{9 TeEXAS
INSTRUMENTS

Acoustic Echo Cancellation
Algorithms and Implementation on the TMS320C8x

Application

Report

1996 Digital Signal Processing Solutions

*’:‘ TEXAS
INSTRUMENTS

Printed in U.S.A., May 1996 SPRA063

&

PRINTED WITH

SOYINK|_

Acoustic Echo Cancellation

Algorithms and Implementation
on the TMS320C8x

David Qi
Digital Signal Processing Solutions

SPRA063
May 1996

b TEXAS

INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 0 1996, Texas Instruments Incorporated

Contents

Title Page
INtrodUCHION . . . 1...
Algorithm OVEIVIEW 2....
Adaptive Transversal Filter. 3..
Adaptive FIR Filter. e 3...
FIR Filter EQUAtiONS.o e e e e e 3...
LMS Adaptive Filter Implementation 5..
BasiC OPerations.ot e 5...
Improving Performance 7 ..
Signal Power EStimation 8. ..
Block Sample Signal Power Estimate e 8
Sample-By-Sample Signal Power Estimate. 10
Speech DeteCtion 11..
Far-End Speech Detection. 12
Double-Talk Detection.o e 12..
Near-End Speech Detection e 13
Hangover CoUNterS. . . .ot e e e 13..
AEC Program Flow. 13 ..
MP TaSKS . . o 13. ..
PP Tasks. . ..o 15. ...
Hardware SetUp.o 20 ..
SUMMANY . . oo e e e e e e e e e e e 22.
REfErENCES. . . o o 22 ..

Appendices

Title Page
APPENDIX A—Variables Used inthe AEC Algorithms. 23
APPENDIX B—Q16 unsigned Divi Instructions. i, 24
APPENDIX C—AEC Software Files. 26.
File: audinit.C. o 27. ..
File: main.C 28
File: pp3func.C. 33...
File: @aec.h ... 35...
File: main.h 36...
File: pp3func.h 38. ..
File: echan.i. 39...
File: ckmem.p . .. A2
File: detectorp.o 45 ..
File: echan.p 54. ..
File: IMS.p .o 63...
File: POWE D . . 67. ..
File: @BC VarS.S. . .o 73..
File: einit.s. ... 75. ..
File: init.emd 81...
File: echan.ink. 83 ..

Figure

LOCO\IO?U'I#OOI\)I—‘; o N O O A WN P
=)
0]

=
o

List of lllustrations

Title Page
Echo Canceller Configuration. 2..
Echo Replication Using an Adaptive FIRFilter. 3
Updating Coefficients and Shifting Memory. 6
Speech Detection Block Diagram 11
Flowchart of the AEC Program Runningonthe MP. 15
Flowchart of the AEC Program Runningonthe PR 18
Flowchart of the Speech Detection Function. 19
AEC Real-Time Testingon an SDB. e 20

List of Tables

Title Page

Hangover Counters and LMS Mode Bit Settings.o i 13
Prototype for the AEC Initialization Task i i e 14
Prototype forthe AEC Task 14.
Prototype for the Adaptive Filter Function 16
Prototype for the Power Estimate Function. 16
Prototype for the Speech Detection Functian 16
SDB Input/Output Signals. 20.
Computational Estimates for the AEC Task (Standalone). 21
Estimated PP Loading Time for Echo Cancellation 21
Algorithm Variable Names and Descriptions. et 23

Introduction

In recent years, speakerphones and hands-free cellular phones have been used widely around the world for
audio-conferencing and video teleconferencing applications. A speakerphone or a hands-free cellular
phone allowsull-duplexcommunication without having to hold the phoRell-duplexmeans voices on

both ends of the line are transmitted continuously, as with a normal telephone.

The speech from the far-end caller is broadcast by the speakerphone or the hands-free cellular phone and
then repeats itself by bouncing off the inside surfaces of the room. This repetition of sound is ealled an
Echoes are picked up by the near-end microphone, creating a feedback loop where the far-end caller hears
an echo of his or her own voice. To solve this problem, developers are using the digital signal processing
technique of acoustic echo cancellation (AEC) to stop the feedback and allow full-duplex communication.

This application report describes the implementation of an integrated N-tap digital acoustic echo canceller
on the Texas Instruments TMS320C8x parallel processor (PP). The report presents a brief discussion of
generic echo cancellation algorithms. The implementation considerations for a 512-tap (64-ms span) echo
canceller on the TMS320C8x are described in detail, as well as the software logic and flow for each
program module. Line echoes are not considered in this report.

Algorithm Overview

Figure 1 shows the principle of the echo canceller for one direction of transmission. In thisyfigure,
represents the far-end signéh) is the undesired echo, ax(h)is the near-end signal. The near-end signal
is superimposed with the undesired echo on port D. The received far-end signal is available as a reference

signal for the echo canceller, and is used by the canceller to generate a replica of the edt{o)calleid
replica is subtracted from the near-end signal plus the echo to yield the transmitted near-ea¢h¥ignal
whereu(n) = x(n) + r(n)—t(n). Ideally, the residual echo err@n) = r(n) - r(n)will be very small
after echo cancellation.

Room
[T~ 7 77771 Nearend A
| D q | signal x(n) + r(n) -':C\ un) = x(n) + r(n) - r(j)B
| | -
v | Z
L/ |
| | ;
I / I r(n)
| I/ Echo path |
: A : NLMS'adaptive
| \ H(2) | filter
B | o
A
I
[|
| N |
| | < A
| | F_ar—end
B E_] signal

y(n)

Figure 1. Echo Canceller Configuration

Adaptive Transversal Filter

The echo canceller generates the echo replica by applying the reference signal to an adaptive transversal
filter (tapped-delay line), as shown in Figure 2. If the transversal filter’s transfer function is identical to that
of the echo path, then the echo replica will be identical to the echo, thus achieving total cancellation.

y(n) e(n)

2 o—» H@)

v

Adaptive FIR
filter

Figure 2. Echo Replication Using an Adaptive FIR Filter

Adaptive FIR Filter

The AEC adaptive filter softwaréms.p,implements a least-mean-squared (LMS) algorithm and an
adaptive finite impulse response (FIR) filter. The algorithm uses the previous sample values and errors to
update the FIR filter's coefficients. It then uses the updated new coefficients and the latest sample values
to calculate the FIR filter’s output. This output is used to calculate the next error. Equations for the
calculations are given below. These equations assume that the echo path has a finite impulse response.

FIR Filter Equations
The following equation is used to calculate the FIR filter’s output:

fm = >a *y(h-K 1)

where
N = Number of filter taps
a, = Filter coefficients
y = Filter memory (taps delay)
a, = a0),a(1), ...,a(N-1);y = y(n-0),y(n-1),...,y(n—N + 1)

If there is no near-end signal, thati&) = 0, then the equation for the error siga@)is:
e(n) = r(n)-t(n) (2

Anormalized LMS (NLMS) algorithm is used in the LMS adaptive filter function to update the FIR filter’s
coefficients. NLMS is almost the same as LMS, except that you use equation 5 to normalize the step size.

Following is an example of the NLMS equation that is used to update the FIR filter’s coefficients:

a(n+ 1) = a(n) + ﬂPi(r?)) *y(n) ©)
where

”PGE(:)) = NLMS constant at given sample time
where

u = Step size

The following example shows an extension of equation 3:

(a © (a(o) T [V(0)

a(1) a(1) y(1)

a(2) e ueln) [v(2)

: E I OME (4)
La(N—l)_ La(N—l)_ y(N-1)

where
ue(n) = [r(n)—?(n)]* stepsize
P(n) = Estimated signal power of far-end speech at sample time

The convergence properties of the AEC algorithms are largely determined by the step size parameter and
the power of the far-end signgh). In general, making the step size larger speeds the convergence, while

a smaller step size reduces the asymptotic cancellation error. The convergence time constant is inversely
proportional to the power gfn), so the algorithms converge very slowly for low-power signals. (For more
information, see the Signal Power Estimation section.)

The short window power estimate of far-end speech (fes_short_pwr) is used in equation 5 to normalize the
step size. This equation requires execution ofdive instruction, which is discussed in detail in
Appendix B.

2B = 2B(n) = P?(%]) (5)

where
Bl = Compromise value of the step size constant

P,(n) = Estimate of the average powerygh) at sample tima

The generic equation for estimating the average power is:
Py(n) = Li(n) (6)

The next two equations are related to equation 6. These two equations show two ways of estimating average
power. The first method uses the following equationlfg@n) :

Ly(n) = (1- p)Ly(n-1) + ply(n-1)| (7
where

pIis constant

The second method uses the following equatiorP{on) :

Py(n) = (1_ p)Py(n_l) + P * yZ(n) (8)

LMS Adaptive Filter Implementation

The LMS adaptive filter softwaréms.p is written in TMS320C8x’s PP assembly code. It implements an
N-tap LMS adaptive filter and uses the PP’s compactor and register allocator (PPCA) to allocate variables
in the program.

The filter function is designed to work on one sample input per update for all the filter’s coefficients. It also
can work with blocks of data by modifying the AEC’s main programjn.c The block method is
recommended because it is more efficient than using one sample at a time.

Basic Operations

The basic operations in an LMS adaptive filter function are multiplication, accumulation, and a memory
shift. Since the algorithm requires old memory data to update the coefficients before doing the filtering,
always make the data buffer one tap longer than the coefficients’ buffer to retain one old data set after the
memory shift. This allows you to use old memory values to calculate new coefficient values, as discussed
below.

After loading new data into the data buffer, ltihe.psoftware performs a multiplication and accumulation

loop that updates the coefficients and shifts the entire data buffer down by one. The direction in which the
multiplication and accumulation operations are performed is not important. The software starts these
operations at the end of the coefficients buffer and the data buffer, and moves upward through the buffers.
It calculates each new coefficient value by multiplying the old data times the error. Next, it overwrites the
old coefficient value with the new value. The updated coefficients then are used to calculate the filter
output. Figure 3 illustrates the update sequence and memory shift.

ak(0) q\ New data
ak(1) q\ x(0)
ak(2) x(1)
ak(3) <\§ x(2) After each new input data enters the data buffer,
\ 3) the data buffer must be shifted down by one. The old
: X

data times the error is used to update the coefficients,
: then the updated new coefficients are used to calculate
\ - the filter output. The new coefficients overwrite the old

‘\ : coefficients.

ak(n-2) D X(0-3)
ak(n—1) :i: X(n—2)
x(n-1)

Figure 3. Updating Coefficients and Shifting Memory

Following is an example of PP assembly code for the main loop of the LMS adaptive filter function:
LMS_LOOP_START: ; LMS loop starts here
up_prod_1 =r (x_1 * erf)<<1 ; get update product
|| ak_new_2 = ealu(SHIFT_ADD:ak_old_2+up_prod_2>>16)
; update coefficient

|| ak_old_1 =h *—Ga_ak ; load next coefficient

|| *(Lax+[1])=h x_1 ; shift memory

prod_2 =x_1*ak _new_2 ; get multiplication product
||ly=y+prod_1 ; accumulate filter output

|| *(Ga_ak + [1]) =h ak_new_2 ; store new filter coeff

|| x_2=h*—La_x ; load filter memory sample
up_prod_2 =r (x_2 * erf)<<1 ; get update product

|| ak_new_1 = ealu(SHIFT_ADD:ak_old_1+up_prod_1>>16)
; update coefficient

|| ak_old_2 =h *—Ga_ak ; load next coefficient

|| *(La_x + [1]) =h x_2 ; shift memory
LMS_LOOP_END:

prod_1=x_2*ak new_1 ; get multiplication result

||ly=y+prod_2 ; accumulate filter output

|| *(Ga_ak + [1]) =h ak_new_1 ; store new coefficient

|| x_1=h*—La_x ; load next memory sample

The sample code shows a four-cycle loop that processes two signal samples. This loop not only performs
FIR filtering, but it also updates the filter coefficients and shifts the filter memory at the same time. So, there
are two cycles of LMS adaptive filter processing for each signal sample.

The above four instructions are fully optimized. Each instruction takes advantage of the TMS320C8x
parallel processor’s ability to do parallel operations in every clock cycle. These parallel operations include
multiply, arithmetic logic unit (ALU) or extended ALU (EALU) operation, global transfer, and local
transfer. Rounded multiply is used to improve the output precision in all multiplication.

Equation 1 indicates that the following operations are needed to perform each coefficient update:
e One multiply
* One EALU (shift and add)
* Oneload
* One store
Each new sample also requires FIR filtering, which needs these operations:
e One multiply
e OneEALU
* Oneload
* One store

The operations for the coefficient update and the FIR filtering can be combined. To do this, the LMS
adaptive filter function requires at least two PP instructions which can perform two multiplies, two EALU
operations, and two loads and two stores. Although each PP instruction can perform one multiply, one
EALU, and two loads in parallel, the LMS adaptive filter function cannot finish in two cycles because of
the operation sequence. To produce each output from a new input, the following calculations must done:

1. New sample * old error. update product

2. Update product + old coefficient new coefficient

3. New coefficient * old sample, new accumulator product

4. New accumulator product + old accumulated valugew accumulated value

Improving Performance

The above four calculations indicate that at least four cycles are required by the LMS algorithm, and these
cycles do not include load, store, and memory shift. If the standard operations in a four-instruction cycle
are used to perform the LMS adaptive filter function, many free slots are left after each instruction
completes. Better performance is achieved by calculating two inputs in four instructions using the
following operations:

e Four multiplies
* Four EALUs

* Four loads

* Four stores

These operations fit perfectly into four PP instructions, which leave no free slots. This tight loop makes
a two-cycle LMS adaptive filter function a reality. Appendix C provides an example of how to implement
an LMS adaptive filter using four PP instructions. For more information about software optimization, refer
to theParallel Processor User's Guid@)

Signal Power Estimation

The power estimate softwangower.p is written in TMS320C8x’s PP assembly code. This software
implements the signal power estimation used in AEC to normalize the loop gain (step size). In addition,
the power estimation output is used by the speech detection function to determine the sequence of
operations to be performed in that function.

The basic operations in signal power estimation are multiplication and addition in the manner of a simple
infinite impulse response (IIR) filter. Because the IIR filter is a recursive filter, each output of the filter
depends on the previous one.

