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ABSTRACT

This application report describes a parallel video restoration system that
restores old motion picture archives. A Gaussian-weighted, bi-directional, 3D
auto-regressive (B3D-AR) algorithm is used to alleviate the presence of noise
in the old archives. Common forms of degradation found in such archives are
‘‘dirt and sparkle’’ and scratches. The distortion is caused either by the
accumulation of dirt or by the film material being abraded.

While most of the existing image restoration algorithms blur edges of moving
objects in the vicinity of occluded and uncovered image regions, this
algorithm is able to suppress mixed-noise processes and recover lost signals
in both the covered and uncovered regions in an image sequence. This video
restoration system is tested on the artificially corrupted image sequences and
naturally degraded video (full PAL image size). Samples of the original and
corresponding restored image sequence are contained in this report.

The B3D-AR algorithm is parallel-implemented on an array of 15 Texas
Instruments TMS320C40 processors that are connected in a tree
configuration. Two different parallel algorithms are implemented in which a
close-to-linear speed-up is achieved by means of a load-balanced parallel
algorithm.
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INTRODUCTION

While many old movies are recorded on flammable nitrate-based negatives
that decay rapidly, modern movies are made with safer acetate-based 35-mm
films. However, both types of media are susceptible to degradation such as
gouges, scratches, and the accumulation of dirt. The result is a variety of
artifacts that make the old movies look their age.

The deterioration in old movies can be stopped by adopting digital film
archiving technology; however, defects that are already present in the films
will be inherited into the digital storage. Restoration of a degraded motion
picture is a highly labor-intensive and extremely costly undertaking. A much
publicized event [1] is the restoration work of Disney’s 1937
masterpieceSnow White and the Seven Dwarfs, which was re-released in
digital form in 1993. It would be financially rewarding to reproduce the old
movies with as much fidelity to the original negatives as possible so that the
movies can be re-released in higher quality formats such as video-on-
demand, digital video-disk, and HDTV. Therefore, a video restoration system
that can automatically remove artifacts in film archives will be useful to the
entertainment and broadcast industries.

This application report describes an auto-regressive (AR) model-based
restoration algorithm and its parallel implementation on a network of Texas
Instruments TMS320C40 processors. The restoration process begins with the
conversion of the degraded film into its digital form with the aid of a real-
time video digitizer. The success of automatic video restoration relies on the
fact that image frames in a movie do not change significantly from one frame
to the next, except for changes due to moving objects in a scene. This means
that the frames preceding and succeeding the current image frame will
provide enough repeated information to allow detection of the presence of
degraded regions in the image. This same redundancy provides a way to
mathematically model the image region at the vicinity of these artifacts so
that meaningful information can be used to fill in the corrupted image
regions, resulting in a restored image frame. A scene changes due to moving
objects, and uncovered background signals must be identified to yield an
accurate model. To account for the inter-frame changes that are caused by
moving objects in the scene, the motion of these objects is first computed by a
motion estimation algorithm. Once the moving regions have been
compensated for, a 3-dimensional auto-regressive (3D-AR) model is built from
the information contained in both the preceding and succeeding frames. Two
of these dimensions describe changes within the image frame, and the third
describes changes between frames. Restoration is done one frame at a time so
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that the restored frame can be used to help restore the subsequent corrupted
frames in the image sequence. The proposed AR model-based approach has
the important advantage over the global filtering strategy,[2] which tends to
blur sharp edges or homogenize highly textual regions in both the distorted
and uncorrupted image regions. Statistical approaches suchas Markov
random field modeling [3] have produced good results, although at a higher
computational cost.

The computational demands required to estimate the motion of moving
objects in the image and to formulate the 3D image sequence model are still
huge. The time required to restore just a single PAL frame using one
workstation can run up to a few hundred seconds. Timely restoration can
only be achieved through the design of a fast (computationally efficient)
algorithm and the use of parallel-processing techniques on a network of
digital signal processors (DSPs).

This project describes, in detail, a fast video restoration system where
distorted old archives can be digitized, restored, and transferred to new
storage media with minimal human supervision.
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OVERVIEW OF VIDEO RESTORATION ALGORITHM

The schematic diagram of a video restoration algorithm is shown in Figure 1.

