO=2*N1 (because of real/imag)
; IR1=N/4, pointer for SIN/COS table

LDl 1,AR5 ; Initialize 1E index (AR5=IE)
LSH 1,R10
SUBI3 1,R8,RC ; RC should be one less than desired #
* Outer loop
LOOP:
RPTBD BLK1 ; Setup for first loop
LSH -1,R10 ; N2=N2/2
LDl AR2,ARO ; ARO points to X(I)
ADDI R10,AR0,AR6 ; ARG points to X(L)
* First loop
ADDF *ARO,*AR6,R0 ; RO=X(1)+X(L)
SUBF *AR6++,*AR0++,R1 ; R1=X(I)-X(L)
ADDF *AR6,*AR0,R2 s R2=Y(1)+Y(L)
SUBF *AR6,*ARO,R3 ; R3=Y(1)-Y(L)
STF R2*AR0— ; Y()=R2 and...
| STF R3*AR6— ; Y(L)=R3
BLK1 STF RO,*ARO++(IR0O) ; X(D=RO and...

STF R1,*ARG6++(IR0)

; X(L)=R1 and ARO,2 = ARO,2 + 2*n

* |f this is the last stage, you are done

SuUBI 1,R9
BZD END
* main inner loop
LDl 2,AR1 ; Init loop counter for inner loop
LDI @SINTAB,AR4 ; Initialize A index (AR4=1A)
ADDI ARS5,AR4 ; IA=IA+IE; AR4 points to cosine
ADDI AR2,AR1,ARO ; (X(1),Y(1)) pointer
SuBl 1,R8,RC ; RC should be one less than desired #
INLOP:
RPTBD BLK2 ; Setup for second loop
ADDI R10,AR0,AR6 ; (X(L),Y(L)) pointer
ADDI 2,AR1
LDF *AR4,R6 ; R6=SIN
* Second loop
SUBF *AR6,*ARO,R2 ; R2=X(1)-X(L)
SUBF *+AR6,*+ARO,R1 ; R1=Y(I)-Y(L)
MPYF R2,R6,RO ; RO=R2*SIN and...
|| ADDF *+AR6,*+ARO,R3 ;R3=Y(I)+Y(L)
MPYF R1*+AR4(IR1),R3 ;R3=R1*COSand...
| STF R3*+ARO s Y(D=Y()+Y(L)
SUBF RO,R3,R4 ; R4=R1*COS-R2*SIN
MPYF R1,R6,RO ; RO=R1*SIN and...
|| ADDF *ARG6,*ARO,R3 : R3=X(1)+X(L)
MPYF R2*+AR4(IR1),R3 ;R3=R2*COS and...
| STF R3*ARO++(IR0) ; X()=X(l)*+X(L) and ARO=ARO+2*N1
ADDF RO,R3,R5 ; R5=R2*COS+R1*SIN

BLK2 STF R5,*AR6++(IR0)

STF R4,*+AR6

; X(L)=R2*COS+R1*SIN, incr AR6 and...
: Y(L)=R1*COS-R2*SIN

175

END

176

CMPI

R10,AR1

BNEAF INLOP ; Loop back to the inner loop

ADDI
ADDI
SUBI
LSH
BRD
LSH
LDI

AR5,AR4 ; IA=IA+IE; AR4 points to cosine
AR2,AR1,ARO ; (X(1),Y (1)) pointer

1,R8,RC

1,R8 ; Increment loop counter for next time
LOOP ; Next FFT stage (delayed)

1,AR5 ; IE=2*IE

R10,IR0 ; N1=N2

SUBI3 1,R8,RC
POP R8

POP
POP
POP
POPF
POP
POP
POP
POP
RETS
.end

AR6

AR5 ; Restore the register values and return
AR4

R6

R6

R5

R4

DP

R2DIT.ASM

* COMPLEX, RADIX-2 DIT FFT : R2DIT.ASM *

* *

* GENERIC PROGRAM FOR A FAST LOOPED-CODE RADIX 2 DIT FFT COMPUTATION *
* IN TMS320C40 VERSION: 3.0

* VERSION DATE COMMENT *

* 1.0 7/89 Original version *

* RAIMUND MEYER, KARL SCHWARZ *

* LEHRSTUHL FUER NACHRICHTENTECHNIK *

* UNIVERSITAET ERLANGEN-NUERNBERG *

* CAUERSTRASSE 7, D-8520 ERLANGEN, FRG *

* *

* 20 1/91 DANIEL CHEN (TI HOUSTON): C40 porting *

* 3.0 7/92 ROSEMARIE PIEDRA (TI HOUSTON): made it *

* C—callable and implement the same changes *

* in the order of the operands in some mpyf *

* instructions as it was done in the C30 *

* version. Also bit—reversing of output *

* vector was discarded(not needed for most *

* applications. If bit—reversing isneeded *

* check cmoveb.asm in "Parallel 2-D FFT *

* implementation with TMS320c4x DSP’s"(SPRA027) *

* SYNOPSIS: int r2dit(SOURCE_ADDR,FFT SIZE) *

* ar2 r2

* float *SOURCE_ADDR ; Points to where data is originated ~ *

* ;and operated on.

* int FFT_SIZE ; 64, 128, 256, 512, 1024, ... *

* _ THE COMPUTATION IS DONE IN-PLACE. *

* —FOR THIS PROGRAM THE MINIMUM FFTLENGTH IS 32 POINTS BECAUSE OF THE = *
* SEPARATE STAGES.

* — FIRST TWO PASSES ARE REALIZED AS A FOUR BUTTERFLY LOOP SINCE THE *
* MULTIPLIES ARE TRIVIAL. THE MULTIPLIER IS ONLY USED FOR A LOAD IN *

* PARALLEL WITH AN ADDF OR SUBF.

* SECTIONS NEEDED IN LINKER COMMAND FILE ffttext : fft code *

* fftdata : fft data

* THE TWIDDLE FACTORS ARE STORED IN BITREVERSED ORDER AND WITH A TABLE ~ *
* LENGTH OF N/2 (N = FFTLENGTH). THE SINE TABLE IS PROVIDED IN A SEPARATE *
* FILE WITH GLOBAL LABEL _SINE POINTING TO THE BEGINNING OF THE TABLE. *
* EXAMPLE: SHOWN FOR N=32, WN(n) = COS(2*PI*n/N) —J*SIN(Z*PI*n/N) *

* ADDRESS COEFFICIENT

* 0 R{WN(0)} = COS(2*PI*0/32) = *

* 1 —{WN(0)} = SIN(2*PI1*0/32) = O *

* 2 R{WN(4)} = COS(2*PI*4/32) = 0.707 *

* 3 —{WN(4)} = SIN(2*PI*4/32) = 0.707 *

* . . *

* 12 R{WN(3)} = COS(2*PI*3/32) = 0.831 *

* 13 —I{WN(3)} = SIN(2*PI*3/32) = 0.556 *

* 14 R{WN(7)} = COS(2*PI*7/32) = 0.195 *

* 15 —{WN(7)} = SIN(2*PI1*7/32) = 0.981 *

* WHEN GENERATED FOR A FFT LENGTH OF 1024, THE TABLE IS FOR ALL FFT *
* LENGTH LESS OR EQUAL AVAILABLE.

* THE MISSING TWIDDLE FACTORS (WN(),WN(),....) ARE GENERATED BY USING *
* THE SYMMETRY WN(N/4+n) = —*WN(n). THIS CAN BE REALIZED VERY EASY, BY *
* CHANGING REAL- AND IMAGINARY PART OF THE TWIDDLE FACTORS AND BY *
* NEGATING THE NEW REAL PART.

* AR+ Al AR +jAI" ¥

* BR+]BI (COS—-jSIN) BR' +jBI' *

* TR=BR*COS + Bl * SIN *

* TI=BI*COS-BR*SIN *

* AR'=AR+ TR *

* Al'= AL+ TI *

* BR=AR-TR *

* BI'=Al-TI *

177

.global _r2dit ; Entry execution point.

.global _SINE

.sect "fftdata”
fg2 .Space 1 ;is FFT_SIZE/2
fg4m2 .Sspace 1 ;is FFT_SIZE/A -2
fg8m2 .space 1 ;is FFT_SIZE/8 — 2
sintab .word _SINE ; pointer to sine table
sintp2 .word _SINE+2 ; pointer to sine table +2
inputp2 .space 1 ; pointer to input +2
inputp .space 1

Initialize C Function.

1

.sect "ffttext”

_r2dit: LDI SP,ARO
PUSH R4
PUSH R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH AR3
PUSH AR4
PUSH AR5
PUSH ARG
PUSH AR7
PUSH DP
.if REGPARM ==0 ; arguments passed in stack
LDI *~ARO(1),AR2 ; input address
LDI *~ARO0(2),R2 ; FFT size
.endif
LDP fg2 ; Initialize DP pointer.
LSH -1,R2
ADDI 2,AR2,R0
STI AR2,@inputp ; inputp = SOURCE_ADDR
STI RO, @inputp2 ; inputp2= SOURCE_ADDR + 2
STI R2,@fg2 ; fg2 = nhalb = (FFT_size/2)
LSH -1,R2
SUBI 2,R2,R0O
STI RO,@fg4m?2 ; fgdm2 = NVIERT-2 : (FFT_SIZE/4)-2
LSH -1,R2
SUBI 2,R2,R0O
STI RO,@fg8m2
* ar0 : AR + Al
* arl: BR + BI
* ar2:CR+Cl+CR +CI
* ar3 : DR + DI
* ard : AR’ + Al
* ar5:BR' +BI’
* ar6 : DR’ + DI’
* ar? : first twiddle factor = 1
Idi ~ @fg2,ir0 ; ir0 = n/2 = offset between SOURCE_ADDRs
Idi @sintab,ar7 ; ar7 points to twiddle factor 1
Idi ar2,ar0 ; ar0 points to AR
addi ir0,ar0,arl ; arl points to BR
addi ir0,arl,ar2 ; ar2 points to CR
addi ir0,ar2,ar3 ; ar3 points to DR
Idi ar0,ard ; ard points to AR’
Idi arl,ar5 ; ar5 points to BR’
Idi ar3,ar6 ; aré points to DR’
Idi 2,irl ; addressoffset
Ish -1,ir0 ; ir0 = n/4 = number of R4-butterflies
subi 2,ir0,rc
*————— FIRST 2 STAGES AS RADIX-4 BUTTERFLY
* fill pipeline
addf *ar2,*ar0,r4 ;14=AR + CR
subf *ar2*arO++,r5 ;1’5=AR-CR
addf *arl,*ar3,r6 ;16 =DR + BR

subf *arl++*ar3++,r7 ;17 =DR-BR

178

addf r6,r4,r0 AR'=10=r4 + 16

mpyf *ar7,*ar3++,r1 ;r1=DI,BR' =r3=r4-16
|| subf r6,r4,r3
addf ril,*arl,rO ;r0=BI+DI,AR =10
|| stf rO*ard++
subf rl*arl++rl ;rl=BI-DI,BR =13
|| stf r3*ar5++
addf r1,r5,r2 ;CR'=r2=r5+rl
mpyf *ar7,*+ar2,rl ;1'1=ClI,DR’=r3=r5-r1
I subf r1,r5,r3
rptbd blk1 ; Setup for radix—4 butterfly loop
addf ri1,*ar0,r2 ;r2=Al+Cl,CR =12
|| stf r2*ar2++(irl)
subf rl,*arO++,r6 ;6 =Al-Cl,DR =13
|| stf r3*ar6++
addf rO,r2,r4 AP =14 =r2+10
* radix—4 butterfly loop
mpyf *ar7,*ar2—,r0 ;T0=CR, (BI'=r2=r2-r0)
I subf rO,r2,r2
mpyf *ar7,*arl++rl ;r1=BR, (CI'=r3=r6 +1r7)
|| addf r7,r6,r3
addf rO,*arO,r4 ;14A=AR + CR, (Al'=r14)
|| stf rd*ard++
subf r0,*arO++,r5 ;15=AR-CR, (BI'=r2)
|| stf r2*ar5++
subf r7,r6,r7 ;(DI'=r7=r6-1r7)
addf rl,*ar3,ré ;16 =DR+BR, (DI'=17)
|| stf r7,*ar6++
subf rl,*ar3++,r7 ;r7=DR-BR, (CI'=r3)
|| stf r3*ar2++
addf r6,r4,r0 ;AR'=r10=r4 + 16
mpyf *ar7,*ar3++,r1 ;11=DI,BR'=r3=r4-r16
I subf r6,r4,r3
addf ril,*arl,r0 ;10=BI+ DI, AR =10
|| stf rO*ard++
subf rl*arl++,rl ;r1=BI-DI,BR =r3
|| stf r3*ar5++
addf r1,r5,r2 i CR'=r2=r5+rl
mpyf *+ar2 *ar7,rl ;rn1=Cl,DR' =r3=r5-rl1
|| subf r1,5,r3
addf ril,*ar0,r2 ;r2=Al+Cl,CR =12
|| stf r2*ar2++(irl)
subf rl,*arO++,r6 ;6 =Al-Cl,DR =13
|| stf r3*ar6++
blkl addf r0,r2,r4 AP =r4=r2+10
* clear pipeline
subf r0,r2,r2 ;Bl'=r2=r2-r0
addf r7,r6,r3 ;Cl'=r3=r6+1r7
stf rd*ar4 AP =14, Bl'=12
|| stf r2*ar5
subf r7,r6,r7 ;DI'=r7=r6—-1r7
stf r7,*ar6 ;DI'=r7,ClI'=r3
|| stf r3*—ar2
*——— THIRD TO LAST-2 STAGE *
ldi @fg2,irl
subi 1,ir0,ar5
Idi 1,ar6
Idi @sintab,ar7 ; pointer to twiddle factor
Idi 0,ar4 ; group counter
Idi @inputp,ar0
stufe Idi ar0,ar2 ; upper real butterfly output
addi ir0,ar0,ar3 ; lower real butterfly output
Idi ar3,arl ; lower real butterfly input
Ish 1,ar6 ; double group count
Ish -2,ar5 ; half butterfly count
Ish 1,ar5 ; clear LSB
Ish —1,ir0 ; half step from upper to lower real part
Ish -1,irl
addi 1,irl ; step from old imaginary to new

179

; real value
Idf *arl++,r6 ; dummy load, only for address update
|| 1df *ar7,r7 ; 17 =COS
gruppe
* fill pipeline
* ar0 = upper real butterfly input
arl = lower real butterfly input
ar2 = upper real butterfly output
ar3 = lower real butterfly output
the imaginary part has to follow
Idf *++ar7,r6 ;16 = SIN
mpyf *arl—r6,rl ;11 =Bl *SIN
|| addf *++ar4,r0,r3 ; dummy addf for counter update
mpyf *arl,r7,r0 ;10 =BR *COS
Idi ar5,rc
rptbd bflyl ; Setup for loop bflyl
mpyf *ar7—,*arl++,r0 ;I3=TR=r0+rl,r0=BR*SIN
addf rO,r1,r3
mpyf *arl++,r7,rl ;rl=BI*COS,r2=AR-TR
subf r3,*ar0,r2
addf *arO++,r3,r5 :15=AR+TR,BR' =12
stf r2*ar3++
FIRST BUTTERFLY-TYPE:

* Ok F F

TR =BR*COS + Bl * SIN
TI=BR *SIN - Bl * COS
AR=AR + TR
Al'=Al-TI
BR'=AR-TR
BlI'= Al + Tl
loop bflyl
mpyf *+arl,r6,r5 ;15 =Bl *SIN, (AR’ =15)

|| stf r5*ar2++

subf rl1,r0,r2 ;(r2=Tl=r0-rl)

mpyf *arl,r7,r0 ;T0=BR*COS, (r3=Al+TI)
|| addf r2*ar0,r3

subf r2,*arO++,r4 ;(rd=Al=TI,BI'=r3)
|| stf r3*ar3++

addf r0,r5,r3 i I3=TR=r0+1r5

mpyf *arl++,r6,r0 ;T0=BR*SIN, r2=AR-TR
I subf r3*ar0,r2

mpyf *arl++,r7,rl ;r1=BI*COS, (Al'=r4)
|| stf rd*ar2++
bflyl addf *arO++,r3,r5 ;15=AR+TR,BR =12
|| stf r2*ar3++
* switch over to next group

subf rl1,r0,r2 ;r2=TI=r0-rl

addf r2,*ar0,r3 r3=Al+Tl,AR =15
|| stf r5*ar2++

subf r2,*arO++(irl),r4 ;r4=Al-TI,BlI'=r3
|| stf r3*ar3++(irl)

LN

nop *arl++(irl) ; address update

mpyf *arl—r7,r1 ;11=BI*COS,AI'=r4
|| stf rd*ar2++(irl)

mpyf *arl,r6,r0 ;10 =BR * SIN

Idi ar5,rc

rptbd bfly2 ; Setup for loop bfly2

mpyf *ar7++*arl++,r0 ;1I3=TR=r1-r0,r0=BR*COS
subf r0,r1,r3

mpyf *arl++,r6,rl ;rl=BI*SIN,r2=AR-TR
|| subf r3*ar0,r2
addf *arO++,r3,r5 ;1I5=AR+TR,BR' =12

stf r2,*ar3++
SECOND BUTTERFLY-TYPE:

TR =Bl *COS - BR * SIN
TI=BI*SIN + BR * COS
AR'=AR + TR

Al'=Al-TI

BR'=AR-TR

BI'= Al + Tl

EE I I

180

* loop bfly2

mpyf *+arl,r7,r5 ;15 =Bl *COS, (AR’ =15)
|| stf r5*ar2++

addf r1,r0,r2 ;(r2=TlI=r0+rl)

mpyf *arl,r6,r0 ;TO=BR*SIN, (r3=Al+TI)
|| addf r2*ar0,r3

subf r2,*arO++,r4 ;(rd=Al=TI,BI'=r3)
|| stf r3*ar3++

subf r0,r5,r3 ; TR=r3=r5-r10

mpyf *arl++,r7,r0 ;rT0=BR*COS,r2=AR-TR
|| subf r3*ar0,r2

mpyf *arl++,r6,rl ;1 =Bl *SIN, (Al =r4)
|| stf rd*ar2++
bfly2 addf *arO++,r3,r5 ;I5=AR+ TR ,BR =12

|| stf r2*ar3++
* clear pipeline

addf r1,r0,r2 ;r2=TI=r0+rl
addf r2,*ar0,r3 JrI3=Al+TI
|| stf r5*ar2++ ;AR =715
cmpi ar6,ar4
bned gruppe ; do following 3 instructions

subf r2,*arO++(irl),r4 ;r4=AlI-TI,BlI'=r3
|| stf r3*ar3++(irl)

ldf *++ar7,r7 ;17 =COS

|| stf r4*ar2++(irl) JAl'=T14
nop *arl++(irl) ; branch here

* end of this butterflygroup
cmpi 4,ir0 ; jump out after Id(n)-3 stage
bnzaf stufe
Idi @sintab,ar7 ; pointer to twiddle factor
Idi 0,ar4 ; group counter
Idi @inputp,ar0

* ————— SECOND LAST STAGE
Idi @inputp,ar0
Idi ar0,ar2 ; upper output
addi ir0,ar0,arl ; lower input
Idi arl,ar3 ; lower output
Idi @sintp2,ar7 ; pointer to twiddle faktor
Idi 5,ir0 ; distance between two groups
Idi @fg8m2,rc

*fill pipeline

* 1. butterfly: wh0
addf *ar0,*arl,r2 AR’ =12 =AR + BR
subf *arl++*arQ++,r3 ;BR'=r3=AR-BR
addf *ar0,*arl,r0 ;Al'=r10 = Al + BI

subf *arl++ *arO++,rl :BI'=r1=AlI-BI
* 2. butterfly: w0

addf *ar0,*arl,r6 AR’ =r6 = AR + BR
subf *arl++*arQ++,r7 BR'=r7=AR -BR
addf *arO,*arl,r4 JAl'=r14 = Al + BI
subf *arl++(ir0),*arO++(ir0),r5 ; BI'=r5 = Al —BI
stf r2,*ar2++ i (AR =r2)

|| stf r3*ar3++ ; (BR'=13)
stf r0,*ar2++ ; (AI'=10)

|| stf rl*ar3++ ; (BI'=r1)
stf r6,*ar2++ AR =16

|| stf r7*ar3++ ;BR' =17
stf r4,*ar2++(ir0) JAl'=r4
stf r5,*ar3++(ir0) ;BlI'=15

Il
* 3. butterfly: w*M/4
addf *arO++*+arl,r5 ;AR =r5 = AR + Bl
subf *arl,*arO,r4 ;Al'=r4 =Al-BR
addf *arl++*ar0—,r6 ;BlI'=r6 = Al + BR
subf *arl++*arQ++,r7 :BR'=r7=AR -BI
* 4, butterfly: wM/4
addf *+arl,*++ar0,r3 AR’ =r3 = AR + Bl

ldf *-ar7,rl ; 11 = 0 (for inner loop)
I Idf *arl++,r0 ; 10 = BR (for inner loop)
rptbd bf2end ; Setup for loop bf2end

181

subf
stf r5*ar2++
stf r7,*ar3++
stf r6,*ar3++

* 5. to M. butterfly:

*

[l
bf2end mpyf

loop bf2end

ldf *ar7++,r7

stf r4,*ar2++

ldf *ar7++,r6

stf - r2,*ar3++
mpyf *+arl,r6,rs
stf - r3*ar2++
addf r1,r0,r2
mpyf *arl,r7,r0
addf r2*ar0,r3
subf
stf r3,*ar3++(ir0)
addf r0,r5,r3
mpyf
subf
mpyf
stf rd,*ar2++(ir0)
addf *arQ++,r3,r5
stf - r2*ar3++
mpyf *+arl,r6,r5
stf r5*ar2++
subf rl1,r0,r2
mpyf *arl,r7,r0
addf r2*ar0,r3
subf r2,*arO++,r4
stf r3,*ar3++
addf r0,r5,r3
mpyf
subf
mpyf
st r4*ar2++
addf
stf r2,*ar3++
mpyf *+arl,r7,r5
st r3,*ar2++
subf rl1,r0,r2
mpyf *arl,r6,r0
addf r2,*ar0,r3
subf
stf r3,*ar3++(ir0)
subf r0,r5,r3
mpyf
subf
mpyf
stf 4, *ar2++(ir0)
addf
stf r2,*ar3++
mpyf *+arl,r7,r5
stf r5*ar2++
addf r1,r0,r2
mpyf *arl,r6,r0
addf r2,*ar0,r3
subf r2,*ar0++,r4
stf r3,*ar3++
subf r0,r5,r3
mpyf
subf

r3,*ar0,r2

r3,*ar0,r2

r3,*ar0,r2

r3,*ar0,r2

addf *arO++,r3,r3

* clear pipeline

182

stf r2,*ar3++
st rd4*ar2++
addf r1,r0,r2
addf r2,*ar0,r3
stf r3*ar2++
subf r2,*ar0,r4

r2,*ar0O++(ir0),r4

*arl++,r6,r0

*arl++,r7,rl

*arl++,r6,r0
*arl++(ir0),r7,rl

*ar0++,r3,r3

r2,*arQ++(ir0),r4

*arl++,r7,r0
*arl++,r6,rl

*arQ++,r3,r5

*arl++,r7,r0

*arl++(ir0),ré,ri

*arl++(ir0),*ar0++,r2 ; BR’ = r2 = AR - Bl

: (AR’ = 5)
; (BR'=17)
: (Bl = 16)

;17 =COS, ((AI'=r4))
;16 =SIN, (BR' =r2)
;15 =Bl *SIN, (AR =13)

;(r2=TI=r0+rl)
;T0=BR*COS, (r3=Al+TI)

S(r4=Al=TI,BI'=r3)

rI3=TR=r0+1r5
;rT0=BR*SIN,r2=AR-TR

;11 =Bl *COS, (Al'=r4)
;15=AR+TR,BR =12
;15=BI* SIN, (AR’ = 15)

;(r2=TI=r0-r1)
;T0=BR*COS, (r3=Al+TI)

((r4=Al=TI,BI'=r3)

;rI3=TR=r0+1r5
;rTO=BR*SIN,2=AR-TR

;rl=BI*COS, (Al'=r4)
;I3=AR+TR,BR =12
;15 =BI*COS, (AR =r3)

; (r2=TlI=r0-r1)
;T0=BR*SIN, (r3=Al+TI)

S(r4=Al=TI,BlI'=r3)

;rI3=TR=r5-r0
;r0O=BR*COS,r2=AR-TR

;r1=BI*SIN, (Al' = r4)
:15=AR+TR,BR =12
.15 =BI* COS, (AR’ = 15)

; (r2=TI=r0+rl1)
;10 =BR*SIN, (r3 = Al + TI)

((rd=Al=TI,y(L) = BI'=r3)

;I3=TR=r5-r0
;rT0=BR*COS,r2=AR-TR

'BR =12, Al'=r4

(r2=TI=r0+rl
rI3=Al+Tl,AR =13

;r4=AI-TIl,BlI'=r3

;rL=BI*SIN,r3=AR + TR

stf r3,*ar3

stf rd*ar2 VAl =r4
* LAST STAGE
Idi @inputp,ar0
Idi ar0,ar2 ; upper output
Idi @inputp2,arl
Idi arl,ar3 ; lower output
Idi @sintp2,ar7 ; pointer to twiddle factors
Idi 3,ir0 ; group offset
Idi @fg4m2,rc
*fill pipeline
* 1. butterfly: w”0
addf *ar0,*arl,r6 ;AR'=r6 = AR + BR
subf *arl++*arO++,r7 ;BR'=r7=AR -BR
addf *ar0,*arl,r4 ; Al'=r4 = Al + Bl

subf *arl++(ir0),*arO++(ir0),r5 ; BI'=r5=Al-BlI

* 2. butterfly: wAM/4

*

addf *+arl,*ar0,r3 AR’ =r3 = AR + BI
ldf *-ar7,r1 ; 11 = 0 (for inner loop)
Idf *arl++,r0 ; 10 = BR (for inner loop)
rptbd bflend ; Setup for loop bflend
subf *arl++(ir0),*arO++,r2 ; BR' =r2 = AR — Bl
stf r6,*ar2++ ; (AR’ =r6)
stf r7,*ar3++ ; (BR'=17)
stf r5,*ar3++(ir0) ; (BI'=1r5)
* 3. to M. butterfly:
loop bflend
ldf *ar7++,r7 ;17 =COS, (Al =r14))
st rd*ar2++(ir0)
Idf *ar7++,r6 ;16 =SIN, (BR' =r2)
stf r2,*ar3++
mpyf *+arl,r6,rs ;r5=BI*SIN, (AR’ =r13)
stf r3*ar2++
addf r1,r0,r2 ; (r2=TI=r0+rl)
mpyf *arl,r7,r0 ;r0=BR*COS, (r3=Al+TI)

addf r2*ar0,r3

subf r2,*arO++(ir0),r4 ; (r4 =Al-TI,BlI'=r3)

stf r3,*ar3++(ir0)

addf r0,r5,r3 i rI3=TR=r0+1r5

mpyf *arl++,r6,r0 ;rT0=BR*SIN,r2=AR-TR
subf r3,*ar0,r2

mpyf *arl++(ir0),r7,r1 ;rl =Bl * COS, (Al'=r4)

stf r4,*ar2++(ir0)

addf *arO++,r3,r3 ;I3=AR+TR,BR' =12

stf - r2,*ar3++

mpyf *+arl,r7,r5 ;15=BI*COS, (AR’ =r13)
stf - r3*ar2++

subf r1,r0,r2 ;(r2=Tl=r0-rl)

mpyf *arl,r6,r0 ;T0=BR*SIN, (r3=AI+TI)

addf r2,*ar0,r3

subf r2,*ar0++(ir0),r4 ; (r4 =Al-TI,BI'=r3)

stf r3,*ar3++(ir0)

subf r0,r5,r3 I3=TR=r0-1r5

mpyf *arl++,r7,r0 ;r0=BR*COS,r2=AR-TR
subf r3,*ar0,r2

Il
bflend mpyf *arl++(ir0),r6,;1 ;rl1=BI*SIN,r3=AR+ TR

addf *arO++,r3,r3

* clear pipeline

stf - r2,*ar3++ i BR' =12, (Al'=r14)
|| stf rd*ar2++(ir0)

addf r1,r0,r2 ;r2=TI=r0+rl

addf r2,*ar0,r3 r3=Al+Tl,AR =13
|| stf r3*ar2++

subf r2,*ar0,r4 i rd=Al-TI,BlI'=r3
|| stf r3*ar3

stf r4,*ar2 JAl'=r4
*. END OF FFT

183

end:

; Return to C environment.