Following is the generic equation for estimating power:
P(n) = L*(n))

The next two equations are related to equation 9. These equations show two ways to estimate power,
depending on whethéx(n) or P(n)is given. Equation 10 uses the absolute value of the input to estimate

the signal power, while equation 11 uses the input squared to calculate the signal power. Equation 11 is used
in the power estimate prograpgwer.p

L(n) = (1-a)* L(n=1) + a* | X(n) (10)
or
P(n) = (1-a)* P(n-1) + a* X*(n) (11)
where
a = 1/32(very short window power estimate, 4 ms)
a = 1/128(short window power estimate, 16 ms)
a = 1/16384(long window power estimate, 2048 ms)

X(n) = the input signal

A differenta value is chosen for each different window-size power estimate.

The far-end signal power (fes_short_pwr) is estimated by using a short window size of 16 ms. This estimate
is used in the NLMS algorithm to normalize the step size. A window size of 4 ms is used to determine the
very short power estimates of near-end power (nes_vshort_pwr) and far-end power (fes_vshort_pwr).
These estimates are used in far-end and near-end speech detection.

It is important that the functionality of speech detectors be accurate to avoid erroneous detection, which
could lead to an unstable system. Therefore, all power estimation is carried out in double-precision.

Block Sample Signal Power Estimate

The power estimate function is designed for block sample processing. The three different window sizes
of near-end signal power are calculated in one tight loop. The software assumes that certain amounts of
samples already have been stored in the PP’s on-chip data RAM. Since three different window-size powers
need to be calculated for near-end speech, the DO register loads different EALU labels alternately for
different shift amounts. To increase the output’s precision, the software keeps the previous power in Q31
format and uses it for the next power estimate.

The following example code shows the six cycles that are required for each near-end signal’'s power
estimate in very short, short, and long window sizes:
nes_power_estimates:

d0 = SHORT_POWER

dummy = ealu(SHORT_POWER: s _pwr_2 16 —s_pwr_2_16>>7)

|| *(sp + [d0O_SHORT_POWER]) = dO

d0 = LONG_POWER

dummy = ealu(LONG_POWER: |_pwr_2_16 — |_pwr_2_16>>14)

|| *(sp + [d0O_LONG_POWER]) = d0

d0 = VSHORT_POWER

dummy = ealu(VSHORT_POWER: v_pwr_2_16 —v_pwr_2_16>>5)

|| *(sp + [d0O_VSHORT_POWER]) =dO0

La_nes_long_pwr_Q15 = &*(xba + L_NES_LONG_POWER_Q15)

La_nes_short_pwr_Q15 = &*(xba + L_ NES_SHORT_POWER_Q15)

La_nes_vshort_pwr_Q15 = &*(xba + L_ NES_VSHORT_POWER_Q15)

s_pwr_2 16 =*(Ga_nes_short_pwr_Q31 =xba +L_NES _SHORT_POWER_Q31)

; initialize pointer to previous short power estimate of

; near end signal, and load to a register

I_pwr_2_16 =*(Ga_nes_long_pwr_Q31 =xba + L_NES_LONG_POWER_Q31)

; initialize pointer to previous long power estimate of

; hear end signal, and load to a register

v_pwr_2 16 =*(La_nes_vshort_pwr_Q31 = xba + L_NES_VSHORT_POWER_Q31)

; initialize pointer to previous very short power estimate of

; near end signal, and load to a register

nes =h *(Ga_nes = xba + L_NEAR_END_SPEECH)

IrsO = SAMPLES -1

le0 = NES_POWER_EST_LOOP_END

dummy =h *—La_nes_long_pwr_Q15

|| dO = *(sp + [d0_SHORT_POWER])

; load dO with ALU configuration for power estimate
NES_POWER_EST_LOOP:

nes_squared = nes * nes

|| s_pwr_2_16 =ealu(SHORT_POWER: s_pwr_2_16 —s_pwr_2_16>>7)

|| nes_long_pwr =h1l1_pwr_2_16 ;getupper half of nes long

; power estimate
s_pwr_2 16=s _pwr_2 16 + nes_squared>>7
|| *La_nes_long_pwr_Q15++ =h nes_long_pwr
; store near end long power
|| dO =*(sp + [dO_VSHORT_POWER])

|| dO = *(sp + [d0_VSHORT_POWER])
v_pwr_2_16 =ealu(VSHORT_POWER: v_pwr_2_16 —v_pwr_2_16>>5)
|| nes_short_pwr=hls pwr_2 16 ;getupper half of nes short
; power estimate
v_pwr_2 16 =v_pwr_2 16 + nes_squared>>5
|| *La_nes_short_pwr_Q15++ =h nes_short_pwr
; store near short power
|| dO = *(sp + [d0O_LONG_POWER])
|_pwr_2_16 =ealu(LONG_POWER: | _p_2 16 -1 _pwr_2_ 16>>14)
|| nes_vshort_pwr =h1v_pwr_2_16
|| dO = *(sp + [d0_SHORT_POWER])
NES_POWER_EST_LOOP_END:
I|_pwr_2_ 16 =I|_pwr_2_ 16 + nes_squared>>14
|| nes =h *++Ga_nes ; load a near end signal sample
|| *La_nes_vshort_pwr_Q15++ =h nes_vshort_pwr
; store v_short power
.cjump NES_POWER_EST_LOOP
nes_long_pwr =hl | _pwr_2 16 ; get upper half word (Q15)
br =iprs
*Ga_nes_long_pwr_Q31 =1|_pwr_2_ 16 ; store nes long power (Q31)
|| *La_nes_vshort_pwr_Q31 =v_pwr_2_16; store nes very short power
*Ga_nes_short_pwr_ Q31 =s pwr_2 16
|| *La_nes_long_pwr_Q15++ =h nes_long_pwr
.uexit

Sample-By-Sample Signal Power Estimate

Although the power estimate function is designed for block processing, it can be adjusted to perform
sample-by-sample processing by changing the sample size to one. The following example shows how to
do this by implementing a short-window signal power estimate using equation 11 and the TMS320C8x’s
PP assembly code.

short_power_estimates:

sample .set dil
prev_pwr_31 .set d2
La_prev_pwr_Q31 .set a0
power .set db5
sample_squared .set d7
.ptext

.lock dO

.entry d1,d2, a0
d0 = *(sp + [d0_SHORT_POWER])

10

sample_squared = sample * sample

|| prev_pwr_31 = ealu(SHORT_POWER: prev_pwr_31 —prev_pwr_31>>7)
|| br =iprs

prev_pwr_31 = prev_pwr_31 + sample_squared>>7

power =h1 prev_pwr_31

|| *La_prev_pwr_Q31 = prev_pwr_31

.uexit

Speech Detection

Speech detection is a very important part of AEC. It must be done before the software can determine
whether to filter, update, filter and update, or freeze the adaptive filter. There are three speech detectors:

* Far-end speech detector
* Double-talk detector
* Near-end speech detector

The speech detection software always checks for the presence of far-end speech first, then it goes to
double-talk detection. It performs double-talk detection even if it does not detect far-end speech. This
avoids false detection due to the small signal level of far-end speech. If the software does not detect either
far-end speech or double-talk, it goes to near-end speech detection. All detection is based on the signal
power estimate algorithm, which is discussed in detail in the Signal Power Estimation section of this report.

Figure 4 shows a block diagram of the speech detection function that is used in AEC algorithms.

Room
. 7 earend A
| | r(n) error = r(n) — r(n)
| -
| D @ » B
| /' |
| / | Near—end
| / | e speech
| | detector R
| // | r(n) v
I I
Echo path Double-talk
| : P | detector
| + | NLMS adaptive
| \ H(z) | filter
| | Far—end A
| | »| speech |—o H(z)
| \ | detector
| I LMS
| \ | controller
AN |
I I
| I ® <4 A
| C | Far-end
L.~] signal
y(n)

Figure 4. Speech Detection Block Diagram

11

Far-End Speech Detection

Far-end speech means that only the far-end speaker is active. This is the only time the AEC program
performs both filtering and updating. The very short power estimates of the far-end and near-end speech
signals are used to determine if far-end speech is present. So, far-end speech is detected only if

fes_vshort_pwr + FES_MARGIN > nes_vshort_pwr
where
FES_MARGIN= Threshold constant

The value of the threshold constant must be chosen carefully from real-time experiments. If the threshold
value is too small, the background noise picked up by the microphone results in a false detection. On the
other hand, if the threshold value is too large, part of the speech is not transmitted when the speech signal
levels are low.

Double-Talk Detection

In AEC algorithms, the presence of both far-end speech and near-end speech is known as double-talk. The
following equation implements and defines a double-talk detector based on echo return loss enhancement
(ERLE):

Pz(n)

ERLE = 10logs; s
e

where
ERLE = 8db (chosen from real-time experiments)

P«(n) = Short window power estimate of the near-end signal
P.(n) = Short window power estimate of the residual error signal

So, double-talk is detected if
err_short _ pwr > Cnes_ short pwer D

where
C = 10ERLE/10
D = Threshold constant (determined from real-time experiments)

The higher the value of the D constant, the less double-talk is detected, but the more the coefficients will
be updated. In addition, a higher threshold constant results in a greater difference between the echo and the
echo replica which means less echo cancellation, but it also results in less noise interference.

After double-talk is detected, the program freezes the FIR filter's coefficient updates; however, filtering
is still done, and the double-talk hangover counter is reset to high (see the Hangover Counters section for
more information).

12

Near-End Speech Detection

Near-end speech exists when there is no far-end speech and no double-talk. Near-end speech is detected
by calculating the very short power estimate and the very long power estimate of the near-end signal as
follows:

nes_short_pwr + NES_MARGIN > nes_long_pwr
where
NES_MARGIN:= Threshold constant (chosen from real-time testing)
If near-end speech is detected, the program sets the near-end-speech mode bit and freezes the LMS adaptive
filter function.
Hangover Counters
Two hangover counters are used in the speech detection algorithm:
e DT_HANG
* NES_HANG

Each hangover counter is set to a hangover time of 600 samples or 75 ms after its corresponding type of
speechis detected (assume the sampling frequency is 8 kHz). If a type of speech is not detected, its hangover
counter is decreased by one. Table 1 shows how the counters determine when to do filtering, updating,
filtering and updating, or nothing.

Hangover counters play a very important role in AEC algorithms. After each different speech is detected,
its corresponding mode bit is set. For example, the FAR_SPEECH mode bit sets to 1 to indicate that only
far-end speech is detected. The AEC_UPDATE mode bit is not set to 1 until the double-talk and near-end
hangover counters are both less than zero. This method avoids erroneous detection and gives some buffer
time to turn on the adaptive filter.

Table 1. Hangover Counters and LMS Mode Bit Settings

HANGOVER COUNTERS SEobEaT e S obERNe
DT_HANG =0 NES_HANG =0 YES NO
NES_HANG <0 YES NO
DT_HANG <0 NES_HANG =0 NO NO
NES_HANG <0 YES YES

AEC Program Flow

This section outlines the flow of the AEC program, and shows which tasks run on the master processor
(MP) and which tasks run on the parallel processor (PP).

MP Tasks

Figure 5 shows a flowchart of the AEC program running on the MP. The MP is responsible for interrupt
handling, transmitting speech signals, and sending tasks to the PP.

13

Audio Codec is an audio capture and playback program that was written in C and runs on the MP. The AEC
initialization task and the AEC task are two tasks that the MP sends to the PP. The initialization task runs
once at the beginning of the AEC program. The AEC task is the AEC program’s main task. It includes the

power estimate function, the LMS adaptive filter function, and the speech detection function.

Table 2 and Table 3 list the prototypes for the AEC initialization task and the AEC task.
Table 2. Prototype for the AEC Initialization Task

AEC INITIALIZATION TASK PROTOTYPE

Syntax void AEC_State_Init(void) ;

Parameters None

Return value None

Description This function is called to initialize the LMS filter’s coefficients, memo-
ries, and all required variables.

Table 3. Prototype for the AEC Task

AEC TASK PROTOTYPE
Syntax void AEC(int *fes_ptr, int *nes_ptr, *out_ptr) ;

Parameters *fes_ptr /* Pointer to far-end speech */
nes_ptr / Pointer to near-end speech */
out_ptr / Pointer to AEC output */

Return value int *out_ptr

Description This function is called to process AEC by using the LMS algorithm.

14

(START)

Send AEC
initialization task
to PP

Initialize audio
codec

Capture speech
and play back
AEC output

Send AEC task
to PP

No

AEC task
complete

Transmit NES

No

Done?

Figure 5. Flowchart of the AEC Program Running on the MP

PP Tasks

Figure 6 shows a flowchart of the AEC program running on the PP. The AEC initialization task performs
two procedures. First, it restores the initial values of the filter’s coefficients. It does this by transferring
external memory to the PP’s on-chip data RAM using packet transfer, a very useful feature provided by

15

TMS320C8x’s architecture. Second, it initializes all variables and zeroes out the filter's memory. This
process is important because the PP’s data RAM could be used by other tasks when the AEC task is idle.

After initializing the processor, the power estimate function calculates all required power estimates for both
the near-end and far-end signals, and stores them into on-chip memory, ready for the speech detection
function to use. The power estimate function is designed for processing blocks of data. By changing the
sample size to one, it also works for sample-by-sample processing. The program then determines if it needs
to start the LMS adaptive filter. If it does, it runs the LMS adaptive filter function; otherwise, it goes to the
speech detection function.

The PP remains in command interpreter mode before and after it executes the AEC tasks. This function
is provided automatically by the multitasking executive, which is used to manage the AEC program. Refer
to the Multitasking Executive User's Guider more information about the command interpreter and
sending task&)

Table 4 through Table 6 show the prototypes used for the LMS adaptive filter function, the power estimate
function, and the speech detection function.

Table 4. Prototype for the Adaptive Filter Function

AEC LMS ADAPTIVE FILTER FUNCTION PROTOTYPE

Syntax short LmskFilter (int filter_size, int erf, short
*coefficients, short *mem, short input, *output) ;

Parameters filter_size /* The size of filter. Determined by how long the echo tail
wants to be cancelled. */

erf /* Normalized error times stepsize*/

coefficients / Point to filter coefficients */

mem / Point to filter memory */

input /* A new signal sample */

Return value *output /* Point to output buffer */

Description This function is called to adapt the filter coefficients and calculate an FIR
filter output by using a sample input and previous error.

Table 5. Prototype for the Power Estimate Function

AEC POWER ESTIMATE FUNCTION PROTOTYPE

Syntax short PowerEstimates (short near_end_signal, short far_end_signal,
short error_signal, short output_power);

Parameters near_end_signal /* Near-end signal */

far_end_signal [* Far-end signal */

error_signal /* Error signal */
Return value output_power /* Estimated power of input signal */
Description This function is called to estimate the signal power which is used in

speech detection and to normalize the step size.