 Figure 1.  Video Restoration Schematic Diagram

BI-DIRECTIONAL MOTION ESTIMATION[4
]

The image is first partitioned into blocks of E × E pixels for the computation
of the motion vectors. The motion is first estimated by some motion-
estimation algorithms and then processing is directed along the calculated
motion trajectories. A robust motion-estimation algorithm is necessary for
restoration of the image sequences, and it is noted that motion estimation is
a vibrant research field. In this application report, the motion-estimation
algorithm used is a robust overlapped block matching (OBM) algorithm as
shown in Figure 2. In order to get a reliable and accurate displacement
estimate, the size of blocks for block-matching must be chosen carefully.
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Since the image sequences are bound to be degraded, the estimate will be
unreliable and affected by noise if small blocks are used. On the other hand,
if large blocks are used, the estimate will become inaccurate as the
displacement vector field inside the large blocks will not be constant.
Therefore, small blocks are required to estimate the displacement vector field
sufficiently local and adaptive. The proposed OBM scheme attempts to
circumvent the above-mentioned problems when estimating the motion
vectors for each frame of an image.

First, the whole frame is divided into blocks of E × E pixels. For each block of
E × E pixels, a search is conducted for a forward motion vector (FMV) from a
past reference frame (temporal index, t = −1) and a backward motion vector
(BMV) from a future reference frame (temporal index, t = +1). For each block
of E × E pixels, one motion vector is selected from the pair of FMV and BMV;
the motion vector that yields a smaller sum of absolute error is selected. The
OBM scheme is used to estimate the motion vectors. As shown in Figure 2,
the block matching is done with the overlapped blocks of D × D pixels in the
current frame where D > E and all E × E-pixel blocks are centered within the
D × D-pixel blocks. This D × D-pixel block is compared with a corresponding
block within a search area of size (D+2P) × (D+2P) pixels in the previous
frame, and the best match is found based on the minimum absolute error
(MAE) cross-correlation.[5] The motion vectors found by comparing the
D × D-pixel block in the present frame and the (D+2P) × (D+2P)-pixel block
in the previous frame then are assigned to the E × E-pixel block. The search
procedure adopted in the proposed OBM scheme is based on a threshold
exhaustive search.[5]
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 Figure 2.  Overlapped Block-Matching Motion Estimation Algorithm
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BI-DIRECTIONAL 3-DIMENSIONAL AUTO-REGRESSIVE (B3D-AR)
MODEL [4]

The 3-dimensional auto-regressive (3D-AR) model [6] has been successfully
applied to remove impulsive noise and other types of degradation in image
sequences, although at a higher computational cost in the interpolation
process. Kokaram’s 3D-AR model [6] was modified to the bi-directional 3D
auto-regressive (B3D-AR) model [4] where the computational cost in the
interpolation process is reduced significantly. In this application report, B3D-
AR as described by Equation (1) is used for the detection of corrupted pixels.

) I J N A ) I Q I J J Q I J N QK
K

.

IK N N Q JK N N Q TKTK TK

∧

=
+ += + + + + +∑� � � 	 �; � � 	=�; � � 	=�; =	� �

�

a b  (1)

where

) I J N
∧
� � � 	 = Predicted pixel intensity at the location (i,j) in the nth frame

ak = Auto-Regressive (AR) model coefficients

N = Total number of AR model coefficients

[qik , qjk , qtk] = Offset vector that points to each pixel neighborhood used
for the AR model, as shown in Figure 3. The component of the offset
vector that determines the temporal direction of the supporting pixel is
qtk  and its value is −1 for a support pixel in the preceding frame and +1
for a support pixel in the succeeding frame. Therefore,
) I Q J Q N QIK JK TK� � � 	+ + +  is the pixel intensity at the kth support

position for the pixel at (i,j,n).

; � � 	� � � 	=
� �

a b
N M N M

I J I J  = displacement vector between frame m and

frame n (i,j) denotes that the displacement is a function of the position in
the image.

For parameter estimation, the task is to choose the parameters in such a
manner as to minimize some function of the prediction error e(i, j, n), as
shown in Equation (2).

e(i, j, n) = i(i, j, n) − i(i, j, n)     (2)
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There are two sets of parameters to compute (estimate): the model
coefficients and the displacement vectors. The motion vectors are to be
computed first using a motion-estimation algorithm. Subsequently, the least
mean square (LMS) approach is used to compute the model coefficients.