1

POP DP ; Restore C environment variables.
POP AR7
POP AR6
POP AR5
POP AR4
POP AR3
POPF R7
POP R7
POPF R6
POP R6
POP R5
POP R4
RETS
.end
WAITDMA.ASM
*
* WAIT_DMA.ASM: TMS320C40 C—callable routine to check if an IIF bit
* is set. If that is the case, the beit gets cleared.
* Calling conventions:
*
* void wait_dma(int mask)
* ar2
*
* where mask : mask word ("1” in the corresponding IIF bit)
*
.global _wait_dma
text
_wait_dma:
.if REGPARM ==
Idi sp,ar0
Idi *-ar0(1),ar2 ; mask word
.endif
wait: tstb ar2,iif
bz wait
andn ar2,iif
rets

184

Appendix G: Input Vector and Sine Table Examples

SINTAB.ASM

*

* SINTAB.ASM : Table with twiddle factors for a 64—point DIF FFT
*

.global _SINE
.sect ".sintab”
_SINE

.float 0.000000
float 0.098017
float 0.195090
float 0.290285
float 0.382683
float 0.471397
float 0.555570
float 0.634393
float 0.707107
float 0.773010
float 0.831470
float 0.881921
float 0.923880
float 0.956940
float 0.980785
float 0.995185
_Cos
.float 1.000000
float 0.995185
float 0.980785
float 0.956940
float 0.923880
float 0.881921
float 0.831470
float 0.773010
float 0.707107
float 0.634393
float 0.555570
float 0.471397
float 0.382683
float 0.290285
float 0.195090
float 0.098017
.float —0.000000
float —0.098017
float —0.195090
float —0.290285
float —0.382683
float —0.471397
float —0.555570
float —0.634393
float —0.707107
float —0.773010
float —0.831470
float —0.881921
float —0.923880
float —0.956940
float —0.980785
float —0.995185
float —1.000000
float —0.995185
float —0.980785
float —0.956940
float —0.923879
float —0.881921
float —0.831470
float —0.773010
float -0.707107

185

float —0.634393
float —0.555570
float —0.471397
float —0.382683
float —0.290285
float —0.195090
float —0.098017
float 0.000000
float 0.098017
float 0.195090
float 0.290285
float 0.382684
float 0.471397
float 0.555570
float 0.634393
float 0.707107
float 0.773011
float 0.831470
float 0.881921
float 0.923880
float 0.956940
float 0.980785
float 0.995185
.end

SINTABR.ASM

*

* SINTABR.ASM : Sine table for a 64—point DIT FFT
*

.global _SINE
.sect ".sintab”
_SINE

float 1.000000
.float 0.000000
float 0.707107
float 0.707107
float 0.923880
float 0.382683
float 0.382683
float 0.923880
float 0.980785
float 0.195090
float 0.555570
float 0.831470
float 0.831470
float 0.555570
float 0.195090
float 0.980785
float 0.995185
float 0.098017
float 0.634393
float 0.773010
float 0.881921
float 0.471397
float 0.290285
float 0.956940
float 0.956940
float 0.290285
float 0.471397
float 0.881921
float 0.773010
float 0.634393
float 0.098017
float 0.995185

186

INPUT.ASM

INPUT.ASM: 64—point complex input vector

.global
.sect
_INPUT

float 10.0,26.0

_INPUT
".input”

float 10.0,22.0

float 37.
float 15.

float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float

NORPRPEPWRERPWWWNRERRONRPRERWRWOWNOERENENNWRERWNNONNENWRANNORWWWREPRNNRENRPOWWO®
O lIRPOOROVWWRENUI5RPNOORIINSOONNOWORORWHOINORP WA SNIOWRORPOUIS50o©® 501

o

OO

Roo

WN

OCO0O0O0O00O0O00OY

0005000
o o
ocoooo oo

ocooo

SO

OO0 00000o

OO000000LO
RORPNOWROOWRWNRPOUTWROWWNNONWR TR WUTWNN A NN WN W,
o ocoo coo oo ooo

=W

[efelolole)

OCO0O0O0O0O0O0O00000;

oo O

SoN RPN RNG TP N 000 WEWO 500055 PITNG

™

R O0O~NDUTAWN -

;[0]

187

188

Parallel 2-D FFT Implementation
With TMS320C4x DSPs

Rose Marie Piedra
Digital Signal Processing — Semiconductor Group
Texas Instruments Incorporated

189

190

Introduction

Fourier transform techniques are of fundamental importance in digital signal processing (DSP) applica-
tions. Among the most commonly used algorithms in image processing is the Fast Fourier Transform
(FFT). FFT is used for computation of the Discrete Fourier Transform (DFT).

FFT computations can be used to solve image correlations and convolutions. Two-dimensional convolu-
tions and correlations are used for feature extraction in image processing. For example, applications on
fluid dynamics (2-D turbulences) can lead to calculation of velocity vectors and gradients. One important
advantage of using frequency domain tools over direct methods is faster execution. The FFT algorithm sig-
nificantly reduces the computation time of the DFT.

This application note compares serial and parallel implementations of 2-D complex FFTs with the
TMS320C40 processor. Special attention is given to parallel implementation of 2-D FFTs. The increasing
demands for speed and performance in some real-time DSP applications make sequential systems inade-
quate. Parallel systems provide higher throughput rates.

The algorithms were implemented on the Parallel Processing Development System (PPDS), a system with
four TMS320C40s and with both shared- and distributed-memory support.

This report is structured as follows:

2-D FFT Algorithm Gives a brief review of the FFT algorithm and its extension to
the 2-D case. Describes applications of FFTs in the calculation
of correlation and convolution algorithms.

Parallel 2-D FFT Focuses on parallel implementations of 2-D FFTs. Shared- and
distributed-memory implementations are considered, as well as
the TMS320C40’s suitability for each.

TMS320C40 Implementation Presents the results of shared- and distributed-memory imple-
mentations of parallel 2-D FFT realized on the PPDS. Gives
analyses of speed-up and efficiency.

Conclusion States conclusions.

Appendixes Lists the code for performing serial and parallel 2-D FFTs in C
and 'C40 assembly language code.

The 2-D FFT Algorithm
The Discrete Fourier Transform (DFT) of apoint discrete signad(i) is defined by:

n-1

X(K) = > x()W,"

i=0
where0 < k < n— landw, = ei?m,
Direct DFT computation requiré3 (n?) arithmetic operations. A faster method of computing the DFT is

the Fast Fourier Transform (FFT) algorithm. If FFT is used to solrepaint DFT, (log, n) steps are

required, with 2 butterfly operations per step. The FFT algorithm therefore requires approxi-
matelyglogzn ~ O (nlog,n) arithmetic operations (whicnl'ros;—n times faster than direct DFT com-

2
putation). See [3], [6], and [4] for a more detailed analysis of the 1-D FFT case.

191

Two-dimensional DFT can be defined in a manner similar to the 1-D case [10]. The 2-D DFT is given by:
X (kpkg) = 21 ”21 X (igip) W, Uik *i2ke)
i7=0i,=0
where0 < k,k, < n—1andW, = e 27,
A standard approach to computing the 2-D FFT of a matrix A is to perform a 1-D FFT on the rows of A,

giving an intermediate matrix A, then performing a 1-D FFT on the columns of A[10]. This is the approach
followed in this application report.

Timing Analysis

A 2-D FFT of a complex matrix of size (< n) requires the execution of a 1-D FFTmorows, followed
by a 1-D FFT om columns. The number of arithmetic operations required will therefore be as follows:

Time = n* O(nlog,n) + n* O (nlog, n) = O (n? log, n)
(FFT onn rows) (FFT om columns)

Application of FFT on Correlation/Convolution Algorithms

Relationships between image and transform domains can be described by convolution and correlation.
Convolution is used for linear interpolation or filtering. Correlation plays an important role in feature
extraction in image processing. These image operations are computationally intensive; Fourier transforms
can be used to enhance speed.

The correlation of two sequencg$) andy(i) of lengthn is defined as[10]:
n-1

wi) = > x®y(+ K

k=0
Fora1-D correlation, the common direct approach (in time domain) based on shift-and-multiply operations
requires O12) arithmetic operations.

192

Based on the convolution property of the Fourier transform [3], an efficient way to compute correlation
is by using FFT and inverse FFT (IFFT), as illustrated below:

1. Compute FFT{(i)} and FFT{y(i)}.
2. Multiply FFT{x(i)} by the complex conjugate of FF¥{)}.
3. Compute the IFFT of this result.

Similarly, a convolution operation reduces to a simple multiplication in the Fourier domain. FFT correla-
tion/convolution becomes computationally faster than spatial convolution for large images. Speed-up is
n2

- n
approximately: =
P ’n log, n log, n

, Which is significant when dealing with very large images.

Parallel 2-D FFT

A 2-D FFT is an intrinsically parallel operation; a 1-D FFT is applied separately to each row and column
of a matrix.

The Parallel Algorithm

Letn = gp, wheren is the order of the squared matrixAis the number of processors, apé:1 is an
integer. The basic idea is to allocate a unique working set of rows/columns to each processor. The algorithm
consists of three basic steps:

Step 1. FFT on rows:Processoi executes 1-D sequential FFT on rogis qi+1, ... , qi+g-l, with
i=0,1...,p1. Because each processor executes a 1-D FF@ different rows, this step requires

2 . . .
g*O(log,n) = O (% log, n) arithmetic operations.
Step 2. Matrix Transposition: Because column elements are not stored in contiguous memory location,
row/column transposition of matrix A is necessary prior to executing FFT on columns. Matrix transposition

nmn-1)
2

[7]. The computation delay involved in this operation is there@r@?) for serial execution oD (%2)

requresh—1) + n—-2) + ... + 1 = exchange steps, wherés the order of the matrix

for parallel execution.

Step 3. FFT on columnsSame as in Step 1, but by column.

Speed-Up Analysis

The speed-up factor can be calculated as follows
nZlog,n

070%N _ o)

2
—-log,n

Speed-up=

The parallelism in the 2D-FFT is suitable for implementation on distributed-memory or shared-memory
multiprocessors. Let's consider those cases.
Shared-Memory Implementation

Matrix A is stored in global memory, so each processor has easy access to all the rows/columns. Even when
all processors share the same physical data memaory, each processor points to a different row/column work-
ing set.

193

Shared-memory systems require careful consideration of the memory-contention problem. Matrix trans-
position (Step 2) is simpler, but row/column access can create a major bottleneck.

Shared-memory implementation requia¢teast 2 n * n = 2 n2 words of shared memory. If this amount
of RAM is unavailable in the system, consider either intermediate downloading of files or distributed-
memory implementation as an alternative.

Figure 1 illustrates the shared-memory 2-D FFT implementatigm$ot andn = 8.

Distributed-Memory Implementation

Matrix A is partitioned intg regions. Each region contaimeows and is assigned to each processor’s local
memory. Processors communicate via message passing.

e Steps 1 and 3 of the parallel 2-D FFT algorithm are executed in the local memory of each
processor. No interprocessor communication is necessary.

e Step 2, matrix transposition, is more complex because matrix A is distributed between
processors by row. You must perform message passing of row segments before you execute
matrix transposition. This procedure can be described as follows:

Total-exchangestep Processarsends to processaolumngyj, qj + 1, ... gj +q—1 of each

of the rows allocated to it, where<(< p andi # . In such DMA-supported devices as the
TMS320C40, this step can be executed simultaneously with Step 1, after computation of
each row FFT. Better DMA-CPU parallelism can thus be achieved. This is the approach
followed in the parallel 2-D FFT (distributed-memory implementation) presented in this
application report.

Transposition of submatrice\fter thetotal exchangstep, each processor contains all the
column elements needed to perform a row/column transposition. Transposition is executed
onpsquared submatrices of sizeX). Submatrix ¢ contains elementkq + i, j), where

(0 =i,] < gand(0 = k < p). The computation delay involved in this operation is
pO(@) = O(%Z)-

Figure 2 illustrates Step 2 of the distributed-memory implementationpwith andn = 8.

* Memory requirements: Each processor requires at leds{avords of local memory to store
the(n/p) rows allocated to it.

* Required topology: This implementation requires a fully connected multiprocessor
configuration. Other configurations with rerouting capabilities are also feasible. Refer to [9] for
information ortotal exchangéechniques for configurations for cube, mesh, and linear arrays.

e Qutput result: Matrix results are stored by column, with column elements stored in successive
memory locations in the local memory of each processor. Processmtains columns
qi,qi+1, ..,qi+q9-1, where = 0,1,...,p —1.

194

Figure 1. 2-D FFT Shared-Memory Implementation

FFT on Rows:

Processor 0

Processor 1

Processor 2

Processor 3

FFT on Columns:

Matrix A (Shared Memory)

00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

Matrix A (Shared Memory)

Processor 0 Processor 1 Processor 2 Processor 3
! ! ! !

00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

Note: Matrix element A[/][/] =

Matrix size
Number of processors

1
T S
1
» (o]

195

Figure 2. 2-D FFT Distributed-Memory Implementation
(Step 2: Transposition of Submatrices)

Matrix A After Processors Have Completed FFTs on All the Rows

00 01 02 03 04 05 06 07 Processor 0 (rows 0,1)
10 11 12 13 14 15 16

20 21 22 23 24 25 26
30 31 32 33 34 35 36

17

27} Processor 1 (rows 2,3)

37
40 41 42 43 44 45 46 47} Processor 2 (rows 4,5)

57

67}

77

50 51 52 53 54 55 56

60 61 62 63 64 65 66
70 71 72 73 74 75 76

Processor 3 (rows 6,7)

Matrix A During Total Exchange Step+—

00 01 02 03 04 05 06 o7
10 1 |12 13| |14 15| |16 17 Exchange of (g X q) submatrices

20 21| 22 75 [24 25| (26 27
30 31 33 134 35| 36 37

40 41 |42 43| 44 5 |46 47 a
50 51 |52 53 55 |56 57

60 61 [62 63] [64 65 66 67 q

70? 71 |72 73] |74 75| 76 77

Matrix A After Total Exchange Step and During Submatrix Transposition

00 20 40 @ 60 @ } Processor 0
10 30 31 50 51 70 71
02

22 23 42 43 62 63 } P 1
3 5 73 rocessor

25 44 45 64 65

35 @ 52 } Processor 2
50 @ 06 @ } Processor 3
T o

Matrix A After Transpositions of Submatrices (ready for FFT on columns)
00 10 20 30 40 50 60 70
01 11 21 31 41 51 61 71

02 12 22 32 42 52 62 72
03 13 23 33 43 53 63 73

04 14 24 34 44 54 64 74}

oY ko) r
o\] w\w gk

3R

&8 |ER

=
~

37

} Processor 0 (columns 0,1)

Processor 1 (columns 2,3)

Processor 2 (columns 4,5)
05 15 25 35 45 55 65 75

06 16 26 36 46 56 66 76
07 17 27 37 a7 57 67 77

Processor 3 (columns 6,7)

196

TMS320C40 Implementation

The TMS320C40

The TMS320C40 is the world's first parallel-processing DSP. In addition to a powerful CPU that can
execute up to 11 operations per cycle with a 40- or 50-ns cycle time, the TMS320C40 contains six commu-
nication ports and a multichannel DMA [8]. The on-chip communication ports allow direct (glueless) pro-
cessor-to-processor communication, and the DMA unit provides concurrent I/O by running parallel to the
CPU. Special interlocked instructions also provide support for shared-memory arbitration. These features
make the TMS320C40 suitable for both distributed- and shared-memory computing systems [2].

The 2-D FFT algorithm was implemented on the TMS320C40 Parallel Processing Development System
(PPDS). The PPDS includes four TMS320C40s, fully interconnected via the on-chip communication ports.
Each 'C40 has 256KB of local memory SRAM, and all share a 512KB global memory [5].

General features of the programs:

e All the programs have been written to be independent of the FFT size and the number of
processors in the system. Further optimization is possible for a fixed number of processors.

¢ Real and imaginary parts of complex numbers are stored in successive memory locations.

¢ Both C and assembly language versions of the programs are in the appendices. The programs
can be downloaded from the TMS320 bulletin board at (713) 274-2323. Set your modem to 8
data bits,1 stop bit, no parity.

* Forthe C programs, there are core functions, such as the 1-D FFT and CPU complex moves, and
routines to set DMA register values in assembly code to enhanced optimization. For the
assembly programs, most of the functions are in-lined to avoid the delay associated with calling
routines. But, in order to keep the program flexible, the 1D-FFT has been retained as a
subroutine. The new 'C40 LAJ and BUD R11 instructions permit routine calls with just one
delay cycle. To make the programs more generic, the (5/4)-cycle sine/cosine table [4] and the
input matrix are provided in separate files.

* The radix-2 1-D FFT routine presented in Appendix D is used as the core for the 2-D FFT
implementation. But you can use any FFT routine that complies with the calling conventions.
Thus, as faster 1-D FFT algorithms are developed, they can be used to implement faster 2-D FFT
algorithms.

e The 'C40timer 0 and the timer routines in the parallel runtime support (PRTS) library, available
with the 'C40 C compiler, are used for benchmark measures. The real benchmark timing is equal
to the timer counter value multiplied by 2 * 'C40 cycle time). For the parallel programs, the total
execution time of the parallel algorithm can be definéd=amax (T), wherel; is the execution
time taken by processarNote that in the programs, is the time between labdl andtO.

* The load-imbalancing case was not considered. Refer to [2] for an example of this case.

* The compiler/assembler tools were run under OS/2 to avoid memory-limitation problems with
the optimizer.

Serial Implementation

Serial implementations of the 2-D FFT provide accurate speed-up measures for the parallel programs.
Appendix A illustrates single- and double-buffered 2-D FFT serial implementations in C and 'C40 assem-
bly code.

197

Observations:

Although the 1-D FFT can be executed directly in off-chip RAM, the preferred method is to
transfer the row/column to on-chip RAM first. This fully exploits the dual-access single-cycle
characteristic of the 'C40 on-chip RAM for some parallel instructions. This transfer delay can
be minimized with double-buffering techniques.

Double-buffering technique:

— CPU operations are confined to computing 1-D FFT (1 row at a time). The DMA processor
performs the data transfer between on-chip RAM and external RAM, providing the CPU
with a new set of data. This requires a continuous CPU-DMA synchronization.

— While the CPU is computing FFT on row/coluimiine DMA processor transfers the vector
result of row/columni¢l) bit-reversed and the next row/colunl() from external RAM
to on-chip RAM to have it ready for the next FFT computation. This technique is called
double buffering.

— The 2K x 32-bit-word on-chip RAM constantly holds 2 buffers. Each buffer must be
located in a different on-chip RAM block. Because each on-chip RAM block has an
independent bus path, CPU/DMA access conflict is minimized. You can compute up to
1K-point real FFT or 512-point complex FFT in on-chip memory. If the double-buffering
technique is not used, the system can compute up to 2K-point real FFT or 1K-point complex
FFT .

For DMA bit-reversed complex transfers, you canaigeinitialization to transfer the real part

of the FFT vector result first and the imaginary part later. You must set the “read bit-rev” bit
(control register bit 12) to 1 and the source address index to the FFM)si@évén the 'C40
architecture, no extra delay occurs with CPU/DMA bit-reversed addressing.

For DMA column transfers, autoinitialization is also used to transfer the real and imaginary parts
of each complex vector.

Given the offset addressing capabilities of the 'C40, the transposition step requires no extra
cycles when moving columns from off-chip to on-chip RAM.

Shared-Memory Parallel Implementation

Appendix B contains single- and double-buffered versions of the 2-D FFT (shared-memory version) in C
and 'C40 assembly code.

Observations:

198

A node ID (my_node) is allocated by software to each processor. In this way, each processor
automatically selects its associated row/column working set.

Each row/column isinitially transferred to on-chip memory to minimize memory access conflict
among the processors. Using the DMA for double-buffering minimizes not only this access
delay but also the effect of a nonzero wait-state global memory similar to that of the PPDS.

Interprocessor synchronization is required before you execute FFT on columns.

Synchronization is implemented via a counter flag in global memory. Every processor

increments the counter by 1 after completing the execution on the rows allocated to it. In this
way, the processors begin executing FFT on columns only after the countempgquatder

of processors).

The transposition step that is necessary prior to executing FFT on columns is implemented
simultaneously with the transfer of columns to on-chip memory, with no delay penalty.

The global memory of the PPDS can contain a complex matrix with a maximum sf 256
elements. Because of the need for an extra location for the synchronization counter, the program
has been tested with a maximum of 128.28 elements.

For benchmarking of shared-memory programs, a global start of all the processors is absolutely
necessary; otherwise, the real-memory-access conflict resolution will not occur. To facilitate
this process, a C-callable routirgyiicount.asinis provided in Appendix D for debugging
systems lacking global start capability capabilRgtating priority for shared memory access
should be selected by setting the PPDS LCSR register to 0x40.

Distributed-Memory Parallel Implementation
Two distinct single-buffered 2-D FFT implementations were used:

Use of DMA only for interprocessor communication (8ex.cin Appendix C).

Use of DMA for interprocessor communication and matrix transposition ¢82ec and
dis2.asnin Appendix C).

Observations:

The six-channel DMA coprocessor is used for interprocessor communication during the
total-exchangetep as follows:

— As soon as 1-D FFT is completed on a row, the DMA coprocessor will be in charge of
transferring /p) complex points of this result already stored in local memory, from one
processor to the other iatal exchangdashion.

— Each processor will transmit a totalaf/ p) (p2) = O (n)complex numbers per row. In
the PPDS, a memory-to-memory interprocessor transfer operation of an integer number
requires seven clock cycles—four to transmit the 4-byte word, two to write it to/from
memory, and one to set up the communication channel. The communication delay will
therefore be approximately 7 * 2n*= 14n clock cycles.

Careful consideration of the communication delay involved is necessary to achieve true
CPU-DMA parallelism. If thetotal exchangestep requires more time than the 1-D FFT
computation, the application will slow down.

DMA channels are set in split mode [8] with source and destination synchronization using the
ICRDY and OCRDY port signals, respectively. In this way, DMA will be interrupted when there
is new data to read in the input FIFO. A value will be written to the output FIFO if the output
FIFO is not full. Transferring is done in a linear fashion (not bit-reversed).

Because the interprocessor communication occursexarmngdashion, no extra memory is
needed for temporary buffers. Source address and destination addresses are set to the same
address values. Destination node IDs help to determine the location of the data to be exchanged.

Data will never overlap, because the communication port FIFOs act as data baffeng, as

the communicating processors start executing the exchange.asm routine at approximately

the same time This can be achieved by using a common system reset or the parallel debugger
manager (PDM), which is part of the 'C4x emulator.

For systems without common reset, useekeh2.asnmoutine instead oéxchange.asnThe
exch2.asmoutine can be downloaded from the TMS320 bulletin board at (713) 274-2323. Set
your modem to 8 data bits,1 stop bit, no parity.

199

The destination node is selected in such a way that each pair of processors are synchronized to
talk to each other at approximately the same moment, thus facilitating communication
scheduling and avoiding a system lock that could occur if a processor sent data with no processor
ready to receive it. You select the destination node by using a XOR opernayomodg XOR

(i), 0 <i <p. In the case of a 4-processor system, the following situation exists during the first
step (= 1):

Processor 0(my_node= 0) XOR1 =1
Processor 1(my_node= 1) XOR1 =0
Processor 2(my_node=2) XOR1=3
Processor 3(my_node= 3) XOR1=2

Processors 0,1 and 2,3 select each other for the first data exchange. Similar analysis can be done
for the other steps.

Matrix port is the connectivity matrix and shows the connectivity between the processors.
Processairis connected to procesgahroughporti][j]. This matrix is the only system-specific
part of the program.

To attain as even a transmission as possible between processors, shifting priority among DMA
channels has been selected.

To synchronize DMA/CPU operation, each processor must know whether transferring is
complete on a DMA channel before initializing the DMA with a new set of values. In unified
mode, you can check for completion either by determining whether the start bits (DMA control
register) are set to 10 or by checking the IIF register (if TCC was previously setto 1 in the DMA
control register). In split mode, even when the corresponding bit in the IIF register is set, there
is no guarantee that transfer is complete on both the primary and secondary channels. For this
reason, the preferred method is to determine whether the start/aux_start bits (DMA control
register) are both set to 10. In the programs, both methods have been used.

DMA can be used for matrix transposition also. While the CPU is performing a 1-D column FFT
(in on-chip RAM), the DMA is doing the next row/column transposition in off-chip memory.

Double-buffered distributed-memory implementations were not described, but the approach is
similar for shared memaory.

Implementation Results

The following 2-D FFT programs were implemented and tested on the 'C40 PPDS (see Appendices for
source code):

200

SER.C/SER.ASM: Single-buffered serial implementations (C/assembly language code
versions)

SERB.C/SERB.ASM: Double-buffered serial implementations (C/assembly language code
versions)

SH.C/SH.ASM: Single-buffered shared-memory implementations (C/assembly language code
conversions)

SHB.C/SHB.ASM: Double-buffered shared-memory implementations (C/assembly language
code versions)

DIS1.C: Distributed-memory implementation, with DMA being used only for interprocessor
communication. (C code version)

DIS2.C/DIS2.ASM: Distributed-memory implementation, with DMA being used for
interprocessor communication and matrix transposition (C/assembly code versions).

Speed-up of a parallel algorithm is definedSags= T,/T, whereT; is the serial timep(= 1) andTp is
the time of the algorithm executed usimgrocessors. Efficiency is defined Bs = S, / p , where

0<k,

<1 [2]. An efficiency below 50% reflects poor parallel implementation performance. Figure 4

through Figure 13 show speed-up and efficiency figures obtained for the shared- and distributed-memory
programs implemented on the PPDS. The figures are based on the TMS320C40 2-D FFT timing bench-
marks shown in Table 1. Execution time for progidgsndenoted as; T

The following analysis shows the effect of the matrix size and the number of processors in the system.

Serial implementations:
— There was a 13% improvement using double-buffering in the serial program. (See Figure 3)

— Usingregisters to pass function parameters had a positive effect on the performance of the C
implementations (using assembly language core functions). As seen in Table 1, the timing
difference between C and assembly code is minimal for large matrices.

Shared-memory implementations:

— The double-buffered shared-memory implementation displays a better performance than
the single-buffered shared-memory versiongdor 2 (see Figure 7). The DMA helps to
reduce the data transfer delay. per4, however, the performance declines because of the
increase in shared-memory arbitration. In this case, the single-buffered shared-memory
implementation is more beneficial (see Figure 11).

— Shared-memory programs are strongly affected by the design of the shared-memory
arbitration unit. For example, in the case of the PPDS, a processor will not release access to
shared-memory during back-to-back reads. The speed of the single-buffered
shared-memory implementation is thus increased because of the reduction in the delay
penalty for continuous switching.

— Efficiency decreases with more processors because the memory conflict delay increases.
This effect can be seen in Figure 13, where efficiency figures are plotted against the number
of processors in the system.

Distributed-memory implementations:

The distributed-memory implementations show an excellent performance. Speed-up/efficiency

for large matrices is high, and the decline in the efficiency when the number of processors

increases is very slight (Figure 13). Performance also improves when DMA is used to help with

the combined task of matrix transposition and interprocessor communication. See Figure 4 and
Figure 5.

Table 1 and Table 2 show the TMS320C40 2-D FFT timing benchmarks. Data I/O is not consid-
ered, because it is host-computer dependent.

201

Figure 3. Double-Buffering Performance Analysis (Serial Program)

Improvement(%)
16

14 — — 5 T T T

D

1

16 32 64 128
Matrix Size
—%— Improvement

Tser.asm — Tserb.asm
Tser.asm

Percentage of Improvement = X 100%

Figure 4. Speed-Up Vs. Matrix Size (p = 2) Over Single-Buffered Serial Program

Speed-Up

| —_—
o8 —— "~~~ "~ T T T T T
06 I I
16 32 o 64 128
Matrix Size
—<— Shared A dis1 —=X— dis2
_ _Tser.asm _ _Tserc _ _Tser.asm
SP = Tsh.asm SP = TdisL.c SP = Tdisz.asm

Note: Number of processors = p = 2

202

Figure 5. Efficiency Vs. Matrix Size (p = 2) Over Single-Buffered Serial Program

Efficiency (%)

wowo\«—————— 1

oo———— " — — — — — — — —
0 | |
16 32 64 128
Matrix Size
—@— Shared X dis1 —+ dis2
Tser.asm Tser.c Tser.asm
Eff = ———=—=—=="— Eff = ————— Eff = ————=—
Tsh.asm * p Tdisl.c * p Tdis2.asm * p

Note: Number of processors = p = 2

Figure 6. Speed-Up Vs. Matrix Size (p = 2) Over Double-Buffered Serial Program

Speed-Up

06 16 32 . 64 128
Matrix Size
—%— Shared ~®— sharedb —A— disl —%— dis2
gp — _Iserb.asm _ _Tserb.asm p = Tserb.c Sp = Tserb.asm
P Tsh.asm P Tshb.asm Tdisl.c Tdis2.asm

Note: Number of processors = p =2

203

Figure 7. Efficiency Vs. Matrix Size (p = 2) Over Double-Buffered Serial Program

Efficiency (%)

100 [~~~ T T T e e —

20 16 32 64 128
Matrix Size
—@— Shared + sharedb X dis1 -5 dis2
Eff — _1serb.asm Eff — — Iserb.asm f#f — _ TIserb.c f# — _ Iserb.asm
Tsh.asm * p Tshb.asm * p Tdisl.c * p Tdis2.asm * p
Note: Number of processors = p = 2
Figure 8. Speed-Up Vs. Matrix Size (p = 4) Over Single-Buffered Serial Program
Speed-Up
4 I =
3 s —/—/————— — — — 2_— i m———
//
‘/// - —
3 —m_—— S - — T C
ﬁi/// / -
2 —mm ——W—"F"———— — — — — — — _—;/—' ———————————————— —
- /
— ——
is————————F———(—~— ———(—(—— —
 ——————
0s I I
T 16 32 64 128
Matrix Size
—— Shared —4— sharedb —X— dis2
_ _Tser.asm _ _Tser.asm _ _Tser.c
SP = sh.asm SP = Fshb.asm SP = Tiso.c

Note: Number of processors = p = 4

204

Figure 9. Efficiency Vs. Matrix Size (p = 4) Over Single-Buffered Serial Program

Efficiency (%)
oo — "~~~ T i
________——_'_4 ___________ [:l
- - - :- ________________________
80 /’/, _ - T —
[]// /—— -
— - -
60_____________?;'_ ———————————————————
- /./
- — l
- — . T
Ww————— - — — — — — — — — — — — —]
20 I I
16 32 Matrix Size 64 128
—e— Shared + sharedb = dis2
Eff — _ Iser.asm Eff — __lIser.asm _ _ Tser.asm
Tsh.asm * p Tshb.asm * p Tdis2.asm * p
Note :Number of processors = p =4
Figure 10. Speed-Up Vs. Matrix Size (p = 4) Over Double-Buffered Serial Program
Speed-Up
4

0.5 16 32 64 128
Matrix Size
—%— Shared —@— sharedb -2 dis2
_ _Tserb.asm _ _Tserb.asm _ _Tserb.asm
Sp = Tsh.asm Sp Tshb.asm Sp Tdis2.asm

Note: Number of processors = p = 4

205

Figure 11. Efficiency Vs. Matrix Size (p = 4) Over Double-Buffered Serial Program

Efficiency (%)

w0\ —F——F~—F——]
e ————1
80 __________________:::T_T—_—"—E'::: —————————
”’ - - ——G
””— /.—_— -—"
60[31:—————————————————_—7'— ——————————————
- /
/./ - —
40 ——_—;-‘—/—— ———————————————— —r——— e
+— ;
20 I I
16 32 64 128
Matrix Size
—@— Shared + sharedb -5 dis2
Eff — _I1serb.asm Eff — _ Iserb.asm _ _ Tserb.asm
Tsh.asm * p Tshb.asm * p Tdis2.asm * p

Note: Number of processors = p = 4

Figure 12. Speed-Up Vs. Number of Processors Over Double-Buffered Serial Program

Speed-Up

0 1 2 4
Number of Processors (p)
—@- Shared + sharedb X dis1 -8 dis2
Sp = Tserb.asm p = Tserb.asm p = Tserb.c Sp = Tserb.asm
Tsh.asm Tshb.asm Tdisl.c Tdis2.asm

Note: Matrix Size = 128

206

Figure 13. Efficiency Vs. Number of Processors Over Double-Buffered Serial Program

Efficiency (%)
e
~— -
\ -
________ R ————
80 — T T ——~— e —— — — — — — —
I ———] ——_-‘— —_— —
- \ - — —
\ - \
60 .
\ -
~—
Q04— ————(— (""" —(—(—(—(—(———— — — — — — — — — — — — — — — —
20
2
Number of Processors (p)
—@— Shared + sharedb X disi = dis2
Eff — _Iserb.asm Eff — _Iserb.asm ff —_ Iserb.c g Tserb.asm
Tsh.asm * p Tshb.asm * p Tdisl.c * p Tdis2.asm * p
Note: Matrix Size = 128
Table 1. TMS320C40 2-D FFT Timing Benchmarks (in Milliseconds)
Matrix Size in Complex Numbers
Program lF\)lumberof p
rocessors 16 x 16 32 x 32 64 x 64 128 x 128
SER.ASM (p=1) 0.706 3.115 13.812 61.138
SERB.ASM (p=1) 0.614 2.682 11.959 53.498
SER.C (p=1) 0.773 3.248 14.078 61.671
SERB.C (p=1) 0.671 2.794 12.183 53.944
SH.ASM (p=2) 0.442 2.217 7.737 33.564
SHB.ASM (p=2) 0.441 1.850 7.550 26.800
DIS2.ASM (p=2) 0.438 1.707 7.200 31.150
DIS1.C (p=2) 0.504 2.020 8.467 36.231
DIS2.C (p=2) 0.448 1.744 7.266 31.270
SH.ASM (p=4) 0.424 1.496 4.757 19.196
SHB.ASM (p=4) 0.421 1.880 7.692 31.104
DIS2.ASM (p=4) 0.255 0.902 3.693 15.750

Note: The data in this table was obtained with the complex FFT routine in Appendix D.
— 'C40 instruction cycle, Tcycle = 40 ns
— C compiler optimization level : 02

207

Table 2. TMS320C40 2-D FFT Timing Benchmarks (in Milliseconds)

Program Number of Matrix Size in Complex Numbers
Processors 32 x 32 64 X 64 128 x 128

SER.ASM (p=1) 2.080 9.418 40.390
SERB.ASM (p=1) 1.791 8.146 35.340
SH.ASM (p=2) 1.478 5.274 22.172
SHB.ASM (p=2) 1.234 5.147 17.825
DIS2.ASM (p=2) 1.140 4.910 20.586
DIS2.ASM (p=4) 0.602 2.518 10.410

Note: This table gives expected values using the faster version complex Radix-2 DIT FFT routine in
Example 12-44 of the TMS320C4x User’s Guide (1993). Tcycle = 40 ns.