Table 6. Prototype for the Speech Detection Function

AEC SPEECH DETECTION FUNCTION PROTOTYPE

Syntax void SpeechDetector (void);

Parameters None

Return value None

Description This function is called to detect far-end speech, near-end speech, and
double-talk. After each detection, the corresponding mode bit is set.

Figure 7 shows a flowchart that presents more detailed information about how the AEC program handles
different situations during speech detection.

16

The speech detection function uses data from the power estimate function to determine the sequence of
operations to be performed for the corresponding mode. For example, if a near-end signal is detected by
the near-end detector, the NEAR_SPEECH flag is setto 1, and the NES_HANG hangover counter is reset
to the highest value (600) to avoid toggling of the speech modes.

Next, the program goes to double-talk detection even if no far-end speech is detected. This avoids false
detection. If double-talk is not detected and there is no far-end speech, the program decreases the
DT_HANG hangover counter by one and goes toctir@rol_Imsroutine. If neither far-end speech nor
double-talk is detected, the program goes to the near-end speech detector. If near-end speech is detected,
the NES_HANG hangover counter is set to the highest value, and the program goestirthdms

routine. This routine checks all hangover counters before setting the AEC_UPDATE and
AEC_FILTERING mode bits. See Table 1 for the relationship between hangover counters and mode bit
settings.

17

18

PP
command

interpreter

Initialize
processor

Power
estimate

'

Adaptive
filtering?

LMS
updatef/filter

Speech detection

PP
command
interpreter

Figure 6. Flowchart of the AEC Program Running on the PP

Data from
power estimate

Far-end

FAR_SPEECH=0

No

speech?

FAR_SPEECH=1

Double talk?

DOUBLE_TALK=0 Yes

DT_HANG—

Control LMS

DOUBLE_TALK=1
DT_HANG =600
NES_HANG =600

Yes

Double talk?

DOUBLE_TALK=1
DT_HANG =600
NES_HANG =600

Near—end
speech?

Set AEC_UPDATE

and AEC_FILTERING,
depending on hangover
counters (see Table 1)

NEAR_SPEECH=1
NES_HANG=600

Next cycle

Figure 7. Flowchart of the Speech Detection Function

No DOUBLE_TALK=0
DT_HANG—

No

NEAR_SPEECH=0
NES_HANG—

19

Hardware Setup

Real-time testing was performed on a software development board (SDB). Figure 8 shows the hardware
connection.

Line out Line out
| tneou
Speaker Amp R L Head
T, SDB e
Line in L Rr g Linein phone
Near—-end Far—end
Line out L R Line out
L Preamp L
. Mic in Mic in i
Micro- d L R '—ID Micro-
phone phone

Figure 8. AEC Real-Time Testing on an SDB

Since the SDB has only line inputs, the pre-amplifier was used to convert microphone output to line level.
Note that audio codec on the SDB has microphone input which can be used by modifying the SDB. Also,
although the channels setting in audio codec was set to 2, only one channel of the AEC process is shown
in Figure 8.

During testing, the pre-amplifier’s gain was set to +45 dB. This gain can be changed by using a different
microphone setup, or by changing the input gain setting in audio codec. For more information, refer to the
AD1848k Technical Referenoenual3) Table 7 shows the SDB audio input/output connections.

Table 7. SDB Input/Output Signals

LINE SIGNAL
SDB left line-in Near-end-signal
SDB right line-in Far-end-signal
SDB left line-out AEC output
SDB right line-out Far-end-signal

The sampling frequency in the SDB’s audio codec was set to 8 kHz for capture. The sample data format
was set to 16-bit 2's complement pulse code modulation (PCM). The bandwidths of the AEC software
depend on sampling frequency and filter taps (assume the TMS320C8x PP is running at 50 MHz).
Theoretically, if the sampling frequency is set to 8 kHz, the maximum filter size can be set to 2000.
However, in real-time testing, the filter size was limited to about 800 taps because of the size of the PP data
RAM and because hardware access took longer than expected. With a filter size of 800 taps, up to a 100
ms echo tail is cancelled.

Table 8 shows the estimated performance of the AEC task, while Table 9 shows an estimate of how much
time is required to cancel the echo. Refer to Appendix C for more details about the link control file and
memory usage.

20

Table 8. Computational Estimates for the AEC Task (Standalone) T

PROGRAM DATA MEMORY CYCLES (N TAPS)§
MEMORY (BYTES) (BYTES)*
LMS Filter 20*8 4N+ Sample 2N+12
Speech Detection 71*8 40 71
Power Estimate 43*8 10*Sample+20 43
Initialization 99*8 64 99
Others 85*8 5*Sample 85
Total 2544 4AN+16Sample+124 2N+310

i AssumesghePPclock cycleis 50 MHz andsamplingfrequencyis setto 8 kHz
¥ N is the number of LMS filter taps.
§ Sample is the number of samples per block of data.

Table 9. Estimated PP Loading Time for Echo Cancellation T

ECHO TAIL PP LOADING
32 ms (256 Taps) 10.4% (5.2 MIPS)
64 ms (512 Taps) 18.6% (9.3 MIPS)
100 ms (800 Taps) 27.8% (14.9 MIPS)

T Basedon block processindor 80 samples

21

Summary

The implementation of acoustic echo cancellation on the TMS320C8x offers high performance and the
flexibility to meet varying user needs. Users can easily change the software to fit their specific application
requirements. Because the TMS320C8x has the highest engine power of any parallel processor currently
available anywhere, it provides the fastest convergence time and the smallest residual error after echo
cancellation.

The simple LMS-adapted tapped-delay-line filter plays an important role in this implementation. Large
numbers of taps, stepsize normalization, and a new speech-detection algorithm improve the
implementation capabilities. Applications of this technology can be widely used in other communication
tasks, including speech coding, digital cellular phone systems, and teleconferencing systems.

References

1. Parallel Processor User’s Guid@erature number (SPRU110A), Texas Instruments, 1995.

2. Multitasking Executive User’'s Guidéerature number (SPRU112A), Texas Instrumelr@95.

3. AD1848k Technical Referenadenalog Devices, 1993.

4. David Messerschmitt, David Hedberg, Christopher Cole, Amine Haoui, and Peter Winship,
“Digital Voice Echo Canceller with a TMS3202@1gital Signal Processing Applications With
the TMS320 Famijyvolume 1, 1989.

5. Padma P. Mallel&ull-Duplex Speaker-Phone, Theory and Implementafi®83.

6. C. Richard Johnson, Jr., “On the Interaction of Adaptive Filtering, Identification, and Control,”
IEEE Signal Processing Magazindarch 1995.

22

APPENDIX A—Variables Used in the AEC Algorithms

Table 10. Algorithm Variable Names and Descriptions

NAME DESCRIPTION
|_pwr_2_16 Near-end signal long power estimate in Q31 format
s_pwr_2 16 Near-end signal short power estimate in Q31 format
v_pwr_2_ 16 Near-end signal very short power estimate in Q31 format

nes_long_pwr_Q15

Near-end signal long power estimate in Q15 format

nes_long_pwr_Q31

Near-end signal long power estimate in Q31 format

nes_short_pwr_Q15

Near-end signal short power estimate in Q15 format

nes_short_pwr_Q31

Near-end signal short power estimate in Q31 format

nes_vshort_pwr_Q15

Near-end signal very short power estimate in Q15 format

nes_vshort_pwr_Q31

Near-end signal very short power estimate in Q31 format

fes_short_pwr_Q31

Far-end signal short power estimate in Q31 format

fes_vshort_pwr_Q15

Far-end signal very short power estimate in Q15 format

fes_vshort_pwr_Q31

Far-end signal very short power estimate in Q31 format

err_short_pwr_Q15

Error signal short power estimate in Q15 format

err_short_pwr_Q31

Error signal short power estimate in Q31 format

prev_fes_pwr

Previous far-end speech short power estimate in Q31 format

nes Near-end signal picked up by microphone

fes Far-end signal when far-end speech is active

error Output signal to far-end speaker (near-end signal minus output of LMS filter)
mode AEC status mode which is designed to do filtering, updating, or nothing
nes_hang Hold near-end speech hangover counter

fes_hang Hold far-end speech hangover counter

dt_hang Hold double-talk hangover counter

r Near-end signal picked up by the microphone

r_hat Replica of the echo generated by the LMS filter

erf Error input of the LMS/NLMS filter

ue stepsize*error

ueM1 Intermediate value of the divi operation

db_margin Double-talk detection margin

C Double-talk detection margin (determined by ERLE)

fes_margin Far-end speech detection margin

nes_margin Near-end speech detection margin

step size Step size of the LMS filter

filter_size Hold adaptive filter taps

speech_out Speech to the far-end caller

23

APPENDIX B—Q16 unsigned Divi Instructions
When the dividend is less than the divisor, the quotient will always be a fractional number. Since the parallel
processors on the TMS320C8x are fixed-point processors, the output must be changed to Q16 format.

The Parallel Processor User’s Guideontains a detailed discussion of diei operation, but all the
examples are for integdivi operationdl) This section explains how to use thei operation to perform
the Q16 format number division and produce the Q16 outputdivheoperations for other Q format
numbers are similar.

The general syntax for tltkvi operation is:
dstl Fcond][.pro]divi (src2,dst2=[cond]sr¢n]src1-1])

All parameters are described on page 8-99 oPtimallel Processor User’s Guidand therefore are not
repeated her€l) The pair of src1:mf registers is set to the 64-bit dividend, and the src2 registers are set to
the negative of the 32-bit divisor.

Example 1 and Example 2 below show the different data formats of the dividend placement in the registers
between the regular 16-bit integhivi operations and the Q16 numldiéri operations.

Example 1. Dividend Placement of 16-bit Integer Divi Operations

[dividend: [320s [dividend (16-bit) [16 0s
src1(32 MSBs of dividend) + mf(32 LSBs of dividend) = 64-bit
Example 2. Dividend Placement of Q16 Number Divi Operations

[dividend: [16 0s [dividend (16-bit) [320s |
src1(32 MSBs of dividend) + mf(32 LSBs of dividend) = 64-bit

Instead of placing the dividend in the upper half of the mf register, put it in the lower half of src1, which
is equal to left shift divided by 16 bits. After the sixteen divide iterates, the quotient will be in Q16 format.
Example 3 shows sample code for placing the dividend in scrl.

24

Example 3. Code for Placing the Dividend in the Lower Half of Scrl

srcl .set d1 ; must odd register.
srclM1 .set dO
src2 .set d4

dividend .set d6
divisor .set d7
remainder .set dO

.ptext
.system $divi
.system _divi
$divi:
_divi:
dividend = *a8 ;load dividend.
|| divisor =*a0 ;load divisor.
src2 = —divisor ;negate the divisor.
|| mf = &*(0) ;make 32 LSBs of 64-bit
;dividend == 0.
srcl = dividend ;srcl = 32 MSBs of 64-bit dividend.
|| Irse2 = &*(12) ;14 loops + 2 delay slots == ;16 divis
srcl = divi(src2, srcIM1 = srcl) ;1st divi. iterate.

srcl = divi(src2, src1M1 = srcl [n] src1M1) ;2nd divi. iterate.
srcl = divi(src2, srcIM1 = srcl [n] src1M1) ;3rd through 15th
;divis iterate.
remainder = [n] srcl ;Remainder may be in src1M1 register or
;srcl register, depending on the n
;status bit. You may never need the
:remainder.
; At the end of the 16 divide iterates, the 16-bit quotient is found in
; the 16 LSBs of the mf register, and the 16-bit remainder is found in
; remainder register.
br =iprs
nop
nop

25

26

APPENDIX C—aec Software Files

This appendix contains listings of all software files required for implemention of a
512-tap (64-ms span) echo canceller on the TMS320C80.

File Description Page

audinit.c..... Initialize audiocodecc i 27
main.c AEC main programcouiiii i 28
pp3func.c ... Initialize PP3’'s command buffers 33
aec.h Head file formain.c i 35
main.h Head file formain.c i 36
pp3func.h ... Head file for main.c and pp3func.c 38
echan.i...... Include file for all .p filesand einit.s 39
ckmem.p Check for divergence of filtermemory 42
detector.p ... Speechdetection i 45
echanp Main functionso i 54
Ims.p LMS algorithm 63
power.p Power estimationiiiiiiii i 67
aec vars.s .. Variablesand arrays ...t 73
einits AEC initializationfile 75
initemd Linkcommandfile i 81
echan.nk ... Linkcontrolfile i 83

File: audinit.c

#include <stdlib.h>
#include <sdbembed.h>
#define SAMPLE_RATE (8000)
#define CHANNELS 2)
void audinit()
{
UCHAR reg_set;
[* Initialize codec to bidirectional mode */

SDB_InitAudio(1);

/* Set codec sample rate, channel and sampling data format */

SDB_SetClockDataFormat(SAMPLE_RATE, CHANNELS,
SDB_16BIT_PCM);

[* Set left and right line input source and gain */

SDB_SetLeftlnput(3,0);

SDB_SetRightinput(3,0);

/* Enable mic inputs’ 20db gain */
[*reg_set = Oxaa;

set_codec_reg(0x0,reg_set);
set_codec_reg(Ox1,reg_set);

[* Set left and right output attenuation and mute */

SDB_SetLeftDac(0,0);

SDB_SetRightDac(0,0);

/* Start audio use loopback mode enable both
capture and playback */

SDB_StartAudio(SDB_AUDIO_LOOPBACK);

27

/*

File: main.c

* Copyright (C) 1993-1994 Texas Instruments Incorporated.