The coefficients chosen to minimize the square of the error in Equation (2)
lead to the normal equations:

Ra = −r      (3)

Where R is a N × N matrix of correlation coefficients, a is the vector of model
coefficients, and r is a N × 1 vector of correlation coefficients. The solution to
Equation (3) yields the model coefficients.[5]

In our implementation, as shown in Figure 3, each block of 16 × 16 pixels in
the current frame n is modeled with a set of nine AR coefficients. The
predicted intensity of a pixel within the 16 × 16 block in frame n is calculated
from its corresponding motion-compensated 3 × 3 support region in either the
previous or next frame.

FRAME �N
�	 FRAME �N	 FRAME �N��	

!��X��SUPPORT
REGION��MOTION
COMPENSATED
WITH�DISPLACEMENT
VECTOR
IS�USED�TO�PREDICT�
THE�PIXEL�AT �I�J�N	�

!���X���REGION�IS
MODELED�BY�A�SET�OF
NINE�!2�COEFFICIENTS

)�I�J�N	�PREDICTED�PIXEL
>

T���
�

IF

T�����
IF

α

β

(α,β)

 Figure 3.  Selected Support Region
(Based on value of t obtained from bi-directional motion estimator)
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DETECTING THE DISTORTIONS IN IMAGE SEQUENCE

The position of a local distortion can be detected by applying some threshold
to eD I J N� � � 	 , the square of the error between the actual and predicted
intensity of the pixel at location (i,j,n), which is given by Equation (4).

e
D

I J N ) I J N ) I J N� � � 	 � � � � 	 � � � 		= −
∧

�     (4)

where the predicted intensity ) I J N
∧
� � � 	, given in Equation (1), is calculated

from the AR coefficients [ � ��������� ]A A A
.� �

, estimated in Equation (3).

REMOVING THE DISTORTIONS IN IMAGE SEQUENCE

The restoration process can be seen as a threefold process. First, the pixels
that are detected as ‘‘distorted’’ pixels are weighted according to a Gaussian
weighting scheme. Second, a set of newly estimated unbiased AR coefficients
are re-computed using Equation (3). Finally, the ‘‘distorted’’ pixels, identified
by using Equation (4), are removed by substituting them with the value of
) I J N� � � 	, which is calculated with the new set of AR coefficients.

To restore the ‘‘distorted’’ pixels, the re-computed model coefficients are
required. As shown in Figure 3, the support region for each predicted pixel
has a size of 3 × 3 pixels only. Therefore, the normal equation (Equation (3))
must be altered to solve for the AR coefficients using the Gaussian-weighted
coefficients estimation. Normally, the model coefficients chosen are such as to
minimize the expected value of the squared error at the concerned point.
Once dirt has been detected,  some of this data is known to be degraded.
Therefore, the prediction error at these points can be weighted by a function
f e� � � � 		I J N , so that these degraded portions do not affect the estimation
process.

The new weighted error equation can be written as

e f e a bW K
K

.

XK NN Q YK NN Q TKI J N I J N A ) I Q I J J Q I J N Q
NK NK

� � � 	 � � � � 		 �; � � 	=�; � � 	=�; =	� �= + + + + +
=

+ +∑
�

(5)

The Gaussian weighting function, f e� � � � 		I J N , is assigned to each degraded
point depending on the magnitude of the error, e, at location (i,j) in the nth
frame, during the re-computation of the video model. The rest of the symbols
have their usual meaning as presented in Equation (1) and a

0
 = 1. The

Gaussian weighting function can be described by Equation (6).
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The square of the new Gaussian-weighted error Equation (3) is minimized
with respect to the coefficients and yields a normal equation similar to
Equation (3).

DETAILS OF THE RESTORATION PROCESS

To restore a block of B × B pixels centered within a block of size M × M pixels
in the current frame, the M × M block’s motion estimate in the previous or
next frames must be determined. The choice of the previous or next frames is
decided by the B3D-AR model, as discussed earlier. Then, using these two
blocks of pixels, a set of coefficients, ak, is derived by the normal equation. It
is assumed that the information within a block of  size M × M is stationary
enough to enable the use of one modelthat is, one set of coefficients for all
the M2 pixels within the block. The model is applied to the B × B block, and
pixels that are identified as ‘‘noise’’ are restored.