This report has presented shared- and distributed-memory 2-D FFT parallel implementations. High speed-
up/efficiency has been attained. Parallelization of the 2-D FFT is important when dealing with large
matrices. For small matrices, a serial implementation is more convenient.

A virtually unlimited number of parallel algorithms can be implemented in 'C40-based systems. Parallel
implementations of 1-D FFT can be found in [1]. These require cube/mesh mapping techniques that can

Conclusion

also be implemented in a parallel system, such as the PPDS.

208

References
[1] K. Hwang and F. A. BriggsComputer Architecture and Parallel ProcessiNgw York: McGraw-Hill,
1984.

[2] R. M. PiedraA Parallel Approach for Solving Matrix-Multiplication on the TMS320C4x [h%#as,
Texas: Texas Instruments, Incorporated, 1991.

[3]1C. S.Burrus and T. W. ParlBFT/FFT and Convolution Algorithmslew York: John Wiley and Sons,
1985.

[4] P. Papamichalis. “An Implementation of FFT, DCT, and Other Transforms on the TMS32D&80.”
tal Signal Processing Applications with the TMS320 Family, VolurbDalBas, Texas: Texas Instruments,
Incorporated, 1990, page 53.

[5] D.C. Chen and R. H. Price. “A Real-Time TMS320C40 Based Parallel System for High Rate Digital
Signal ProcessingProceedings of ICASSP QUSA, Volume 2, page 1573, May 1991.

[6] A. V. Oppenheim and R. W. SchafBigital Signal Processingznglewood Cliffs, New Jersey: Pren-
tice-Hall, 1975.

[71 S. G. Akl. The Design and Analysis of Parallel AlgorithrEsiglewood Cliffs, New Jersey: Prentice-
Hall, 1989, page 171.

[8] TMS320C4Wser’'s Guide Dallas, Texas: Texas Instruments, Incorporated, 1991.

[9] D. P. Bertsekas and J. N. Tsitsikiarallel and Distributed Computation, Numerical MethoHsgle-
wood Cliffs, New Jersey: Prentice-Hall, 1989.

[10] S. Y. Kung.VLSI Array Processor&Englewood Cliffs, New Jersey: Prentice-Hall, 1988.

[11] H. Kunieda and K. Itoh. "Parallel 2D-FFT Algorithm on Practical Multiprocessor Systeneséed-
ings of the 3rd Transputer/Occam International ConfereMagy 1990.

209

Appendices

Appendix A: Serial Implementations of 2-D FFT

A.1 SER.C: Single-Buffered Implementation (C Program)

A.2 SER.ASM: Single-Buffered Implementation ('C40 Assembly Program)
A.3 SERB.C: Double-Buffered Implementation (C Program)

A.4 SERB.ASM: Double-Buffered Implementation ('C40 Assembly Program)

Appendix B: Parallel 2-D FFT (Shared-Memory Version)

B.1 SH.C: Single-Buffered Implementation (C Program)

B.2 SH.ASM: Single-Buffered Implementation ('C40 Assembly Program)
B.3 SHB.C: Double-Buffered Implementation (C Program)

B.4 SHB.ASM: Double-Buffered Implementation ('C40 Assembly Program)

Appendix C: Parallel 2-D FFT (Distributed-Memory Version)

e C.1 DIS1.C: Distributed-Memory Implementation (C Program) — DMA Used Only for
Interprocessor Communication

e (C.2 DIS2.C: Distributed-Memory Implementation (C Program) — DMA Used for
Interprocessor Communication and Matrix Transposition

¢ (C.3 DIS2.ASM: Distributed-Memory ('C40 Assembly Program) — DMA Used for
Interprocessor Communication and Matrix Transposition

Appendix H: Mylib.lib Routines

D.1 CFFT.ASM: Assembly Language FFT Routine

D.2 CFFTC.ASM: Assembly Language FFT Routine (C-Callable)
D.3 CMOVE.ASM: Complex-Vector Move Routine

D.4 CMOVEB.ASM: Complex-Vector Bit-Reversed Move Routine
D.5 SET_DMA.ASM: Routine to Set DMA Register Values

D.6 EXCHANGE.ASM: Routine for Interprocessor Communication
D.7 SYNCOUNT.ASM: Interprocessor Synchronization Routine

210

Appendix A: Serial Implementations of 2-D FFT

A.l. SER.C: Single-Buffered Implementation (C Program)

SER.C

/

SER.C : Serial 2—dimensional complex FFT (Single—buffered version)

To run:

¢cl30 —v40 —gs —mr —02 ser.c
asm30 —v40 —s sintab.asm
asm30 —v40 —s input.asm
Ink30 serc.cmd

#define SIZE 4

I* FFT size (n)
/* log(FFT size)
/* on—chip RAM buffer

/* C—callable complex FFT
/* CPU complex move
/* CPU bit-reversed move

/* for benchmarking

/

#define LOGSIZE 2
#define BLOCKO 0x002ff800
extern void cfftc(),
cmove(),
cmoveb();
extern float MATRIX[SIZE][SIZE*2]; /* Input matrix
float *blockO = (float *)BLOCKO,
*MM[SIZE];
int size2 = 2*SIZE,
i;
int tcomp;
/
main()

{
asm(” or 1800h,st”);
for (i=0;i<SIZE;i++) MM[i]=MATRIX][i];

t0: time_start(0);
/ Step 1: FFT by rows
for (i=0;i<SIZE;i++) {
cmove (&MM[i][0],block0,2,2,SIZE);
cfftc(blockO,SIZE,LOGSIZE);
cmoveb(block0,&MM([i][0],SIZE,2,SIZE);
}

/********************** Step 2 FFT by CO|UmnS
t1:
for (i=0;i<size2;i+=2) {
cmove (&MM[O][i],block0,size2,2,SIZE);
cfftc(blockO,SIZE,LOGSIZE);

cmoveb (block0,&MMI0][i],SIZE,size2,SIZE); /* move FFT {col. (i) to off-chip mem */

tcomp= time_read(0);
t2:;
} *main*/

/* cache enable

[* accessing assembly variables

/* start timer 0 for benchmark

/

/* move row(i) to on—chip mem.
/* FFT on row (i)
/* move FFT{row(i)} to off—chip mem.

/* move column (i) to on-chip mem.

/* FFT on column (i)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

211

SERC.CMD

—C
ser.obj
sintab.obj
input.obj
—stack 0x0040
—Irts40.lib
—lprts40r.lib
—Imylib.lib

—m serc.map
—0 serc.out

MEMORY
{

ROM: org = 0x00 len = 0x1000
RAMO: org = 0x002ff800 len = 0x0400
RAM1: org = 0x002ffc00 len = 0x0400

LM: org = 0x40000000 len = 0x10000
GM: org = 0x80000000 len = 0x20000
}
SECTIONS
{
text: ()> RAM1
.cinit: {) > RAM1
.stack: {} > RAM1
.bss: {} > RAM1
(data: {} > RAM1
INPUT: {}> LM
}

212

/* LINK USING C CONVENTIONS */

/* GET RUN-TIME SUPPORT */

/* LOCAL MEMORY *
/* GLOBAL MEMORY *

/* CODE *
/* INITIALIZATION TABLES *

[* SYSTEM STACK */
/* GLOBAL & STATIC VARS *
/* Sine tables *

/* Input matrix */

INPUT.ASM

*

* INPUT.ASM : input matrix 4 x 4 for serial/shared program

*

_MATRIX

.global _MATRIX
.sect "INPUT”

.float 130.0,90.0
.float 66.0,230.0
.float 205.0,136.0
float 15.0,187.0

float 150.0,164.0
float 222.0,44.0
float 95.0,243.0
.float 80.0,60.0

float 97.0,36.0
float 215.0,191.0
float 209.0,239.0
float 161.0,22.0

float 117.0,238.0
float 203.0,44.0
float 104.0,187.0
float 195.0,177.0
.end

;10][0] :
[0][4] :
1021 -
[0](3] :

[0 :
[0
2] -
(Kl

(2101 -
(21
1221
[2118] :

(31001 :
[3]01] :
312] -
131031 :

output 2264.0
output —56.0
output —50.0
output —182.0

output —401.0
output —353.0
output 423.0
output 167.0

output —68.0
output 106.0
output 418.0
output —616.0

output —131.0
output 175.0
output 225.0
output 159.0

1

1

2288.0
-532.0
378.0
-22.0

227.0
1.0
-373.0
229.0

-26.0

-176.0
—636.0
—266.0

83.0
319.0
-133.0
79.0

213

SINTAB.ASM

*
* SINTAB.ASM : Table with twiddle factors for a 4—point CFFT
* and data input. File to be linked with the
* source code for a 4—point, radix—2 FFT.
.global SINE
.global N
.global M
N .set 4
M .set 2
.data
SINE float 0.000000
COSINE .float 1.000000
float —0.000000
float —1.000000
float 0.000000
.end

214

A.2. SER.ASM: Single-Buffered Implementation (C40 Assembly Program)
SER.ASM

*
* SER.ASM : TMS320C40 complex 2D—FFT serial program
* (Single—buffered version)
*
* Routines used:
* cfft.asm (complex FFT)
*
* Requirements: Matrix size =N >0
*
* Torun:
*
* asm30 —v40 —gs ser.asm
* asm30 —v40 —gs sintab.asm
* asm30 —v40 —gs input.asm
* Ink30 ser.cmd
*
.global N ; FFT size
.global _MATRIX ; Matrix address
.global CFFT ; Complex 1D-FFT subroutine
.global C2DFFT ; Entry point for execution
_STACK .usect "STACK”,10h ; Stack definition
text
FFTSIZE .word N
MATR .word _MATRIX
STACK .word _STACK ; Stack address
BLOCKO .word 002FF800H ; On—chip buffer (RAM block 0)
TIMER .word 0100020H ; Timer O address
C2DFFT
LDP FFTSIZE ; Data page pointer initialization
LDI @STACK,SP ; Stack pointer initialization
tO: LDI @TIMER,AR2 ; Optional: benchmarking (time_start)
STIK —1,*+AR2(8)
LDI 961,R0O
STI RO,*AR2
OR 1800h,ST ; Enabling cache
LDI @FFTSIZE,AR3 ; AR3 = N = FFT size
SUBI 1,AR3,AR5 ; AR5 = row counter
LDI @MATR,AR7 ; AR7 = matrix pointer
LDI @BLOCKO,AR6 ; AR6 = on—chip buffer pointer
* FFT ON ROWS
LOOPR

215

* Move row X
* to on—chip memory

*

SUBI3
LDI
RPTBD
LDI

LDI
LDF

LDF
It STF
LOOP1 LDF
It STF

Fkkkkkkkkkkkkkkk

*FFT onrow X *

Fkkkkkkkkkkkkkkk

LAJ

LDF

NOP

STF
Il STF

*

2,AR3,RC
AR7,ARO
LOOP1
ARG,AR1
2,IR0
*+AR0(1),RO

*ARO++(IR0),R1
RO, *+AR1(1)
*+AR0(1),RO
R1,*AR1++(IR0)

CFFT
*ARO,R1

RO,*+AR1(1)
R1,*AR1

* Move row X (bit-reversed) from *
* on—chip memory to external memory *

SUBI3 2,AR3,RC
LDI ARG6,ARO
LDI AR7,AR1
RPTBD LOOP2
LDI AR3,IR0
LDI 2,IR1
LDF *+AR0(1),RO
LDF *AR0O++(IR0)B,R1
I STF RO,*+AR1(1)
LOOP2 LDF *+AR0(1),RO
I STF R1,*AR1++(IR1)
LDF *ARO++(IR0)B,R1
I STF RO*+AR1(1)
DBUD AR5,LOOPR
STF R1,*AR1++(IR1)
LSH3 1,AR3,RO
ADDI RO,AR7
* FFT ON COLUMNS
tl: SUBI 1,AR3,AR5
LDI @MATR,AR7

216

; RC = N-2
; Source address

; Destination address
; RO=X(I) Im
; X(1) Re & points to X(I+1)
; Store X(I) Im

; RO = X(I+1) Im
; Store X(I) Re

; Call 1D-FFT (complex)
; Load X(N-1) Re

; Store X(N-1) Im
; Store X(N-1) Re

; Source address
; Destination Address

; Source offset for bit-reverse = N
; Destination offset

; AR5 = column counter
; AR7 = Matrix pointer

LOOPC

* Move column X (X=AR7) *

* to on—chip memory

SUBI3
LDI

LDI
RPTBD
LSH3
LDI
LDF

LDF
It STF
LOOP3 LDF
It STF

Fkkkkkkkkkkkkkkhkhk

* FFT on column X *

Fkkkkkkkkkkkkkkhkhk

LAJ

LDF

NOP

STF
I STF

*

2,AR3,RC
AR7,ARO
ARG6,AR1
LOOP3
1,AR3,IR1
2,IRO
*+AR0(1),RO

*ARO++(IR1),R1
RO, *+AR1(1)

*+AR0(1),RO
R1,*AR1++(IR0)

CFFT
*ARO,R1

RO,*+AR1(1)
R1*AR1

* Move column X (bit-reversed) from *
* on—chip memory to external memory *

SUBI3
LDI
LDI

RPTBD

LDI
LSH
LDF

LDF
Il STF
LOOP4 LDF
Il STF

DBUD
LDF

Il STF
STF
ADDI

LDI
LDI

t2 B
.end

2,AR3,RC
ARG6,ARO
AR7,AR1
LOOP4
AR3,IRO
1,AR3,IR1
*+AR0(1),RO

*AR0O++(IR0)B,R1

RO,*+AR1(1)
*+AR0(1),RO
R1,*AR1++(IR1)

AR5,LOOPC

*ARO++(IR0)B,R1

RO,*+AR1(1)

R1,*AR1++(IR1)

2,AR7

@TIMER,AR2
*+AR2(4),RO

t2

; RC=N-2
; Source address
; Destination address

; Source offset = 2*N
; Destination offset
; RO= X(I) Im

; X(I) Re & points to X(I1+1)
; Store X(I) Im
; RO=X(1+1) Im
; Store X(I) Re

; Load X(N-1) Re

; Store X(N-1) Im
; Store X(N-1) Re

; RC=N-2
; Source address
; Destination address

; Source offset = IR0 = N (bit-reverse)
; Destination offset (columns) = IR1 = 2N

; Optional: benchmarking
; tcomp = RO

217

SER.CMD

input.obj
ser.obj
sintab.obj
—Imylib.lib
—m ser.map
—0 ser.out

MEMORY

{
ROM:
RAMO:
RAML1:

GM:

SECTIONS

{
text
.data
STACK
INPUT

218

0 = 0x00000000 | = 0x1000
0 = 0x002ff800 | = 0x400

0 = 0x002ffc00 | = 0x400

0 = 0x40000000 | = 0x10000
0 = 0x80000000 | = 0x20000

{ >RAM1

0
{}
{

> RAM1
> RAM1
> LM

/* SINE TABLE
/* STACK */
/* INPUT MATRIX

*/

*/

A.3. SERB.C: Double-Buffered Implementation (C Program)
SERB.C

SERB.C : Serial 2—dimensional complex FFT (Double-buffered version)
To run:

cl30 —v40 —g —s —-mr —02 serb.c

asm30 —v40 —s sintab.asm

asm30 —v40 —s input.asm

Ink30 serbc.cmd

Requirement: SIZE =4

#define SIZE 4 /* FFT size */
#define LOGSIZE 2 /* log(FFT size) */
#define BLOCKO 0x002ff800 /* on—chip buffer 1 */
#define BLOCK1 0x002ffc00 /* on—chip buffer 2 */
#define DMAO 0x001000a0 /* DMAO address */
#define SWAP(X,y) temp = x; x =y; y = temp;

#define WAIT_DMA(X) while ((0x00c00000 & *x) != 0x00800000);

extern void cfftc(), /* C—callable complex FFT */
cmove(), /* CPU complex move */
cmoveb(), /* CPU bit-reversed move */
set_dmay(); /* Set—up DMA registers */
extern float MATRIX[SIZE][SIZE*2]; /* Input complex matrix */

/* DMA control register values */

int ctrl0= 0x00c41004; /* no autoinit.,dmaint,bit_rev */

int ctrl1= 0x00c01008; /* autoinit.,no dmaint,bitrev */

int ctrl2= 0x00c00008; /* autoinit, no dmaint */

int ctrl3= 0x00c40004; /* no autoinit.,dmain */

int dma01[7], dma02[7], dma03[7], dma04[7];

float *CPUbuffer =(float *)BLOCKO, /* block for CPU FFT operations */
*DMAbuffer =(float *)BLOCK1, /* block for DMA operations */

*MM[SIZE], *temp;

volatile int *dmaO = (int *)DMAO;

int size2 = (SIZE*2),i,j;

int tcomp;

/ /
main()

asm(” or 1800h,st”);
for (i=0;i<SIZE;i++) MM[i]=MATRIX][i];

t0: time_start(0);

219

[FrFRxkxkkkkkkkxkxkkxkx EET on rows /

1. DMA: — moves row 1 to on—chip RAM buffer 1 *
2. CPU: — moves row 0 to on—chip RAM buffer 0 *
— FFT onrow O *

/
set_dma(dmao,ctrl3,&MM[1][0],1,size2,DMAbuffer,1,1);
cmove(&MM[0][0],CPUbulffer,2,2,SIZE);
cfftc(CPUbuffer,SIZE,LOGSIZE);

1. DMA: — moves Re FFT(row 0) to off-chip RAM *

— moves Im FFT(row 0) to off-chip RAM *

— moves row 2 to on—-chip RAM *
2. CPU: FFT onrow 1 *

/

WAIT_DMA (dma0);

set_dma(dma0l,ctrll,CPUbuffer,SIZE,SIZE,&MM[0][0],2,dma02);
set_dma(dma02,ctrl1,(CPUbuffer+1),SIZE,SIZE,&MM[0][1],2,dma03);
set_dma(dma03,ctrl3,&MM[2][0],1,size2,CPUbuffer,1,1);

*(dma0+3) = 0; *(dma0+6) = (int) dma0l; *dma0 =ctrl2; /* start DMA */
cfftc(DMADbuffer,SIZE,LOGSIZE);

/

1. DMA: —moves Re FFT(row i) to off-chip RAM *

— moves Im FFT(row i) to off—-chip RAM *

— moves row (i+2)to on—chip RAM *
2. CPU: FFT on row (i+1) *

for (i=1;i<SIZE-2;i+=1) {
WAIT_DMA (dma0);

*(dma03+1) = (int)&MMI[i+2][0]; *(dma03+4) = (int)DMAbuffer;

*(dma01+1) = (int) DMAbuffer; *(dma01+4) = (int)&MMI[i][0];
*(dma02+1) = (int)DMAbuffer+1; *(dma02+4) = (int)&MM[i][1];
*(dma0+3) = 0; *(dma0+6) = (int) dma01l; *dmao0 = ctrl2; /* start DMA ¥/
cfftc(CPUbuffer,SIZE,LOGSIZE); /* work in current row */
SWAP (CPUbuffer,DMAbuffer); [* switch buffers */
}
/
1. DMA: - moves Re FFT(row(size-2)) to off-chip RAM *
— moves Im FFT(row(size-2)) to off-chip RAM *

— moves Re column 0 to on—chip RAM (except last row element) *
— moves Im column 0 to on—chip RAM
2. CPU: —FFT on last row: row (size-1) *
— transfer element [size—1][0] to corresponding position in *
on—chip buffer 0

/

WAIT_DMA (dma0);
*(dma01+1) = (int) DMAbuffer; *(dma01+4) = (int)&MMI[i][0];
*(dma02+1) = (int) DMAbuffer+1; *(dma02+4) = (int)&MMI[i][1];

set_dma(dma03,ctrl2,&MM[0][0],size2,(SIZE-1),DMAbuffer,2,dma04);
set_dma(dma04,ctrl3,&MM[0][1],size2,(SIZE-1),(DMAbuffer+1),2,2);

220

*(dma0+3) = 0; *(dma0+6) = (int) dma0l; *dma0 = ctrl2;/* start DMA */
cfftc(CPUbuffer,SIZE,LOGSIZE);

WAIT_DMA (dma0);
*(DMAbuffer+size2-2) = *(CPUbuffer);
*(DMAbuffer+size2—-1) = *(CPUbuffer+1);

/ FFT on columns /
/
1. DMA: — moves Re FFT(row(size—1)) to off—-chip RAM *
— moves Im FFT(row(size-1)) to off-chip RAM *
— moves Re column 1 to on—chip RAM (except last row element) *
— moves Im column 1 to on—chip RAM *
2. CPU: —FFT on column 0 *
/
CPUbuffer= (float *) BLOCKO; [*initialize buffer pointer */

DMAbuffer= (float *) BLOCKZ;

*(dma01+1) = (int)DMAbulffer; *(dma01+4) = (int)&MM[SIZE-1][0];
*(dma02+1) = (int)DMAbuffer+1; *(dma02+4) = (int)&MM[SIZE-1][1];
*(dma03+1) = (int)&MMI0][2]; *(dma03+4) = (int)DMAbuffer;
*(dma04+1) = (int)&MMIO0][3]; *(dma04+4) = (int) DMAbuffer+1,;
*(dma03+3) = *(dma04+3) = SIZE;

*(dma0+3) = 0; *(dma0+6) = (int) dma0l; *dma0 = ctrl2; /* start DMA */

cfftc(CPUbuffer,SIZE,LOGSIZE); /* work in column 0 */
/
1. DMA: - moves Re FFT(column 0) to off—-chip RAM *
— moves Im FFT(column 0) to off-chip RAM *
— moves Re column 2 to on—chip RAM *
— moves Im column 2 to on—chip RAM *
2.CPU: —FFT on column 1 *

WAIT_DMA (dma0);
t1:

*(dma01+1) = (int)CPUbulffer; *(dma01+4) = (int)&MM[0][0];
*(dma02+1) = (int)CPUbuffer+1; *(dma02+4) = (int)&MM[0][1];
*(dma01+5) = *(dma02+5) = size2;

*(dma03+1) = (int)&MM[0][4]; *(dma03+4) = (int)CPUbuffer;
*(dma04+1) = (int)&MM[0][5]; *(dma04+4) = (int)CPUbuffer+1;
*(dma0+3) = 0; *(dma0+6) = (int) dma0l;*dma0 = ctrl2; /* start DMA */

cfftc(DMADbuffer,SIZE,LOGSIZE);

221

/

1. DMA: - moves Re FFT(column i) to off-chip RAM *
— moves Im FFT(column i) to off-chip RAM *
— moves Re column (i+2) to on—chip RAM
— moves Im column (i+2) to on—chip RAM

2. CPU: —FFT on column (i+1)

for (i=2;i<size2—4;i+=2) {
WAIT_DMA (dma0);

*(dma01+1) = (int)DMAbuffer; *(dma01+4) = (int)&MM[O][i];
*(dma02+1) = (int)DMAbuffer+1; *(dma02+4) = (int)&MM[O][i+1];
*(dma03+1) = (int)&MMI[O][i+4]; *(dma03+4) = (int)DMAbuffer;
*(dma04+1) = (int)&MMI[O][i+5]; *(dma04+4) = (int)DMAbuffer+1;

*(dma0+3) = 0; *(dma0+6) = (int) dma0l; *dma0 = ctrl2;/* start DMA */

cfftc(CPUbuffer,SIZE,LOGSIZE); /* work in current column */
SWAP (CPUbuffer,DMAbuffer);
}
/
1. DMA: — moves Re FFT(column (size-2)) to off-chip RAM *
— moves Im FFT(column (size-2)) to off-chip RAM *
2. CPU: — FFT on last column (size—1) *
- moves FFT(last column) to off-chip RAM *

WAIT_DMA (dma0);

*(dma01+1) = (int) DMAbuffer; *(dma01+4) = (int)&MMIO][i];
*(dma02+1) = (int) DMAbuffer+1; *(dma02+4) = (int)&MMI[O][i+1];
*(dma02) = ctrlO;

*(dma0+3) = 0; *(dma0+6) = (int) dma0l; *dma0 = ctrl2; /* start DMA */

cfftc (CPUbuffer,SIZE,LOGSIZE); [* fft on last column */
cmoveb (CPUbuffer,&MM[0][size2-2],SIZE,size2,SIZE);

WAIT_DMA (dmao); /* wait for DMA to finish */
tcomp= time_read(0);

t2:;

} IFmain*/

222

SERBC.CMD

—C

serb.obj
sintab.obj
input.obj
—stack 0x0040
—Irts40.lib
—lprts40r.lib
—Imylib.lib

—m serbc.map
—o0 serbc.out

MEMORY

{
ROM:
BUFO:

RAMO:

BUF1:

RAML1:

GM:

SECTIONS
{

INPUT:

text:
.cinit:
.stack:
.bss :
.data:

org = 0x00

org = 0x002ff800
org = 0x002ffa00
org = 0x002ffc00
org = 0x002ffe00
org = 0x40000000
org = 0x80000000

{>LM
{>LM
{} > RAM1
{} > RAM1
{} > RAM1
{} > RAM1

/* LINK USING C CONVENTIONS

/* GET RUN-TIME SUPPORT
/* PARALLEL RUN-TIME SUPPORT LIBRARY

len = 0x1000
len = 0x0200
len = 0x0200
len = 0x0200
len = 0x0200

len = 0x10000

len = 0x20000

/* INPUT MATRIX

/* CODE

/* INITIALIZATION TABLES
I* SYSTEM STACK
/* GLOBAL & STATIC VARS

* SINE TABLES

*/

*/

*

*

223

A.4. SERB.ASM: Double-Buffered Implementation ('C40 Assembly Program)
SERB.ASM

SERB.ASM : TMS320C40 complex 2D—FFT serial program
(Double—buffered version)

Routines used: cfft.asm (complex FFT)
Requirements: matrix size = N >= 4

To run:
asm30 —v40 —s —g serb.asm
asm30 —v40 —s —g sintab.asm
asm30 —v40 —s —g input.asm
Ink30 serb.cmd

L N N S I

.global N ; FFT SIZE

.global _MATRIX ; MATRIX ADDRESS

.global CFFT ; 1D-FFT SUBROUTINE

.global C2DFFT ; ENTRY POINT FOR EXECUTION

_STACK .usect "STACK”, 10h ; Stack definition

* DMA AUTOINITIALIZATION VALUES

.sect "DMA_AUTOINT"’ ; DMA autoinitialization values
DMAO1 .space 6

.word DMAO02
DMAO02 .Space 6

.word DMAO03
DMAO03 .Space 6

.word DMAO4

DMAO04 .Space 6

text

FFTSIZE .word N
MATR .word _MATRIX
BLOCKO .word 002FF800H ; RAM BLOCK 0
BLOCK1 .word 002FFCO0OH ; RAM BLOCK 1
STACK_A .word _STACK ; STACK ADDRESS
DMAO .word 001000A0H ; ADDRESS OF DMAO
CTRLO .word 00C41004H : NO AUTOINITIALIZATION, DMA INT., BITREV
CTRL1 .word 00C01008H ; AUTOINITIALIZATION, NO DMA INT., BITREV
CTRL2 .word 00C00008H ; AUTOINITIALIZATION, NO DMA INT.
CTRL3 .word 00C40004H ; NO AUTOINITIALIZATION, DMA INT.
P04 .word DMAO04 ; POINTER TO REGISTER VALUES (DMAO04)
P03 .word DMAO3 ; POINTER TO REGISTER VALUES (DMAO03)
P02 .word DMAO02 ; POINTER TO REGISTER VALUES (DMAO02)
PO1 .word DMAO1 ; POINTER TO REGISTER VALUES (DMAO01)
MASK .word 02000000H ; 1IN DMAINTO
TIMER .word 0100020H ; TIMER O address
C2DFFT LDP FFTSIZE ; LOAD DATA PAGE POINTER