* All Rights Reserved

* main.c — C source code for application based on MVP executive

*

*

* History:

* 03/30/93...0riginal version written J. Van Aken

* 03/15/94...Updated to run under new kernel J. Van Aken
* 01/10/95...Modified to run a test program Varadi Gyorgy
*

*/

#include <stddef.h>

#include <stdlib.h>

#include <stdio.h>

[*#include "audiodrv.h™/

#include <mvp.h> /* MP hardware functions */

#include <mvp_hw.h> /* MVP hardware parameters */

#include <task.h>

#include <mp_int.h>

#include <mp_ppcmd.h>
#include "'main.h”

#include "aec.h”

#include "pp3func.h”

#include <sdbembed.h>

extern short OUTPUT;

extern short NEAR_END_SIGNAL,;
extern short FAR_END_SIGNAL;
[*extern short COEFF_INIT[]; */
extern void AEC_State_Init();
extern void AEC();

extern void audinit();

long port;

/*

28

*/

/*

* Dynamic memory allocation functions with multitasking capability

*/

long mySemald,; I* mutex protection for heap accesses */

void *myMalloc (size_t size)

{

void *p;

TaskWaitSema (mySemald);
p = malloc (size);
TaskSignalSema (mySemald);
return (p);

}

void myFree (void *ptr)

{
TaskWaitSema (mySemald);
free (ptr);
TaskSignalSema (mySemald);

}

/*

void MPServerTask (void *dummy)
{
short fes_low;
short fes_high;
short nes_low;
short nes_high;
short temp, temp2, temp1;
int acal=0;
short fes_lacal, fes_hacal, nes_lacal,nes_hacal;
inti=0;
short delay_buff[1000];
port = TaskOpenPort (-1);
TaskReceiveMsg (port);
Pp3CmdBuflssue (AEC_State_Init);
Pp3WaitCompletion ();
/* Initialize audio drive */
audinit();
for ()
{

*/

29

/* Run audio drive capture speech */

/* Find DC offset*/

if (acal <1000){

while ({(I0_REG(AUDIO_STATUS) & 0x20));
fes_lacal = 10_REG(AUDIO_PIO_DATA);
fes_hacal = I0_REG(AUDIO_PIO_DATA);

nes_lacal = I0_REG(AUDIO_PIO_DATA);
nes_hacal = |IO_REG(AUDIO_PIO_DATA);
acal ++;

}

else {

while ({(I0_REG(AUDIO_STATUS) & 0x20));
fes_low = 10_REG(AUDIO_PIO_DATA);
fes_high = 10_REG(AUDIO_PIO_DATA);

nes_low = 10_REG(AUDIO_PIO_DATA);

nes_high = 10_REG(AUDIO_PIO_DATA);

}

/* Subtract the DC offset */

temp = ((fes_low & 0x00ff) | fes_high << 8)—
((fes_lacal&0x00ff)|(fes_hacal<<8));

NOCACHE_SHORT(FAR_END_SIGNAL) = temp;

temp = ((nes_low & 0x00ff) | (nes_high << 8))—
((nes_lacal&0x00ff)|(nes_hacal<<8));
NOCACHE_SHORT(NEAR_END_SIGNAL) = temp;

/*run AEC */

run_aec_test();

/* Run audio drive playback speech*/

while (!(I0_REG(AUDIO_STATUS) & 0x02));
temp = NOCACHE_SHORT(FAR_END_SIGNAL);
fes_low = temp;

fes_high = temp >> 8;

IO_REG(AUDIO_PIO_DATA) = fes_low;
|I0_REG(AUDIO_PIO_DATA) = fes_high;

30

temp = NOCACHE_SHORT(OUTPUT);

if (i<999){
delay_buff[i]=temp;
/¥ temp = NOCACHE_SHORT(NEAR_END_SIGNAL); */
/* Software delay for testing the difference between
AEC is work or not.*/
nes_low = delay_buff[i+1] ;
nes_high = delay_buff[i+1] >> 8;

IO_REG(AUDIO_PIO_DATA) = nes_low;
IO_REG(AUDIO_PIO_DATA) = nes_high;
i++;

}

else {

delay_buff[i]=temp;

i=0;

nes_low = delay_buff[i] ;

nes_high = delay_buff[i] >> 8;

IO_REG(AUDIO_PIO_DATA) = nes_low;
IO_REG(AUDIO_PIO_DATA) = nes_high;
}
}
}
run_aec_test()
{
short *fes_ptr;
short *nes_ptr;
short *out_ptr;
PPCMDBUF *cmdbuf;
AEC_PP_ARGBUF *argbuf;
cmdbuf = Pp3GetCmdBuf();
argbuf = PpCmdBufGetArgs(cmdbuf);
argbuf—>fes_src_pkt = fes_ptr;
argbuf—>nes_src_pkt = nes_ptr;
argbuf—>dst_pkt = out_ptr;
Pp3CmdBuflssue(AEC);
Pp3WaitCompletion();

31

}

/*

main ()
{
long taskid;
MESSAGE msg;
long result;
unsigned long i;
PpResetAll ();
Interruptlinit ();
InterruptSetVect (_isrPpMsg, 0x000f0000);
IE |= 0x000f0000;
TasklInitTasking (); /* call before any other task functions */
mySemald = TaskOpenSema (-1, 1);
TasklInstallMalloc (myMalloc, myFree);
taskld = TaskCreate (-1, MPServerTask, (void *)NULL, 16, 4096);
TaskResume (taskld);
Pp3init ();
TaskSendMsg (&msg, port);
for (;;) {} [* endless loop */
return ;

32

*

File: pp3func.c

/ Kk K FFIKKKK * Kk K FFIIRIKFFFIRK * *kkFF kKKK FK

* PP3FUNC.C *

* *

* Created by Varadi Gyorgy, Texas Instruments *
* Copyright (c) 1995 Texas Instruments *

* *

* Last modified: 21. Feb. 1995 *

* * * * * * * * * /

#include <stddef.h>
#include <task.h>
#include <mp_ppcmd.h>
#include <mp_int.h>
#include "pp3func.h”
static long Pp3RunSemald;
static PPCMDBUF *Pp3CmdBuf;
I
* Initializes the PP3’s command buffers.
* If the PP3 initialization is not successful then the return value
* is NULL, otherwise is a pointer of the command buffers.
*/
PPCMDBUF *Pp3Init (void)
{
PPCMDBUF *cmdbuf;
cmdbuf = PpCmdBuflnit (PPNUM, PpCmdinterp, 2);
PpCmdBufSetArgs (cmdbuf, (void *)(0x1000240 + (PPNUM << 12)));
cmdbuf = PpCmdBufNext (cmdbuf);
PpCmdBufSetArgs (cmdbuf, (void *)(0x1000290 + (PPNUM << 12)));
cmdbuf = PpCmdBufNext (cmdbuf);
if (Pp3RunSemald = TaskOpenSema (-1, 1)) == -1)
return (NULL);
PpMsgintSetSema (PPNUM, INTLEVEL, Pp3RunSemald);
Pp3CmdBuf = cmdbuf;
return (cmdbuf);
}
/*
* This function returns the pointer of the PP3’s command buffers.
*/

33

PPCMDBUF *Pp3GetCmdBuf (void)
{
return (Pp3CmdBuf);
}
J*
* The Pp3CmdBuflssue function issues a command to the PP3. It's not
* waiting for the completion of this command. But before it issues
* this command, waits for completion of the last command.
*/
void Pp3CmdBuflssue (void (*func)())
{
TaskWaitSema (Pp3RunSemald);
PpCmdBufSetFunc (Pp3CmdBuf, func);
PpCmdBufNotifylssue (Pp3CmdBuf);
Pp3CmdBuf = PpCmdBufNext (Pp3CmdBuf);

/*

* This function is waiting for execution of the last command.
*/

void Pp3WaitCompletion (void)

{
TaskWaitSema (Pp3RunSemald);

TaskSignalSema (Pp3RunSemald);
}

34

File: aec.h

#ifndef _AEC_H
#define _AEC_H
typedef struct
{
void *fes_src_pkt;
[* pointer to far end speech input packet — decoded
speech */
void *nes_src_pkt; /* pointer to near end speech input packet — speech
sampled from the microphone at the same time the far
end speech is being played through the speaker */
void *dst_pkt; /* pointer to output speech packet — raw audio for
encoder */
} AEC_PP_ARGBUF;
#endif

35

File: main.h

/*

* Copyright (C) 1993 Texas Instruments Incorporated.

* All Rights Reserved

*

*
* main.h — C header file for AEC main program
*

*

* History:

* 03/24/93...0riginal version written J. Van Aken

* 03/03/94...Updated to run under new kernel
* 01/10/95...Updated to run a test program

*

.... J. Van Aken

Varadi Gyorgy

*
J*
* Message body for the MP server task
*/
typedef struct
{
long a;
long b;
long *result;
char command;
} MESSAGE;
/*
* Commands for the MP server task
*/
#define ADD 0x1
#define SUB 0x2
I
* Argument passed to newly created server task
*/
typedef struct
{
long ppNum;

void (*ppProg) ();

36

long semald;

long portld;

PPCMDBUF *cmdBuf;
} SRVARG;
I

* Declare entry-point addresses to PP-resident routines
*/
extern void PPCMD_ADD (); /* command 0 */
extern void PPCMD_SUB (); /* command 1 */

37

File: pp3func.h

J** * * * * * * * *

* PP3FUNC.H *
* *

* Created by Varadi Gyorgy, Texas Instruments

* Copyright (c) 1995 Texas Instruments

* *

* Last modified: 21. Feb. 1995 *

#ifndef PP3FUNC_H

#define PP3FUNC_H

I* some macros */

#define PPNUM 3

#define INTLEVEL 1

/* Function definitions */
PPCMDBUF *Pp3lInit (void);
PPCMDBUF *Pp3GetCmdBuf (void);
void Pp3CmdBuflssue (void (*)());
void Pp3WaitCompletion (void);
#endif

38

File: echan.i

Copyright (C) 1995 Texas Instruments Incorporated. *
All Rights Reserved *
*
echan.i — Include file for C80 Acoustic Echo Cancellation software *
*
Environment: *

— Assemble with versions 1.10 and above of TI's PP assembiler.

* History: *
* 04MAY95...Original version written R. Matusiak *
o e David Qi *
STACK_SIZE set 9

FES_MARGIN .set -7

NES_MARGIN .set —6

DB_MARGIN .set -5

CONST1 .set -4

dO_LONG_POWER .set -3
d0_SHORT_POWER set -2
d0_VSHORT_POWER set -1

IPR set 1

MODE set 2

NES_HANG set 3

FES_HANG set 4

DT_HANG set 5

HANG_COUNT .set 6

SIGN set 7

*

*

*

*

*

*

For Acoustic Echo Cancellation, there are several modes of operation.
For program control, we need this mode information. Each mode will
be given one bit of a mode register. This mode register then could

be pushed and popped from the local stack as needed.

AEC_UPDATE set 0O
AEC_FILTERING set 1

DOUBLE_TALK set 2
NEAR_SPEECH set 3
FAR_SPEECH set 4

*

*

*

mode[0] — controls AEC coefficient updates. If setto 1, it indicates
that the AEC filter coefficients can be updated for that cycle. If O,
do not update coefficients for that cycle.

mode[1] — controls AEC filtering. If set to 1, it indicates
that the AEC filter filtering should be performed that cycle. If O,
do not do AEC filtering.

mode[2] — double talk detector flag. A 1 indicates double talk has
been detected. A 0 indicates no double talk has been detected.

mode[3] — near end speech talk detector flag. 1 indicates near end
speech has been detected. A 0O indicates no near end speech has been
detected.

model[4] — far end speech talk detector flag. 1 indicates far end
speech has been detected. A 0 indicates no far end speech has been
detected.

The instructions below are used to show how the above defined mode
bits are set. AEC_FILTERING has been chosen for the example, but
others would be similar.

; Set mode bit to indicate AEC filtering should be performed

mode = *(sp + [MODE]) ; get mode reg from stack
mode = mode | I\AEC_FILTERING ; set AEC filtering mode bit
*(sp + [MODE]) = mode ; put mode reg on stack

; Clear mode bit to indicate AEC filtering should not be performed

mode = *(sp + [MODE]) ; get mode reg from stack

40

* mode = mode & ~(1NAEC_FILTERING) ; clear AEC filtering mode bit

* *(sp + [MODE]) = mode ; put mode reg on stack

* ; Using the mode reg. test to see if AEC filtering is to be

* ; performed.

*

* mode = *(sp + [MODE]) ; get mode reg from stack

* test = mode & IWAEC_FILTERING ; check if AEC filtering
* ; mode bit is set

* call =[nz] aec_fitering ; call AEC filtering routine

* <delay 1>
* <delay 2>

*,

FILTER_SIZE .set 512 ;LMS filter size — set for 64 msec echo tail
SAMPLES .set 1 ; number of speech samples to be processed
STEPSIZE .set 0x1 ;LMS filter step size.

41

File: ckmem.p

* Copyright (C) 1995 Texas Instruments Incorporated.

* All Rights Reserved

*

*

* ckmem.p — C callable PP assembly language function used to check
* for divergence of AEC filter memory. Used in C80

* implementation of AEC.

* Environment:
* — Assembles with versions 1.10 and above of TI's PP assembler.
* — Allocates with PPCA versions 1.0.

* History:
* 05MAY95...Original version written R. Matusiak

* * * * * * * * *

*C PROTOTYPE

* void check_filter_memory(short input)

* where input is a sample of far end speech

*

* DESCRIPTION

*

* Check AEC filter memory values for possible divergence. This

* is done as a safety measure. If the memory values become large,

* our chances for overflow increase. One method for checking filter

* memory divergences is to keep a running sum of the memory values, if
* the sum gets larger than some predefined threshold, then scale down
* the memory values.

*

* Concern — if this is done, do we need to worry about the Q point in

* the remainder of the calculations?

*

42

* This only needs to be called when AEC filtering is done.