The support region used for prediction can be represented as x:y. A 9:8
support region means that the support region consists of 9 pixels from the
previous frame and 8 from the current frame. We have implemented this
model considering information only from the previous or next frame. In other
words, we employ the 9:0 or 0:9 model. Each pixel in the current frame is
thus modeled by 9 pixels in the previous or next frame. A support region
wholly in the previous/next frame is unlikely to be affected by noise around
the same relative areas as in the current frame (noise is essentially
temporally isolated). The use of the 9:0 support region ensures that the
current frame information is not used for detection and cleaning.
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The ‘‘noisy’’ pixels are now interpolated with their predicted values after re-
calculating the model coefficients. The interpolation equation now used is:

iu  =  ik Ak (7)

The two vectors iu and ik, represent the known and unknown (noisy) pixel
intensities, respectively. Ak is the matrix of coefficients ak. The structure of
the two matrices ik and Ak has been modified to set up Equation (7) for a
simple and computationally efficient solution. Matrix ik is of size u × N, and
Ak of size N × 1, where u is the total number of unknown (noisy) pixels in the
B × B block and N is the number of model coefficients ak. The above solution
consists of N × u operations, which is O(u), since N is fixed. The cleaning
process now is dependent on the level of noise present in the B × B block.
Therefore, a less noisy block takes less time to restore than one with more
noise, since less computations are involved.

PARALLEL IMPLEMENTATION OF THE VIDEO RESTORATION
ALGORITHM ON A NETWORK OF TMS320C40 PROCESSORS

The parallelism inherent in image restoration is geometric parallelism. Each
frame in the image can be partitioned into independent sub-blocks. These
sub-blocks are then distributed among the worker (also known as slave)
processors by a master (root) processor. Each of these blocks will undergo the
same restoration operations. Since a master processor distributes different
data packets to the slave processors, each of which performs the same sets of
operations on it, the parallel machine can be said to be employing the SPMD
(Single-Program Multiple-Data) paradigm.

The parallel implementation of the B3D-AR model is carried out on a
network of 15 TMS320C40 DSPs. Each TMS320C40 has 8 MB of DRAM
while the root processor has 32 MB of DRAM. The processors are connected
in a tree configuration. This particular configuration was chosen as it strikes
the right balance between efficiency and algorithm simplicity. The
architecture of the TMS320C40 also limits the maximum number of possible
connections to each processor to 6. The logical configuration is shown in
Figure 4.
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 Figure 4.  Logical Arrangement of Tasks

There are two entities involved in our system: tasks and processors. The
tasks represent the logical configuration of the system, while the processors
represent the physical configuration. The logical configuration is decided by
the parallel algorithm used, while the physical configuration of the system is
decided by the underlying hardware layout. Figure 4 shows the logical
layout. There are three different tasks: master, sub-master, and worker. M
represents the master task; SM1−SM4 are the four sub-master tasks;
W1−W14 are the worker tasks. The master task resides on the root processor
(first-level processor), which also communicates with the host Sun
SPARC10 workstation. 1

A single processor can have more than one task running concurrently on it.
On the second level of the tree configuration, there are two tasksnamely,
sub-master and worker tasksrunning on the four processors. The dashed
arrows depicted in Figure 4 show a logical (non-physical) channel that
communicates between the sub-master and worker tasks within a processor.
Therefore, 10 of the 14 worker tasks are dedicatedthat is, the processors to
which they are designated perform only the processing job. The four
remaining worker tasks are non-dedicatedthat is, they are placed on

                        
1 SPARC is a trademark of SPARC International, Inc.
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processors that perform both the distribution and processing jobs. It is
obvious that the performance of the non-dedicated worker tasks will be lower
due to the additional distribution workload on them. The master task M
distributes packets of work to the sub-master tasks which, in turn, distribute
to the workers.

The ‘‘C’’ programming language was used to implement the restoration
algorithm and compiled using the 3L parallel C compiler.[7]

LOAD BALANCING

Load balancing of the entire workload is the most important consideration in
the case of parallel algorithms. The authors of this report have employed the
RILB (Receiver-Initiated Load Balancing) technique.[8] This scheme is
characterized by the fact that the distribution of work is performed only
when an idle task requests work. The request for work may be explicit (that
is, the passing of a message requesting work) or implicit (that is, the task
finishes processing the work packet assigned to it and passes back the
results). Implicit requesting is used because the processed (cleaned) block of
data must eventually be sent back up to the master for re-combination with
the rest of the processed image.

Each workload (packet) consists of a 16 × 16-pixel block in the current frame
as well as its search space in the previous and next frames. The sub-masters
serve as work distributors. Initially, they send out work packets to all
workers under them. The workers receive this work packet, perform motion
estimation and noise detection, and restore the corrupted pixels. The workers
then pass back the pixel positions of the noise and their new ‘‘clean’’ intensity
values for the final image tiling to the master. This is also a signal indicating
that the workers have finished with their assigned task. Whenever a sub-
master receives such a signal from any worker, it will relay the signal
upwards to the master. The sub-master will then receive the next work
packet from the master.