LDI @STACK_A,SP ; INITIALIZE THE STACK POINTER

224

t0: LDI @TIMER,AR2 : OPTIONAL: BENCHMARKING (TIME_START)
STIK —1,*+AR2(8)
LDI 961,R0
STI RO,*AR2
OR 1800h,ST . ENABLE CACHE
LDI @FFTSIZE,AR3 ; AR3=N
LDI @MATR,AR7 : POINTER TO MATRIX
LDI @BLOCK1,R7 : POINTER TO DMA BUFFER
LDI @BLOCKO,AR6 ; POINTER TO FFT BUFFER
* CPU MOVES ROW 0 *
SUBI3 2,AR3,RC : RC=N-2
LDI AR7,ARO : SOURCE
RPTBD LOOP1
LDI ARG6,AR1 : DESTINATION
LDI 2,IR1
LDF *+ARO(1),R0 ;RO=X q() IM
* LOOP
LDF *ARO++(IR1),R1 ;X q(l) RE & POINTS TO X0(I+1)
[STF RO, *+AR1(1) ;STOREX q()IM
LOOP1 LDF *+ARO(1),R0 ;RO=X q(I+1)IM
I STF R1*AR1++(IR1) ; STOREX () RE

* STORE LAST VALUE

LDI @P02,AR2 : POINTS DMA REGISTER

LDF *ARO++(IR1) ,R1;LOAD X o(N-1) RE
I STF RO*+ARL(1) ;STOREX o(N-1) M

STF R1,*AR1 STORE X o(N-1) RE
* SET PARAMETERS FOR DMA02, DMAO3 THAT WILL ALWAYS BE FIXED *
*

LDI @P03,AR1 : POINTS DMA REGISTER

LDI @PO1,AR4

LDI @CTRL1,RO

STI RO,*AR2

STI AR3*+AR2(2) ; SOURCE INDEX

STI RO,*AR4

ST AR3,*+AR4(2) ; SOURCE INDEX

ST AR3,*+AR2(3) : COUNTER

STI AR3,*+AR4(3) ; COUNTER

LSH3 1,AR3,RO : RO=2*N

STIK 2H*+AR2(5) ; DESTINATION INDEX

STIK 2H*+AR4(5) ; DESTINATION INDEX

LDI @CTRL3,R2

ST R2,*AR1

LDI @DMAO,AR2 : POINTS DMA REGISTER

STIK 1H*+AR1(2) ; SOURCE INDEX

SUBI 3,AR3,AR5 : AR5=N-3 : (N-2) DMA TRANSFERS

STI RO*+AR1(3) ; COUNTER

STI ARO*+AR2(1) ; SOURCE

STIK 1H*+AR1(5) ; DESTINATION INDEX

225

* CPU : FFT ON ROW 0 *

* DMA : BEGINS TO TRANSFER ROW1 *
STIK 1H,*+AR2(2) : SOURCE INDEX
ST RO,*+AR2(3) : COUNTER=2N
LAJ CFFT : FFT ON ROW 0
STI R7 *+AR2(4) : DESTINATION
STIK 1H,*+AR2(5) : DESTINATION INDEX
STI R2,*AR2 : CONTROL3

* FFT ON ROWS *
LDI @P02,AR1
LDI @PO1,AR0
LSH3 1,AR3,RO

LOOP2 TSTB @MASK IIF
BZAT LOOP2

* DMAO2: BIT-REVERSED TRANSFER OF LAST RESULT (Im)
ADDI 1H,AR6,R1
STI R1*+AR1(1) : SOURCE
ADDI 1H,AR7,R1
ST R1*+AR1(4) :DST

* DMAO1: BIT-REVERSED TRANSFER OF LAST RESULT (Re)

STI
STI

* DMAO3: TRANSFER NEXT ROW

LDI
ADDI
ADDI
STI
AND
STI
LDI
LDI
LDI
STIK
STI

ARG, *+AR0(1) : SOURCE
AR7,*+AR0(4) . DST
@P03,AR1 : DMAO
RO,AR7
AR7,RO
RO,*+AR1(1) : SOURCE: NEXT ROW
OH,IIF : CLEAR FLAG
ARG,*+AR1(4) : DESTINATION:
@DMAO,AR1L
R7,R2 : EXCHANGE BUFFER POINTERS
AR6,R7 : R7: POINTER FOR NEXT DMA
0,*+AR1(3) : TEMPORAL FIX

ARO,*+AR1(6)

*FFT ON CURRENT ROW

LAJ
LDI
LDI
STI

DBUD
LDI
LDI
LSH3

226

CFFT
R2,AR6
@CTRL2,R0
RO,*AR1

: AR6: POINTER FOR NEXT FFT
: START (DMA)

ARS5,LOOP2
@P02,AR1
@PO01,ARO

1,AR3,R0O

; DMAO

* DMA:— TRANSFER BACK RESULT (ROW N-2). BIT-REVERSED *

* — TRANSFER FIRST COLUMN (EXCEPT LAST LOCATION) *
* *
* CPU:FFT ON LAST ROW (ROW N-1) *
LDI @PO01,AR2 ; DMAO
LDI @P02,AR1 ; DMAOQ2
LDI @PO03,AR0 ; ARO POINTS TO DMAO3
LDI @P04,AR4 ; AR1 POINTS TO DMAO4
B2 TSTB @MASK,IIF
BZAT B2
* DMAO2: BIT-REVERSED TRANSFER OF LAST RESULT (Im)
ADDI 1H,AR6,R0
STI RO,*+AR1(1) ; SOURCE
ADDI 1H,AR7,RO
STI RO,*+AR1(4) ; DST

* DMAOL: BIT-REVERSED TRANSFER OF LAST RESULT (ROW N-2: Re)

STI AR6,*+AR2(1) ; SOURCE

STI ARG6,*+AR0(4) ; DESTINATION: BLOCKO(RE)
STI AR7,*+AR2(4) ; DST

STIK 2H,*+ARO0(5) ; DESTINATION INDEX=2 (RE)
STIK 2H,*+AR4(5) ; DESTINATION INDEX=2 (IM)

* DMAO3: TRANSFER COLUMN 0 (Re) EXCEPT LAST LOCATION
* DMAO4: TRANSFER COLUMN 0 (Im) EXCEPT LAST LOCATION

LDI @CTRL2,R1

ST R1,*ARO

LDI @CTRL3,R0

ST RO,*AR4

LDI @MATR,R0 : RO:ADDRESS OF FIRST COLUMN
STI RO*+ARO(1) ; SOURCE: (RE)

ADDI 1,R0 ; POINTS TO IMAGINARY PART

STI RO*+AR4(1) ; SOURCE: (IM)

ADDI 1,AR6,R1 :

ST R1*+AR4(4) ; DESTINATION: BLOCKO(IM)
LSH3 1,AR3,R1

STI R1*+AR0(2) ; SOURCE INDEX=2*N

SUBI 1,AR3,R0 : RO=N-1

STI RL*+AR4(2)

AND OH,IIF : CLEAR FLAG

STI RO,*+AR0(3 : COUNTER=N-1

ADDI R1,AR7 : R1=2N

STI RO,*+AR4(3)

LDI @DMAO,AR0 : GIVE THE START

LDI R7,R2 : EXCHANGE BUFFER POINTERS
LDI AR6,R7 : R7: POINTER FOR NEXT DMA
STIK 0,*+AR0(3)

STI AR2,*+AR0(6)

*FFT ON LAST ROW

LAJ CFFT

LDI R2,AR6 ; ARG: POINTER FOR NEXT FFT
LDI @CTRL2,RO

STI RO,*ARO ; START (DMA)

227

DMA: —-TRANSFER BACK RESULT (LAST ROW)
—TRANSFER SECOND COLUMN (COLUMN 1)

CPU: FFT ON FIRST COLUMN

ECE I S

LDI @P02,AR1 : DMAO2
LDI @PO1,ARO : PO1
LDI @P03,AR4 : ARO POINTS TO DMAO3
LDI @P04,AR5 : AR1 POINTS TO DMA04

B3 TSTB @MASK,IIF
BZAT B3

* CPU MOVES LAST VALUE (1ST COLUMN)FROM AR6: BLOCK1 TO R7:
LSH3 1,AR3,R2
ADDI R2,R7,AR2
SUBI 2,AR2 : AR2= BLOCKO+SIZE2-2
ADDI 1H,AR6,R2
LDF *AR6,RO ' RE

I LDF *ARB(1),RL ;IM
STI R2*+AR1(1) ; SOURCE
STF RO,*AR2

I STF R1*+AR2(1)

* DMAO2: BIT-REVERSED TRANSFER OF LAST RESULT (Im)

ADDI 1H,AR7,RO
STI RO*+AR1(4) ;DST

* DMAO1: BIT-REVERSED TRANSFER OF LAST RESULT (Re)
STI ARG,*+ARO(1) ; SOURCE
STI AR7*+ARO(4) ;DST

* DMAO3: TRANSFER COLUMN 1 (Re)
* DMAO4: TRANSFER COLUMN 1 (Im)

LDI
ADDI
STI
ADDI
STI
AND
STI
ADDI
STI
LDI
STI
LDI
LDI
STI
STIK
STI

@MATR,AR7
2,AR7,RO
RO,*+AR4(1)
1,RO
RO,*+AR5(1)
OH,IIF
ARG, *+AR4(4)
1,AR6,R1
R1,*+AR5(4)
R7,R2
AR3,*+AR4(3)
@DMAO,AR1
ARG6,R7
AR3,*+AR5(3)
0,*+AR1(3)
ARO,*+AR1(6)

*FFT ON FIRST COLUMN

LAJ
LDI
LDI
STI

228

CFFT
R2,AR6
@CTRL2,R0
RO,*AR1

; RO: POINTS TO COLUMN 1
; SOURCE: (RE)
; POINTS TO IMAGINARY PART
; SOURCE: (IM)
; CLEAR FLAG
; DESTINATION: BLOCK1(RE)

; DESTINATION: BLOCKO(IM)
; COUNTER=N

; GIVE THE START
; R7: BLOCK1

; ARG: POINTER FOR NEXT FFT

: START (DMA)

* FFT ON COLUMNS *

tl: LDI @P02,AR1
LDI @PO1,AR0 : PO1
SUBI 3,AR3,AR5 : AR5=N-3: (N-2) DMA TRANSFERS
LSH3 1,AR3,R1
STI RL*+AR0(5) ; DST INDEX
STI R1,*AR1(5) ;DST INDEX
ADDI 1H,AR6,R0
B4 TSTB @MASK,IIF
BZAT B4
* DMAO2: BIT-REVERSED TRANSFER OF LAST RESULT (Im)
STI RO*+AR1(1) ; SOURCE
ADDI 1H,AR7,RO
ST RO*+AR1(4) ;DST
* DMAO1: BIT-REVERSED TRANSFER OF LAST RESULT (Re)
STI AR6,*+ARO(1) ; SOURCE
STI AR7*+ARO(4) ;DST

* DMAO3: TRANSFER NEXT COLUMN (Re)
* DMAO4: TRANSFER NEXT COLUMN (Im)

LDI @PO03,AR4 : ARO POINTS TO DMAO03
LDI @P04,AR2 : AR1 POINTS TO DMAO4
ADDI 2,AR7 : RO: POINTS TO NEXT COLUMN
ADDI 2,AR7,R0
ST RO*+AR4(1) ; SOURCE: (RE)
AND OH,IIF : CLEAR FLAG
STI ARG6,*+AR4(4) ; DESTINATION: BLOCK1(RE)
ADDI 1,R0 ; POINTS TO IMAGINARY PART
ST RO*+AR2(1) ; SOURCE: (IM)
ADDI 1,AR6,R1
STI R1*+AR2(4) ; DESTINATION: BLOCKO(IM)
LDI @DMAO,ARL : GIVE THE START
LDI R7,R2
LDI AR6,R7 : R7: BLOCK1
STIK 0,*+AR1(3)
STI ARO,*+AR1(6)
* FFT ON CURRENT COLUMN
LAJ CFFT
LDI R2,AR6 : AR6: POINTER FOR NEXT FFT
LDI @CTRL2,RO
STI RO,*AR1 : START (DMA)
DBUD AR5 B4
LDI @P02,AR1
LDI @PO1,AR0
ADDI 1H,AR6,R0

* DMA: TRANSFER LAST FFT RESULT
* CPU: FFT ON LAST COLUMN

LDI @P02,AR1 ; DMAO
B5 TSTB @MASK,IIF
BZAT B5

229

* DMAO2/DMAO01: BIT-REVERSED TRANSFER OF LAST RESULT

ADDI 1H,AR6,R0
ST RO,*+AR1(1) : SOURCE

ADDI 1H,AR7,R0

STI RO,*+AR1(4) :DST

LDI @PO1,ARO : PO1

LDI @CTRLO,RO

STI RO,*AR1

STI ARG, *+AR0(1) : SOURCE

STI AR7,*+AR0(4) :DST

LDI @DMAO,ARL : GIVE THE START
ADDI 2,AR7

AND 0,lIF

STIK 0,*+AR1(3)

STI ARO,*+AR1(6)

LDI @CTRL2,RO

STI RO,*AR1 : START (DMA)

* FFT ON CURRENT ROW

LAJ CFFT
LDI R7,R2
LDI AR6,R7
LDI R2,AR6
SUBI3 2,AR3,RC RC=N-2
LDI ARG6,ARO : SOURCE
LDI AR7,AR1 : DESTINATION
RPTBD B6
LDI AR3,IRO0
LSH3 1,AR3,IR1
LDF *+ARO(1),R0; RO= X(I) IM
* LOOP
LDF *ARO++(IRO)B,R1 ; X(I) RE & POINTS TO X(I+1)
I STF RO, *+AR1(1) . STORE X(I) IM
B6 LDF *+AR0(1),RO T RO=X(I+1) IM
I STF R1,*AR1++(IR1) : STORE X(I) RE

* STORE LAST VALUE

B7 TSTB @MASK,IIF
Bz B7
LDF *ARO++(IR0)B,R1 ; LOAD X(N-1) RE
Il STF RO,*+AR1(1) ; STORE X(N-1) IM
STF R1,*AR1 ; STORE X(N-1) RE
LDI @TIMER,AR2 ; OPTIONAL: BENCHMARKING (TIME_READ)
LDI *+AR2(4),R0 ; TCOMP = RO
t2 B 2
.end

230

SERB.CMD

input.obj

serb.obj

sintab.obj

—Imylib.lib

—m serb.map

—o serb.out

MEMORY

{
ROM: 0 = 0x00000000 | = 0x1000
BUFO: 0 = 0x002ff800 | = 0x200
RAMO: 0 = 0x002ffa00 | = 0x200
BUF1: 0 = 0x002ffc00 | = 0x200
RAML1: 0 = 0x002ffe00 | = 0x200
LM: 0 = 0x40000000 | = 0x10000
GM: 0 = 0x80000000 | = 0x20000

}

SECTIONS

{
INPUT L >LMm
.text {3 > LM
.data {3 > RAM1
STACK 1 >RAM1
DMA_AUTOINI £ >RAM1

}

/* SINE TABLE

/* AUTOINIT. VALUES

*/

*/

231

Appendix B: Parallel 2-D FFT (Shared-Memory Version)

B.1. SH.C: Single-Buffered Implementation (C Program)

SH.C
/
SH.C: Parallel 2-dimensional complex FFT
(shared—memory single—buffered version)

Routines used: cfftc.asm (C—callable complex—fft)

cmove.asm (CPU complex move)

cmoveb.asm (CPU bit-reversed complex move)

syncount.asm (synchronization routine via counter in-shared memory)
To run:

¢cl30 —v40 —g —as —mr —02 sh.c
asm30 —v40 —s input.asm
asm30 —v40 —s synch.asm
asm30 —v40 —s sintab.asm
Ink30 shc.cmd

Note: Before running, initialize my_node variable with the corresponding value, using
the 'C40 emulator or an assembly file.

#define SIZE 16 [* FFT size (n) */
#define LOGSIZE 4 /* log (FFT size) */
#define P 2 /* number of processors */
#define Q SIZE/P /* rowsl/col. per processor */
#define BLOCKO 0x002ff800 /* on—chip RAM buffer */

extern void cfftc(), cmove(), cmoveb(), syncount();
extern int colsynch; /* column/row synchronization */
extern float MATRIX[SIZE][SIZE*2]; /* Input matrix */

float *blockO = (float *)BLOCKO,

*MM[SIZE];
int my_node , /* node—id */
colsynch_p =& colsynch, / row/column synchronization */
size2 = 2*SIZE,
g2 =2*Q,
i,11,12;
int tcomp;
/ /
main()
asm(” OR 1800h,st"); [* cache enable */

for (i=0;i<SIZE;i++) MM[i][=MATRIX[i]; /* accessing assembly variables */

t0: syncount(colsynch_p,P); /* Optional: Common start */
time_start(0); /* Optional: Benchmarking */

232

/ FFT on rows /
11= Q*my_node; 12 = 11+Q; [* select row working set */

for (i=I1; i<I2;i++) {
cmove (&MM[i][0],block0,2,2,SIZE);
cfftc(block0,SIZE,LOGSIZE);
cmoveb (block0,&MM[i][0],SIZE,2,SIZE);

}
t1: syncount(colsynch_p,2*P); [* row/column synchronization */
/ FFT by columns /
11 =11<<1; 12 = 12<<1; /* select column working set: multiply by 2 */

for (i=11;i<12;i+=2) {
cmove (&MMI0][i],block0,size2,2,SIZE);
cfftc(block0,SIZE,LOGSIZE);
cmoveb (block0,&MMI0][i],SIZE,size2,SIZE);

}
tcomp = time_read(0); /* Optional: Benchmarking (timer) */

t2:;
} Fmain*/

233

SHC.CMD

sh.obj

input.obj

sintab.obj

synch.obj

—C

—stack 0x0100

—Irts40.lib

—lprts40r.lib

—Imylib.lib

—m shc.map

—0 shc.out

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY

{
ROM: org = 0x0 len = 0x1000
RAMO: org = 0x002ff800 len = 0x0400 /* on—chip RAM block O
RAML1: org = 0x002ffc00 len = 0x0400 /* on—chip RAM block 1
LM: org = 0x40000000 len = 0x10000 /* LOCAL MEMORY
GM: org = 0x80000000 len = 0x20000 /* GLOBAL MEMORY

}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS

{
text:
.cinit:
.stack:
.bss:
.data:
INPUT:
SYNCH:

}

SYNCH.ASM

{ >RAM1
{} >RAM1 /* INITIALIZATION TABLES */
{ >RAM1 /* SYSTEM STACK */
{ >RAM1
{} >RAM1 /* Sine table */
{} >GM [* Input matrix */
{} >GM /* Synchronization */

*

* SYNCH.ASM : File containing shared—memory location for
* interprocessor synchronization

*

.global _colsynch
.sect "SYNCH”

_colsynch .int0

.end

234

*
*

*
*

B.2. SH.ASM: Single-Buffered Implementation ('C40 Assembly Program)

SH.ASM
*
* SH.ASM : TMS320C40 complex 2D-FFT serial program
* (Single—buffered version)
*
* Routines used: cfft.asm (radix—2 complex FFT)
*
* Requirements: Number of processors =P >0
* rows/columns per processor = Q >0
*
* To run:
* asm30 —v40 —g —s sh.asm
* asm30 —v40 —g —s spinput.asm
* asm30 —v40 —g —s input.asm
* asm30 —v40 —g —s ssintab.asm
* asm30 —v40 —g —s synch.asm
* asm30 —v40 —g —s 0.asm
* asm30 —v40 —g —s 1.asm
* Ink30 sh.cmd 0.0bj —o a0.out (program for processor 0)
* Ink30 sh.cmd 1.0bj —o al.out (program for processor 1)
*
.global N ; FFT size
.global P ; Number of processors
.global Q ; Rows per processor
.global MYNODE
.global _MATRIX ; Matrix address
.global _colsynch ; Synchronization counter
.global CFFT ; Complex 1D-FFT subroutine
.global C2DFFT ; Entry point for execution
.global _syncount
_STACK .usect "STACK”,10h ; Stack definition
text
FFTSIZE .word N
PROC .word P
NROWS .word Q
MYID .word MYNODE
MATR .word _MATRIX
SYNCH .word _colsynch
STACK .word _STACK ; Stack address
BLOCKO .word 002FF800H ; On—chip buffer (RAM block 0)
TIMER .word 0100020H ; Timer 0 address (Benchmarking)
C2DFFT
LDP FFTSIZE ; Data page pointer initialization
LDI @STACK,SP ; Stack pointer initialization
LDI @SYNCH,AR2 ; Optional: Common start (benchmarking)
LDI @PROC,R2 ; wait until counter = P

235

; Optional: benchmarking (time_start)

; Enabling cache
; AR3 =N = FFT size

; AR5 = row counter = Q
; Q*MY_NODE
; RO = N*Q*MYNODE
; RO = 2*N*Q*MYNODE

; AR7 = matrix pointer = &MATRIX[Q*MYNODE][0]
; AR5 = Q-1
; AR6 = on—chip buffer pointer

t0: CALL _syncount
LDI @TIMER,AR2
STIK —1,*+AR2(8)
LDI 961,R0
STI RO,*AR2
OR 1800h,ST
LDI @FFTSIZE,AR3
LDI @MYID,RO
LDI @NROWS,AR5
MPYI AR5,R0
MPYI AR3,R0
LSH 1,RO
LDI @MATR,AR7
ADDI RO,AR7
SUBI 1,AR5
LDI @BLOCKO,AR6
* FFT ON ROWS

LOOPR

* Move row X (X = AR7) *

* to on—chip memory *

SUBI3 2,AR3,RC
LDI AR7,ARO
RPTBD LOOP1
LDI ARG6,AR1
LDI 2,IR0
LDF *+ARO(1),RO
LDF *ARO++(IR0),R1
I STF RO, *+AR1(1)
LOOP1 LDF *+ARO(1),RO
I STF R1,*AR1++(IR0)

*kkkkkkkkkkkkkkk

*FFT onrow X *

kkkkkkkkkkkkkkkk

LAJ
LDF
NOP
STF

I STF

CFFT
*ARO,R1

RO,*+AR1(1)
R1,*AR1

* Move row X (bit-reversed) from *
* on—chip memory to external memory *

SUBI3

LDI
LDI

RPTBD

LDI
LDI
LDF

236

2,AR3,RC
ARG,ARO
AR7,AR1
LOOP2
AR3,IR0
2,IR1
*+ARO(1),RO

; RC =N-2
; Source address

; Destination address
; Destination offset
; RO =X(1) Im
; X(I) Re & points to X(I+1)
; Store X(I) Im
; RO = X(1+1) Im
; Store X(I) Re

; Call 1D-FFT (complex)
; Load X(N-1) Re

; Store X(N-1) Im
; Store X(N-1) Re

; Source address
; Destination Address

; Source offset for bit-reverse = N
; Destination offset

LDF *ARO++(IR0)B,R1

Il STF RO,*+AR1(1)
LOOP2 LDF *+AR0(1),RO
Il STF R1,*AR1++(IR1)
LDF *ARO++(IR0)B,R1
Il STF RO,*+AR1(1)
DBUD AR5,LOOPR
STF R1,*AR1++(IR1)
LSH3 1,AR3,R0
ADDI RO,AR7
* FFT ON COLUMNS
LDI @MYID,RO
LDI @NROWS,AR5
MPYI AR5,R0
LSH 1,RO
LDI @MATR,AR7
ADDI RO,AR7
SUBI 1,AR5
LDI @SYNCH,AR2
LDI @PROC,R2
LSH 1,R2
t1: CALL _syncount

LOOPC

* Move column X (X=AR7) *
*to on—chip memory *

SUBI3 2,AR3,RC
LDI AR7,ARO
LDI ARG6,AR1
RPTBD LOOP3
LSH3 1,AR3,IR1
LDI 2,IRO
LDF *+AR0(1),RO
LDF *ARO++(IR1),R1
I STF RO, *+AR1(1)

LOOP3 LDF
Il STF

*+AR0(1),RO
R1,*AR1++(IR0)

*kkkkkkkkkkkkkkkkkk

* FFT on column X *

*kkkkkkkkkkkkkkkkkk

LAJ CFFT
LDF *ARO,R1
NOP
STF RO,*+AR1(1)
I STF R1,*AR1

; AR5 = column counter = Q
: Q*MY_NODE
; 2*Q*MY_NODE (Complex numbers)

; AR7 = &MATRIX[0][2*Q*MYNODE]
i AR5 = Q-1
; Row/column synchronization

; Optional: not needed if no common start
; is required

; RC=N-2
; Source address
; Destination address

; Source offset = 2*N
; Destination offset
; RO= X(1) Im

; X(I) Re & points to X(I+1)
; Store X(I) Im

; RO=X(1+1) Im
; Store X(I) Re

; Load X(N-1) Re

; Store X(N-1) Im
; Store X(N-1) Re

237

* Move column X (bit-reversed) from *
* on—chip memory to external memory *

I
LOOP4

t2

SH.CMD

input.obj
sh.obj
spinput.obj
ssintab.obj
synch.obj
—m sh.map
—Imylib.lib
—osh.out

MEMORY
{

}

SUBI3
LDI
LDI
RPTBD
LDI
LSH
LDF
LDF
STF
LDF
STF
DBUD
LDF
STF
STF
ADDI
LDI
LDI

.end

ROM:
RAMO:
RAM1:
LM:
GM:

2,AR3,RC ; RC=N-2

AR6,ARO ; Source address

AR7,AR1 ; Destination address
LOOP4

ARS3,IR0 ; Source offset = IR0 = N (bit-reverse)
1,AR3,IR1 ; Destination offset (columns) = IR1 = 2N

*+AR0(1),RO
*ARO++(IR0)B,R1
RO,*+AR1(1)
*+AR0(1),R0O
R1,*AR1++(IR1)
AR5,LOOPC
*ARO++(IR0)B,R1
RO,*+AR1(1)
R1,*AR1++(IR1)
2,AR7
@TIMER,AR2 ; Optional: benchmarking (time_read)
*+AR2(4),R0 ; tcomp = RO

2

org = 0x00 len = 0x1000

org = 0x002ff800 len = 0x0400 /* On—chip RAM block 0 */

org = 0x002ffc00 len = 0x0400 /* On—chip RAM block 1 */

org = 0x40000000 len = 0x10000 /* LOCAL MEMORY */
org = 0x80000000 len = 0x20000 /* GLOBAL MEMORY */

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{

238

text:
.data:
INPUT:

STACK:
SYNCH:

{} >RAM1 /* CODE *
{ >RAM1 /* Sine tables *
{ >GM /* Input matrix */
4 >RAM1 /* SYSTEM STACK */
{3 >GM [* synchronization */

SPINPUT.ASM

*

* SPINPUT.ASM : input file for shared—memory program (Data on parallel system)

*

.global N ; FFT size
.global M ;LOG2 FFT
.global P ; Number of processors
.global Q ; Rows per processor
N .set 16
M .set 4
P .set 2
Q .set N/P
.end
0.ASM

* 0.ASM : File containing node—id for processor 0

.global MYNODE
MYNODE .set 0

1.ASM

*

1.ASM : File containing node—id for processor 1

.global MYNODE
MYNODE set 1

239

B.3. SHB.C: Double-Buffered Implementation (C Program)

SHB.C

/

SHB.C: Parallel 2—dimensional complex FFT

(shared—memory double—buffered version)

Routines used: cfftc.asm (C—callable radix—2 complex—fft)
cmove.asm (CPU complex move)
cmoveb.asm (CPU bit—reversed complex move)
set_dma.asm (Routine to set DMA register values)
syncount.asm (synchronization routine)

To run:

¢l30 —v40 —g —as —mr —02 shb.c
asm30 —v40 —s input.asm
asm30 —v40 —s synch.asm
asm30 —v40 —s sintab.asm
Ink30 shbc.cmd

Requirement: Q =4

Note: Before running initialize the my_node variable to the corresponding value using

the 'C40 emulator or an assembly file.