*

*

*

*% *% *kkkkkkkhkkhhkkkhkk *% *% *hkkkkkkhkkhhkkkkkk *% *% *

* BENCHMARK

*

*

*

number of cycles = 13 + N

where N is the filter order

* * Fkk * * * Fkk * * *

.include "echan.i”

input .set d2
sum reg d
mem reg d
test reg d
new_mem reg d
La_memory reg la
La_sum reg la
Lx_mem_end reg I
ref L_AEC_FILTER_MEM
ref L_SUM

.entry d2

Jlock di, d6, d7, a4, al12, xO
.system $check_filter_memory
.system _check_filter_memory
.ptext

$check_filter_memory:

_check_filter_memory:

*(sp + [IPR]) = iprs

Lx_ mem_end = FILTER_SIZE -1 ; index to get oldest memory

; value
La_memory = &*(xba + L_AEC_FILTER_MEM) ; pointer to filter memory
sum = *(La_sum = xba + L_SUM) ; get previous sum,

; initial value is zero
sum = sum + |input| ; add the newest input (far
; end) to previous sum
|| mem =h *(La_memory + [Lx_mem_end]) ; get oldest memory value
; this one is shifted out

43

sum = sum — mem

test = sum — 1\\14

br =[It] *(sp + [IPR])

; subtract the oldest memory
; value from sum
; test to see if sum >
: 0x4000
; If sum < 0x4000, no
; divergence —> no need to

; scale memory

IrsO =[ge] FILTER_SIZE -2 ; if sum > 0x4000, divide

; each memory value by 2

; (right shift by 1)
le0 = ipe + (MEM_SHIFT_END — $)
|| mem =h *La_memory++
.cexit
new_mem =mem >>1
|| mem =h *La_memory++
MEM_SHIFT:
new_mem =mem >> 1
|| *(La_memory — [2]) =h new_mem
MEM_SHIFT_END:
mem =h *La_memory++
.cjump MEM_SHIFT
br = *(sp + [IPR])
new_mem = mem >> 1
|| *(La_memory — [2]) =h new_mem
*(La_memory — [2]) =h new_mem
.uexit
.end

44

File: detector.p

* Copyright (C) 1995 Texas Instruments Incorporated. *

* All Rights Reserved *

*

* *

* detector.p — Speech detection file for C80 Acoustic Echo Cancellation *
* software. (Total 66 instructions.) *

* *

* Environment: *

* — Assembles with versions 1.10 and above of TI's PP assembler. *
* — Allocates with PPCA version 1.0. *

*

* History: *

* 04JULY95...Original version written R. Matusiak *

o David Qi *

* 10/01/95...Modified version runs on SDB................ David Qi *

* * * * * * * * *

: Total instructions 67.
.include echan.i
mode .set dl
nes_hang .set d2
fes_hang .set d3
dt_hang .set d4
error .set dé6
prev_err_pwr .set d2
err_short_pwr .set d5

thresh reg d
prod reg d
test reg d
D reg d
C reg d

fes_margin .reg d
nes_margin .reg d
fes_vshort_pwr .reg d
nes_vshort_pwr .reg d
nes_short_pwr .reg d
nes_long_pwr .reg d

45

dummy .dummy
La_error_prev_pwr .set a0

La_error reg la
La_nes_margin reg la
La_fes_margin reg la

Ga_nes_vshort_pwr .reg ga

Ga_fes_vshort_pwr reg ga
Ga_nes_short_pwr rreg ga
Ga_nes_long_pwr rreg ga
Gx_sample .set x8
.ptext
.entry x8, d5

.ref short_power_estimates

ref L_ERR_SHORT_POWER_Q31
.ref L_NEAR_END_SPEECH

.ref L_FAR_END_SPEECH

ref L_NES_SHORT_POWER_Q15
ref L_NES_SHORT_POWER_Q31
refL_NES_VSHORT_POWER_Q15
.ref L_NES_VSHORT_POWER_Q31
refL_NES_LONG_POWER_Q15
refL_NES_LONG_POWER_Q31
.ref L_ERROR
refL_ERR_SHORT_POWER_Q15
ref L_ERR_SHORT_POWER_Q31
ref L_FES_SHORT_POWER_Q31
ref L_FES_VSHORT_POWER_Q15
.def SPEECH_DETECTOR

.def far_end_speech_detector

.def double_talk_detector

.def nes_speech_detector

.def control_Ims

SPEECH_DETECTOR:

kkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkkkhkkkkkk

* Far End Speech Detector:

*

* |f the very short power estimate of FES plus some margin is greater than
* the very short power estimate of NES, then FES is detected. If FES

46

* is detected, set FAR_SPEECH mode bit, reset fes hangover counter, then

* pranch to double talk detector. If FES is not detected, decrease the FES

* hangover counter by one, clear FAR_SPEECH mode bit, then go to double talk
* detector.

Kk kkokk * *

far_end_speech_detector:

; Far end speech is detected if:

fes_vshort_pwr + fes_margin > nes_vshort_pwr

dummy = *(Ga_fes_vshort_pwr = xba + L_FES_VSHORT_POWER_Q15)
fes_vshort_pwr =h *(Ga_fes_vshort_pwr + [Gx_sample])
dummy = *(Ga_nes_vshort_pwr = xba + L_NES_VSHORT_POWER_Q15)
nes_vshort_pwr =h *(Ga_nes_vshort_pwr + [Gx_sample])

|| fes_margin = *(sp + [FES_MARGIN])
thresh = fes_vshort_pwr + fes_margin

|| mode = *(sp + [MODE]) ; load MODE from stack.
;nes_hang = *(sp + [NES_HANG])
test = thresh — nes_vshort_pwr ; test fes or not.

|| fes_hang = *(sp + [FES_HANG]) ;load FES_HANG from stack.

; If fes is detected, do the following:

br =[gt] double_talk_detector ; br to double_talk_detector.
mode =[gt.nvz] mode | (1\FAR_SPEECH) ; set fes mode bit.
|| *(sp + [IPR]) = iprs ; save iprs to stack.
fes_hang =[gt]0x50;*(sp+[HANG_COUNT]) ; reset fes_hang to high.
; *(sp + [MODE]) = mode ; store back MODE to stack.
; *(sp + [FES_HANG]) =fes_hang ; store FES_HANG to stack.
.cjump double_talk_detector

; If fes is not detected, do the following:

mode = mode & ~(1\\FAR_SPEECH) ; clear far speech mode.
fes_hang = fes_hang — 1 ; decrement fes_hang by one.
;*(sp + [MODE]) = mode ; store back MODE to stack.

*(sp + [FES_HANG]) = fes_hang ; store FES_HANG to stack.

* * * * * * * * *

* Double Talk Detector:

*

* Double talk is detected when the error power estimate is greater

* than the near end power estimate.

* ERLE (echo return loss enhancement) = 10 log Pd/Pe

* where Pd is the power estimate of the near end signal and

* Pe is the error power estimate.

*

* When Pe > C*Pd + D (where C is a threshold constant and D is threshold

* constant determined from real time implementation) then double talk

*is detected —> reset DT, FES and NES hangover counters, set DOUBLE_TALK
* mode bit, clear FAR_SPEECH mode bit, clear NEAR_SPEECH mode bit, then
* branch to control_Ims.

*

*If Pe <= C*Pd + D then double talk is not detected —> decrease double talk

* hangover counter by one, clear DOUBLE_TALK mode bit, then test FAR_SPEECH
* mode bit. If FAR_SPEECH mode bit is not set, branch to nes_speech_detector,
* otherwise decrease NES hangover counter by one then branch to control_Ims.

* * * * * * * * *

double_talk detector:

; Compute the short power estimate of the error signal
; int power = short_power_estimate(short sample, int prev_pwr)

call = short_power_estimates

error =h *(La_error = xba + L_ERROR) ;load error.

prev_err_pwr = *(La_error_prev_pwr = xba + L_ERR_SHORT_POWER_Q31)
; load the previous 32 bit

.uexit

; Double talk is detected when:
; err_short_pwr >= C*nes_short_pwr + D

.entry x8, d5
dummy = *(Ga_nes_short_pwr = xba + L_ NES_SHORT_POWER_Q15)
nes_short_pwr =h *(Ga_nes_short_pwr + [Gx_sample])
; load nes_short_pwr.
|| C =*(sp + [CONST1]) ;C=6

48

; nes_short_pwr =h1 nes_short_pwr

prod = nes_short_pwr * C ; multiply.
|| D =*(sp + [DB_MARGIN]) ; load D from stack.
thresh = prod + D ; add D to product.
;|| mode =*(sp + [MODE]) ; load MODE from stack.
|| dt_hang = *(sp +[DT_HANG]) ; load DT_HANG from stack.

err_short_pwr = err_short_pwr << 4

test = err_short_pwr — thresh ; test double talk or not.

;|| fes_hang = *(sp + [FES_HANG]) ;load FES_HANG from stack.
[Ines_hang = *(sp + [NES_HANG]) ;load NES_HANG from stack.

; If double talk is detected, do the following:

mode =[gt.nvz] mode | (I\DOUBLE_TALK) ; set double talk mode.
|| dt_hang =[gt]*(sp + [HANG_COUNT]) ; reset double talk
; counter.

mode =[gt.nvz] mode & ~(1\FAR_SPEECH) ; clear far speech mode.

fes_hang =[gt]0x50;*(sp+[HANG_COUNT]) ; reset fes_hang.

mode =[gt.nvz] mode & ~(1\NEAR_SPEECH) ; clear near speech mode.

|| nes_hang =[gt]*(sp+[HANG_COUNT]) ;reset nes_hang counter.

*(sp + [MODE]) = mode ; store back MODE to
; stack.
*(sp + [DT_HANG]) = dt_hang ; store DT_HANG to stack.
br =[gt] control_Ims ; branch to control_Ims.
*(sp + [NES_HANG]) = nes_hang ; store NES_HANG to stack.
*(sp + [FES_HANG]) = fes_hang ; store FES_HANG to stack.

.cjump control_Ims

;If double talk is not detected, do the following:

mode = mode & ~(1\DOUBLE_TALK) ; clear DOUBLE_TALK mode
; bit.

dt_hang =dt_hang -1 ; decrement dt_hang by one.

test = mode & (0Ox1\FAR_SPEECH) ; test FAR_SPEECH mode bit.

; If no far end speech detected:

br =[z] nes_speech_detector ; br to nes_speech_detector.
*(sp + [DT_HANG]) = dt_hang ; store DT_HANG to stack.

49

*(sp + [MODE]) = mode ; store back MODE to stack.
.cjump nes_speech_detector

; If far end speech detected and no double talk, i.e. not near end speech:

nes_hang = nes_hang — 1 ; decrease nes_hang by one.

br = control_Ims ; branch to control_Ims.

mode = mode & ~(1\NEAR_SPEECH) ; clear near speech mode bit.
|| *(sp + [NES_HANG]) = nes_hang ; store NES_HANG to stack.

*(sp + [MODE]) = mode ; store back MODE to stack.

.ujump control_Ims

* NEAR End Speech Detector:

*

* |f the very short power estimate of NES plus some margin is greater or

* equal than the very long power estimate of NES, then NES is detected. If

* NES is detected, reset the NES hangover counter, set NEAR_SPEECH mode bit,
* clear FAR_SPEECH mode bit, clear DOUBLE_TALK mode bit, then branch to

* control_Ims.

* |f the NES is not detected, decrease NES hangover counter, clear

* NEAR_SPEECH mode bit. If the double talk hangover counter is greater than

* zero, set AEC_FILTERING mode bit, and clear AEC_UPDATE mode bit, then

* branch out speech detection routine. If the double talk hangover counter is

* |less than zero, clear AEC_UPDATE and AEC_FILTERING mode bits, then branch
* out speech detection routine.

nes_speech_detector:

; Near end speech is detected when:
; nes_vshort_pwr + nes_margin >= nes_long_pwr

dummy = *(Ga_nes_vshort_pwr = xba + L_NES_VSHORT_POWER_Q15)
nes_vshort_pwr =h *(Ga_nes_vshort_pwr + [Gx_sample])
dummy =*(Ga_nes_long_pwr = xba + L_NES_LONG_POWER_Q15)
nes_long_pwr =h *(Ga_nes_long_pwr + [Gx_sample])

|| nes_margin = *(sp + [NES_MARGIN]) ; load nes margin.
thresh = nes_vshort_pwr + nes_margin

|| mode = *(sp + [MODE]) ; load mode bit.

50

test = thresh — nes_long_pwr ; test near end speech.
|| dt_hang = *(sp +[DT_HANG]) ; load DT_HANG from stack.
nes_hang = *(sp + [NES_HANG]) ; load NES_HANG from stack.

; If near speech is detected, do the following:

mode = [ge.nvz] mode | (I\NEAR_SPEECH) ; set near speech mode bit.
|| nes_hang =[ge]*(sp+[HANG_COUNT]) ;reset nes_hang.
br =[ge] control_Ims ; branch to control_Ims.
mode = [ge.nvz]mode & ~(1\\FAR_SPEECH) ; clear far speech mode.
[| *(sp+[NES_HANG]) = nes_hang ; store NES_HANG to stack.
mode =[ge] mode & ~(1\DOUBLE_TALK) ; clear double talk mode.
|| *(sp+[MODE]) = mode ; store back MODE to stack.
.cjump control_Ims

; If near speech is not detected, i.e., no speech
; detected at this time, do the following:

; nes_hang = nes_hang — 1 ; decrement nes_hang by one.
br =[ge] control_Ims ; branch to control_Ims.
; mode = mode & ~(1\NEAR_SPEECH) ; clear NEAR_SPEECH mode bit.
|| *(sp + [NES_HANG]) = nes_hang ; store NES_HANG to stack.
; dt_hang = dt_hang ; test DT_HANG.
; .ujump control_Ims

. If (DT_HANG >= 0):

; mode =[ge.nvz] mode | (INAEC_FILTERING) ; set filtering mode bit.
; || br =[ge] *(sp + [IPR]) ; branch out.

; mode =[ge.nvz] mode & ~(1\AEC_UPDATE) ; clear update mode bit.
; *(sp + [MODE]) = mode ; store back MODE to stack.
; .cexit

. If (DT_HANG < 0):

; mode =[lt.nvz] mode & ~(1\AEC_FILTERING) ; clear filtering mode bit.
; [| br =[It] *(sp + [IPR]) ; branch out.

51

; mode =[It] mode & ~(1\AEC_UPDATE) ; clear update mode bit.
; *(sp + [MODE]) = mode ; store back MODE to stack.
; .cexit

kkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkkkhkkkkhkkkhkkkkhkkkkkkkhkkkkkk

* Control LMS:

*

* After any speech detected, go to this part to set the updating and
* filtering mode bit only depends on the DT_HANG and NES_HANG. To do LMS or
* not depends on this subroutine.

* * Fkk * * Fkkkkkkk * * *

control_Ims:
dt_hang = *(sp +[DT_HANG]) ; load DT_HANG from stack.
dt_hang = dt_hang ; test DT_HANG.
|| mode = *(sp + [MODE]) ; load MODE from stack.

; If (DT_HANG >= 0):

mode =[ge.nvz] mode | (I\AEC_FILTERING) ; set filtering mode bit.
|| br =[ge] *(sp + [IPR]) ; branch out.

mode =[ge.nvz] mode & ~(1\AEC_UPDATE) ; clear update mode bit.
|| nes_hang =*(sp + [NES_HANG]) ;load NES_HANG from stack.

nes_hang = nes_hang ; test NES_HANG.
|| *(sp + [MODE]) = mode ; store back MODE to stack.
.cexit

; If (DT_HANG < 0) and (NES_HANG < 0):

mode =[It.nvz] mode | (1\AEC_FILTERING) ; set filtering mode bit.

|| br =[lt] *(sp + [IPR]) ; branch out.
mode =[It.nvz] mode | (1NAEC_UPDATE) ; set update mode bit.
*(sp + [MODE]) = mode ; store back MODE to stack.
.cexit

. If (DT_HANG < 0) and (NES_HANG >= 0):

mode =[ge.nvz] mode & ~(1\AEC_FILTERING) ; clear filtering mode bit.
|| br =[ge] *(sp + [IPR]) ; branch out.