The size of each work packet must be small enough to ensure that while the
master is distributing work packets, no worker has to wait too long.
Performance degradation would set in if a processor had to wait for long.
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RESULTS AND DISCUSSION

The proposed algorithm is evaluated by applying different image sequences
containing different noise processes:

1. Salesman Sequence: uncovered-background region in an image
sequence that is artificially corrupted by single-to-multiple pixel-sized
impulses

2. Salesman Sequence: occluded region in an image sequence that is
artificially corrupted by single-to-multiple pixel-sized impulses

3. Salesman Sequence: a sequence that undergoes translational motion
and is artificially corrupted by single-to-multiple pixel-sized impulses

4. Corridor Sequence: area that undergoes a zooming process and is
artificially corrupted by single-to-multiple pixel-sized impulses

5. Frankenstein Sequence: real degraded image sequence

All the artificially added noise is temporally isolated, which is usually the
case in a real degraded motion picture.[9]

Figure 5 shows an artificially corrupted frame in the Salesman sequence.
The blotches and scratch line are temporally isolated. The proposed
algorithm (BAR3D) is applied to the Salesman sequence that contains
regions undergoing self-occlusion and to the Corridor sequence that consists
of a scene undergoing zooming. Multiple pixel-sized blotches and artificial
scratches are synthetically added to several frames of each sequence. The
picture quality can be seen in Figure 6, which shows the corresponding
restored frame using the B3D-AR model.

Figure 7(a) shows a magnified portion of the degraded Salesman frame.
Figure 7(b) shows the corresponding restored frames using the BAR3D
models. Figure 8(a) shows a degraded Corridor frame. The Corridor sequence
exhibits a motion called zooming. Figure 8(b) shows the corresponding
restored frames using the BAR3D model.
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 Figure 5.  Corrupted Frame of Salesman Sequence
   (Blotches vary from sizes of 2×2 to 4×4 and a line of width 2)
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 Figure 6.  Restored Frame¦Using Bi-Directional 3D-AR Model

       

           7(a)                             7(b)

 Figure 7(a).  Magnified Portion of Corrupted Salesman Frame¦at Region of
Self-Occlusion

 Figure 7(b).  Corresponding Restored Frame¦Using Bi-Directional 3D-AR
Model
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8(a)         8(b)

Figure 8(a).  Corrupted Frame in Corridor Sequence
 Figure 8(b).  Corresponding Restored Frame¦Using Bi-Directional 3D-AR

Model

The restoration quality of the algorithm on naturally degraded image
sequences (obtained by digitizing the Frankenstein video) is shown in
Figures 11(a), 11(b), 12(a), and 12(b). The video was first digitized from a
PAL-format video tape before applying the algorithm onto the image
sequences. The size of each frame in the PAL image sequence is 576 × 720.
The original Frankenstein sequence is heavily blotched and has been
restored effectively by the Gaussian-weighted, B3D-AR algorithm.
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 Figure 9(a).  Sample A¦Selected Frame of Noise-Corrupted Image Sequence
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 Figure 9(b).  Corresponding Restored Sample A Frame¦Using Bi-Directional
3D-AR Model
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 Figure 10(a).  Sample B¦Selected Frame of Noise-Corrupted Image
Sequence
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 Figure 10(b).  Corresponding Restored Sample B Frame¦Using Bi-
Directional 3D-AR Model
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PROCESSING PERFORMANCE OF THE PARALLEL VIDEO
RESTORATION SYSTEM

The second-level processors (shown in Figure 4) actually execute two
different tasks: sub-master and worker tasks. These tasks run concurrently.
This means that if the distribution of the workload exceeds the processing of
the workload in the sub-master processor, drastic performance degradation
can take place.

Two algorithms were implemented on these four second-level processors to
measure the effect of the distribution workload on their performance. The
first algorithm (Algorithm A) consisted of a simple mechanism where no
distinction was made between the concurrently executing tasks. The sub-
master processor divides time slices equally between the two tasks.