#define SIZE 16 /* FFT size *
#define LOGSIZE 4 I* log (FFT size) */
#define P 2 /* number of processors */
#define Q SIZE/P /* row/col. per processor */
#define BLOCKO 0x002ff800 /* on—chip buffer 0 */
#define BLOCK1 0x002ffc00 /* on—chip buffer 1 */
#define DMAO 0x001000a0 /* DMAO address */
#define SWAP(X,y) temp =x; X =y; y = temp;
#define WAIT_DMA(x) while ((0x00c00000 & *x) != 0x00800000);
extern void cfftc(), set_dmay(), cmove(), cmoveb(), syncount();
extern int colsynch; [* counter in GM */
extern float MATRIX[SIZE][SIZE*2]; /* input matrix */
int ctrl0= 0x00c41004, /* no autoinit.,dmaint,bit_rev */
ctrl1= 0x00c01008, /* autoinit.,no dmaint,bit-rev *
ctrl2= 0x00c00008, /* autoinit., no dmaint *
ctrl3= 0x00c40004; /* no autoinit.,dmaint */
float *CPUbuffer =(float *)BLOCKO, /* For CPU FFT operations */
*DMADbuffer =(float *)BLOCKZ1, /* For DMA operations */
*temp,
*MM[SIZE];
volatile int *dmaoO = (int *)DMAQO;
int dma01[7], dma02[7], dma03[7], dmaO4[7]; /* DMA autoinit.values */
int my_node,
base,

*colsynch_p = &colsynch,
size2 = (SIZE*2),
q=Q,
g2 =2*Q,
ii,ij;
int tcomp;

240

/ /
main()

{
asm(” OR 1800h,ST");
for (i=0;i<SIZE;i++) MM[i]=MATRIX[i]; /* accessing assembly variables

t0:

syncount(colsynch_p,P); /* Optional: Common start

time_start(0); /* Optional: Benchmarking (timer)

base = g*my_node; /* point to 1st row allocated to each processor
/ FFT on rows /

/
1.DMA: moves row (base+1) to on—chip RAM buffer 0 *
2.CPU: — moves row (base+0) to on—chip RAM buffer 1 *

— FFT on row (base+0) in buffer 1 *
/

ii =base+1;

set_dma(dmao,ctrl3,&MM(ii][0],1,size2, DMAbuffer,1,1);
cmove(&MM[base][0],CPUbuffer,2,2,SIZE);
cfftc(CPUbuffer,SIZE,LOGSIZE);

/

1.DMA: — moves Re FFT (row(base+0)) to off-chip RAM *
— moves Im FFT (row(base+0)) to off-chip RAM *
— moves row (base+2) to on—chip RAM

2. CPU: FFT on row (base+1)

WAIT_DMA(dma0);
set_dma(dma01,ctrl1,CPUbuffer,SIZE,SIZE,&MM[base][0],2,dma02);
set_dma(dma02,ctrl1,(CPUbuffer+1),SIZE,SIZE,&MM[base][1],2,dma03);
set_dma(dma03,ctrl3,&MM[base+2][0],1,size2,CPUbuffer,1,1);
*(dma0+3) = 0; *(dma0+6) = (int) dma0l; *dma0 =ctrl2;/* start DMA */

cfftc(DMAbuffer,SIZE,LOGSIZE);

~

1. DMA: — moves Re FFT row ii to off-chip RAM *
—moves Im FFT row ii to off-chip RAM *
— moves row(ii+2) to on—chip RAM *
2. CPU: FFT on row(ii+1) *
/

for (i=1;i<q-2;i++,ii++) {
WAIT_DMA(dmao0);

*(dma03+1) = (int)&MMI[ii+2][0]; *(dma03+4) = (int) DMAbuffer;
*(dma01+1) = (int) DMAbuffer; *(dma01+4) = (int)&MMI[ii][O];
*(dma02+1) = (int)DMAbuffer+1; *(dma02+4) = (int)&MMIii][1];
*(dma0+3) = 0; *(dma0+6) = (int) dma0l; *dma0 = ctrl2; /* start DMA */

cfftc(CPUbuffer,SIZE,LOGSIZE); /* work in current row */
SWAP (CPUbuffer,DMAbuffer); /* switch buffers
}

*/

*
*/
*

*

241

1. DMA: - moves Re FFT(row(base+qg-2)) to off-chip RAM *
— moves Im FFT(row(base+qg-2)) to off-chip RAM *
2. CPU: —FFT on last row : row(base+g-1) *
— moves FFT last row to off-chip RAM *

WAIT_DMA(dma0);

*(dma01+1) = (int)DMAbuffer ; *(dma01+4) = (int)&MMIii][O];

*(dma02+1) = (int) DMAbuffer+1 7 *(dma02+4) = (int)&MMIii][1];

*dma02 = (int)ctrlO;

*(dma0+3) =0 ; *(dma0+6) = (int) dma01l; *dma0 = ctrl2; /* start DMA*/

cfftc(CPUbuffer,SIZE,LOGSIZE); [* fft on last row */
cmoveb(CPUbuffer,&MM]ii+1][0],SIZE,2,SIZE);

/ FFT on columns /

CPUbuffer= (float *) BLOCKO;
DMAbuffer= (float *) BLOCK1;
WAIT_DMA(dma0);

syncount(col synch_p,2*P); /* row/column synchronization */
/
1. DMA: - moves Re column (base+1) to on—chip RAM *
— moves Im column (base+1) to on—chip RAM *
2. CPU: —moves column (base+0) to on—chip RAM *
— FFT on column (base+0) *
/
ii = 2*base;

set_dma(dma03,ctrl2,&MM[0][ii+2],size2,SIZE,DMAbuffer,2,dma04);
set_dma(dma04,ctrl3,&MM[0][ii+3],size2,SIZE,(DMAbuffer+1),2,2);
*(dma0+3) = 0; *(dma0+6) = (int) dma03; *dmal = ctrl2;
cmove(&MM[Q][ii], CPUbuffer,size2,2,SIZE);
cfftc(CPUbuffer,SIZE,LOGSIZE);

1. DMA: —moves Re FFT column (ii) to off-chip RAM *
— moves Im FFT column (ii) to off-chip RAM *
— moves Re column (ii+2) to on—chip RAM *
— moves Im column (ii+2) to on—chip RAM *
2. CPU: —FFT on column (ii+1) *

*(dma02+5) = *(dma01+5) = (int)size2; /* offset */
*dma02 = (int)ctrll;

for (i=0;i<q2—4;i+=2,ii+=2) {

SWAP (CPUbuffer,DMAbuffer);
WAIT_DMA(dma0);

*(dma01+1) = (int)DMAbuffer; *(dma01+4) = (int)&MMI[O][i];
*(dma02+1) = (int)DMAbuffer+1; *(dma02+4) = (int)&MM[O][ii+1];
*(dma03+1) = (int)&MM[0][ii+4]; *(dma03+4) = (int)DMAbuffer;
*(dma04+1) = (int)&MM[O0][ii+5]; *(dma04+4) = (int)DMAbuffer+1,;

242

*(dma0+3) = 0; *(dma0+6) = (int) dma0l; *dma0 = ctrl2;

cfftc(CPUbuffer,SIZE,LOGSIZE); /* work in current column */
}
/
1. DMA: — moves Re FFT column (base+qg-2) to off-chip RAM *
—moves Im FFT column (base+qg-2) to off-chip RAM *
2. CPU: — FFT on last column (base+g-1) *
—moves FFT (last column) to off-chip RAM *

WAIT_DMA(dmao0);

*(dma01+1) = (int)CPUbuffer; *(dma01+4) = (int)&MMIO][ii];
*(dma02+1) = (int)CPUbuffer+1; *(dma02+4) = (int)&MM[O][ii+1];
*(dma02) = ctrl0;

*(dma0+3) = 0; *(dma0+6) = (int) dma0l1; *dma0 = ctrl2;

cfftc(DMADbuffer,SIZE,LOGSIZE); /* fft on last column */
cmoveb(DMADbuffer,&MM[O][ii+2],SIZE,size2,SIZE);

WAIT_DMA(dmao0);

tcomp= time_read(0); /* Optional: Benchmarking (timer) */
t2:;
} I*main*/

SHBC.CMD

shb.obj
input.obj
sintab.obj
synch.obj

-

—stack 0x0100
—Irts40.lib
—lprts40r.lib
—Imylib.lib
—m shbc.map
—0 shbc.out

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY

{
ROM: org = 0x0 len = 0x1000
BUFO: org = 0x002ff800 len = 0x0200 /*b uffer in onchip RAM blockO */
BUF1: org = 0x002ffc00 len = 0x0200 /* buffer in onchip RMA block1 */
RAMO: org = 0x002ffa00 len = 0x0200 /* on—chip RAM block 0 */
RAM1: org = 0x002ffe00 len = 0x0200 /* on—chip RAM block 1 */
LM: org = 0x40000000 len = 0x10000 /* local memory */
GM: org = 0x80000000 len = 0x20000 /* global memory */

}

I* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

243

SECTIONS

{

text: 4 > LM

cinitt {3 > RAM1 /* initialization tables */

.stack: 4 > RAM1 /* system stack

.bss : 3 > RAM1

.data: 3 > RAM1 [* Sine table

INPUT: 4 > GM /* Input matrix

SYNCH: 4 > GM /* Synchronization counter
}

244

B.4. SHB.ASM: Double-Buffered Implementation ('C40 Assembly Program)

SHB.ASM

E I R I R I I R

SHB.ASM : TMS320C40 complex 2D—FFT shared—memory program
(Double—buffered version)

Routines used: cfft.asm (radix—2 complex FFT)

Requirements: Number of processors = P >0
Rows/columns per processor = Q >= 4

To run:

asm30 —v40 —g —s shb.asm

asm30 —v40 —g —s spinput.asm

asm30 —v40 —g —s input.asm

asm30 —v40 —g —s sintab.asm

asm30 —v40 —g —s synch.asm

asm30 —v40 —g —s 0.asm

asm30 —v40 —g —s 1.asm

Ink30 shb.cmd 0.0bj —o a0.out (program for processor 0)
Ink30 shb.cmd 1.0bj —0 al.out (program for processor 1)

_STACK

.global N ; FFT SIZE

.global P ; NUMBER OF PROCESSORS

.global Q ; ROWS/COLUMNS PER PROCESSOR
.global MYNODE ; PROCESSOR ID

.global _MATRIX ; MATRIX ADDRESS

.global _colsynch ; SYNCHRONIZATION COUNTER

.global CFFT ; COMPLEX 1D-FFT SUBROUTINE
.global C2DFFT ; ENTRY POINT FOR EXECUTION
.global _syncount ; SYNCHRONIZATION ROUTINE

.usect "STACK", 10h ; STACK DEFINITION

* DMA AUTOINITIALIZATION VALUES

DMAO1

DMAO02

DMAO3

DMAO04
FFTSIZE
PROC
NROWS
MYID
MATR
SYNCH
STACK
BLOCKO
BLOCK1

.sect "DMA_AUTOINI” ; DMA AUTOINITIALIZATION VALUES
.space 6
.word DMAO02
.space 6
.word DMAO3
.Space 6
.word DMAO04
.space 6 .text
.word N
.word P
.word Q
.word MYNODE
.word _MATRIX
.word _colsynch
.word _STACK ; STACK ADDRESS
.word 002FF800H ; RAM BLOCK 0
.word 002FFCOOH ; RAM BLOCK 1

245

o(I+1)

DMAO .word 001000A0H ; ADDRESS OF DMAO
CTRLO .word 00C41004H ; NO AUTOINITIALIZATION, DMA INT., BITREV
CTRL1 .word 00C01008H ; AUTOINITIALIZATION, NO DMA INT., BITREV
CTRL2 .word 00C00008H ; AUTOINITIALIZATION, NO DMA INT.
CTRL3 .word 00C40004H ; NO AUTOINITIALIZATION, DMA INT.
P04 .word DMAO04 ; POINTER TO REGISTER VALUES (DMA04)
P03 .word DMAO03 ; POINTER TO REGISTER VALUES (DMAO03)
P02 .word DMAO02 ; POINTER TO REGISTER VALUES (DMAO02)
PO1 .word DMAO1 ; POINTER TO REGISTER VALUES (DMAO01)
MASK .word 02000000H ; 1 IN DMAINTO
TIMER .word 0100020H ; TIMER 0 ADDRESS (BENCHMARKING)
C2DFFT LDP FFTSIZE ; LOAD DATA PAGE POINTER
LDI @STACK,SP ; INITIALIZE THE STACK POINTER
LDI @SYNCH,AR2 ; OPTIONAL: COMMON START (BENCHMARKING)
LDI @PROC,R2 ; WAIT UNTIL COUNTER =P
tO: CALL _syncount
LDI @TIMER,AR2 ; OPTIONAL: BENCHMARKING (TIME_START)
STIK -1,*+AR2(8)
LDI 961,RO
STI RO,*AR2
OR 1800h,ST ; ENABLE CACHE
LDI @FFTSIZE,AR3 ; AR3 =N = FFT SIZE
LDI @MYID,RO
LDI @NROWS,AR5 ; AR5 = Q = ROW COUNTER
MPYI AR5,R0 ; RO = Q*MYNODE
MPYI AR3,RO ; RO = N*Q*MYNODE
LSH 1,R0 ; RO = 2*N*Q*MYNODE
LDI @MATR,AR7
ADDI RO,AR7 ; MATRIX POINTER = &MATRIX[2*Q*MYNODE][0]
LDI @BLOCK1,R7 ; POINTER TO DMA BUFFER
LDI @BLOCKO0,AR6 ; POINTER TO FFT BUFFER
* CPU MOVES ROW 0 *
SUBI3 2,AR3,RC ; RC=N-2
LDI AR7,ARO ; SOURCE
RPTBD LOOP1
LDI AR6,AR1 ; DESTINATION
LDI 2,IR1
LDF *+ARO(1),RO ; RO=X () IM
* LOOP
LDF *ARO++(IR1),R1 ;X o(l) RE&POINTS TO X
Il STF RO, *+AR1(1) ; STORE X o(l) IM
LOOP1 LDF *+AR0(1),RO ; RO=X o(I+1) IM
Il STF R1,*AR1++(IR1) ; STORE X o() RE

* STORE LAST VALUE

LDI @P02,AR2

LDF *ARO++(IR1),R1
I STF RO,*+AR1(1)

STF R1*AR1

246

: POINTS DMA REGISTER
{LOAD X o(N-1) RE
:STOREX o(N-1) IM
: STORE X (N-1) RE

*

* SET PARAMETERS FOR DMA AUTOINITIALIZATION VALUES THAT ARE FIXED

*

LDI
LDI
LDI
STI
STI
STI
STI
STI
STI
LSH3
STIK
STIK
LDI
STI
LDI
STIK
SUBI
STI
STI
STIK

@P03,AR1
@PO1,AR4
@CTRL1,RO
RO,*AR2
AR3,*+AR2(2)
RO,*AR4
AR3,*+AR4(2)
AR3,*+AR2(3)
AR3,*+AR4(3)
1,AR3,RO
2H,*+AR2(5)
2H,*+AR4(5)
@CTRL3,R2
R2,*AR1
@DMAO,AR2
1H,*+AR1(2)
3,AR5
RO,*+AR1(3)
ARO,*+AR2(1)
1H,*+AR1(5)

; POINTS DMA REGISTER

; SOURCE INDEX

; SOURCE INDEX
; COUNTER
; COUNTER
; RO=2*N
; DESTINATION INDEX
; DESTINATION INDEX

: POINTS DMA REGISTER
: SOURCE INDEX
: AR5=Q-3 : (Q—2) DMA TRANSFERS
; COUNTER
: SOURCE
: DESTINATION INDEX

CPU : FFT ON ROW 0

*

* DMA : BEGINS TO TRANSFER ROW1 *
STIK 1H,*+AR2(2) ; SOURCE INDEX
STI RO,*+AR2(3) ; COUNTER=2N
LAJ CFFT ; FFT ON ROW 0
STI R7,*+AR2(4) ; DESTINATION
STIK 1H,*+AR2(5) ; DESTINATION INDEX
STI R2,*AR2

* FFT ON ROWS *
LDI @P02,AR1
LDI @PO01,ARO
LSH3 1,AR3,R0

LOOP2 TSTB @MASK,IIF
BZAT LOOP2

* DMAO2: BIT-REVERSED TRANSFER OF LAST RESULT (Im)

ADDI
STI
ADDI
STI

1H,AR6,R1
R1*+AR1(1)
1H,AR7,R1

R1*+AR1(4)

; SOURCE

; DST

* DMAOL: BIT-REVERSED TRANSFER OF LAST RESULT (Re)

STI
STI

AR6,*+AR0(1)
AR7,*+AR0(4)

; SOURCE
; DST

247

* DMAO3: TRANSFER NEXT ROW

LDI @P03,AR1

ADDI RO,AR7

ADDI AR7,RO

STI RO,*+AR1(1)

AND OH,IIF

STI ARG, *+AR1(4)

LDI @DMAO,AR1L

LDI R7,R2

LDI AR6,R7

STIK 0,*+AR1(3)

STI ARO,*+AR1(6)
* FFT ON CURRENT ROW

LAJ CFFT

LDI R2,AR6

LDI @CTRL2,RO

ST RO,*AR1

DBUD ARS5,LOOP2

LDI @P02,AR1

LDI @PO1,AR0

LSH3 1,AR3,RO

; DMAO

; SOURCE: NEXT ROW
; CLEAR FLAG
; DESTINATION:
; EXCHANGE BUFFER POINTERS

; R7: POINTER FOR NEXT DMA
; TEMPORAL FIX

: AR6: POINTER FOR NEXT FFT
: START (DMA)

; DMAO

* DMA: — TRANSFERS BACK RESULT (ROW N-2). BIT-REVERSED

*

* CPU: — FFT ON LAST ROW (ROW N-1)

* —TRANSFERS BACK FFT OF LAST ROW (ROW N-1)

LDI @PO01,AR2
LDI @P02,AR1

B2 TSTB @MASK,IIF
BZAT B2

; DMAO1
; DMAO2

* DMAO2: BIT-REVERSED TRANSFER OF LAST RESULT (Im)

; SOURCE
; DST

; CONTROL REGISTER

* DMAO1: BIT-REVERSED TRANSFER OF LAST RESULT (ROW N-2: Re)

ADDI 1H,AR6,R0

STI RO,*+AR1(1)

ADDI 1H,AR7,RO

STI RO,*+AR1(4)

LDI @CTRLO,RO

STl RO,*AR1

STI ARG, *+AR2(1)

STI AR7,*+AR2(4)

AND OH,IIF

LSH 1,AR3,R0

ADDI RO,AR7

LDI @DMAO,AR0

LDI R7,R2

LDI AR6,R7

STIK 0,*+AR0(3)

ST AR2,*+AR0(6)
* FFT ON LAST ROW

LAJ CFFT

LDI R2,AR6

LDI @CTRL2,RO

STI RO,*ARO

248

; SOURCE
; DST
; CLEAR FLAG

; AR7 POINTS TO MATRIX (LAST ROW)
; GIVE THE START
; EXCHANGE BUFFER POINTERS
; R7: POINTER FOR NEXT DMA
; COUNTER =0
; LINK POINTER = DMAO1

; ARG: POINTER FOR NEXT FFT

: START (DMA)

* CPU TRANSFERS FFT OF LAST ROW TO OFF-CHIP RAM

SUBI3
LDI

LDI
RPTBD
LDI

LDI
LDF

*LOOP

LDF
1 STF
B66 LDF
1 STF

2,AR3,RC
ARG6,ARO
AR7,AR1
B66
AR3,IR0
2,IR1
*+AR0(1),RO

*ARO++(IR0)B,R1
RO, *+AR1(1)

*+AR0(1),R0O
R1,*AR1++(IR1)

* STORE LAST VALUE

; RC=N-2
; SOURCE
; DESTINATION

: RO= X(I) IM

; X(I) RE & POINTS TO X(I+1)
: STORE X(I) IM

; RO=X(1+1) IM
: STORE X(I) RE

: LOAD X(N-1) RE

: STORE X(N-1) RE

; ROW/COLUMN SYNCHRONIZATION

; OPTIONAL: NOT NEEDED IF COMMON START
; IS NOT REQUIRED

LDF *ARO++(IR0)B,R1
Il STF RO,*+AR1(1) ; STORE X(N-1) IM
STF R1,*AR1
* FFT ON COLUMNS
WAIT TSTB @MASK,IIF
BZAT WAIT
LDI @SYNCH,AR2
LDI @PROC,R2
NOP
LSH 1,R2
AND 0,IIF
t1: CALL _syncount

* SET AUTOINITIALIZATION VALUES

LDI
LDI
LDI
LDI
LDI
LSH
ST
ST

I STI
STI
STI
LDI
LDI
STI

I STI
STI
STI
STIK
STIK
STI

@PO1,AR0
@P02,AR1
@P03,AR2
@P04,AR4
@CTRL1,R4
1,AR3,R0
R4,*AR1
RO,*+ARO(IR0)
RO,*+AR1(IR0)
RO,*+AR2(2)
RO,*+AR4(2)
@CTRL2,RO
@CTRL3,R1
RO,*AR2
R1,*AR4
AR3,*+AR2(3)
AR3,*+AR4(3)
2,*+AR2(IR0)
2,*+AR4(IR0)
AR4,*+AR2(6)

; DMAO1

; DMAQ2

: DMAO3

; DMAO4 LDI 5,IR0

; SET DMAO2 AND DMAO1 NEW VALUES

: SET DMAO3 AND DMAO4 VALUES
: (SRC INDEX)

: (CTRL)
: (COUNTER)
: (DST INDEX)

: (LINK POINTER)

249

* DMA : — TRANSFER COLUMN 1 TO ON-CHIP RAM (BLOCK1)

LDI @BLOCKO,AR6
LDI @BLOCK1,R7
LDI @MYID,RO
LDI @NROWS, AR5 . AR5 = Q = COLUMN COUNTER
MPYI AR5,RO : RO = Q*MYNODE
LSH 1,R0 : RO = 2*Q*MYNODE
LDI @MATR,AR7
ADDI RO,AR7 . MATRIX POINTER = &MATRIX[2*Q*MYNODE][0]
LDI @BLOCK1,R7 : POINTER TO DMA BUFFER
LDI @BLOCKO,AR6 : POINTER TO FFT BUFFER
ADDI 2,AR7,R0
ADDI 1,RO,R1
ST RO,*+AR2(1) : SRC ADDRESS (Re PART)
I STI R1,*+AR4(1) : SRC ADDRESS (Im PART)
STI R7 *+AR2(4) . DST ADDRESS (DMA_BUFFER)
ADDI 1,R7,RO
STI RO,*+AR4(4) : DST ADDRESS (DMA_BUFFER+1)
LDI @DMAO,AR0 : DMA START
STI AR2,*+AR0(6)
STIK 0,*+AR0(3)
LDI @CTRL2,R4
STI R4,*AR0O

* CPU : — TRANSFER COLUMN 0 TO ON-CHIP RAM (BLOCKO)

* — FFT ON COLUMN 0
SUBI3 2,AR3,RC RC=N-2
LDI AR7,ARO : SOURCE ADDRESS
LDI ARG6,AR1 : DESTINATION ADDRESS
RPTBD LOOP3
LSH3 1,AR3,IR1 : SOURCE OFFSET = 2*N
LDI 2,IRO : DESTINATION OFFSET
LDF *+AR0(1),RO : RO= X(I) IM
LDF *ARO++(IR1),R1 . X(I) RE & POINTS TO X(I+1)
I STF RO, *+AR1(1) : STORE X(I) IM
LOOP3 LDF *+AR0(1),RO RO=X(I1+1) IM
[STF R1,*AR1++(IR0) : STORE X(I) RE
LAJ CFFT
LDF *ARO,R1 . LOAD X(N-1) RE
NOP
STF RO,*+AR1(1) : STORE X(N-1) IM
I STF R1*AR1 : STORE X(N-1) RE
* DMA: — MOVES FFT COLUMN () (Re PART) TO OFF—CHIP RAM
* — MOVES FFT COLUMN (1) (Im PART) TO OFF-CHIP RAM
* — MOVES COLUMN (1+2) (Re PART) TO ON-CHIP RAM
* — MOVES COLUMN (1+2) (Im PART) TO ON~-CHIP RAM
*
*

CPU: — FFT ON COLUMN (I1+1)

250

LDI @P02,AR1 ; DMAO

LDI @PO01,ARO ; POL
SUBI 3,AR5 ; AR5=Q-3: (Q—2) DMA TRANSFERS
ADDI 1H,AR6,R0
B4 TSTB @MASK,IIF
BZAT B4

* DMAO2: BIT-REVERSED TRANSFER OF LAST RESULT (Im)

STI RO*+AR1(1) ; SOURCE
ADDI 1H,AR7,RO
ST RO*+AR1(4) ;DST

* DMAO1: BIT-REVERSED TRANSFER OF COLUMN (Re)
STI AR6,*+ARO(1) ; SOURCE
STI AR7*+AR0O(4) ;DST

* DMAO3: TRANSFER NEXT COLUMN (Re)
* DMAO4: TRANSFER NEXT COLUMN (Im)

LDI @P03,AR4 : ARO POINTS TO DMAO3

LDI @P04,AR2 : AR1 POINTS TO DMA04

ADDI 2,AR7 : RO: POINTS TO NEXT COLUMN
ADDI 2,AR7,R0

ST RO*+AR4(1) ; SOURCE: (RE)

AND OH,IIF : CLEAR FLAG

ST ARG6,*+AR4(4) ; DESTINATION: BLOCK1(RE)
ADDI 1,R0 : POINTS TO IMAGINARY PART
STI RO*+AR2(1) ; SOURCE: (IM)

ADDI 1,AR6,R1

STI R1*+AR2(4) ; DESTINATION: BLOCKO(IM)

LDI @DMAO,AR1L : GIVE THE START

LDI R7,R2

LDI ARG,R7 : R7: BLOCK1

STIK 0,*+AR1(3)

STI ARO,*+AR1(6)

* FFT ON CURRENT COLUMN

LAJ CFFT

LDI R2,AR6 ; AR6: POINTER FOR NEXT FFT
LDI @CTRL2,RO

STI RO,*AR1 ; START (DMA)

DBUD ARS5,B4

LDI @P02,AR1 ; DMAO

LDI @PO01,ARO ; DMAO

ADDI 1H,ARG6,R0

* DMA: TRANSFER LAST FFT RESULT
* CPU: FFT ON LAST COLUMN

LDI @P02,AR1 ; DMAO
BS TSTB @MASK,IIF
BZAT BS

251

* DMAO2: BIT-REVERSED TRANSFER OF LAST RESULT (Im)

ADDI 1H,AR6,R0
ST RO,*+AR1(1)
ADDI 1H,AR7,R0
STI RO,*+AR1(4)
LDI @PO1,ARO
LDI @CTRLO,RO
STI RO,*AR1

STI ARG, *+AR0(1)
STI AR7,*+AR0(4)
LDI @DMAO,ARL
ADDI 2,AR7

AND 0,lIF

STIK 0,*+AR1(3)
STI ARO,*+AR1(6)
LDI @CTRL2,RO
STI RO,*AR1

* FFT ON LAST COLUMN

LAJ CFFT

LDI R7,R2

LDI AR6,R7

LDI R2,AR6

SuBI3 2,AR3,RC

LDI AR6,ARO

LDI AR7,AR1

RPTBD B6

LD AR3,IR0

LSH3 1,AR3,IR1

LDF *+AR0(1),R0
*LOOP

LDF *ARO++(IR0)B,R1
I STF RO, *+AR1(1)
B6 LDF *+ARO(1),R0
I STF R1,*AR1++(IR1)

* STORE LAST VALUE

B7 TSTB @MASK,IIF

Bz B7

LDF *ARO++(IR0)B,R1
Il STF RO,*+AR1(1)

STF R1,*AR1

LDI @TIMER,AR2

LDI *+AR2(4),R0
t2 B t2

.end

252

; SOURCE
; DST
; PO1

; SOURCE
; DST

; GIVE THE START

: START (DMA)

; RC=N-2
; SOURCE
; DESTINATION

: RO= X(I) IM

: X(I) RE & POINTS TO X(1+1)

; STORE X(I) IM
; RO=X(1+1) IM
; STORE X(I) RE

: LOAD X(N-1) RE
: STORE X(N-1) IM

: STORE X(N-1) RE

; OPTIONAL: BENCHMARKING (TIME_READ)

; TCOMP = RO

SHB.CMD

input.obj
shb.obj
spinput.obj
sintab.obj
synch.obj
—m shb.map
—Imylib.lib

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

MEMORY
{
ROM: 0 = 0x00000000 | = 0x1000
BUFO: 0 = 0x002ff800 | = 0x200
RAMO: 0 = 0x002ffa00 1 = 0x200
BUF1: 0 = 0x002ffc00 | = 0x200
RAML1: 0 = 0x002ffe00 | = 0x200
LM: 0 = 0x40000000 | = 0x10000
GM: 0 = 0x80000000 | = 0x20000
}
SECTIONS
{
INPUT 4 > GM /* Input data */
text 4 > LM
.data {3 > RAM1 /* Sine table */
STACK {3 > RAM1
DMA_AUTOINI {3 > RAM1 /* DMA autoinit. values */
SYNCH {3 > GM /* Synchronization */
}

253

Appendix C: Parallel 2-D FFT (Distributed-Memory Version)

C.1. DIS1.C: Distributed-Memory Implementation (C Program) — DMA Used Only for
Interprocessor Communication

DIS1.C

DIS1.C: Parallel 2-dimensional complex FFT (Distributed—memory)
— single—buffered version
— DMA is used only for interprocessor communication

Requirements: P>0 Q>0
To run:

cl30 —v40 —g —mr —02 disl.c

asm30 —v40 sintab.asm

asm30 —v40 input0.asm

asm30 —v40 inputl.asm

Ink30 input0.0bj dis1.obj disc.cmd —o a0.out
Ink30 inputl.obj dis1.obj disc.cmd —o al.out

Notes: 1) Before running, initialize the my_node variable to the corresponding
value
using the 'C40 emulator or an assembly file.