52

mode =[ge] mode & ~(1\AEC_UPDATE) ; clear update mode bit.
*(sp + [MODE]) = mode ; store back MODE to stack.
.cexit

53

File: echan.p

* Copyright (C) 1995 Texas Instruments Incorporated.

* All Rights Reserved *

*.

* *

* echan.p — Main functions file for C80 Acoustic Echo Cancellation *
* software. (Total 84 instructions.) *

* Environment:

* — Assembles with versions 1.10 and above of TI's PP assembler.

* — Allocates with PPCA version 1.0.

*

*

*

* History:

* 04JULY95...Original version written R. Matusiak

David Qi *

* 10/01/95...Modified version runs on SDB...............

David Qi

*

*

* * *

.include echan.i
erf set dl
fes .set d6
prev_fes pwr .set d2
r_hat .set d5
;argl set di
mode reg d
test reg d
ue reg d
ueM1 reg d
result reg d
prod reg d
;stepsize reg d
error reg d
r reg d
nes reg d
speech_out .reg d

fes_short_pwr .reg d
nes_and_echo .reg d

fes_signal .reg d

54

*

*

*

nes_signal reg d

hang_counter .set d3
nes_margin .set d3
fes_margin .set d2
constant_ C .set d4
db_margin .set d4
La_margin set al
La_hang .set al
dummy .dummy

La_near_end_speech .set al

La_mem .set a2

Ga_coeff .set a8

;Ga_struct .set a9 ; input pointer to structure.
La_prev_fes_pwr reg la

La_pwr_Q15 reg la

La_error reg la

La_filter_out reg la

La_NEAR_END_SIGNAL .reg la
La_FAR_END_SIGNAL reg la

La nes_and_echo rreg la
La_SPEECH_OUT rreg la
Ga_fes_signal reg ga
Ga_fes rreg ga
Lx_sample .set x0
Gx_sample .set x8
Lx_count .set x2
Lx_mem_end rreg Ix

.ptext

.system $AEC

.system _AEC

.ref nes_power_estimates
ref $ims_filter
; .ref $check_filter_memory
.ref short_power_estimates
.ref fes_vshort_power_estimates
.ref far_end_speech_detector
.ref double_talk_detector
.ref nes_speech_detector

55

refL_AEC_FILTER_MEM
.ref L_AEC_COEFFICIENTS
ref L_ERROR
.ref L_NEAR_END_SPEECH
refL_FAR_END_SPEECH
.ref L_SPEECH_OUT
ref L_FES_SHORT_POWER_Q31
ref L_FILTER_OUTPUT
.ref _NEAR_END_SIGNAL
ref _FAR_END_SIGNAL
ref _OUTPUT
.ref echan_restore_state
.ref get_speech
ref $AEC_State_Init
.ref SPEECH_DETECTOR
ref _AEC_State_Init
.def NEXT_CYCLE
.def OUTPUT_CALC

$AEC:

_AEC:
.entry a9

*(sp —= [STACK_SIZE]) =iprs ; put function return pointer on stack

*

* This function call to restore all AEC required data from external
* memory. Not used in here because this demo code is AEC stand alone.

*

; call = echan_restore_state
; hop

; hop

. .uexit

*

* |nitialize variables in internal memory.

*

src .set dl

dst .set d2

count .set d3
Lx_count = SAMPLES ; local index counter.
Lx_sample =0 ; local index sample counter.
fes_margin = 0x2 ; fes margin.

56

nes_margin = 0x200 ; nes margin.

i*(sp + [NES_MARGIN]) = nes_margin ; store nes margin to stack.
i || *(sp + [FES_MARGIN]) = fes_margin ; store fes margin to stack.
hang_counter = 0x258 ; hangover counter.
constant_C = 0x06 : load constant C

; ERLE/10

;C=10 ,ERLE =8db

La_NEAR_END_SIGNAL = NEAR_END_SIGNAL ; point to nes_speech.

*(sp + [HANG_COUNT]) = hang_counter ; store hangover counter.
|| *(sp + [CONST1]) = constant_C ; store constant C.

db_margin = 0x500 ; double talk margin.

count = 2*SAMPLES ; load packet transfer counter.

*

* This function call get near—end-signal from external memory by
* using packet transfer.

*

call = get_speech ; call get nes.
src = La_NEAR_END_SIGNAL ; source address.

;|| *(sp + [DB_MARGIN]) = db_margin ; store margin D to stack.
dst = &*(xba + L_NEAR_END_SPEECH) ; destination address.
.cexit d1,d2

.entry a9
La_FAR_END_SIGNAL = _FAR_END_SIGNAL
; point to fes_speech.
count = 2*SAMPLES ; load packet transfer counter.

*

* This function call get far-end-signal from external memory by
* using packet transfer.

*

call = get_speech ; call get fes.

src = La_FAR_END_SIGNAL ; source address.

dst = &*(xba + L_FAR_END_SPEECH) ; destination address.
.cexit d1,d2

*

* This function call to calculate near-end-signal power estimate for
* all windows size.

*

57

call = nes_power_estimates ; calculate # of samples

; nes_pwr,
nop ; include short, very short and
nop ; long windows.

.cexit

*

* This function call to calculate far-end—signal power estimate for
* very short windows size.

*

call = fes_vshort_power_estimates ; calculate # of samples very
; short window power.

Gx_sample =0 ; global index sample counter.

nop

.cexit

* * * * * * * * *

* AEC Filtering

*

* We first need to check if we need to do AEC filtering for this cycle.

* We do AEC filtering if Far End Speech (FES) of the previous cycle was
* detected. This implies that either FES or Double Talk (DT) was detected
* on the previous cycle. AEC filtering is only turned off when FES is

* NOT detected for 600 consecutive FES samples. If AEC filtering is not
* to be done in this cycle then we know no AEC coefficient update will

* be done either, therefore, we do not need to check if coefficient

* updating should be done, just go to error signal power estimation code.

*

* AEC Coefficient Update

*

* Do AEC coefficient update if far end speech is detected and NO double
* talk is detected.

*

* The AEC filtering and coefficient updating are done in the same loop

* to reduce processing when both are needed to be done. If only AEC

* filtering is needed (meaning no updating of the coefficients), we

* still use the same routine, only we zero the error term which reduced

* the update equation to ak_new = ak_old, thus not changing them.

*

* |f we proceed to this part of the code, AEC coefficient update is going

58

* to be done or not depend on mode bit. We first need to calculate the

* short power estimate of the FES. Second we need to decide if we will use
* LMS or NLMS method to update the coefficients. The function prototype of
* the short power estimate is given below:

*

* int power = short_power_estimate(short sample, int prev_pwr)

*

NEXT_CYCLE:

Ga_fes = &*(xba + L_FAR_END_SPEECH) ; Ga_fes —> buffer that contains
; far end speech

call = short_power_estimates

prev_fes _pwr = *(La_prev_fes_pwr =xba + L_FES_SHORT_POWER_Q31)
; load the previous 32 bit
; short power estimate of the FES

fes =h *(Ga_fes + [Gx_sample]) ; load a FES sample

.cexit

*

* In this part we are going to check the MODE bit. If in filtering mode, we
* freeze the coefficients by error equal to zero. If in updating mode, do
* NLMS. If both mode not set, set filter output equal to zero.

*

.entry a9, x0
mode = *(sp + [MODE]) ; load MODE from stack.
test = mode & 1\AEC_FILTERING ; check if AEC filtering
; mode bit is set
br =[z] OUTPUT_CALC ; branch to OUTPUT_CALC routine
; If AEC filtering bit is not
; set

r_hat=0 ; we do not do AEC filtering
; therefore echo estimate is 0

nop

.cjump OUTPUT_CALC

test = mode & 1\AEC_UPDATE ; check if AEC coefficient
; update mode bit is set

br =[z] CHECK_FILTER_MEM

nop

erf =[z] O ; if AEC_UPDATE bhit is not
; set, seterf = 0. This

; causes the AEC coefficients
; to remain unchanged when
; Ims_filter() is called.

.cjump CHECK_FILTER_MEM

*,

* We always use NLMS to update coefficients.

*

* erf = error*stepsize/fes_short_pwr

*

* The divi function we use here only works when the dividend is less than the
* devisor and both are positive numbers. The dividend is STEPSIZE and also
* add it to fes_short_pwr to make sure the devisor is never zero and larger

* than the dividend. The output result is Q15 format.

*

ue = STEPSIZE ; load stepsize.
fes_short_pwr = *(La_prev_fes_pwr = xba + L_FES_SHORT_POWER_Q31)

fes_short_pwr = fes_short_pwr>>16 ; load fes power Q31
; and right shift
;16 bit.
fes_short_pwr = fes_short_pwr + ue ; make sure devisor not

; equal to zero.

fes_short_pwr = —fes_short_pwr ; negate the divisor.
[| mf = &*(0) ; clear mf register.
Irse2 =12 ; 13 loops + 2 delay

; slots == 15 divis
erf = divi(fes_short_pwr, ueM1 = ue) ; 1st divi. iterate.
erf = divi(fes_short_pwr, ueM1 = ue [n] ueM1) ; 2nd divi. iterate.
DIVI_LOOP:
erf = divi(fes_short_pwr, ueM1 = ue [n] ueM1) ; 3rd through 15th

; divis iterate.
.cjump DIVI_LOOP
result = mf ; result equal to mf.
error =h *(La_error = xba + L_ERROR) ; load error.
erf = result*error ; erf=stepsize*error
erf = erf >> 15 ; change erf back to

Q15.
CHECK_FILTER_MEM:

60

*

* Check AEC filter memory values for possible divergence. This is done

* as a safety measure. If the memory values become large, our chances for
* overflow increase. One method for checking filter memory divergences
*is to keep a running sum of the memory values, if the sum gets larger

* than some predefined threshold, then scale down the memory values.

* The function prototype for checking the filter memory is:

*

* void check_filter_memory(short input, int length)

*

; call = $check_filter_memory ; Didn’t use because no overflow found
; fes =h *(Ga_fes + [Gx_sample]) ; in real time testing.
; Lx_mem_end = FILTER_SIZE — 1

*

* Call LMS filter routine. This routine updates the AEC filter coefficients
* if the erf term is non—zero, then performs filtering with these updated
* coefficients. The prototype of this function is:

*

* short output = Ims_filter(int filter_size, short *coefficients, short *mem)

*

dummy =h *(La_far_end_speech = xba + L_FAR_END_SPEECH)
dummy =*(La_mem = xba + L_AEC_FILTER_MEM)
nes =h *(La_far_end_speech += [Lx_sample])
call = $ims_filter
Ga_coeff =&*(xba + L_AEC_COEFFICIENTS)
*La_mem =h nes
.cexit di

*

* At this part of program, we calculate the output signal. If the update

* mode is set, that means far—end only signal is detected. The output equal
* to error and suppressed by —24db.

* |f update mode is not set, i.e. in double talk or near—end speech only

* mode. The output signal equal to near—end signal and no any suppress.

*

OUTPUT_CALC:
.entry d5, a9, x0
dummy =h *(La_near_end_speech = xba + L_ NEAR_END_SPEECH)
r =h *(La_near_end_speech + [Lx_sample])

61

error =h r —r_hat
|| mode = *(sp + [MODE]) ; get mode bit from stack

*(La_error = xba + L_ERROR) =h error ; store error to memory.
test = mode & 1\AEC_UPDATE ; check if far end speech only
; was detected
speech_out =[nz.nvz] error >> 4 ; if only far end speech was
; detected, suppress the output
; signal
La_SPEECH_OUT =&*(xba + L_SPEECH_OUT) ; point to out_speech buffer.

speech_out =[z] r;error ; we may want to try other

; equations here to improve

; echo suppression
*(La_SPEECH_OUT + [Lx_sample]) =h speech_out

; store output speech.
count = 2*SAMPLES ; load packet transfer counter.

*

* This function call put output signal from on chip data RAM to external
* memory by using packet transfer.

*

call = get_speech ; call get nes.
src = La_SPEECH_OUT ; source address.
dst=_OUTPUT ; destination address.
call = SPEECH_DETECTOR

nop

nop
.uexit

.entry x0, x2, x8

Lx_sample = Lx_sample + 1 ; local index sample + 1.
Lx_count =Lx_count—-1 ; local index count — 1.

br =[nz] NEXT_CYCLE

br =[z] *sp

Gx_sample = Gx_sample + 1 ; global index sample + 1.
.cjump NEXT_CYCLE

alb = *(sp+=[STACK_SIZE]) ; reset stack pointer.
.cexit

62

File: Ims.p

* Copyright (C) Texas Instruments Incorporated. *

* All Right Reserved *

*

* *

*Ims.p — Least-mean—squared(LMS) algorithm implemented on one of the *
* the C80'’s Parallel Processors (PP). *

* *

* Environment: *

* — This PP—callable code executes on a PP (TMS320C80 devices). *
* — Allocates with version 1.01 and above. *

* — Assembles with versions 1.10 and above of TI's PP assembler. *

*

* History: *

* 04JULY95...Original version written R. Matusiak *

* 10/01/95...Modified version runs on SDB................ David Qi *

* * * * * * * * * * *

* BENCHMARK

* Number of cycles = 4*N/2 + 19

* Where, (Assume no ICACHE misses)

* N is number of filter order (must be even)
*

*

* MEMORY

* Program Memory: 19*8 = 152 (bytes)
* On—chip Data RAM: 4*M + 4*N + 2*4*M (bytes)
* Parameter RAM: 0 bytes

;File name : Ims.p
;FIR filter and LMS coefficients update.
; type description

.include echan.i

prod_1 .reg d;intermediate product reg.
prod_2 .reg d;intermediate product reg.
up_prod_1 .reg d;intermediate update coeff. product reg

up_prod_2 .reg d;intermediate update coeff. product reg
ak_new_1 .reg d; output filter new coeff. reg.
ak_new 2 .reg d; output filter new coeff. reg.
ak old_1 .reg d;input/output filter old coeff. reg.
ak_old_2 .reg d;input/output filter old coeff. reg.

x_1 .reg d;input filter memory reg.
X_2 .reg d;input filter memory reg.
;input .set d2;input input samples.
erf .set dl;input constant in time i.
N .reg d;input number of filter taps — must
; be even!!!
y .set d5; output firfilter output.
Ga_ak .set a8;input pointer to filter coeff.
Ga_output .reg ga; output pointer to output buffer.
La_x .set a2;input pointer to filter memory.
La_input .set al;input pointer to input samples.
;La_x_start .reg la; input pointer to start of filter
; memory.
Lx_N .set x1; constant holds the filter order.
Gx_N .set x10; constant holds the filter order.

ref L_FILTER_OUTPUT
.system $Ims_filter
.system _Ims_filter
.ptext
Jock do, a4, al2
.entry al, a2, a8, di,prod_2
$Ims_filter:
_Ims_filter:
; set EALU label.
Lx_N =FILTER_SIZE
Gx N=Lx N-1 ; adjust offset.
d0 = SHIFT_ADD
ak old_1=h*Ga_ak +=[Gx_N]) ; get last coeff. in memory.
|| x_1=h*La_x+=[Lx_N]) ;getlast number in filter

64

; memory.

le0 = LMS_LOOP_END ; set fir loop end label.
y =1\14 ; clear accumulator.
[| *(La_x+[1]) =h x_1 ; shift memory.

|| prod_2 =&*(0)

up_prod_1 =r (x_1 * erf)<<1 ; get first update product

|| ealu(SHIFT_ADD)

[| Xx_2 =h*—La_x
IrsO = (FILTER_SIZE/2) — 2 ; set fir loop count.
up_prod_2 =r (x_2 * erf)<<1 ; get second update product.

|| ak_new_1 = ealu(SHIFT_ADD:ak_old_1+up_prod_1>>16)
; update coeff.
|| ak_old_2 =h *—Ga_ak ; pointer to next coeff.
[| *(La_x + [1]) =h x_2 ; shift memory.
prod_1=x_2*ak _new_1
|| *(Ga_ak + [1]) =h ak_new_1

[| x_1=h*—La_x
LMS_LOOP_START: ; fir loop starts here.
up_prod_1 =r (x_1 * erf)<<1 ; get first update product.

|| ak_new_2 = ealu(SHIFT_ADD:ak_old_2+up_prod_2>>16)
; update coeff.

|| ak_old_1 =h *—Ga_ak ; load next coefficient.