The second algorithm (Algorithm B) followed from a careful analysis of the
sub-master and worker processing burdens. It was found that the
computational load of the worker exceeded that of the sub-master by a
substantial margin. It is, therefore, not justified for the two tasks to receive
the same share of processing time. The sub-master task needs to be active
only when a worker under it has completed a work task and requires a fresh
work packet. Therefore, the worker should receive a larger share of processor
time. This was achieved by using priority.[7] The worker tasks were given
the highest priority. The sub-master task was accorded a low priority,
becoming active only when required; otherwise, it remained descheduled.
This is in contrast to Algorithm A, where the distributor task is constantly
running without doing any useful processing.



Processing Performance of the Parallel Video Restoration System

Video Restoration Page 23

Figure 11 shows the speedup characteristics of Algorithms A and B.

�

�

�

�

�

�

�

�

�

��

��

��

��

��

� � �� ��

.O��OF�0ROCESSORS

3
P
E
E
D
�5
P
�
%
	

)DEAL�3PEED


UP

!LGORITHM�!

!LGORITHM�"

 Figure 11.  Speed-Up Characteristics¦Both Algorithms

The improvements in the results for Algorithm B are evident. In a network
consisting of up to four processors, the two algorithms display the same
speed-up. This is due to the fact that only the four first-level processors are
used as dedicated workers only. When the tree-configured network grows
into the third level, the degradation of the performance of Algorithm A starts
to take place. Algorithm B, on the other hand, does not degrade as much.
This clearly demonstrates the precedence that the worker tasks should take
over the distributor tasks. It is also observed that the performance of
Algorithm B is well above the P/log P speed-up that is usually accepted as
good performance for a parallel algorithm.



Conclusion

Page 24 Video Restoration

CONCLUSION

The video restoration algorithm and its implementation on a network of
15 TMS320C40s are presented in this application report. The algorithm is
shown to have better restoration quality when tested on a set of image
sequences. The results and analysis show that the B3D-AR model is capable
of restoring noise-corrupted video.  While the Gaussian weighting scheme
provides good spatial support, the bi-directional scheme prevents the
progressive degradation of image sequences due to the corruption in regions
exhibiting different motion processes (such as occlusion, zooming, rotation,
and panning). The video restoration has been tested on different image
sequences containing different noise processes such as variable-size blotches
and line scratches. Its effectiveness in the restoration of these different noise
artifacts has been demonstrated. More importantly, when the system is
applied to a naturally degraded (PAL-size) video, the noise level of the image
sequence is significantly reduced while the crispness and sharpness of the
original image sequence are retained.

Parallel implementation of the proposed algorithm is realized where close to
linear speed-up is achieved on a 15-node TMS320C40 system hosted by a Sun
SPARC10 workstation.
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SUMMARY

This application report describes a video restoration algorithm and its
implementation on a network of 15 Texas Instruments TMS320C40 DSPs.
The video restoration algorithm used is a Gaussian-weighted, bi-directional
3D auto-regressive (B3D-AR) model. This restoration algorithm alleviates the
presence of noise in old video archives. Common forms of degradation found
in such archives are ‘‘dirt and sparkle’’ and scratches. The distortion is
caused by the accumulation of dirt, the degradation of the films due to
chemical process, or by the film material being abraded.

This parallel video restoration system is shown to have better restoration
quality when tested on a set of image sequences. The results and analysis
show that the B3D-AR model is capable of restoring noise-corrupted video.
While the Gaussian weighting scheme provides good spatial support for the
model, the bi-directional scheme prevents the progressive degradation of
image sequences due to the corruption in regions exhibiting different motion
processes (such as occlusion, zooming, rotation, and panning). The video
restoration has been tested on different image sequences containing different
noise processes (such as variable-size blotches and line scratches). Its
effectiveness in the restoration of these different noise artifacts has been
demonstrated. More importantly, when the system is applied to a naturally
degraded (PAL-size) video, the noise level of the image sequence is
significantly reduced while the crispness and sharpness of the original image
sequence are retained. The results are in contrast with most of the existing
image-restoration algorithms which blur the edges of moving objects in the
vicinity of occluded and uncovered image regions; the video-restoration
algorithm described here can successfully suppress mixed-noise processes
and recover lost signals in both the covered and uncovered regions in image
sequences.

Parallel implementation of the proposed algorithm is realized where close to
linear speed-up is achieved on a 15-node TMS320C40 system hosted by a Sun
SPARC10 workstation. This application describes a fast video restoration
system that distorted old archives can be digitized, restored, and transferred
into new storage media with minimal human supervision.
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