2) Output: columnwise

#define SIZE 4 /* FFT size */
#define LOGSIZE 2 /* log (FFT size) */
#define P 2 /* number of processors */
#define Q SIZE/P /* rows/cols. per processor */
#define BLOCKO 0x002ff800 /* on—chip buffer 0 *
#define DMAO 0x001000a0 /* DMAO address */

#define SWAP(X,y) temp = *x; *x = *y ; *y = temp;
#define ~ WAIT_DMA(x) while ((0x03c00000 & *x)!=0x02800000)

extern void cfftc(), /* C—callable complex FFT */
cmove(), /* CPU complex move */
cmoveb(), /* CPU bit-reversed move */
exchange(), /* set DMA in split mode */
set_dma(); /* set DMA register values */
extern float MATRIX[Q][SIZE*2]; /* input matrix */
float *block0 = (float *)BLOCKO,
*MM[Q)], *ptr, temp;
int *dma0 = (int *)DMAO;
int my_node,
q =Q,
q2 =Q*2,
i,j,ii,i2,k1;

254

#if (P ==4)

int port [P][P]= {0,0,4,3,
3,0,0,4,
1,3,0,0,
0,1,3,0} */Connectivity matrix: processor i
is connected to processor j through
port[i][j]: system specific PPDS */
#else
int port[P][P] = {0,0,3,0);/* when P=2*/
#endif

struct NODE {

int id; /* dst_node ID*q2 */
int port; [* port number to which is connected */
int *dma; /* dma address attached to that port */

} dnode[P+1];

int tcomp;

/ /
main()

{
asm(” or 1800h,st”);

for (i=0;i<Q;i++) MMI[iI|=MATRIX]i]; /* accessing assembly variables */

/ FFT on rows /

tO:
time_start(0); /* benchmarking (C40 timer) */
cmove (&MMI0][0],block0,2,2,SIZE); /* move row 0 to on—chip RAM */
cfftc (block0,SIZE,LOGSIZE); /* FFT on row O */
cmoveb (block0,&MM[0][0],SIZE,2,SIZE); /* move back FFT(row 0) */
for (j=1;j<P;j++) { /* interprocessor comm. */
i= (my_node " j); /* destination node */
dnodel[jl.id = (i * g2); /* destination node * g2 */
dnodelj].port = portimy_node][i]; /[* port to be used */

dnode[j].dma = dma0 + (dnode[j].port <<4);
exchange (dnodelj].dma,dnode[j].port,&MM[0][dnodelj].id],q2);

}

for (i=l;i<q;++i) { /* loop over other rows */
cmove (&MM[i][0],block0,2,2,SIZE); /* move row i to on—chip RAM */
cfftc (block0,SIZE,LOGSIZE); /*FFT onrow i */
cmoveb (block0,&MM[i][0],SIZE,2,SIZE); /* move back FFT (row i) */

for (j=1;j<P;j++) { /* interprocessor comm. */
WAIT_DMA(dnode[j].dma); /* wait for DMA to finish */
exchange (dnodelj].dma,dnodel[j].port,&MM[i][dnode[j].id],q2);
}

}

255

/ FFT on columns

/

for (=1;j<P;j++) WAIT_DMA(dnode[j].dma); /* wait for DMASs to finish*/

t1:
for (i=0;i<(g-1);i++) {
ptr = &MMIi][i*2]; k1 = 2*(q—i);
for (j=0;j<P;j++,ptr +=02)
for (ii=2;ii<kd;ii+=2) {
SWAP((ptr+ii),(ptr+ii*SIZE));
SWAP((ptr+ii+1),(ptr+ii*SIZE+1));

}
cmove (&MM]Ji][0],block0,2,2,SIZE);

cfftc (block0,SIZE,LOGSIZE);
cmoveb (block0,&MM[i][0],SIZE,2,SIZE);

Y*for*/

cmove (&MM[g-1][0],block0,2,2,SIZE);

cfftc (block0,SIZE,LOGSIZE);

/* loop over (g—1) columns */

/* submatrices transposition */

/* exchange Re parts */

/* exchange Im parts */

/* FFT on column (i-1) */
/* FFT on last column */

cmoveb (block0,&MM[q-1][0],SIZE,2,SIZE);

tcomp =time_read(0);
t2:;
} *main*/

DISC.CMD

sintab.obj

—C

—stack 0x0040
—Irts40.lib
—lprts40r.lib
—Imylib.lib

—m disc.map

/* SPECIFY THE SYSTEM MEMORY MAP */

/* benchmarking

MEMORY
{
ROM: org = 0x00 len = 0x0800
BUFO: org = 0x002ff800 len = 0x0400 /* on—chip RAM block 0
RAM1: org = 0x002ffc00 len = 0x0400 /* on—chip RAM block 1
LM: org = 0x40000000 len = 0x10000 /* LOCAL MEMORY
GM: org = 0x80000000 len = 0x20000 /* GLOBAL MEMORY
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS

{
INPUT: {>LM
.text: {>LM
.cinit: {} > RAM1
.stack: {} > RAM1
.bss : {} > RAM1
.data: {} > RAM1

256

/* INPUT MATRIX

/* INITIALIZATION TABLES
/* SYSTEM STACK

* SINE TABLE

*/

*/

*
*/

*/

*
*

*

INPUTO.ASM

*
* INPUTO0.ASM : input matrix 2 x 4 (Distributed—memory program)for processor 0
* —number of processors in the system: 2
.global _MATRIX
.sect "INPUT”
_MATRIX
float 130.0,90.0 :[01[0]
float 66.0,230.0 :[o1[1]
.float 205.0,136.0 ;[0][2]
float 15.0,187.0 :[01[3]
float 150.0,164.0 ;[1][0]
float 222.0,44.0 Ja11]
float 95.0,243.0 11[2]
.float 80.0,60.0 ;[2113]
.end
INPUT1.ASM
*
* INPUT1.ASM : input matrix 2 x 4 (Distributed—memory program) for processor 1
* —number of processors in the system: 2
*
.global _MATRIX
.sect "INPUT”
_MATRIX

.float 97.0,36.0
float 215.0,191.0
.float 209.0,239.0
float 161.0,22.0
float 117.0,238.0
.float 203.0,44.0
float 104.0,187.0
float 195.0,177.0
.end

[2100]
1201
[212]
[21[3]
13101
3111
3l2]
131081

257

C.2. DIS2.C: Distributed-Memory Implementation (C Program) — DMA Used for
Interprocessor Communication and Matrix Transposition

DIS2.C

/

DIS2.C: Parallel 2—dimensional complex FFT (Distributed—memory)
— single-buffered version
— DMA is used for interprocessor communication and matrix
transposition

Requirements: P>0;Q>0

To run:

cl30 —v40 —g —mr —02 dis2.c

asm30 —v40 sintab.asm

asm30 —v40 input0.asm

asm30 —v40 inputl.asm

Ink30 input0.0bj dis2.obj disc.cmd —o a0.out

Ink30 inputl.obj dis2.obj disc.cmd —o al.out

Notes: 1) Before running, initialize the my_node variable to the corresponding value

using the 'C40 emulator or an assembly file.

2) Output: columnwise

#define SIZE 4 /* FFT size */
#define LOGSIZE 2 /* log (FFT size) */
#define P 2 /* number of processors */
#define Q SIZE/P [* rows/cols. per processor */
#define BLOCKO 0x002ff800 /* on—chip buffer 0 *
#define DMAO 0x001000a0 /* DMAO address */

#define SWAP(X,y) temp =*x; *x = *y ; *y = temp;
#define WAIT_DMA(x) while ((0x03c00000 & *x)!=0x02800000)

extern void cfftc(), /* C—callable complex FFT */
cmove(), /* CPU complex move */
cmoveb(), /* CPU bit-reversed move */
exchange(), /* set DMA in split mode */
set_dmay); /* set DMA register values */
extern float MATRIX[Q][SIZE*2]; [* input matrix */
int MEMI[35*P]; /* autoinitialization values:
5 set of different values
per processor (5*7) */

float *block0 = (float *)BLOCKO,
array[Q*2], *MMI[Q], *ptr, temp;

int *dmaO = (int *)DMAO,
*dmalP],
*mem = MEM,
ctrl2 = 0x00c00008, /* autoinit, TCC=0,DMA low pr. */
ctrl3 = 0x00c40004, /* no autoinit, TCC=1,DMA low pr. */
mask = 0x02000000,
*mp;

258

int my_node,

size2 = SIZE*2,
q=Q,
q2 = Q*2,
i,ii,j,i2,k1,k2;
#if P==4)
int port[P][P] ={ 0,0,4,3,
3,0,0,4,
1,3,0,0,
0,130} /¥ Connectivity matrix: processor i
is connected to processor j through
port[i][j]:system specific(PPDS) */
#else
int port[P][P] = { 0,0,3,0}; /*when P =2 */
#endif
struct NODE {
int id; /* will keep (destination node ID* g2) */
int port; /* port number to which dst node is connected */
int *dma; /* dma address to be used with port */
} dnode[P+1];
int tcomp;
/ /
main()
asm(” or 1800h,st”); /* cache enable */

for (i=0;i<Q;i++) MM[i]=MATRIX][i]; [* accessing assembly vars */

/********************** FFT On rOWS /

t0:

time_start(0); /* benchmarking */

cmove (&MM[0][0],block0,2,2,SIZE); /* move row 0 to on—chip RAM */

cfftc (block0,SIZE,LOGSIZE); /* FFT on row O */

cmoveb (block0,&MM[0][0],SIZE,2,SIZE); /* move back FFT(row 0) */

for (=L;j<P;j++) { /* interprocessor comm. */
i = (my_node "j); /* destination node */
dnode[jl.id = (i * g2); /* destination node * g2 */
dnode[j].port = portimy_node][i]; /* port to be used */
dnode[j].dma = dma0 + (dnode[j].port <<4); /* dma to be used */
exchange (dnodelj].dma,dnodelj].port,&MM[0][dnodel[j].id],q2);
}

for (i=1;i<q;++i) { /* loop over other rows */
cmove (&MM[i][0],block0,2,2,SIZE); /* move row i to on—chip RAM */
cfftc (block0,SIZE,LOGSIZE); /* FFT on row i */
cmoveb (block0,&MM[i][0],SIZE,2,SIZE); /* move back FFT (row i) */
for (j=1;j<P;j++) { /* interprocessor comm. */

WAIT_DMA(dnode[j].dma); /* wait for DMA to finish */

exchange (dnodelj].dma,dnodelj].port,&MM[i][dnode[j].id],q2);

259

/ FFT on columns /

for (=1;j<P;j++) WAIT_DMA(dnode[j].dma) I* wait for DMAs in split mode to
finish
t1: if (q==1) goto lastcol; /* no need for transposition */

ptr=&MM][0][0];

for (j=0;j<P;j++,ptr +=q2) [* transposition of row/col 0 */

for (i=2;ii<q2;ii+=2) {
SWAP((ptr+ii),(ptr+ii*SIZE)); /* Re part */
SWAP((ptr+ii+1),(ptr+ii*SIZE+1)); /* Im part */
}

/* DMAQO transposes column/row 1 :
[1]: row(Re,Im) —> array(Re,Im)

[2.a]: col(Re) —> row(Re) [2.b]: col(Im) —> row(Im)

[3.a]: array(Re) —> col(Re) [3.b]: array(Im) —> col(Im) */
mp = mem; ptr = &MM[1][2];

for (1=05j<(P-1);j++) {

set_dma(mp,ctrl2,ptr,1,(q2—-2),array,1,(mp+7));
set_dma((mp+7),ctrl2,ptr,size2,(g—1),ptr,2,(mp+14));
set_dma((mp+14),ctrl2,(ptr+1),size2,(g-1),(ptr+1),2,(mp+21));
set_dma((mp+21),ctrl2,array,2,(q—1),ptr,size2,(mp+28));
set_dma((mp+28),ctrl2,(array+1),2,(g—1),(ptr+1),size2,(mp+35));
mp += 35; ptr += g2;

}

set_dma(mp,ctrl2,ptr,1,(q2-2),array,1,(mp+7));
set_dma((mp+7),ctrl2,ptr,size2,(q—1),ptr,2,(mp+14));
set_dma((mp+14),ctrl2,(ptr+1),size2,(g-1),(ptr+1),2,(mp+21));
set_dma((mp+21),ctrl2,array,2,(g—1),ptr,size2,(mp+28));
set_dma((mp+28),ctrl3,(array+1),2,(q-1),(ptr+1),size2,0);
*(dma0+3) = 0; *(dma0+6) =(int)mem; *dma0=ctr|2;

cmove (&MM[0][0],block0,2,2,SIZE); /* move column O to on—chip */
cfftc(block0,SIZE,LOGSIZE); /* FFT on column O */
cmoveb (block0,&MM[0][0],SIZE,2,SIZE); /* move FFT column O off-chip */
for (i=2;i<g—1;i++) {

i2=2%i;

/* Check IIF register to see if DMAO

(unified mode) has finished */
asm("WAIT: TSTB @_mask,iif");
asm(”" BZAT WAIT");
asm(” ANDN @_mask;iif");

260

mp = mem; ptr = &MM([i][i2]; k1 = (g-i); k2 =q2—i2;
if (k1>1) {
for (j=0;j<P;j++) { /* DMA transposes row/column i */
*(mp+1) =*mp+8) =*(mp+11) =*(mp+25) = (int)ptr;
*(mp+15) = *(mp+18) = *(mp+32) = (int)(ptr+1) ;
[* counter
*(mp+10) = *(mp+17) = *(mp+24) = *(mp+31) =k1;
*(mp+3) = k2;
mp += 35; ptr += g2; /* points to next submatrix ~ */

}
*(dma0+3) = 0; *(dma0+6) = (intymem; *dmaO=ctrl2;

Yxif ¥l
cmove (&MM[i-1][0],block0,2,2,SIZE);
cfftc (block0,SIZE,LOGSIZE); /* FFT on column (i-1) */
cmoveb (block0,&MM[i-1][0],SIZE,2,SIZE);
Y for */
lastcol:

asm("WAIT2: TSTB @_mask;iif");
asm(” BZAT WAIT2");
asm(” ANDN @_mask,iif");

cmove (&MM[g-2][0],block0,2,2,SIZE);

cfftc (block0,SIZE,LOGSIZE); /* FFT on column (g-2) */
cmoveb (block0,&MM[q-2][0],SIZE,2,SIZE);

cmove (&MM[g-1][0],block0,2,2,SIZE);

cfftc (block0,SIZE,LOGSIZE); /* FFT on last column */
cmoveb (block0,&MM[g-1][0],SIZE,2,SIZE);

tcomp =time_read(0); /* Optional: Benchmarking */
t2:;

}* main */

*

261

C.3. DIS2.ASM: Distributed-Memory ('C40 Assembly Program) — DMA Used for
Interprocessor Communication and Matrix Transposition

DIS2.ASM

DIS2.ASM : TMS320C40 Parallel 2—dimensional complex FFT
— distributed—memory single—buffered version
— DMAs are used for interprocessor communication
and for matrix transposition

Routines used: cfft.asm (complex FFT)

Requirements : Number of processors =P > 1
Rows/columns per processor = Q >=4

To run:

asm30 —v40 —g —s dis2.asm

asm30 —v40 —g —s dpinput.asm

asm30 —v40 —g —s ssintab.asm

asm30 —v40 —g —s 0.asm

asm30 —v40 —g —s 1.asm

asm30 —v40 —g —s input0.asm

asm30 —v40 —g —s inputl.asm

Ink30 dis.cmd 0.0bj input0.obj —o a0.out
Ink30 dis.cmd 1.0bj inputl.obj —o al.out

[I I S R S I N T

/

.global N ; fft size
.global P ; number of processors
.global Q ; rows/columns per processor
.global MYNODE ; processor ID
.global _PORT ; port matrix address
.global _MATRIX ; input matrix address
.global _DMAMEM ; memory address for autoinitialization values
.global _DMALIST ; space reserved to store addresses of the

; DMAs used for interprocessor communication
.global _CTRLIST ; space for control register values

; for DMAs used for interprocessor comm.
.global _DSTQLIST ; space reserved to store (dst_node*q) values

; to determine the source address for each
; DMA interprocessor communication

.global _ARRAY ; buffer to be used in matrix transposition
; using DMA

.global CFFT ; 1d—fft subroutine

.global C2DFFT ; entry point for execution

_STACK .usect "STACK",10h
text

262

FFTSIZE .word N

PROC .word P
NROWS .word Q
MYID .word MYNODE
PORT .word _PORT
MATR .word MATRIX
BLOCKO .word 002FF800H ; ram block 0
STACK .word _STACK ; stack address
DMAO .word 001000a0H ; DMAO address
DMALIST .word _DMALIST
CTRLIST .word _CTRLIST
DSTQLIST .word _DSTQLIST
DMAMEM .word _DMAMEM ; pointer to autoinit. values in memory
SMASK .word 02000000H ; to check if DMA unified mode has finished
; using the IIF register
DMAMASK .word 03C00000H ; to check if DMA in split mode has finished
; using the start fields in the DMAs control
; register
SPLITD .word 02800000H
CTRL2 .word 00C00008H ; control register word: autoinit. , TCC =0
CTRL3 .word 00C40004H ; control register word: no autoinit.,, TCC = 1
CONTROL .word 03C040D4H ; control register word: split mode for
; interprocessor communication
ARRAY .word _ARRAY
PORTO .word 00000000H ; this values help to set DMA control registers
PORT1 .word 00008000H ; with the corresponding port values for the
PORT2 .word 00010000H ; port field
PORT3 .word 00018000H
PORT4 .word 00020000H
PORT5 .word 00028000H
PORTS .word PORTO
ENABLE .word 24924955H ; enable port interrupts to DMAs
TIMER .word 0100020h ; Timer 0 address (benchmarking)
C2DFFT LDP FFTSIZE ; load data page pointer
LDI 2,IR0 ; destination offset
LDI 2,IR1 ; source offset
LDI @STACK,SP ; initialize the stack pointer
to:
LDI @TIMER,AR2 ; Optional: benchmarking : timer start
STIK —1,*+AR2(8)
LDI 961,R0
STI RO,*AR2
OR 9800h,ST ; cache enable and set condition flag =1
; (to enable any primary register to modify
; condition flags)
LDI @FFTSIZE,AR3 ;ar3 = n = matrix size
LDI @NROWS,R7 ; r7 = n/p = g = rows/columns per processor
LDI @MATR,AR7 ; initialize matrix pointer
LDI @BLOCKO,AR6 ; ar6: pointer to the on—chip RAM block that

; contains the input data for FFT computation

263

FFT ON ROWS

kkkkkkkkkkkkkkkkkkkkkk

* CPU MOVES ROW 0 *

* TO ON-CHIP RAM

*kkkkkkkkkkkkkkkkkkkkk

SUBI3
RPTBD
LDI

LDI
LDF

LDF
Il STF
LOOPO LDF
Il STF

Fkkkkkkkkkkkkkkkkhkkkk

* FFT ON ROWO

Fkkkkkkkkkkkkkkkkhkkkk

LAJ
LDF
STF
STF

Fkkkkkkkkkkkkkkkkkkkkk

* CPU MOVES ROW 0

*

2,AR3,RC
LOOPO
AR7,ARO
ARG6,AR1
*+AR0(1),RO

*ARO++(IR1),R1
RO, *+AR1(1)

*+ARO0(1),RO
R1,*AR1++(IR0)

CFFT
*ARO,R1
RO,*+AR1(1)
R1,*AR1

*

* (BIT-REVERSED) TO *
* EXTERNAL MEMORY *

Fkkkkkkkkkkkkkkkkkkhkk

LD
LD
SUBI3
RPTBD
LD
LD
LDF
LDF

I STF

LOOP1 LDF

I STF
LDF

I STF
STF

264

AR6,ARO
AR7,AR1
2,AR3,RC
LOOP1
AR3,IR0
2,IR1
*+AR0(1),R0O
*ARO++(IR0)B,R1
RO,*+AR1(1)
*+AR0(1),R0O
R1,*AR1++(IR1)
*ARO++(IR0)B,R1
RO,*+AR1(1)
R1,*AR1++(IR1)

;rc=n-2

; source address =row 0 = & x(0)
; destination address
; RO = x(i) Im

; X(1) Re & points to x(i+1)
; store x(i) Im
; RO = x(i+1) Im
; store x(i) Re

; call 1d—fft routine (complex FFT)
; LOAD X(N-1) RE
: STORE X(N-1) IM
; STORE X(N-1) RE

; SOURCE
; DESTINATION

; SOURCE OFFSET FOR BIT-REVERSE =N

; DESTINATION OFFSET

Fkkkkkkkkkkkkkkkkkkkkk

* INTERPROCESSOR
* COMMUNICATION
* (DMA) *

Fokkokkokkokkkokkkkokkokkkkkk

*

*

LDI @DMALIST,AR4 ; keeps dma addresses
LDI @CTRLIST,AR5 ; keeps dma control registers
; according to port attached
LDI @DSTQLIST,AR6 ; keeps pointer equal to (dest_node* g2)
LDI @MYID,R4 ; my node—id
LDI @PROC,R3 ; number of processors
LDI @NROWS,R7 ;g =(N/P)
LSH 1,R7,R2 ;2= 2*%q
MPYI R3,R4,AR0 ; P*mynode
ADDI @PORT,ARO ; &port[mynode][0]
LDI @ENABLE,DIE ; enable port interrupts to all DMAs
SUBI 1,R3,IR0 ; j = loop counter = (P-1)
LOOP2
XOR IRO,R4,IR1 ; destination node = mynode " j
MPYI R2,IR1,R0 ; destination node * g2
STI RO,*+ARG6(IR0) ; DSTQLIST update
ADDI AR7,RO ; pointer to matrix location to transfer
LDI *+AR0O(IR1),AR2 ; port[mynode][dest_node]
MPYI 16,AR2,AR1
ADDI @DMAO,AR1 ; DMA address
STI AR1,*+AR4(IR0) ; DMALIST update
STI RO,*+AR1(1) ; src primary channel
STI RO,*+AR1(4) ; dst secondary channel
STI R2,*+AR1(3) ; counter primary channel
STI R2,*+AR1(7) ; counter secondary channel
ADDI @PORTS,AR2
LDI @CONTROL,R0
OR *AR2,R0 ; DMA control register
STI RO,*+AR5(IR0) ; CTRLIST update
SUBI 1,IR0
BNzD LOOP2
STIK 1,*+AR1(2) ; src index primary channel
STIK 1,*+AR1(5) ; src index secondary channel
STI RO,*AR1 ; DMA start
* (Q-1) ROWS
kkkkkkkkkkkkkkkkkkkkkk
* CPUMOVES ROW | *
* TO ON-CHIP RAM *
kkkkkkkkkkkkkkkkkkkkkk
LSH3 1,AR3,R0
LDI @BLOCKO0,AR6
ADDI RO,AR7 ; AR7 POINTS TO ROW 1
SUBI 2,R7,AR5 ; AR5 = Q-2
LDI AR7,ARO ; SOURCE
LDI 2,IR1
SUBI3 2,AR3,RC ; RC =N-2

265

LOOPR RPTBD LOOP3
LDI ARG6,AR1
LDI 2,IRO
LDF *+AR0(1),RO
LDF *ARO++(IR1),R1
I STF RO, *+AR1(1)
LOOP3 LDF *+AR0(1),RO
I STF R1,*AR1++(IR0)

Fkkkkkkkkkkkkkkkkkkhkk

* FFTONROWI *

Fkkkkkkkkkkkkkkkkhkkkk

LAJ CFFT
LDF *ARO,R1
STF RO,*+AR1(1)
STF R1,*AR1

*kkkkkkkkkkkkkkkkkkkkk

* CPUMOVES ROW | *
* (BIT-REVERSED) TO *
* EXTERNAL MEMORY *

*kkkkkkkkkkkkkkkkkkkkk

: DESTINATION
: DESTINATION OFFSET
RO = X(I) IM
: X(I) RE & POINTS TO X(1+1)
: STORE X(I) IM
RO = X(1+1) IM
: STORE X(I) RE

: CALL 1D-FFT (COMPLEX)
: LOAD X(N-1) RE
: STORE X(N-1) IM
: STORE X(N-1) RE

LDI ARG6,ARO : SOURCE
LDI AR7,AR1 : DESTINATION
SUBI3 2,AR3,RC
RPTBD LOOP4
LDI AR3,IR0 : SOURCE OFFSET FOR BIT-REVERSE = N
LDI 2,IR1 : DESTINATION OFFSET
LDF *+AR0(1),RO
LDF *AR0O++(IR0)B,R1
I STF RO,*+AR1(1)
LOOP4 LDF *+ARO(1),RO
I STF R1,*AR1++(IR1)
LDF *AR0O++(IR0)B,R1
I STF RO,*+AR1(1)
STF R1,*AR1++(IR1)

kkkkkkkkkkkkkkkkkkkkkk

* WAIT FOR DMAS *
* TOFINISH *

*kkkkkkkkkkkkkkkkkkkkk

* DMAS DONE
LDI @DMALIST,AR4 : POINTS TO DMALIST
LDI @PROC,R3 : R3 = NUM OF PROCESSORS
ADDI R3,AR4
SUBI 2,R3,RC
RPTBD LLP
LDI @SPLITD,RO
LDI @DMAMASK,R1
SUBI 1,AR4,ARO : ARO = POINTS TO DMA[0]
LDI *ARO—(1),AR2
AGAINP AND *AR2,R1,R4
XOR RO,R4 : =0 IF DMA FINISH
LLP BNZ AGAINP

266

Fkkkkkkkkkkkkkkkkkkkkk

* INTERPROCESSOR
* COMMUNICATION
* (DMA) *

Fokkokkokkokkkokkkkokkokkkkkk

LDI
LDI
LDI
LDI
LSH
SUBI

LOOP5 LDI
LDI
ADDI
STI
STI
LDI
SUBI
BNZD
STI
STI
STI
LSH3
ADDI
DBUD
LDI
LDI
SUBI3

*

*

@DMALIST,ARO

@CTRLIST,AR1

@DSTQLIST,AR2

@NROWS,R2
1,R2

1,R3,IR0

*+ARO(IR0),AR4
*+AR2(IR0),R6
AR7,R6
R6,*+AR4(1)
R6,*+AR4(4)
*+AR1(IR0),RO
1,IR0
LOOP5
R2,*+AR4(3)
R2,*+AR4(7)
RO,*AR4
1,AR3,R0
RO,AR7
ARS5,LOOPR
AR7,ARO
2,IR1
2,AR3,RC

‘R2=Q2

: DMA ADDRESS
(DSTNODE*Q2)

; POINTS TO MATRIX LOCATION TO TRANSFER
; SOURCE PRIMARY CHANNEL
; SOURCE SECONDARY CHANNEL

; PRIMARY COUNTER = Q2

; SECONDARY COUNTER = Q2

; SOURCE
; SOURCE OFFSET

FFT ON COLUMNS

*kkkkkkkkkkkkkkkkkkkkk

* WAIT FOR DMAS *

* TOFINISH *

*hkkkkkkkkkkhkhkhkhkkhk

LDI
LDI
ADDI
SUBI
RPTBD
LDI
LDI
SUBI
LDI
AGAINN AND
XOR
LLN BNZ

@DMALIST,AR4
@PROC,R3
R3,AR4
2,R3,RC
LLN
@SPLITD,RO
@DMAMASK,R1
1,AR4,AR0
*ARO—(1),AR2
*AR2,R1,R4
RO,R4
AGAINN

; POINTS TO DMALIST

; R3 = NUM OF PROCESSORS

; ARO = POINTS TO DMA[0]

; =0 IF DMA FINISH

267

Fkkkkkkkkkkkkkkkkkkkkk

* CPU TRANSPOSITION *

* ROW 0 *

Fkkkkkkkkkkkkkkkkhkkkk

t1:

SUBI
LD
LSH3
MPY
ADDI
ADDI
SUBI3

LOOP10 RPTBD

SUBI

ADDI

ADDI

LDF

Il LDF
STF

I STF
LDF

I LDF

LOOP11 STF

I STF
DBUD
SUBI3
LD
LD

*kkkkkkkkkkkkkkkkkkkkk

1,R3,AR5
@MATR,AR7
1,ARS,IRO
AR5,R2,R4
AR7,R4
R2,R4
2,R7,RC

LOOP11
R2,R4
2,R4,AR0
IRO,R4,AR1
*+AR0(1),RO

*+AR1(1),R6
RO, *+AR1(1)

R6, *+AR0(1)
*ARO,RO

*AR1,R6

- INITIALIZE POINTER TO COL 0
IR0 = 2N
R4 = (P-1)*Q2
:R4=PTR

:RC = Q-2

;ARO =PTR + 2
; ARL = PTR + 2*SIZE
; RO =IM

; R6 =IM

RO, *AR1++(IR0)

R6, *ARO++(IR1)
AR5,LOOP10

2,R7,RC
@CTRL2,R3

@DMAMEM,AR4

* DMA TRANSPOSITION *

* ROW 1 *

*hkkkkkkkkhkhkhkhkhkhk

SUBI
LDI
LSH3
ADDI
ADDI
ADDI
STI
STIK
LDI
SUBI
RPTBD
SUBI
LDI
ADDI

* MP

STI
STIK
STI
STI
STIK
STI
STI

268

1,R7,R4
@DMAO,ARO
1,AR3,AR2
AR7,AR2,R6
2, R6
1,R6,R10
AR4,*+AR0(6)
0,*+AR0(3)
@PROC,RC

; AR4 = MP

JR4=Q-1

; AR2 = 2N

; R6 = M[1]
; R6 = M[1][2] = FI
s Fl+1

2,RC ; LOOP (P-1) TIMES

TROW1
2,R2,R8
@ARRAY,R5
1,R5,R9

R6,*+AR4(1)
1,+AR4(2)
R8,*+AR4(3)
RS, *+AR4(4)
1,*+AR4(5)
R3,*AR4++(7)
AR4,*~AR4(1)

:R8 = Q2-2

; ARRAY-1

; SOURCE

; SRC INDEX

; COUNTER

; ARRAY

; DST INDEX

; CTRL

; LINK POINTER

* MP+7

* MP+14

*MP+21

* MP+28

TROW1

* MP

* MP+7

STI
STI
STI
STI
STIK
STI
STI

STI
STI
STI
STI
STIK
STI
STI

STI
STIK
STI
STI
STI
STI
STI

STI
STIK
STI
STI
STI
STI
STI

ADDI
ADDI

STI
STIK
STI
STI
STIK
STI
STI

STI
STI
STI
STI
STIK
STI
STI

R6,*+AR4(1)
AR2,*+AR4(2)
R4,*+AR4(3)
R6,*+AR4(4)
2,*+ARA4(5)
R3,*AR4++(7)
AR4,*~AR4(1)

R10,*+AR4(1)
AR2,*+AR4(2)
R4, *+AR4(3)
R10,*+AR4(4)
2,*+AR4(5)
R3,*AR4++(7)
AR4,*~AR4(1)

R5,*+AR4(1)
2,*+AR4(2)
R4,*+AR4(3)
R6,*+AR4(4)
AR2,*+ARA(5)
R3,*AR4++(7)
AR4,*~AR4(1)

RY,*+AR4(1)
2,*+ARA(2)
R4, *+AR4(3)
R10,*+AR4(4)
AR2,*+ARA4(5)
R3,*AR4++(7)
AR4,*~AR4(1)

R2,R6
1,R6,R10

R6,*+AR4(1)
1,+AR4(2)
R8,*+AR4(3)
R5,*+AR4(4)
1,+AR4(5)
R3,*AR4++(7)
AR4,*~AR4(1)

R6,*+AR4(1)
AR2,*+AR4(2)
R4,*+AR4(3)
R6,*+AR4(4)
2,*+ARA(5)
R3,*AR4++(7)
AR4,*~AR4(1)