[| *(La_x+[1]) =h x_1 ; shift memory.
prod_2 =x_1*ak _new_2 ; get second multiplication

; product.

[[ly=y+prod_1 ; accumulate filter output.

|| *(Ga_ak + [1]) =h ak_new_2 ; load next coeff.

|| x_2=h*—La_x ; load next filter memory number.
up_prod_2 =r (x_2 * erf)<<1 ; get second update product.

|| ak_new_1 = ealu(SHIFT_ADD:ak_old_1+up_prod_1>>16)
; update coeff.

|| ak_old_2 =h *—Ga_ak ; pointer to next coeff.
[| *(La_x + [1]) =h x_2 ; shift memory.
LMS_LOOP_END:
prod_1=x 2*ak new_1 ; get first multiplication result.
[|ly=y+prod_2 ; accumulate output

|| *(Ga_ak + [1]) =h ak_new_1 ; store new coefficient.
[| x_1=h*—La_x ; load next memory sample.

65

.cjump LMS_LOOP_START

up_prod_1 =r (x_1 * erf)<<1
|| ak_new_2 = ealu(SHIFT_ADD:ak_old_2+up_prod_2>>16)
; update coeff.

prod_2 =x_1*ak_new_2 ; get second multiplication product.
[|[ly=y+prod_1 ; accumulate filter output.
|| *Ga_ak =h ak_new_2 ; load next coeff.
|| *(La_x+[1]) =hx_1 ; shift memory.

y=y+prod_2 ; get final result.

br =iprs

y=y>>15 ; right—shift output 15 bits.

*(Ga_output = xba + L_FILTER_OUTPUT) =hy

66

.uexit

File: power.p

Copyright (C) 1995 Texas Instruments Incorporated.

All Rights Reserved

*

*

power.p — Speech power calculation file for C80 Acoustic Echo

Cancellation software. (Total 42 instructions.)

Environment:

— Assemble with versions 1.10 and above of TI's PP assembler.

*

— Allocate with PPCA version 1.01 and above.

*

*

*

*

*

*

*

History:

04JULY95...Original version written

................... David Qi

*

*

dummy

.include echan.i

ref L NES_SHORT POWER_Q31
ref L_NES_LONG_POWER_Q31
ref L_NES_VSHORT_POWER_Q31
ref L NES_SHORT POWER_Q15
ref L_NES_LONG_POWER_Q15
ref L_NES_VSHORT _POWER_Q15
ref L_FES_VSHORT POWER_Q31
ref L_FES_VSHORT_POWER_Q15

ref L_FES_SHORT_POWER_Q15

ref L_FES_SHORT POWER_Q31
ref L_ERR_SHORT_POWER_Q15
refL_ERR_SHORT_POWER_Q31
ref L_NEAR_END_SPEECH

ref L_FAR_END_SPEECH

ref L_ERROR

.def nes_power_estimates

.def fes_vshort_power_estimates

.def short_power_estimates

.dummy

s _pwr_2_16 reg d

67

|_pwr_2 16 reg d
v_pwr_2_16 reg d
nes_squared reg d
fes_squared reg d

nes reg d

fes reg d
nes_long_pwr .reg
nes_short_pwr .reg
fes_short_pwr reg d
nes_vshort_pwr reg d
fes_vshort_pwr reg d
La_nes_long_pwr_Q15 .reg la
La_nes_short_pwr_Q15 .reg la
La_nes_vshort_pwr_Q15 .reg la
La_nes_vshort_pwr_Q31 reg la
La_fes_vshort_pwr_Q15 .reg la
La_fes_vshort_pwr_Q31 .reg la
Ga_nes_long_pwr_Q31 .reg ga
Ga_nes_short_pwr_Q31 .reg ga
Ga_nes reg ga
Ga_fes rreg ga
Gx_fes rreg gx
.ptext

Jock dO

.entry s_pwr_2_16, |_pwr_2_16,v_pwr_2_16

* Very short, short and long window power estimate of near end speech is used

* for all speech detection algorithm.

*

2

* Vshort_nes_pwr = (1-B)*V_prev_nes_pwr + B*sample , B = 1/32 , 4msec

* Short_nes_pwr = (1-B)*S_prev_nes_pwr + B*sample , B = 1/128 , 16msec

* Long_nes_pwr = (1-B)*L_prev_nes_pwr + B*sample , B = 1/16384 , 2048msec

F*kkk *% *kkkkkkkhkkhhkkkhkk *% *% *kkkkkkkhkkhhkkkkkk *% *kkk

nes_power_estimates:
d0 = SHORT_POWER

dummy = ealu(SHORT_POWER: s_pwr_2 16 —s_pwr_2_16>>7)
[| *(sp + [d0O_SHORT_POWER]) = d0

d0 = LONG_POWER

dummy = ealu(LONG_POWER: |_pwr_2_16 — |_pwr_2_16>>14)

68

|| *(sp + [d0O_LONG_POWER]) = dO
d0 = VSHORT_POWER
dummy = ealu(VSHORT_POWER: v_pwr_2_16 —v_pwr_2_16>>5)

|| *(sp + [d0O_VSHORT_POWER]) = dO0
La_nes_long_pwr_Q15 = &*(xba + L_NES_LONG_POWER_Q15)
La_nes_short_pwr_Q15 = &*(xba + L_NES_SHORT_POWER_Q15)
La_nes_vshort_pwr_Q15 = &*(xba + L_NES_VSHORT_POWER_Q15)

s_pwr_2_16 =*(Ga_nes_short_pwr_Q31 =xba + L_NES_SHORT_POWER_Q31)
; initialize pointer to previous short power estimate of
; near end signal, and load to a register
I_pwr_2_16 = *(Ga_nes_long_pwr_Q31 =xba + L_NES_LONG_POWER_Q31)
; initialize pointer to previous long power estimate of
; near end signal, and load to a register
v_pwr_2_ 16 = *(La_nes_vshort_pwr_Q31 = xba + L_NES_VSHORT_POWER_Q31)
; initialize pointer to previous very short power estimate of
; hear end signal, and load to a register
nes =h *(Ga_nes = xba + L_NEAR_END_SPEECH)
IrsO = SAMPLES -1
le0 = NES_POWER_EST_LOOP_END
dummy =h *—La_nes_long_pwr_Q15
|| dO = *(sp + [d0_SHORT_POWERY])
; load dO with alu configuration for power estimate
NES_POWER_EST_LOOP:
nes_squared = nes * nes
|| s_pwr_2_16 =ealu(SHORT_POWER: s_pwr_2_16 —s_pwr_2_16>>7)
s_pwr_2_16 =s_pwr_2_16 + nes_squared>>7
|| *La_nes_long_pwr_Q15++ =h nes_long_pwr ; store near end long
; power
nes_long_pwr = nes_long_pwr —s_pwr_2_16>>14
|| nes_short_pwr=hls pwr 2 16 ; get upper half of nes
; short power estimate
|| dO = *(sp + [d0_VSHORT_POWER])
v_pwr_2_ 16 =ealu(VSHORT_POWER: v_pwr_2_16 —v_pwr_2_16>>5)
|| nes_long_pwr =hl|_pwr_2 16 ; get upper half of nes
; long power estimate
v_pwr_2 16 =v_pwr_2 16 + nes_squared>>5

|| *La_nes_short_pwr_Q15++ =h nes_short_pwr ; store near short
; power

69

|| dO =*(sp + [dO_LONG_POWER])
I_pwr_2_16 =ealu(LONG_POWER: |_pwr_2_16 —|_pwr_2_16>>14)
why(I_pwr_2_16,|_pwr_2_16\d0,%d0)
|| nes_vshort_pwr =h1v_pwr_2_ 16
|| dO =*(sp + [dO_SHORT_POWER])

NES_POWER_EST LOOP_END:
| pwr_2 16 =1_pwr_2 16 + nes_squared>>14
|| nes =h *++Ga_nes ; load a near end
; signal sample
|| *La_nes_vshort_pwr_Q15++ =h nes_vshort_pwr ; store v_short power

.cjump NES_POWER_EST_LOOP

nes_long_pwr =hl|_pwr_2_ 16 ; get upper half word
; (Q15).

br = iprs

*Ga_nes_long_pwr_Q31=1_pwr_2 16 ; store nes long power
; (Q31).

|| *La_nes_vshort_pwr_Q31 =v_pwr_2_16; store nes very short power.

*Ga_nes_short_pwr_Q31=s_pwr_2_16
|| *La_nes_long_pwr_Q15++ =h nes_long_pwr

.uexit

* Very short window power estimate of far end speech is used

* for far end talk detection algorithm.

* 2

* Vshort_fes_pwr = (1-B)*prev_fes_pwr + B*sample , B =1/32, 4msec

fes_vshort_power_estimates:
fes =h *(Ga_fes = xba + L_FAR_END_SPEECH)
v_pwr_2_ 16 =*(La_fes_vshort_pwr_Q31 = xba + L_FES VSHORT_POWER_Q31)
La_fes_vshort_pwr_Q15 = &*(xba + L_FES_VSHORT_POWER_Q15)
IrsO = SAMPLES -1
le0 = ipe + (FES_VSHORT_POWER_EST_LOOP_END - $)
|| dO = *(sp + [d0_VSHORT_POWERY])
dummy =h *—La_fes_vshort_pwr_Q15
FES_VSHORT_POWER_EST_LOOP:

70

fes_squared = fes * fes
|| v_pwr_2_16 = ealu(VSHORT_POWER: v_pwr_2_16 —v_pwr_2_16>>5)
|| fes_vshort_pwr =hlv_pwr_2 16
FES_VSHORT_POWER_EST_LOOP_END:
v_pwr_2_16 =v_pwr_2_16 + fes_squared>>5
|| *La_fes_vshort_pwr_Q15++ =h fes_vshort_pwr
|| fes =h *++Ga_fes
.cjump FES_VSHORT_POWER_EST_LOOP
br =iprs

fes_vshort_pwr=hlv _pwr 2 16

|| *La_fes_vshort_pwr_Q31 =v_pwr_2_16
*La_fes_vshort_pwr_Q15++ =h fes_vshort_pwr
.uexit

71

* * * * * * * * *

* Short window power estimate of far end speech and error signal is used
* for NLMS and double talk detection algorithm.

* 2

* short_pwr = (1-B)*prev_pwr + B*sample , B =1/128 , 16 msec

* * * Fkk * *

short_power_estimates:

sample .set dé
prev_pwr_31 .set d2
La prev_pwr_Q31 .set a0
power .set d5
sample_squared .set d7

.ptext
lock dO
.entry d6,d2, a0

dO = *(sp + [d0_SHORT_POWER])

sample_squared = sample * sample
|| prev_pwr_31 = ealu(SHORT_POWER: prev_pwr_31 — prev_pwr_31>>7)
|| br =iprs

prev_pwr_31 = prev_pwr_31 + sample_squared>>7

power =h1 prev_pwr_31
|| *La_prev_pwr_Q31 = prev_pwr_31

.uexit

72

File: aec_vars.s

Copyright (C) 1995 Texas Instruments Incorporated.
All Rights Reserved

aec_vars.s — Assembly language declaration of variables and arrays
for the C80 implementation of AEC.

Environment:

— Assemble with versions 1.10 and above of TI's PP assembler.