; SOURCE

; SRC INDEX

; COUNTER

; DST

; DST INDEX

; CTRL

; LINK POINTER

; SOURCE

; SRC INDEX

; COUNTER

; DST

; DST INDEX

; CTRL

; LINK POINTER

; SOURCE

; SRC INDEX

; COUNTER

; DST

; DST INDEX

; CTRL

; LINK POINTER

; SOURCE

; SRC INDEX

; COUNTER

; DST

; DST INDEX

; CTRL

; LINK POINTER

s FI+1

; SOURCE

; SRC INDEX

; COUNTER

; ARRAY

; DST INDEX

; CTRL

; LINK POINTER

; SOURCE

; SRC INDEX

; COUNTER

; DST

; DST INDEX

; CTRL

; LINK POINTER

269

* MP+14

STI R10,*+AR4(1) : SOURCE

STI AR2,*+AR4(2) : SRC INDEX

STI R4 *+ARA(3) : COUNTER

STI R10,*+ARA4(4) :DST

STIK 2,*+AR4(5) : DST INDEX

STI R3,*AR4++(7) : CTRL

STI AR4,*~AR4(1) : LINK POINTER
* MP+21

ST R5,*+AR4(1) : SOURCE

STIK 2,*+AR4(2) : SRC INDEX

STI R4,*+AR4(3) : COUNTER

STI R6,*+AR4(4) . DST

STI AR2,*+ARA(5) : DST INDEX

STI R3,*AR4++(7) ; CTRL

ST AR4, *~AR4(1) : LINK POINTER
* MP+28

ST R9,*+AR4(1) : SOURCE

STIK 2,*+AR4(2) : SRC INDEX

STI R4, *+AR4(3) : COUNTER

STI R10,*+ARA4(4) :DST

STI AR2,*+ARA4(5) : DST INDEX

LDI @CTRL3,R0O

STI RO,*AR4++(7) : CTRL

STI R3,*AR0 . START DMA

Fkkkkkkkkkkkkkkkkhkkkk

* CPUMOVES COLO *
* TO ON-CHIP RAM *

Fkkkkkkkkkkkkkkkkhkkkk

COLUMNO:
LDI AR7,ARO : SOURCE : AR7 : POINTS TO COL 0
LDI ARG6,AR1 : DESTINATION
SUBI3 2,AR3,RC ; RC=N-2
RPTBD LOOPS
LDI 2,IR1 : SOURCE OFFSET
LDI 2,IR0 : DESTINATION OFFSET
LDF *+AR0(1),RO : RO= X(I) IM
LDF *ARO++(IR1),R1 . X(I) RE & POINTS TO X(1+1)
I STF RO, *+AR1(1) : STORE X(I) IM
LOOP8 LDF *+AR0(1),RO S RO=X(1+1) IM
I STF R1,*AR1++(IR0) : STORE X(I) RE

kkkkkkkkkkkkkkkkkkkkkk

* FFTONCOLO *

*kkkkkkkkkkkkkkkkkkkkk

LAJ CFFT

LDF *ARO,R1 : LOAD X(N-1) RE
STF RO,*+AR1(1) : STORE X(N-1) IM
STF R1,*AR1 : STORE X(N-1) RE

270

Fkkkkkkkkkkkkkkkkkkkkk

* FFT MOVES COL. 0 *
* (BIT-REVERSED) TO *
* EXTERNAL MEMORY *

Fokkokkokkokkkokkkkokkokkkkkk

; SOURCE = BLOCKO
; DESTINATION = MATRIX
; RC=N-2

; SOURCE OFFSET = IR0 =N (BIT-REVERSE)
; DESTINATION OFFSET (COLUMNS) = IR1 = 2N

; AR7 POINTS TOCOL 1

LDI ARG6,ARO

LDI AR7,AR1

SUBI3 2,AR3,RC

RPTBD LOOP9

LDI AR3,IR0

LDI 2,IR1

LDF *+AR0(1),RO

LDF *ARO++(IR0)B,R1
I STF RO,*+AR1(1)
LOOP9 LDF *+AR0(1),RO
I STF R1,*AR1++(IR1)

LDF *ARO++(IR0)B,R1
I STF RO,*+AR1(1)

STF R1,*AR1++(IR1)

LSH3 1,AR3,R0

ADDI RO,AR7
* (Q-2) COLUMNS

CMPI 2,R7

BZ LASTCOL

*kkkkkkkkkkkkkkkkkkkkk

* WAIT FOR DMAS *
* TOFINISH *

*hkkkkkkkkkkkkhkhkhkhkx

LDI 2,AR5
WAIT TSTB @SMASK,IIF

BZAT WAIT

ANDN @SMASK,IIF

LDI @DMAO,AR0D

LSH3 1,R7,R2

ADDI RO,AR7,R6

LSH3 1,AR5,R0

ADDI RO,R6

LDI @DMAMEM, AR4

STI AR4,*+AR0(6)

STIK 0,+AR0(3)

; if Q=2 goto last column

;ARS = |

i R2=Q2
; R6 = &M[2]
;RO=12
; R6 = PTR

271

Fkkkkkkkkkkkkkkkkkkkkk

* TRANSPOSE ALL P

*

* SECTIONS OF ROW | *

Fkkkkkkkkkkkkkkkkhkkkk

LDI
SUBI
RPTBD
SUBI
LSH3
ADDI
STI
STI
STI
STI
STI
STI
STI
STI
STI
STI
STI
STI
ADDI
ADDI

TRANSP ADDI
LDI

STI

*hkkkkkkkkkkhkhkhkhkhk

@PROC,R0O
1,RO,RC
TRANSP
AR5,R7,R4
1,R4,R3
1,R6,R10
R6,*+AR4(1)
R6,*+AR4(8)
R6,*+AR4(11)
R6,*+AR4(25)
R10,*+AR4(15)
R10,*+AR4(18)
R10,*+AR4(32)
R4,*+AR4(10)
R4,*+AR4(17)
R4,*+AR4(24)
R4,*+AR4(31)
R3,*+AR4(3)
35,AR4
R2,R6

1,R6,R10
@CTRL2,RO
RO,*ARO

* CPUMOVES COL I *

* TO ON-CHIP RAM

Fkkkkkkkkkkkkkkkkkkkkk

SUBI3
LDI
LDI
RPTBD
LDI
LDI
LDF
LDF

I STF

LOOP18 LDF
It STF

Fkkkkkkkkkkkkkkkkkkkkk

* FFTONCOLI

Fkkkkkkkkkkkkkkkkkkkkk

LAJ
LDF
STF
STF

272

*

2,AR3,RC
AR7,ARO
AR6,AR1
LOOP18
2,IR1
2,IR0
*+AR0(1),R0O
*ARO++(IR1),R1
RO, *+AR1(1)

*+ARO(1),RO
R1,*AR1++(IR0)

CFFT
*ARO,R1
RO,*+AR1(1)
R1,*AR1

; LOOP P TIMES

i R4 = Q-

; R3=0Q2-12

; R10= PTR+1
; PTR

Q2-12
- MP+=35
: Fl+=Q2

; START DMA

; RC=N-2
; SOURCE
; DESTINATION

: SOURCE OFFSET = 2N

: DESTINATION OFFSET

: RO= X(I) IM

. X(I) RE & POINTS TO X(1+1)
: STORE X(I) IM

T RO=X(I+1) IM
: STORE X(I) RE

: LOAD X(N-1) RE
: STORE X(N-1) IM
: STORE X(N-1) RE

Fkkkkkkkkkkkkkkkkkkkkk

* FFT MOVES COL. | *
* (BIT-REVERSED) TO *
* EXTERNAL MEMORY *

Fokkokkokkokkkokkkkokkokkkkkk

; SOURCE OFFSET = IR0 =N (BIT-REVERSE)

LDI ARG6,ARO : SOURCE = BLOCKO
LDI AR7,AR1 : DESTINATION = MATRIX
SUBI3 2,AR3,RC ; RC=N-2
RPTBD LOOP19
LDI AR3,IR0
LDI 2,IR1 : DESTINATION OFFSET
LDF *+ARO(1),RO
LDF *ARO++(IR0)B,R1
I STF RO,*+AR1(1)
LOOP19 LDF *+AR0(1),RO
I STF R1,*AR1++(IR1)
LSH3 1,AR3,RO RO = 2*N
ADDI 1,AR5
CMPI R7,AR5
BND WAIT
LDF *AR0O++(IR0)B,R1
I STF RO,*+AR1(1)
STF R1,*AR1++(IR1)
ADDI RO,AR7
* LAST COLUMN *
WAIT2 TSTB @SMASK,IIF
BZAT WAIT2
ANDN @SMASK,IIF
LASTCOL:
* CPU MOVES COL (N-1)*
* TO ON-CHIP RAM *
kkkkkkkkkkkkkkkkkkkkkk
LDI AR7,ARO : SOURCE
LDI ARG,AR1 : DESTINATION
SUBI3 2,AR3,RC i RC=N-2
RPTBD LOOP28
LDI 2,IR1 : SOURCE OFFSET
LDI 2,IRO : DESTINATION OFFSET
LDF *+AR0(1),RO : RO= X(I) IM
LDF *ARO++(IR1),R1 . X(I) RE & POINTS TO X(1+1)
I STF RO, *+AR1(1) : STORE X(I) IM
LOOP28 LDF *+AR0O(1),RO T RO=X(I+1) IM
I STF R1,*AR1++(IR0) : STORE X(I) RE

273

Fkkkkkkkkkkkkkkkkkkkkk

* FFT ON COL (N-1) *

Fkkkkkkkkkkkkkkkkhkkkk

LAJ CFFT
LDF *ARO,R1 : LOAD X(N-1) RE
STF RO,*+AR1(1) : STORE X(N-1) IM
STF R1,*AR1 : STORE X(N-1) RE

Fkkkkkkkkkkkkkkkkhkhkk

* FFT MOVES COL.(N-1)*
* (BIT-REVERSED) TO *
* EXTERNAL MEMORY *

Fkkkkkkkkkkkkkkkkhkkkk

LDI AR6,ARO ; SOURCE = BLOCKO
LDI AR7,AR1 ; DESTINATION = MATRIX
SUBI3 2,AR3,RC ; RC=N-2
RPTBD LOOP29
LDI AR3,IR0 ; SOURCE OFFSET = IR0 =N (BIT-REVERSE)
LDI 2,IR1 ; DESTINATION OFFSET
LDF *+AR0(1),R0
LDF *ARO++(IR0)B,R1
Il STF RO,*+AR1(1)
LOOP29 LDF *+ARO0(1),R0
Il STF R1,*AR1++(IR1)
LDF *ARO++(IR0)B,R1
Il STF RO,*+AR1(1)
STF R1,*AR1++(IR1)
LDI @TIMER,AR2 ; OPTIONAL: BENCHMARKING (TIME_READ)
LDI *+AR2(4),R0 ; TCOMP = RO
t2 BU t2
.end

274

DPINPUT.ASM

*

* DPINPUT.ASM : Input file for distributed—memory program with parallel
* system information
*
.global N ; FFT size
.global M ; LOG2 FFT
.global P ; Number of processors
.global Q ; Rows per processor
.global _PORT
.global _ARRAY ; buffer to be used in matrix transposition
.global _DMAMEM ; memory address for autoinitialization values

.global _DMALIST
.global _CTRLIST
.global _DSTQLIST

N .set 16 ; FFT size

M .set 4 ; LOG FFT

P .set 2 ; humber of processors

Q .set N/P ; rows/columns per processor
text

* PORT .int 0,0,4,3 ; connectivity matrix: processor i is

* .int 3,0,0,4 ; connected to processor j through port

* int 1,3,0,0 ; PORT[[] (P =4)

* int 0,1,3,0

_PORT .int 0,0,3,0 ;P=2

_DMAMEM .space 35*P

_DMALIST .space P
_CTRLIST .space P
_DSTQLIST .space P
_ARRAY .space 2*Q

.end

275

SSINTAB.ASM

SSINTAB.ASM: Table with twiddle factors for a 16—point CFFT
and data input. File to be linked with the
source code for a 16—point, radix—2 FFT.

L

.global SINE
.data
SINE float 0.000000
float 0.382683
float 0.707107
float 0.923880
COSINE float 1.000000
float 0.923880
float 0.707107
float 0.382683
float —0.000000
float —0.382684
float -0.707107
float —0.923880
float —1.000000
float —0.923880
float -0.707107
float —0.382683
float —0.000000
float -0.382684
float -0.707107
float —0.923880
.end
DIS.CMD
dis2.obj
ssintab.obj
dpinput.obj
—Imylib.lib
—m dis.map
MEMORY
{
ROM: 0 = 0x00000000 | = 0x1000
RAMO: 0 = 0x002ff800 | = 0x400
RAML1: 0 = 0x002ffc00 | = 0x400
LM: 0 = 0x40000000 | = 0x10000
GM: 0 = 0x80000000 | = 0x20000
}
SECTIONS
{
INPUT { > LM
text { > LM
.data { > RAM1
STACK " > RAM1
}

276

Appendix D: Mylib.lib Routines

D.1. CFFT.ASM: Assembly Language FFT Routine
CFFT.ASM

CFFT.ASM : TMS320C40 COMPLEX, RADIX-2, DIF FFT
GENERIC PROGRAM FOR A LOOPED-CODE RADIX-2 FFT COMPUTATION IN 320C40

THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 111.
THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION
IS DONE IN-PLACE, BUT THE RESULT IS MOVED TO ANOTHER MEMORY
SECTION TO DEMONSTRATE THE BIT-REVERSED ADDRESSING.

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA SECTION.
THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE GENERIC
NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF THE FFT
N AND LOG2(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED
DURING LINKING.

INPUT PARAMETERS:
ARG6: INPUT ADDRESS (BLOCK 0/1 ON-CHIP)
R11: RETURN ADDRESS

REGISTERS MODIFIED: RO,R1,R2,R3,R4,R5,R6,R8,R9,R10

S I I R I N S I I R .

ARO0,AR1,AR2,AR4,AR5
IRO,IR1
RC
.globl CFFT ; Entry point for execution
.globl N . FFT size
.globl M ; LOG2(N)
.globl SINE ; Address of sine table
text
* INITIALIZE
FFTSIZ .word N
LOGFFT .word M
SINTAB .word SINE
CFFT PUSH DP
PUSH AR5
LDP FFTSIZ
LDI 1,R8 ; Initialize repeat counter of first loop
LDI 1,AR5 ; Initialize |E index (AR5=IE)
LDI @FFTSIZ,R10 ; R10=N
LSH3 -2,R10,IR1 ; IR1=N/4, pointer for SIN/COS table
LDI @LOGFFT,R9 ; R9 holds the remain stage number
LSH3 1,R10,IR0 ; IRO=2*N (because of real/imag)
LSH 1,R10
SUBI3 1,R8,RC ; RC should be one less than desired #
* OUTER LOOP
LOOP: RPTBD BLK1 ; Setup for first loop
LSH -1,R10 ; N2=N2/2
LDI AR6,ARO ; ARO points to X(I)
ADDI R10,AR0,AR2 ; AR2 points to X(L)

277

* FIRST LOOP

ADDF
SUBF
ADDF
SUBF
STF
I STF
BLK1 STF
I STF

*ARO,*AR2,R0

*AR2++,*AR0++,R1

*AR2,*AR0,R2
*AR2,*AR0,R3
R2,*ARO- —

R3,*AR2- —
RO,*ARO++(IR0)

R1,*AR2++(IR0)

; RO=X(1)+X(L)

; R1=X(1)-X(L)

s R2=Y()+Y(L)

;s R3=Y()-Y(L)

; Y()=R2 and...
; Y(L)=R3
; X(D=RO and...

; X(L)=R1 and ARO,2 = ARO,2 + 2*n

* |F THIS IS THE LAST STAGE, YOU ARE DONE

SUBI 1,R9
BZD END
* MAIN INNER LOOP
LDI 2,AR1
LDI @SINTAB,AR4
ADDI AR5,AR4
ADDI ARG6,AR1,ARO
SUBI 1,R8,RC
INLOP: RPTBD BLK2
ADDI R10,AR0,AR2
ADDI 2,AR1
LDF *AR4,R6

* SECOND LOOP
SUBF
SUBF
MPYF

I ADDF

MPYF

SUBF
MPYF
I ADDF
MPYF
I STF

ADDF
BLK2 STF
Il STF
CMPI
BNEAF
ADDI
ADDI
SUBI
LSH
BRD
LSH
LDI
SUBI3
BUD
POP
POP
NOP
.end

END

278

*AR2,*AR0,R2

+AR2,+AR0,R1

R2,R6,R0
+AR2,+AR0,R3

R1*+AR4(IR1),R3
R3,*+AR0
RO,R3,R4
R1,R6,R0
*AR2,*AR0,R3
R2,*+AR4(IR1),R3
R3,*AR0++(IR0)

RO,R3,R5
R5,*AR2++(IR0)
R4,*+AR2
R10,AR1
INLOP
ARS5,AR4
AR6,AR1,ARO
1,R8,RC
1,R8
LOOP
1,AR5
R10,IR0
1,R8,RC
R11
AR5
DP

; Init loop counter for inner loop
; Initialize 1A index (AR4=IA)
; IA=IA+IE; AR4 points to cosine
; (X(),Y(1)) pointer
; RC should be one less than desired #

; Setup for second loop
; (X(L),Y(L)) pointer

; R6=SIN

 R2=X(1)-X(L)
T R1=Y(1)-Y(L)
: RO=R2*SIN

T R3=Y(1)+Y(L)

FY(D=Y(D+Y(L)
: R4=R1*COS-R2*SIN
: RO=R1*SIN and...

T R3=X(1)+X(L)

:R3 =R2 * COS and..

; X(N=X()+X(L) and ARO=AR0+2*N1
; R5=R2*COS+R1*SIN

; X(L)=R2*COS+R1*SIN

: Y(L)=R1*COS-R2*SIN

; Loop back to the inner loop
; IASIA+IE; AR4 points to cosine
; (X(1),Y(1)) pointer

; Increment loop counter
; Next FFT stage (delayed)
; IE=2*E
; N1=N2

D.2. CFFTC.ASM: Assembly Language FFT Routine (C-Callable)

CFFTC.ASM

L N N . I N T R R N S

CFFTC.ASM : Complex radix—2 DIF 1-D FFT routine (C—callable)

Generic program for a lopped—code radix—2 FFT computation using the
TMS320C4x family. The computation is done in—place and the result

is bit-reversed. The program is taken from the Burrus and Parks

book, p. 111.

The twiddle factors are supplied in a table put in a .data section.
This data is included in a separate file to preserve the generic
nature of the program. For the same purpose, the size of the FFT
N and log2(N) are defined in a .globl directive and specified
during linking.

Calling conventions:

cfftc((float *)input,int fft_size,int logfft)

ar2r2r3
where input : Complex vector address
fft_size : Complex FFT size
logfft . logarithm (base 2) of FFT size
Registers modified: R0O,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10
ARO,AR1,AR6,AR4,AR5
IRO,IR1
RC,DP
.globl SINE ; Address of sine/cosine table
.globl _cfftc ; Entry point for execution
text
SINTAB .word SINE
_cfftc:
LDI SP,ARO
PUSH DP
PUSH R4 ; Save dedicated registers
PUSH RS
PUSH R6
PUSHF R6 ; upper 32 bits
PUSH AR4
PUSH AR5
PUSH AR6
PUSH R8
if .REGPARM == 0
LDI *~ARO(1),AR2 : points to X(I): INPUT
LDI *~AR0(2),R10 ; R10=N
LDI *~ARO(3),R9 ; R9 holds the remain stage number
.else
LDI R2,R10
LDI R3,R9
.endif

279

LDP
LDI
LSH3
LSH3
LDI
LSH
SUBI3

* Quter loop

LOOP:
RPTBD
LSH
LDI
ADDI

* First loop
ADDF
SUBF
ADDF
SUBF
STF

Il STF

BLK1 STF

Il STF

SINTAB
1,R8
1,R10,IRO
-2,R10,IR1
1,AR5
1,R10
1,R8,RC

BLK1
-1,R10
AR2,ARO
R10,AR0,AR6

*ARO,*AR6,R0
*AR6++,*ARO++ R1
*AR6,*AR0,R2
*AR6,*AR0,R3
R2,*AR0- —

R3,*AR6— —
RO,*AR0++(IR0)

R1,*ARG6++(IR0)

* |f this is the last stage, you are done

SUBI 1,R9
BzD END
* main inner loop
LDI 2,AR1
LDI @SINTAB,AR4
ADDI AR5,AR4
ADDI AR2,AR1,ARO
SUBI 1,R8,RC
INLOP:
RPTBD BLK2
ADDI R10,AR0,AR6
ADDI 2,AR1
LDF *AR4,R6

* Second loop
SUBF
SUBF
MPYF
1 ADDF
MPYF
1 STF
SUBF
MPYF
1 ADDF
MPYF
1 STF
ADDF

280

*AR6,*AR0,R2
+AR6,+AR0,R1
R2,R6,R0

+AR6,+AR0,R3
R1*+ARA(IR1),R3

R3,*+AR0
RO,R3,R4
R1,R6,RO0

*AR6,*AR0,R3
R2,*+AR4(IR1),R3

R3,*AR0++(IR0)
RO,R3,R5

; Initialize repeat counter of first loop
; IRO=2*N1 (because of real/imag)
; IR1=N/4, pointer for SIN/COS table
; Initialize 1E index (AR5=IE)

; RC should be one less than desired #

; Setup for first loop
; N2=N2/2
; ARO points to X(I)
; ARG points to X(L)

; RO=X(1)+X(L)
; RI=X(1)-X(L)
s R2=Y(I)+Y(L)
s R3=Y()-Y(L)
; Y()=R2 and...
; Y(L)=R3
; X()=RO and...

; X(L)=R1 and ARO,2 = ARO,2 + 2*n

; Init loop counter for inner loop
; Initialize 1A index (AR4=IA)
; IA=IA+IE; AR4 points to cosine
; (X(),Y (1)) pointer

; RC should be one less than desired #

; Setup for second loop
i (X(L),Y(L)) pointer

; R6=SIN

: R2=X(1)-X(L)
T R1=Y(1)-Y(L)
: RO=R2*SIN and...
T R3=Y()+Y(L)
:R3=R1*COS and ...
SY()=Y()+Y(L)
: R4=R1*COS-R2*SIN
: RO=R1*SIN and...
T R3=X(1)+X(L)
. R3 = R2 * COS and...

: X()=X()+X(L) and ARO=AR0+2*N1

; R5=R2*COS+R1*SIN

BLK2

END

STF
STF
CMPI
BNEAF
ADDI
ADDI
SUBI
LSH
BRD
LSH
LDI
SUBI3
POP
POP
POP
POP
POPF
POP
POP
POP
POP
RETS
.end

R5,*AR6++(IR0)
R4,*+AR6

R10,AR1

INLOP
ARS5,AR4
AR2,AR1,ARO
1,R8,RC

1,R8

LOOP

1,AR5
R10,IR0
1,R8,RC

RS
ARG
AR5

; X(L)=R2*COS+R1*SIN
. Y(L)=R1*COS—-R2*SIN

; Loop back to the inner loop
; IA=IA+IE; AR4 points to cosine
; (X(),Y (1) pointer

; Increment loop counter for next time
; Next FFT stage (delayed)
i IE=2*E
; N1=N2

; Restore the register values and return

281

D.3. CMOVE.ASM: Complex-Vector Move Routine
CMOVE.ASM

*
* CMOVE.ASM : TMS320C40 C—callable routine to move a complex float
* vector pointed by src, to an address pointed by dst.
*
* Calling conventions:
*
* void cmove ((float *)src,(float *)dst,int src_displ,int dst_displ,int length)
* ar2r2r3rcrs
*
* where src : Vector Source Address
* dst : Vector Destination Address
* src_displ : Source offset (real)
* dst_displ : Destination offset (real)
* length : Vector length (complex)
*
.global _cmove
_cmove:
Af .REGPARM ==0
LDI SP,ARO
LDI *~ARO(1),AR2 ; Source address
LDI *~ARO0(4),IR1 ; Destination index (real)
LDI *~ARO(5),RC ; Complex length
SUBI 2,RC ; RC=length-2
RPTBD CMOVE
LDI *~ARO0(2),AR1 ; Destination address
LDI *~ARO0(3),IR0 ; Source index (real)
LDF *+AR2(1),R0O
.else
LDI RC,IR1 ; destination index (real)
SUBI 2,RS,RC ; complex length -2
RPTBD CMOVE
LDI R2,AR1 ; source address
LDI R3,IR0 ; source index (real)
LDF *+AR2(1),R0
.endif
* loop
LDF *AR2++(IR0),R1
Il STF RO,*+AR1(1)

CMOVE LDF *+AR2(1),R0O

I STF R1,*AR1++(IR1)

POP ARO

BUD ARO

LDF *AR2++(IR0),R1
I STF RO,*+AR1(1)

STF R1,*AR1

NOP

.end

282

D.4. CMOVEB.ASM: Complex-Vector Bit-Reversed Move Routine

CMOVEB.ASM
* CMOVEB.ASM : TMS320C40 C—callable routine to bit-reversed move a complex
* float vector pointed by src, to an address pointed by dst.
* Calling conventions:
*
* void cmoveb ((float *)src,(float *)dst, int src_displ,int dst_displ,int length)*
* ar2r2r3rcrs
*
* where src - Vector Source Address
* dst : Vector Destination Address
* src_displ : Source offset (real)
* dst_displ : Destination offset (real)
* length : Vector length (complex)
*
.global _cmoveb
_cmoveb:
Af .REGPARM ==
LDI SP,ARO
LDI *~ARO0(1),AR2 ; Source address
LDI *~ARO0(4),IR1 ; Destination index (real)
LDI *~ARO(5),RC ; Complex length
SUBI 2,RC ; RC=length-2
RPTBD CMOVEB
LDI *~ARO0(2),AR1 ; Destination address
LDI *~ARO0(3),IR0 ; Source index (real)
LDF *+AR2(1),R0
.else
LDI RC,IR1 ; destination index (real)
SUBI 2,RS,RC ; complex length —2
RPTBD CMOVEB
LDI R2,AR1 ; source address
LDI R3,IR0 ; source index (real)
LDF *+AR2(1),RO
.endif
* loop
LDF *AR2++(IR0)B,R1
Il STF RO,*+AR1(1)
CMOVEB LDF *+AR2(1),RO
Il STF R1,*AR1++(IR1)
POP ARO
BUD ARO
LDF *AR2++(IR0)B,R1
It STF RO,*+AR1(1)
STF R1,*AR1
NOP
.end

283

D.5. SET_DMA.ASM: Routine to Set DMA Register Values

*
* SET_DMA.ASM : TMS320C30/'C40 C—callable routine to set DMA register values
*
* Calling conventions:
*
* void set_dma ((int *)dma, int ctrl, (float *)src, int src_index,
* int counter, (float *)dst, int dst_index, (int *)dma_link)
*
* where dma . DMA register address ©oar2
* ctrl . Control Register Toor2
* src : Source Address or3
* src_index : Source Address Index N (o
* counter : Transfer Count Toors
* dst . Destination Address Coore
* dst_index : Destination Address Index : stack
* dma_link : Link Pointer : stack
*

.global _set_dma

text
_set_dma:

LDI SP,ARO ; Points to top of stack

JAf .REGPARM ==

LDI *~ARO0(1),AR2 ; AR2 points to DMA registers

LDI *~ARO0(2),R2 ; Control register

LDI *~ARO0(3),R3 ; Source

LDI *~AR0(4),RC ; Source index

LDI *~ARO(5),RS ; Transfer counter

LDI *~ARO(6),RE ; Destination address

LDI *~ARO(7),R0O ; Destination index

LDI *~AR0(8),R1 ; Link pointer

.else

LDI *~ARO0(1),RO ; Destination index

LDI *~ARO0(2),R1 ; Link pointer

.endif

STI R3,*+AR2(1) ; source address

STI RC,*+AR2(2) ; source index

STI RS,*+AR2(3) ; counter

STI RE,*+AR2(4) ; destination address

POP ARO

BUD ARO

STI RO,*+AR2(5) ; destination index

STI R1,*+AR2(6) ; link pointer

STI R2,*AR2 ; control

.end

284

D.6. EXCHANGE.ASM: Routine for Interprocessor Communication

EXCHANGE.ASM

*

* EXCHANGE.ASM : TMS320C40 C—callable routine to exchange

* two floating point vectors pointed by "address” in

* each processor memory. This routine uses

* DMA in split mode with source/destination

* synchronization given by OCRDY/ICRDY respectively.
*

* Calling conventions:

*

* void exchange ((int *) dma, int comport, (float *)address, int length)

*

* where dma . DMA address cooar2
* comport : Comport number to be used or2

* address . Floating—point vector address : r3

* length : Vector length R (¢
*

* This routine requires that the communicating 'C4xs enter to the routine at
* approximately the same time. This can be guaranteed by using a system with a
* common reset or by using a system with a common reset or by using the PDM
* (part of the 'C4x emulator) when you start running the 2D-FFT application.
* For systems without this capability, use exch2.asm instead of this routine.
.global _exchange
text
CONTROL .word 03C040D4H ; DMA interrupt, R/W sync, split mode,
; CPU higher priority
PORTO .word 00000000H
PORT1 .word 00008000H
PORT2 .word 00010000H
PORT3 .word 00018000H
PORT4 .word 00020000H
PORTS5 .word 00028000H
PORTS .word PORTO
ENABLE .word 24924955H ; Enable interrupts to DMAS
_exchange:
LDI SP,ARO ; Points to top of stack
PUSH DP
i .REGPARM ==0
LDI *~ARO0(1),AR2 ; DMA address
LDI *~ARO0(2),R2 ; comport address
LDI *~ARO0(3),R3 ; Memory address
LDI *~AR0(4),RC ; Vector length
.endif
LDI R2,AR1
LDP CONTROL
STI R3,*+AR2(1) ; Source primary channel
STI RC,*+AR2(3) ; Primary channel counter
STI R3,*+AR2(4) ; Source secondary channel
LDI @CONTROL,R3

285

STIK 1H,*+AR2(2) ; Primary source index

STIK 1H,*+AR2(5) ; Secondary source index
ADDI @PORTS,AR1 ; Pointing to port to be used
STI RC,*+AR2(7) ; Secondary channel counter
OR *AR1,R3 ; Selecting port in DMA control reg.
STI R3,*AR2
LDI @ENABLE,DIE
POP DP
RETS
.end
EXCHANGEZ2.ASM

kkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkkhkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkk
*

* EXCHANGE2.ASM : TMS320C40 C—callable routine to exchange
* two floating point vectors pointed by "address” in

each processor memory. This routine uses

DMA in split mode with source/destination
synchronization given by OCRDY/ICRDY respectively.

Calling conventions:

void exchange ((int *) dma, int comport, (float *)address, int lenght)

where dma : DMA address car2
comport : Comport number to be used 112

address : Floating—point vector address : r3
lenght : Vector lenght (complex) rc

E I I S R R R B .

* * *kkkkkkkk * * * *kkkhkkkk

* This routine can be used in multiprocessing systems without a common start

kkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkk

.global _exchange

text
CONTROL .word 03C040D4H ; DMA interrupt, R/W synch, split mode,
; CPU higher priority
PORTO .word 00000000H
PORT1 .word 00008000H
PORT2 .word 00010000H
PORT3 .word 00018000H
PORT4 .word 00020000H
PORT5 .word 00028000H
PORTS .word PORTO
ENABLE .word 24924955H ; Enable interrupts to DMA’S
PORTADR .word 100040h ; RMP: 8/13/93 :modified for async parallel

; systems
_exchange:
PUSH DP

if .REGPARM ==

LDI SP,ARO ; Points to top of stack
LDI *~ARO0O(1),AR2 ; DMA address
LDI *~ARO0(2),R2 ; comport adress
LDI *~ARO(3),R3 ; Memory adress

286

LDI *~ARO0(4),RC ; Vector lenght
.endif
LDP CONTROL
*** RMP: 8/13/93 :modified for async parallel systems
MPYI 10h,R2,R0O ; This instructions synchronize the
ADDI @PORTADR,RO ; processors at both end of the comm ports
ADDI 1,R0,AR0 ; In systems where a common processor
ADDI 2,R0,AR1 ; start is not offered. This is done by
STI RO,*AR1 ; sending/recieving a dummy word.
LDI *ARO,RO
LDI R2,AR1
STI R3,*+AR2(1) ; Source primary channel
STI RC,*+AR2(3) ; Primary channel counter
STI R3,*+AR2(4) ; Source secundary channel
LDI @CONTROL,R3
STIK 1H,*+AR2(2) ; Primary source index
STIK 1H,*+AR2(5) ; Secondary source index
ADDI @PORTS,AR1 ; Pointing to port to be used
STI RC,*+AR2(7) ; Secondary channel counter
OR *AR1,R3 ; Selecting port in DMA control reg.
STI R3,*AR2
LDI @ENABLE,DIE
POP DP
RETS
.end

287

D.7. SYNCOUNT.ASM: Interprocessor Synchronization Routine
SYNCOUNT.ASM

syncount.asm : assembly language synchronization routine to provide
a global start for all the processors. Rotating priority
for shared-memory access should be selected. The
processors start with a cycle difference of maximum 3
instruction cycles, which for practical purposes is
acceptable. This routine is C—callable and uses register
for parameter passing.

L I

ECIE I

Calling conventions: void syncount((int *)counter,int value)
ar2 12

.global _syncount

text

_syncount:
if .REGPARM ==
LDI SP,AR1
LDI *~AR1(1),AR2
LDI *~AR1(2),R2
.endif
LDII *AR2,R1
ADDI 1,R1
CMPI R1,R2
STI R1,*AR2
BZ L1

AGAIN LDI *AR2,R1
CMPI R1,R2
BNZ AGAIN

L1 RETS
.end

288

Parallel DSP for Designing Adaptive
Filters

Daniel Chen
Digital Signal Processing — Semiconductor Group
Texas Instruments Incorporated

Reprinted with permission &r. Dobb’s Journal All rights reserved© 1992 M&T Publishing.

289

290

291

292

293

294

Transmission of Still and Moving
Images Over Narrowband Channels

Stefan Goss, Wilhelm Vogt, Rodolfo Mann Pelz, Dirk Lappe
Communication Research Institute
Robert Bosch GmbH

295

296

Overview

The transmission of pictures over radio channels can be of great benefit to:
e Public authorities, such as the police and emergency services,
* Public transportation, such as railways, airlines and ships,
* Private citizens

Radio networks have a narrow bandwidth and therefore require low transmission rates. Moreover, radio
channels are prone to interference, such as that caused by multipath propagation. This report describes
channels and transmission methods in existing networks and shows how, by applying complex algorithms
for coding images, you can develop a source codec on the basis of a multisignal processor system can be
with the aim of achieving a source data rate as low as 8 kbps.

Networks and Transmission Methods

Nonpublic Land Mobile Telecommunication Network

The existing Nonpublic Land Mobile Telecommunication Network (NPLMTN) is characterized by
narrow-band frequency modulation with a channel separation of 20 kHz in the 450-MHz region. For the
considered low data rate video and speech transmission, the existing network structure can be used through
application of available commercial equipment. For proper digital modulation methods with a constant
envelope, consider the well-known variety of continuous phase modulation types. In this context, Gaussian
minimum shift keying (GMSK) [1] is characterized by a relatively high bandwidth efficiency, which is
achieved with a pulse shaping filter with Gaussian characteristics. A data rate of 16 kbps can be attained
in this application for an ACI of —70 dB, which is a general requirement for single-channel-per-carrier land
mobile radio systems.

After the system inherent noncoherent demodulation (limiter + discriminator), a modified maximum
likelihood sequence estimation (MLSE) with the Viterbi Algorithm (VA) is performed to obtain the
transmitted data sequence. This method takes the effects of nonideal intermediate frequency filters at the
demodulator output into account.

Due to the underlying narrow-band transmission — in other words, the signal bandwidth is less than the

so called coherence bandwidth of the mobile channel (50-500 kHz) — the propagation system is

characterized by time-selective fading. The received signal equals the product of the transmitted signal and
a complex stochastic Gaussian process, which exhibits a Rayleigh or Rice distributed envelope and a
uniform distributed phase [2].

Public Switched Telephone Network (PSTN)

You can transmit video and speech in the analog telephone network through commercially available
modems with data rates up to 24 kbps (Codex 326 XFAST) in a synchronous mode. This high bandwidth
efficiency is achieved with trellis coded-ary QAM modulation [3]. The maximum likelihood detection

is performed with the VA.

An exact characterization of the underlying propagation medium is a difficult task because a typical
telephone channel cannot be defined. A simple model assumes a band-limited nonideal bandpass system
and additive white Gaussian noise (AWGN). The linear distortion of the transmitted signal results in
intersymbol interference (ISI), in which the error patterns are characterized by error bursts. Figure 1 depicts
the system developed for video and speech transmission in the PSTN and NPLMTN.

Other applications of video and speech transmission are the analog and digital cordless telephone systems
CT1 and DECT, and the analog and digital mobile radio telephone systems C and D (GSM) [4]. A current

297

field of research includes the future public land mobile telecommunication system (FPLMTS), or the
European version UMTS.

Forward Error Correction (FEC)

The effects of radio channels on data transmission can be compensated for to some extent through
application of FEC. Due to the limited resources (e.g., finite data rate), an efficient channel coding is a
primary goal. Furthermore, due to the different sensitivity of individual symbols or symbol groups in the
source coded data sequences (video, speech) to channel errors, you should devise an unequal error
protection. In general, you can do this with block codes, but the application of convolutional codes allows
ML decoding with soft decisions and channel state information. Rate compatible punctured convolutional
(RCPC) codes [5] support dynamic allocation of redundancy with one encoder and one decoder. In the case
of channels with memory, like the mobile channel, an additional interleaver and deinterleaver must be
considered. Figure 1 shows two TMS320C25 digital signal processors (DSPs) implementing the
corresponding algorithms for channel encoding.

Figure 1. Digital Transmission System

Video
¢ —» p»| DSP1 p| CAM l¢—»
Codec 'C25 Modem
8
3 Channel 8
£ Codec 5
i) c
= <
Speech DSP2 GMSK < :
—p
Codec q [¢ 'C25 < Modem
NPLMTN

298

Image Source Coding

A Hybrid Codec for Moving Pictures

The source codec for moving pictures in an ISDN environment is committed and standardized as an H.261
recommendation. The data rate is fixed with regard to one B-channel (64 kbps). For data rates between 8
and 16 kbps, more efficient algorithms are necessary. A hybrid source codec8ddyps is shown in

Figure 2. The following text describes this in detail and addresses the main differences with respect to the
H.261 codec.

Figure 2. Hybrid Codec forp x 8 kbps

EC1
CIF 8x8
TT 111
QCIF - - EC2 [
IDCT
M | Channel
Upr——»
Prediction X

Memory
A Pred. MV
%—-:x/ Coding EC3
GIBB
/f\—— EC4 |—o=
CTC

The input image format is QCIF (quarter common intermediate format) with a spatial resolutiorxof 180
144 pixels for the luminance signal (Y) and»@2 pixels for the color different components (U and V).

The temporal resolution is reduced form 50 Hz to 6.25 Hz (factor 8). These operations are carried out in
an additional preprocessing stage.

Like an ISDN codec, the hybrid codec is split into the motion estimation part and the coding stage of the
prediction error. In the example shown in Figure 2, the QCIF image is the input information for a block
generation stage that divides the input image into 396 blocks & |8ixels. In the next step, a motion
estimation (ME) for every block is performed by calculating a mean square error (MSE) between
luminance blocks of the input image (also called original image) and the last coded and decoded image
(prediction image). Every block of the original image is matched in a window ®f440pixels in the
prediction image. The window is centered with regard to the block position in the original image. For a
fixed number of dedicated positions in the window, the mean square error between the original and the
predicted block is computed. The result is the motion vector for the minimum of mean square errors.

For typical videophone applications, the size of moving objects (i. e., persons) is higher than the block size.
The minimization of the MSE per block leads to nhonhomogeneous vector fields inside objects. The
additional postprocessing stage (GIBB) smoothes the vector field with a model-based algorithm [6]. In this

299

case, the maximum probability of the moving direction of objects is computed, starting with the vectors
of the ME. This operation leads to a much more homogeneous vector field and to a subjectively better
reconstruction and motion compensation in the prediction memory on the coder and the decoder side.

Another advantage is the reduced number of bits for the differential coded motion vectors. This reduction
is greater than the additional bits required for coding the larger prediction error.

The coder control stage has the observed value of the bit consumption per frame. The necessary bits for
a set of attributes and the coded motion vectors are subtracted from the total number of bits per frame. The
remaining bits are used for coding the prediction errors of the blocks.

A DPCM Loop (differential pulse code modulation) performs the coding. The MSE for every block of the
original image is sorted and compared with a fixed threshold to obtain an intraframe/interframe decision.
The blocks with an MSE above this threshold are intraframe coded. As in an H.261 Codec, the block will
be transformed in the frequency domain by a DCT (discrete cosine transformation). A linear quantization
of the nonzero coefficients and a run-length coding of zero coefficients reduces the number of bits for the
underlying block.

Blocks with an MSE below the intraframe/interframe threshold are interframe coded. After the MVs and
the DCT information are transmitted, the remaining bits for this frame are divided by the computed amount
of bits per interframe blocks. This gives the number of blocks, which could be coded in this frame.

In contrast to the H.261 concept, when an interframe-DCT is implemented, the block differences are coded
in the time domain. This involves an adaptive quantization (AQ) and the coding of special structures (SC)
belonging to the block [7].

In a first step, the probability density function of the pixel difference inside the blocks is determined. Next,
a three-step symmetric quantizer is devised by computing the thresholds and the replacement values. The
three replacement values are transmitted to the decoder.

Every 8x 8 differential block is quantized with this quantizer function and then divided into sixteen 2

2 blocks. Inside thesex22 blocks, only =81 combinations of replacement values are possible and are
called structures. Former subjective investigations have shown that these 81 structures can be represented
by only 31. In this case, only a 5-bit wide index must be transmitted to reconstruct the 31 structures on the
receiver side. The described process is a special form of vector quantization.

The source-coded sequence is obtained by multiplexing (MUX) the individually coded parameters: mask
of moving objects (in blocks), motion vectors, address information of coded blocks, DCT coefficients,
replacement values, and quadtree information of structure cod@dcks and their indices.

Every parameter group exhibits a different probability density. The introduction of an entropy coder (EC)
for every group allows an additional bit reduction up to 50 percent. In typical applications, the entropy
coding is realized by different Huffman tables or by means of an arithmetic coder, as in case of the presented
codec.

The source decoder is part of the source coder. It consists of the DPCM loop for the interframe coded blocks,
an inverse DCT, and the prediction memory. After entropy decoding of the received sequence, the motion
compensation is calculated in the prediction memory by using the decoded motion vectors. The
reconstructed image is displayed after the decoding of the intraframe-coded blocks (IDCT) and the
interframe-coded blocks in Stat the coder and the decoder side.

Advanced Source Codec Architectures

Advanced codec architectures are under investigation worldwide. The main goal is to change from
block-oriented to object-oriented algorithms. The main disadvantages of block-oriented codecs are the

300

visible errors like blocking and the mosquito effect [8]. Figure 3 depicts a proposal for an image sequence
coding scheme, which is based on an object-oriented analysis-synthesis approach. With this approach, the
original input image is decomposed into objects, each described by a set of shape, motion, and color
(luminance and chrominance) parameters in the image analysis-synthesis stage. Therefore, different model
types (i. e., 2-dimensional, 3-dimensional, rigid, and nonrigid objects) are possible. The areas in which no
modeling is possible are denoted as model failure.

QCIF

Figure 3. Object-Oriented Analysis-Synthesis Codec for p x 8 kbps
Shape Shape
i —@—P
Image Displacements Coding
Analysis MV
[® P>
a
} Mux and F—P
| Buffer Channel
\
Image L p| Color Coding
Synthesis Areas of of Model P
Model Failure Failure
A A
Color Decoding of
Model Failure
Shape
MV Decoding ‘
<—

The shape information has pixel accuracy and is coded by polygon and spline approximation. This leads
to a nonvisible shape error of between one and two pixels. The motion information has half-pixel accuracy.
For coding the model failure, different methods are under investigation. The (decoded) parameter sets of
any object are forced as the input information for the image synthesis stage. If the objects in case of the
analysis-synthesis codec are interpreted as a set of blocks, then the analysis-synthesis codec equals the
hybrid codec scheme.

Coding of Still Pictures

The source coding on still images can be executed with the same codec architecture. A motion estimation
is not necessary. The input image format is CIF (common intermediate format).

Speech Coding

Speech source coding is accomplished by means of an LPC (linear predictive coding) codec with a data
rate of 2 to 4 kbps. The corresponding algorithms can be found in [9].

301

Realization of a Source Codec Based on a Multiprocessor System

In this section, several alternatives for the realization of the source codec presArtigthiid Codec for
Moving Picturesare discussed.

A system for implementation of complex algorithms cannot be conceived with standard ICs, such as ALU
and multipliers or with programmable ICs, such as erasable and nonerasable PLDs (programmable logic
devices), and LCAs (logic cell arrays), because it would not be compact, reasonable, and cost effective.
Moreover, fast prototyping with standard components becomes time consuming as soon as unavoidable
modifications become necessary. Even a demonstrator is not practical, because it does not lead to higher
integration.

Flexible hardware should involve programmable signal processors. One solution could be the use of
specialized single instruction multiple data (SIMD) architectures for high data rates. These processors are
supplied with microcode programs for standard video algorithms. Today, available systems that are built
with SIMD and a higher hierarchical level with multiple instruction multiple access (MIMD) processors

do not have the necessary computational power. To implement the algorithms of the image codec,
high-performance digital signal processors and their development tools are required. The DSPs should also
be programmable in a high-level language (C) and should be provided with libraries supporting multisignal
processor systems. This enables easy system extension with added processors for more computational
power and guarantees picture coding in real time.

Figure 4 shows this type of system. It is composed of five 'C40s, which are linked together through their
communication ports, and a fast global memory for storing the images [10]. The ports are connected
together in the form of a “spoked wheel”, the hub of the wheel being the master processor. Every slave
processor has three parallel ports, which can be used to communicate to other 'C40s or to dedicated
picture-coding components to form a more complex parallel processor system. The master DSP uses one
of its 6 communication ports to communicate with the PC. Another port is used for data transmission
between the video codec and A/D and D/A converters. The other four communication ports are tied to the
slave processors. The host PC is used during the debug phase as development platform. The JTAG interface
ties all processors together and is controlled by emulator software running on the XDS510 board [11]. In
a future version, the PC will be used as a control interface to the picture codec. Also, compressed video
sequences could be stored on the PC disk for several postprocessing operations.

Before the algorithm is implemented on a multi-DSP system, it must be divided into tasks. A self-written
operating system supports the distribution of the tasks on the multi-DSP system. The master DSP controls
the process, which is determined by the picture frame rate. Control words are sent over the communication
ports. The data is exchanged over the global memory or over the parallel ports. After the completion of the
described picture coding system at the end of 1992, further investigations concerning the application of the
system in a mobile environment will be conducted.

302

Figure 4. Multi-DSP System

Global Memory

LM LM
'C40 'C40
DSP2 DSP4
'C40
DSP1
LM LM
'C40 'C40
DSP3 DSP5
—p AID |—
- PC
<4— D/A LM
<+
LM = Local Memory Channel
PM = Program Memory PM

303

References

[1] Murota, K., and Hirade, K. “GMSK Modulation for Digital Radio Telephon#EE Transactions in
Communicationsvol. COM-29, pp. 1044-1050, 1981.

[2] Jakes, W.CMicrowave Mobile Communicationdohn Wiley, 1974.

[3] Ungerbdck, G. “Channel Coding with Multilevel/Phase SignH&ZE Transactions in Information Theory
1982, pp. 55-67.

[4]Mann Pelz, R., and Biere, D. “Video and Speech Transmission in Mobile Telecommunication Systems”,
Nachrichtentechnik Elektronikol. 1, pp. 7-12, 1992.

[5] Hagenauer, J. “Rate Compatible Punctured Convolutional Codes (RCPC) and Their Applications”,
IEEE Transactions in Communicatign®l. COM-36, pp. 389-400, 1988.

[6] Stiller, C. “Motion Estimation for Coding of Moving Video at 8 kbit/s with Gibbs Modeled Vectorfield
Smoothing”,Proc. SPIE, Lausann@p. 468—476, 1990.

[7]1 Amor, H. “Quellencodierung der Feinsturkturkomponente hochaufgeldster BilBemiseh und
Kinotechnik37, pp. 15— 20, 1983.

[8] Musmann, H.G, Hotter, H., and Ostermann, J. “Object-Oriented Analysis-Synthesis Coding of Moving
Images”,Image Communicatigrvol. 1, 1989.

[9] Tremain, T. E. “Government Standard Linear Predictive Coding Algorithm: LPC-Si¥ech
Technologypp. 40-49, 1982.

[10] MPS40 Hardware ReferencBKALAR Computer GmbH, Géttingen.
[11] TMS320C4x User’'s Guigddexas Instruments, 1991.

304

Optical Quality Assurance With
Parallel Processors

Ulrich Dumschat
Hema Elektronik

305

306

Introduction

Within the field of industrial production, quality assurance is an important component, which must fulfill
increasing requirements. The quality of production machines and the production speeds require that
high-performance systems be able to control products in real time (e.g., 20 parts per second or several
meters per second). This article describes a way to assure quality on the basis of digital imaging and signal
processing with parallel signal processors for machine communication.

Due to its high computing rate and its capability to communicate via six parallel high-speed interfaces (20
Mbytes/second each), the first parallel digital signal processor, the Texas Instruments TMS320C40, is
particularly suitable forimage processing and forms the basis of the design. Transputers, on the other hand,
are used mainly as flexible and high-performance machine controllers.

Overview

The application this paper describes is a system for securing the quality of surfaces — for example, those
on front surfaces of roller bearings. The front surface is captured by means of a line scan camera with a
maximum of 400 scans (512 pixels) per surface. The pixel data per line are analyzed and classified by
algorithms. A rotating prism virtually rotates the surface to be examined. The line scan camera and the
object to be tested are mechanically fixed during data acquisition. During the test procedure, the object is
illuminated homogeneously. The line scan camera captures differences in light (256 gray steps) resulting
from the surface. This application is illustrated in Figure 1.

Figure 1. Surface Quality Scan Application

lllumination ‘\ Irregularity

Fixed Object

Ground Surface

Special
Configuration
of Prism

Rotating

Image of

Surface
/ Intensity
4
255

Il >
\ Line Scan Camera 0 . 512
(Virtual Rotating) Scan Pixel

307

The signals of the line scan camera show characteristic shapes. Figure 2(a) shows a scan through a correct
surface; Figure 2(b) shows a curve of an incorrect signal. This irregularity should be recognized and
classified by the digital quality assurance system.

So far, this application has been built with analog hardware components (comparators, filters), revealing
the common defects, such as aging of the components (parameter drift) and dependency on temperature.
Nonrelevant zones of the signal (regardless of the object) cannot be extracted by the analog technology.
Although the speed of common analog computer components is advantageous, digital processors are more
flexible. Different mathematical algorithms can be implemented for classification. All results are
reproducible. Nonrelevant zones can be extracted before the signal analysis. The computer performance
will thus be concentrated on the essential test fields. The most important benefit is that you will be able to
increase the system’s performance later by improving the algorithms.

Figure 2. Measured Signal

a) Signal of a Correct Surface
250 \ \ \ \ \ \
\ \ \ \ \ \ \
200)1y - 4 1 ___ | ____
\ (I \ b \ \
\ \ \ \ A | l \ \
ol AMGAMR 4411 T R
| L | | I | |
oo | | UL | | |
=t t—g—th Attt
\ \ . N \ \ \
50 | | - | | |
e T W T T M T T il
I | | (I
0 \ \ \ \ \
0 200 400 600 800 1000 1200 1400 1600
b) Signal of an Incorrect Surface
250
200
150
100
50
0

0 200 400 600 800 1000 1200 1400 1600

308

The time requirements of a digital classification system are calculated with the following formula:
f(pixel clock of the line scan camera) = No. of pixelsiHo. of scans

¢ pixel clock of the line scan camera : 10 MHz (maximum)

e 5-20 objects/s

e 512 pixels (8 bitsk 400 scans (20 objects) = 4,096 Mbytes/s (average data rate)
* 10 Mbytes/s (peak data rate)

¢ TMS320C40 for image and signal processing

* Transputers for machine control

The number of scans per object, multiplied by the number of pixels per scan within one second is a function
of the machine cycle. Within one machine cycle, the data of an object are recorded, analyzed, and classified.
The required number of objects is a maximum of 20 per second. The pixel clock of the line scan camera
is specified with 10 MHz. The required number of scans (400 scans) multiplied by the resolution of the line
scan camera (512 pixels) for 20 objects, results in an average data rate of 4,096 Mbytes/s. On average, about
4 megasamples (4 Mbytes) per second must be transferred from the camera to the computer unit. The
maximum data rate is calculated from the pixel clock of the line scan camera and amounts to 10
megasamples (10 Mbytes) per second. With conventional processors, this data rate cannot be transferred
in real time from the line scan camera to the computing unit.

The Transputer T805 and the TMS320C40 DSP

The Texas Instruments TMS320C40 digital signal processor is not only able to manipulate big data
quantities (275 MOPS and 50 MFLOPS), but also transfers up to 20 Mbytes/s per communication link.
Inmos transputers control the recording, manipulation, and display of objects.

The 'C40 parallel DSP shows structures similar to those of a transputer. The performance, however, is 10
to 30 times better than that of a T805. The high-speed links are essential characteristics of parallel
processors. The principle of the communicating sequential processes (CSP) model has been developed by
HOARE and is the basis of parallel processing. Several software processes are running on one or more
processors and communicate via the fast links for data exchange or via soft channels on one chip.

The parallel processors (the 'C40 and the transputer) are connected to each other via an Inmos-Link
Adapter or dual-port RAM. The connection to the transputer world is most easily done via a transputer link
adapter. This link adapter is implemented on the DSP1 ('C40 board) and converts two 'C40 links to the
serial transputer link (one transputer link consists of link-in and link-out). Due to its serial data
transmission, the transputer link represents a bottleneck. The data transfer between the DSP and the
transputer is restricted to about 1 Mbyte/s by the serial link. But for parameters, configuration, and results,
this data rate is adequate.

Anincreased data transfer rate is obtained by means of dual-port RAM, whereby the DSP 1 card is plugged
into a 4-fold transputer card (TR3-N) as a piggyback board. The communication rate via DPRAM amounts
to about 15 Mbytes/s. Figure 3 shows block diagrams of the T805 and the TMS320C40, and Figure 4 shows
the interconnection.

309

Figure 3. Transputer T805 and the DSP TMS320C40

TT805 ransputer TMS320C40 DSP
Floating-Point 4281 CPU SéZ—IS;]yte éddrgss | FP and Integer Mutiplier |
o ache en 0&1 | FPandinteger ALU |
System Link 0
Services
¥ i
| [oksputer
(20 Mbit/s 2 Timers S—
4K Bytes of sach) (A Porz_]
o K= (e]
on-chip - 16K Bytes Port4
Link 3 of ROM
6 DMA
Memory 8K Bytes of -
<+ IrgeRr:an'\(/:le OR_EMP - N—] Controller
32-Bit Bus obal PN
Local | Miemsce | (JQ Pins
ocal AN or Timers,
<+« (SRAM) K Interrupts
3 x 32-Bit Buses
Program, Data, DMA

Figure 4. Interfacing the TMS320C40 and the Transputer

Local Bus Global Bu Local Bus Global Bu
1M-byte _\ s_\ 1M-Byte 1M-Byte \ K 1M-Byte

SRAM 'C40 SRAM SRAM 'C40 SRAM
(OWS) (OWS) (OWS) (OWS)
6 x'C40 Links 64K-Byte 6 x'C40 Links
Dual-Port
RAM

Transputer LINK
Adapter

Transputer Memory Interface Transputer LINK

T805 T805

Transputer LINKs Transputer LINKs

310

Hardware

The complete hardware concept of the quality assurance system is composed of the individual components
for signal/image processing and control shown in Figure 5. The signal and image processing is designed
for two test surfaces; that is, two cameras simultaneously examine two front surfaces, which are further
analyzed and classified by a DSP. The cameras are each equipped with an 8-bit A/D converter, enabling
the pixel data to be transferred directly to the 'C40 via the 'C40 link. The classification result is transferred

in the form of command signals to the command section via the transputer link. The command section
consists of a transputer card (TR4), on one side controlling digital inputs and outputs and on the other side
managing the connection to the host computer. Via the digital inputs, signals from the machine are received
(the object is ready for scanning); via the outputs, the machine is influenced (locked during scanning). The
host computer (PC) represents the interface between user and application.

Figure 5. Overall Concept on Hardware

Camera Camera
= % | | I% cco i)
'C40 Link 'C40 Link
/ DSP1 /

/ /
LA

Transputer Link

TR4 «—> RS232C
PN
16 x 24V
TAL «——
EIN16 [,
1[AT Bus ——
VO Bus 16 x 24 VI1.3 A
>
Host >
N Ausie [P
Vv i
Software

The software is a Windows 3.0 application and is shown in Figure 6. This interface was chosen because
it is user friendly. The customer-specific Windows 3.0 application initiates the transputer program. The
transputer software carries out the machine command/control and produces the connection to the host. The
software on the 'C40 is loaded from the transputer to the 'C40 and effects the classification by means of
digital filters, different algorithms, and different types of image/signal processing. Both software modules
(transputer and 'C40) synchronize and communicate via the 'C40/transputer link.

311

Figure 6. Overall Concept on Software

Windows 3.0
m—— ;
\ [———
I (N | |
Custom-Specific | I | oo ol |
User Interface | I | | | |
L——Ji——_aL__ L1

Other Windows Applications

— Image Processing Unit
— Software Filter

'C40 — Algorithms
Program — Classification of Objects

Autosynchronization Via Links

— Machine Controlling
Transputer — Host Interface

Program

Algorithms
Before the classification of different objects can be carried out, the parameters of the implemented

classification algorithms must be fixed. User parameters condition the algorithms to search for specific
defects and return a “good” or “bad” result, as shown in Figure 7.

312

Figure 7. Setup of Algorithms

Different References

Cut Off Scratches Inclusions

& &

Parameter Parameter Parameter
\\\\'//// \\\\'//// e o o \\\\'////
’/@\‘ @ ’/@\‘ ’/@\‘
‘Bad” “Good” “Bad” “Good” “Bad” “Good”

Object Recognition
In the classification phase, different objects are now transmitted in real time to the application. The results

of the different algorithm modules are collected and evaluated by an overall controller. On the basis of these
partial statements, the controller produces a general statement on the quality of the tested part. See Figure 8.

313

Figure 8. Recognition of Objects

Y

o

\\l// \\l// e o o \/

N N N
“§<4 @ “9<4 @ “§5t @
“Bad” “Good” “Bad” “Good” “Bad” “Good”
Controller
\\\\|////l
BT ®
“Good” “Bad”

The signal curves in Figure 9 show an example of separating relevant signal sections by means of digital
signal processing. The two plateaus of an incorrect surface signal should be separated. Ideally, the signal
is low-pass filtered to remove noise. The low-pass filtered signal will be differentiated to extract the edges.
Within predefined limits, minimum and maximum are now determined; their positions will give
information on the edge points of the plateaus.

Different signal processing algorithms (e.g., FFTs) can now be applied to these separated regions of
interest.

314

1 200
180
160
140
120
100

80
60

40 [

2 200
180
160
140
120
100

80
60
40
20

Figure 9. Signal Filtering, Derivation and Max/Min Calculation

Signal of Incorrect Surface

Derivation of Lowpass Filtered Signal

-
D
o
o

1600

N I L
258_—:' Jl-—-:——:- _:._Jl__
256 —T AT T +—+—
o LB ey
252——|L—4|- -:——:— _:._Jl__
2o [20—~ =T == T [t — 1+
24879 : zloo l sloo l 12|00 l
4 300 T T T T T
s+ FFFH—+F5+—+-
zoo_Jl'—'Jl—Jl—Jl——:—-Jl-—Jl—_
ws—+T+H—+FHFH+—+
100—J|'—-J|—J|—J|——:—-J|-_J|__
sof -t Tt HA—TrHTt—1t
1200 05 l 4c|)0 | 8(')0 | 12|oo |
Lowpass Filter Signal Regions of Interest

Signal of Incorrect Surface
and Regions of Interest

3)—» 4)

Find Min
and Max
Within
Predefined
Limits

Determine
Position of
Min and
Max

315

Conclusion

This example shows an application with parallel processors in industrial environments, where
communication processors with DSP characteristics are required for signal and image processing. The
main advantage of parallel processors is that the performance is made scalable by adding more processors.
The interprocessor communication is guaranteed by high-speed interfaces, which transfer data
independently of the CPU.

316