History:
05MAY95...Original version written R. Matusiak

.include "echan.i”
.def L_AEC_FILTER_MEM
.def L_SUM
.def L_NEAR_END_SPEECH
.def L_FAR_END_SPEECH
.def L_NES_SHORT_POWER_Q15
.def L_NES_SHORT_POWER_Q31
.def L_NES_VSHORT_POWER_Q15
.def L_NES_VSHORT_POWER_Q31
.def L_NES_LONG_POWER_Q15
.def L_NES_LONG_POWER_Q31
.def L_FES_VSHORT_POWER_Q15
.def L_FES_VSHORT_POWER_Q31
.def L_ERR_SHORT_POWER_Q31
.def L_ERR_SHORT_POWER_Q15
.def L_FES_SHORT_POWER_Q31
.def L_FES_SHORT_POWER_Q15
.def L_ERROR
.def L_FILTER_OUTPUT
.def L_SPEECH_OUT
.def L_AEC_COEFFICIENTS
.def L_FES_MARGIN
.def L_NES_MARGIN

: .def HANG_CONSTANT
: .def SAMPLE_COUNT

.def FES_HANG

.def ECHANO

.def ECHAN1

.def ECHAN2

.def GEN_PTR
L_AEC_FILTER_MEM .usect "AEC_MEM’",2*FILTER_SIZE+4,4
L_AEC_COEFFICIENTS .usect "COEFF’,2*FILTER_SIZE+4,4
L_SUM .usect "SUM’,4,4
L_NEAR_END_SPEECH .usect "NES’,2*SAMPLES,4
L_FAR_END SPEECH .usect "FES’2*SAMPLES,4
L_NES_SHORT_SPACE .usect "NESSPCE" 4,4
L_NES_SHORT_POWER_Q15 .usect "NESPEQ15",2*SAMPLES, 4
L_NES_SHORT_POWER_Q31 .usect "NESPEQ31"4,4
L_NES_VSHORT_SPACE .usect "NEVSPCE’ 4,4
L_NES_VSHORT_POWER_Q15 .usect "NEVPEQ15”,2*SAMPLES, 4
L_NES_VSHORT POWER_Q31 .usect "NEVPEQ31"4,4
L_NES_LONG_SPACE .usect "NELSPCE” 4,4
L_NES_LONG_POWER_Q15 .usect "NELPEQ15”,2*SAMPLES, 4
L_NES_LONG_POWER_Q31 .usect "NELPEQ31’4,4
L_FES_VSHORT_SPACE .usect "FEVSSPCE” 4,4
L_FES_VSHORT_POWER_Q15 .usect "FEVPEQ15",2*SAMPLES,4
L_FES_VSHORT_POWER_Q31 .usect "FEVPEQ31",4,4
'L_FES_SHORT_POWER_Q15 .usect "FEPEQ15”2,4
L_FES_SHORT_POWER_Q31 .usect "FEPEQ31"4,4
L_ERR_SHORT POWER_Q15 .usect "ERPEQ15’2,4
L_ERR_SHORT _POWER_Q31 .usect "ERPEQ31’4,4

L_ERROR .usect "ERROR",2,4
L_FILTER_OUTPUT .usect "OUT",2*SAMPLES,4
L_SPEECH_OUT .usect "SPOUT",2*SAMPLES,4
L_NES_MARGIN .usect "NMARGIN",2,4
L_FES_MARGIN .usect "FMARGIN",2,4

; SAMPLE_COUNT .usect "SAMPLE" 4,4
ECHANO .usect ".aec_st0",2048,4

ECHAN1 .usect ".aec_st1”,2048,4

ECHANZ2 .usect ".aec_st2",2048,4

GEN_PTR .usect "PTR”,64,64

74

File: einit.s

*

Copyright (C) 1995 Texas Instruments Incorporated.
All Rights Reserved

*

einit.s — AEC initialization file for C80 Acoustic Echo Cancellation *

Environment:

— Assembles with versions 1.10 and above of TI's PP assembler.

*

*

*

— Allocates with PPCA version 1.01 and above.

*

*

*

*

*

History:
04JULY95...COriginal version written

David Qi

*

*

.include "echan.i”
.include "packetpp.i”
.ref GEN_PTR

.ref FES_HANG

.ref ECHANO

.ref ECHAN1

.ref ECHAN2

.ref echanO_start

.ref echan0_end

.ref echanl_start

.ref echanl_end

.ref echan2_start

.ref echan2_end

.ref COEFF_INIT

ref L_AEC_FILTER_MEM
.ref L_AEC_COEFFICIENTS

.def echan_save_state
.def echan_restore_state
.def generic_ptr

.def get_speech

75

.system _AEC_State_Init
.system $AEC_State_|Init
src .set di
dst .set d2
count .set d3
Ga_coeff .set a8
La mem .set a2
.ptext
_AEC_State_Init:
$AEC_State_Init:
*(sp —= [STACK_SIZE]) = iprs
*(sp + [2])=al5
*(sp + [3]))=al5
*(sp + [4])=al5
*(sp + [5])=al5

* Restore initial values of coefficients.

count = 2*FILTER_SIZE

Ga_coeff = COEFF_INIT

call = get_speech

src = Ga_coeff

dst = &*(xba + L_AEC_COEFFICIENTS)

* *kkkkkkkk

* Clear filter memory

La_mem =&*(xba + L_AEC_FILTER_MEM)
Irse0 = FILTER_SIZE/2 — 3

*La_mem++ = al5

*La_mem++ = alb5

*La_mem++ = alb

* Save all on chip data to extern memory

* * * * * *

call = echan_save_state
nop

nop

br =*sp
al5=*(sp+=[STACK_SIZE])

76

nop

F*kkk *% *kkkkkkkhkkhhkkkhkk *% *% *kkk

src .set dil
dst .set d2
end .set d4

La_packet_table .set a0

*void echan_save_state()

* * Fkk *

echan_save_state:
*(sp + [IPR]) = iprs
src = & (xba + echan0_start)
end = &*(xba + echan0_end)
La_packet_table = &*(xba + GEN_PTR)
call = generic_ptr
dst = ECHANO
count = end —src
src = &*(xba + echanl_start)
end = &*(xba + echanl_end)
La_packet_table = &*(xba + GEN_PTR)
call = generic_ptr
dst = ECHAN1
count = end — src
src = &*(xba + echan2_start)
end = &*(xba + echan2_end)
La_packet_table = &*(xba + GEN_PTR)
call = generic_ptr
dst = ECHAN2
count = end —src
br =*(sp + [IPR])
nop
nop

kkkkkkkkkkkkkkkkkkkkkkkkkkkkk

* void echan_restore_state()

echan_restore_state:
*(sp + [IPR]) = iprs

7

dst = &*(xba + echan0_start)

end = &*(xba + echan0_end)
La_packet_table = &*(xba + GEN_PTR)
call = generic_ptr

src = ECHANO

count = end — dst

dst = &*(xba + echanl_start)

end = &*(xba + echanl_end)
La_packet_table = &*(xba + GEN_PTR)
call = generic_ptr

src = ECHAN1

count = end — dst

dst = &*(xba + echan2_start)

end = &*(xba + echan2_end)

La_packet_table = &*(xba + GEN_PTR)
call = generic_ptr

src = ECHAN2

count = end — dst

br =*(sp + [IPR])

nop

nop

* * * * Fkk * * * * * * *

* void generic_ptr(long &src, long &dst, long count, long &packet_table)

Fkkkkkkkkkk Fkkkkkkkhkkkkkkk

generic_ptr:

* * * * * *

* Arguments passed by the calling function

* * * * Fkk * * *

src: .set dil
dst: .set d2
count: .set d3
La_PR: .set a0

* * * *

* Internal variables

* * *

PT_entry: .set d4

78

* * * * * * * *

* Before modifying the Packet Transfer Parameter table, make sure that
* the previous PTR has completed. This is done by polling the Q bit.

al5 = comm & Ox1\\PT_QueuedShift ; check if Q bit is zero
br =[nz.z] ipe
nop
al5 = comm & Ox1\\PT_QueuedShift ; check if Q bit is zero
*(pba + ePT_LinkedListStart) = La_PR
PT_entry = 1\31 ; PT_entry = 0x80000000
|| *La_PR.sPT_Next = La_PR
*La_PR.sPT_Options = PT_entry ; set stop bit in PT options
*La_PR.sPT_SrcStartAddress = src ; set source start address src
*La_PR.sPT_DstStartAddress = dst ; set destination start address
; to dst
*La_PR.sPT_SrcBACount = count
PT_entry=0

|| *La_PR.sPT_DstBACount = count
*La_PR.sPT_SrcCCount = PT_entry
*La_PR.sPT_DstCCount = PT_entry
br =iprs
comm = comm | 1\PT_SubmitShift ; issue the PTR
nop

* *kkkkkkkk * F*kkkkk

* void get_speech(char *src, char *dst, int num_bytes)

get_speech:
*(sp + [IPR]) = iprs
call = generic_ptr
La_packet_table = &*(xba + GEN_PTR)
nop
br =*(sp + [IPR])
nop
nop

kkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkhkkkkhkkkkkkkhkkkkkkkkkkk

* void put_speech(char *src, char *dst, int num_bytes)

put_speech:
*(sp + [IPR]) = iprs

79

80

call = generic_ptr

La_packet_table = &*(xba + GEN_PTR)
nop

al5 = comm & Ox1\\PT_QueuedShift

br =[nz.z] ipe

nop

al5 = comm & Ox1\\PT_QueuedShift

br =*(sp + [IPR])

nop

nop

; check if Q bit is zero

; check if Q bit is zero

if $SSMVP_MP$$

; map C80 internal memory

ma 0x00000000,0x00000800,ram
ma 0x00000800,0x00000800,ram
ma 0x00001000,0x00000800,ram
ma 0x00001800,0x00000800,ram
ma 0x00002000,0x00000800,ram
ma 0x00002800,0x00000800,ram
ma 0x00003000,0x00000800,ram
ma 0x00003800,0x00000800,ram
ma 0x00008000,0x00000800,ram
ma 0x00009000,0x00000800,ram
ma 0x0000A000,0x00000800,ram
ma 0x0000B000,0x00000800,ram
ma 0x01000000,0x00000800,ram
ma 0x01001000,0x00000800,ram
ma 0x01002000,0x00000800,ram
ma 0x01003000,0x00000800,ram
ma 0x01010000,0x00000800,ram
ma 0x01810000,0x00000800,ram
ma 0x01810800,0x00000800,ram
ma 0x01818000,0x00000800,ram
ma 0x01818800,0x00000800,ram
ma 0x01820000,0x00000200,ram
ma 0x01820200,0x00000200,ram
; map SDB specific memory

ma 0x80000000,0x00800000,ram
ma 0xC0000000,0x00200000,ram
load echan.out

;g0 main

endif

if $SMVP_PP$$

; map C80 internal memory

ma 0x00000000,0x00000800,ram
ma 0x00000800,0x00000800,ram
ma 0x00001000,0x00000800,ram
ma 0x00001800,0x00000800,ram

File: init.cmd

; PPO Data RAM 0

; PPO Data RAM 1

; PP1 Data RAM 0

; PP1 Data RAM 1

; PP2 Data RAM 0

; PP2 Data RAM 1

; PP3 Data RAM 0

; PP3 Data RAM 1

; PPO Data RAM 2

; PP1 Data RAM 2

; PP2 Data RAM 2

; PP3 Data RAM 2

: PPO Parameter RAM

; PP1 Parameter RAM

; PP2 Parameter RAM

. PP3 Parameter RAM

: MP Parameter RAM

; MP Data Cahce 0

: MP Data Cahce 1

: MP Instruction Cahce 0
: MP Instruction Cahce 1
; Memory-Mapped TC Registers
; Memory-Mapped FC Registers

; DRAM 8 Meg
; VRAM 2 Meg

; PPO Data RAM O
; PPO Data RAM 1
; PP1 Data RAM 0
; PP1 Data RAM 1

81

ma 0x00002000,0x00000800,ram
ma 0x00002800,0x00000800,ram
ma 0x00003000,0x00000800,ram
ma 0x00003800,0x00000800,ram
ma 0x00008000,0x00000800,ram
ma 0x00009000,0x00000800,ram
ma 0x0000A000,0x00000800,ram
ma 0x0000B000,0x00000800,ram
ma 0x01000000,0x00000800,ram
ma 0x01001000,0x00000800,ram
ma 0x01002000,0x00000800,ram
ma 0x01003000,0x00000800,ram
ma 0x01010000,0x00000800,ram
ma 0x01801800,0x00000800,ram
ma 0x01803800,0x00000800,ram
ma 0x01805800,0x00000800,ram
ma 0x01807800,0x00000800,ram
ma 0x01820000,0x00000200,ram
ma 0x01820200,0x00000200,ram
; map SDB specific memory

ma 0x80000000,0x00800000,ram
ma 0xC0000000,0x00200000,ram
sload echan.out

;ba AEC_State_Init

ba AEC

endif

82

; PP2 Data RAM 0

; PP2 Data RAM 1

; PP3 Data RAM 0

; PP3 Data RAM 1

; PPO Data RAM 2

; PP1 Data RAM 2

; PP2 Data RAM 2

; PP3 Data RAM 2

: PPO Parameter RAM

; PP1 Parameter RAM

; PP2 Parameter RAM

: PP3 Parameter RAM

: MP Parameter RAM

: PPO Instruction Cache

: PP1 Instruction Cache

: PP2 Instruction Cache

: PP3 Instruction Cache

; Memory—Mapped TC Registers
; Memory—Mapped FC Registers

; DRAM 8 Meg
; VRAM 2 Meg

File:

—C
—X
—heap 0x2000

echan.Ink

—stack 0x2000
—I mp_rts.lib
—| mp_task.lib
—I mp_ppcmd.lib
—| ppcmd.lib
—| mp_int.lib
-l sdbembed.lib
—| mp_ptreq.lib
MEMORY
{
DRAMO : o0 =0x00000000 |=0x0800 /*DRAMSO
DRAM1 :o0=0x00000800 |=0x0800 /*DRAMS 1
DRAM2 : o0 =0x00008000 |=0x0800 /*DRAMS 2
/* PRAM_RES : 0 =0x01000300 |=0x0240
PRAM :0=0x01000000 |=0x07ff /*PRAM
EXTMEM : 0= 0x80000000 |=0x800000 /* EXTERNAL MEMORY
}
SECTIONS
{
text > EXTMEM
.ptext : > EXTMEM
.cinit > EXTMEM
.const > EXTMEM
.switch : > EXTMEM
.data > EXTMEM
.bss > EXTMEM
.pbss > EXTMEM
.aec_st0: > EXTMEM
.aec_stl: > EXTMEM
.aec_st2 : > EXTMEM

GROUP > DRAMO

{

.echan0 {echanQ_start = . ;}

*
*/
*

/* RESERVED PART OF PRAM

83

*(COEFF)
*(NES)
*(NEVSPCE)
*(NEVPEQ15)
*(NEVPEQ31)
*(NESSPCE)
*(NESPEQ15)
*(NESPEQ31)
*(NELSPCE)
*(NELPEQ15)
*(NELPEQ31)
} {echan0_end =.;}
}
GROUP > DRAM1

{

.echanl {echanl_start =.;}

*(AEC_MEM)
*(FES)
*(FEVSSPCE)
*(FEVPEQ15)
*(FEVPEQ31)
*(FEPEQ31)
*(ERPEQ15)
*(ERPEQ31)
*(OUT)
*(SPOUT)

} {echanl_end=.;}

}
GROUP > DRAM2

{

.echan2 {echan2_start = . ;}

*([ERROR)
*(SUM)
} {echan2_end =.;}

84

}
.pram: > PRAM

{
*(PTR)
}

85

